BasicAliasAnalysis.cpp revision 22c031296ce91cdabb193a203b06b339ef500f4b
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/CaptureTracking.h"
18#include "llvm/Analysis/MallocHelper.h"
19#include "llvm/Analysis/Passes.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Operator.h"
28#include "llvm/Pass.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/Compiler.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include <algorithm>
37using namespace llvm;
38
39//===----------------------------------------------------------------------===//
40// Useful predicates
41//===----------------------------------------------------------------------===//
42
43static const GEPOperator *isGEP(const Value *V) {
44  return dyn_cast<GEPOperator>(V);
45}
46
47static const Value *GetGEPOperands(const Value *V,
48                                   SmallVector<Value*, 16> &GEPOps) {
49  assert(GEPOps.empty() && "Expect empty list to populate!");
50  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
51                cast<User>(V)->op_end());
52
53  // Accumulate all of the chained indexes into the operand array
54  V = cast<User>(V)->getOperand(0);
55
56  while (const User *G = isGEP(V)) {
57    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
58        !cast<Constant>(GEPOps[0])->isNullValue())
59      break;  // Don't handle folding arbitrary pointer offsets yet...
60    GEPOps.erase(GEPOps.begin());   // Drop the zero index
61    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
62    V = G->getOperand(0);
63  }
64  return V;
65}
66
67/// isKnownNonNull - Return true if we know that the specified value is never
68/// null.
69static bool isKnownNonNull(const Value *V) {
70  // Alloca never returns null, malloc might.
71  if (isa<AllocaInst>(V)) return true;
72
73  // A byval argument is never null.
74  if (const Argument *A = dyn_cast<Argument>(V))
75    return A->hasByValAttr();
76
77  // Global values are not null unless extern weak.
78  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
79    return !GV->hasExternalWeakLinkage();
80  return false;
81}
82
83/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
84/// object that never escapes from the function.
85static bool isNonEscapingLocalObject(const Value *V) {
86  // If this is a local allocation, check to see if it escapes.
87  if (isa<AllocationInst>(V) || isNoAliasCall(V))
88    return !PointerMayBeCaptured(V, false);
89
90  // If this is an argument that corresponds to a byval or noalias argument,
91  // then it has not escaped before entering the function.  Check if it escapes
92  // inside the function.
93  if (const Argument *A = dyn_cast<Argument>(V))
94    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
95      // Don't bother analyzing arguments already known not to escape.
96      if (A->hasNoCaptureAttr())
97        return true;
98      return !PointerMayBeCaptured(V, false);
99    }
100  return false;
101}
102
103
104/// isObjectSmallerThan - Return true if we can prove that the object specified
105/// by V is smaller than Size.
106static bool isObjectSmallerThan(const Value *V, unsigned Size,
107                                LLVMContext &Context, const TargetData &TD) {
108  const Type *AccessTy;
109  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
110    AccessTy = GV->getType()->getElementType();
111  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
112    if (!AI->isArrayAllocation())
113      AccessTy = AI->getType()->getElementType();
114    else
115      return false;
116  } else if (const CallInst* CI = extractMallocCall(V)) {
117    if (!isArrayMalloc(V, Context, &TD))
118      // The size is the argument to the malloc call.
119      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getOperand(1)))
120        return (C->getZExtValue() < Size);
121    return false;
122  } else if (const Argument *A = dyn_cast<Argument>(V)) {
123    if (A->hasByValAttr())
124      AccessTy = cast<PointerType>(A->getType())->getElementType();
125    else
126      return false;
127  } else {
128    return false;
129  }
130
131  if (AccessTy->isSized())
132    return TD.getTypeAllocSize(AccessTy) < Size;
133  return false;
134}
135
136//===----------------------------------------------------------------------===//
137// NoAA Pass
138//===----------------------------------------------------------------------===//
139
140namespace {
141  /// NoAA - This class implements the -no-aa pass, which always returns "I
142  /// don't know" for alias queries.  NoAA is unlike other alias analysis
143  /// implementations, in that it does not chain to a previous analysis.  As
144  /// such it doesn't follow many of the rules that other alias analyses must.
145  ///
146  struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
147    static char ID; // Class identification, replacement for typeinfo
148    NoAA() : ImmutablePass(&ID) {}
149    explicit NoAA(void *PID) : ImmutablePass(PID) { }
150
151    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
152    }
153
154    virtual void initializePass() {
155      TD = getAnalysisIfAvailable<TargetData>();
156    }
157
158    virtual AliasResult alias(const Value *V1, unsigned V1Size,
159                              const Value *V2, unsigned V2Size) {
160      return MayAlias;
161    }
162
163    virtual void getArgumentAccesses(Function *F, CallSite CS,
164                                     std::vector<PointerAccessInfo> &Info) {
165      llvm_unreachable("This method may not be called on this function!");
166    }
167
168    virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
169    virtual bool pointsToConstantMemory(const Value *P) { return false; }
170    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
171      return ModRef;
172    }
173    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
174      return ModRef;
175    }
176    virtual bool hasNoModRefInfoForCalls() const { return true; }
177
178    virtual void deleteValue(Value *V) {}
179    virtual void copyValue(Value *From, Value *To) {}
180  };
181}  // End of anonymous namespace
182
183// Register this pass...
184char NoAA::ID = 0;
185static RegisterPass<NoAA>
186U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
187
188// Declare that we implement the AliasAnalysis interface
189static RegisterAnalysisGroup<AliasAnalysis> V(U);
190
191ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
192
193//===----------------------------------------------------------------------===//
194// BasicAA Pass
195//===----------------------------------------------------------------------===//
196
197namespace {
198  /// BasicAliasAnalysis - This is the default alias analysis implementation.
199  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
200  /// derives from the NoAA class.
201  struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
202    static char ID; // Class identification, replacement for typeinfo
203    BasicAliasAnalysis() : NoAA(&ID) {}
204    AliasResult alias(const Value *V1, unsigned V1Size,
205                      const Value *V2, unsigned V2Size) {
206      assert(VisitedPHIs.empty() && "VisitedPHIs must be cleared after use!");
207      AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size);
208      VisitedPHIs.clear();
209      return Alias;
210    }
211
212    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
213    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
214
215    /// hasNoModRefInfoForCalls - We can provide mod/ref information against
216    /// non-escaping allocations.
217    virtual bool hasNoModRefInfoForCalls() const { return false; }
218
219    /// pointsToConstantMemory - Chase pointers until we find a (constant
220    /// global) or not.
221    bool pointsToConstantMemory(const Value *P);
222
223  private:
224    // VisitedPHIs - Track PHI nodes visited by a aliasCheck() call.
225    SmallSet<const PHINode*, 16> VisitedPHIs;
226
227    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
228    // against another.
229    AliasResult aliasGEP(const Value *V1, unsigned V1Size,
230                         const Value *V2, unsigned V2Size);
231
232    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
233    // against another.
234    AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
235                         const Value *V2, unsigned V2Size);
236
237    AliasResult aliasCheck(const Value *V1, unsigned V1Size,
238                           const Value *V2, unsigned V2Size);
239
240    // CheckGEPInstructions - Check two GEP instructions with known
241    // must-aliasing base pointers.  This checks to see if the index expressions
242    // preclude the pointers from aliasing...
243    AliasResult
244    CheckGEPInstructions(const Type* BasePtr1Ty,
245                         Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
246                         const Type *BasePtr2Ty,
247                         Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
248  };
249}  // End of anonymous namespace
250
251// Register this pass...
252char BasicAliasAnalysis::ID = 0;
253static RegisterPass<BasicAliasAnalysis>
254X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
255
256// Declare that we implement the AliasAnalysis interface
257static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
258
259ImmutablePass *llvm::createBasicAliasAnalysisPass() {
260  return new BasicAliasAnalysis();
261}
262
263
264/// pointsToConstantMemory - Chase pointers until we find a (constant
265/// global) or not.
266bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
267  if (const GlobalVariable *GV =
268        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
269    return GV->isConstant();
270  return false;
271}
272
273
274// getModRefInfo - Check to see if the specified callsite can clobber the
275// specified memory object.  Since we only look at local properties of this
276// function, we really can't say much about this query.  We do, however, use
277// simple "address taken" analysis on local objects.
278//
279AliasAnalysis::ModRefResult
280BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
281  if (!isa<Constant>(P)) {
282    const Value *Object = P->getUnderlyingObject();
283
284    // If this is a tail call and P points to a stack location, we know that
285    // the tail call cannot access or modify the local stack.
286    // We cannot exclude byval arguments here; these belong to the caller of
287    // the current function not to the current function, and a tail callee
288    // may reference them.
289    if (isa<AllocaInst>(Object))
290      if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
291        if (CI->isTailCall())
292          return NoModRef;
293
294    // If the pointer is to a locally allocated object that does not escape,
295    // then the call can not mod/ref the pointer unless the call takes the
296    // argument without capturing it.
297    if (isNonEscapingLocalObject(Object) && CS.getInstruction() != Object) {
298      bool passedAsArg = false;
299      // TODO: Eventually only check 'nocapture' arguments.
300      for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
301           CI != CE; ++CI)
302        if (isa<PointerType>((*CI)->getType()) &&
303            alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
304          passedAsArg = true;
305
306      if (!passedAsArg)
307        return NoModRef;
308    }
309
310    if (TD) {
311      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
312        switch (II->getIntrinsicID()) {
313        default: break;
314        case Intrinsic::atomic_cmp_swap:
315        case Intrinsic::atomic_swap:
316        case Intrinsic::atomic_load_add:
317        case Intrinsic::atomic_load_sub:
318        case Intrinsic::atomic_load_and:
319        case Intrinsic::atomic_load_nand:
320        case Intrinsic::atomic_load_or:
321        case Intrinsic::atomic_load_xor:
322        case Intrinsic::atomic_load_max:
323        case Intrinsic::atomic_load_min:
324        case Intrinsic::atomic_load_umax:
325        case Intrinsic::atomic_load_umin: {
326          Value *Op1 = II->getOperand(1);
327          unsigned Op1Size = TD->getTypeStoreSize(Op1->getType());
328          if (alias(Op1, Op1Size, P, Size) == NoAlias)
329            return NoModRef;
330          break;
331        }
332        }
333      }
334    }
335  }
336
337  // The AliasAnalysis base class has some smarts, lets use them.
338  return AliasAnalysis::getModRefInfo(CS, P, Size);
339}
340
341
342AliasAnalysis::ModRefResult
343BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
344  // If CS1 or CS2 are readnone, they don't interact.
345  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
346  if (CS1B == DoesNotAccessMemory) return NoModRef;
347
348  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
349  if (CS2B == DoesNotAccessMemory) return NoModRef;
350
351  // If they both only read from memory, just return ref.
352  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
353    return Ref;
354
355  // Otherwise, fall back to NoAA (mod+ref).
356  return NoAA::getModRefInfo(CS1, CS2);
357}
358
359// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
360// against another.
361//
362AliasAnalysis::AliasResult
363BasicAliasAnalysis::aliasGEP(const Value *V1, unsigned V1Size,
364                             const Value *V2, unsigned V2Size) {
365  // If we have two gep instructions with must-alias'ing base pointers, figure
366  // out if the indexes to the GEP tell us anything about the derived pointer.
367  // Note that we also handle chains of getelementptr instructions as well as
368  // constant expression getelementptrs here.
369  //
370  if (isGEP(V1) && isGEP(V2)) {
371    const User *GEP1 = cast<User>(V1);
372    const User *GEP2 = cast<User>(V2);
373
374    // If V1 and V2 are identical GEPs, just recurse down on both of them.
375    // This allows us to analyze things like:
376    //   P = gep A, 0, i, 1
377    //   Q = gep B, 0, i, 1
378    // by just analyzing A and B.  This is even safe for variable indices.
379    if (GEP1->getType() == GEP2->getType() &&
380        GEP1->getNumOperands() == GEP2->getNumOperands() &&
381        GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
382        // All operands are the same, ignoring the base.
383        std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
384      return aliasCheck(GEP1->getOperand(0), V1Size,
385                        GEP2->getOperand(0), V2Size);
386
387    // Drill down into the first non-gep value, to test for must-aliasing of
388    // the base pointers.
389    while (isGEP(GEP1->getOperand(0)) &&
390           GEP1->getOperand(1) ==
391           Constant::getNullValue(GEP1->getOperand(1)->getType()))
392      GEP1 = cast<User>(GEP1->getOperand(0));
393    const Value *BasePtr1 = GEP1->getOperand(0);
394
395    while (isGEP(GEP2->getOperand(0)) &&
396           GEP2->getOperand(1) ==
397           Constant::getNullValue(GEP2->getOperand(1)->getType()))
398      GEP2 = cast<User>(GEP2->getOperand(0));
399    const Value *BasePtr2 = GEP2->getOperand(0);
400
401    // Do the base pointers alias?
402    AliasResult BaseAlias = aliasCheck(BasePtr1, ~0U, BasePtr2, ~0U);
403    if (BaseAlias == NoAlias) return NoAlias;
404    if (BaseAlias == MustAlias) {
405      // If the base pointers alias each other exactly, check to see if we can
406      // figure out anything about the resultant pointers, to try to prove
407      // non-aliasing.
408
409      // Collect all of the chained GEP operands together into one simple place
410      SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
411      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
412      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
413
414      // If GetGEPOperands were able to fold to the same must-aliased pointer,
415      // do the comparison.
416      if (BasePtr1 == BasePtr2) {
417        AliasResult GAlias =
418          CheckGEPInstructions(BasePtr1->getType(),
419                               &GEP1Ops[0], GEP1Ops.size(), V1Size,
420                               BasePtr2->getType(),
421                               &GEP2Ops[0], GEP2Ops.size(), V2Size);
422        if (GAlias != MayAlias)
423          return GAlias;
424      }
425    }
426  }
427
428  // Check to see if these two pointers are related by a getelementptr
429  // instruction.  If one pointer is a GEP with a non-zero index of the other
430  // pointer, we know they cannot alias.
431  //
432  if (V1Size == ~0U || V2Size == ~0U)
433    return MayAlias;
434
435  SmallVector<Value*, 16> GEPOperands;
436  const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
437
438  AliasResult R = aliasCheck(BasePtr, ~0U, V2, V2Size);
439  if (R != MustAlias)
440    // If V2 may alias GEP base pointer, conservatively returns MayAlias.
441    // If V2 is known not to alias GEP base pointer, then the two values
442    // cannot alias per GEP semantics: "A pointer value formed from a
443    // getelementptr instruction is associated with the addresses associated
444    // with the first operand of the getelementptr".
445    return R;
446
447  // If there is at least one non-zero constant index, we know they cannot
448  // alias.
449  bool ConstantFound = false;
450  bool AllZerosFound = true;
451  for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
452    if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
453      if (!C->isNullValue()) {
454        ConstantFound = true;
455        AllZerosFound = false;
456        break;
457      }
458    } else {
459      AllZerosFound = false;
460    }
461
462  // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
463  // the ptr, the end result is a must alias also.
464  if (AllZerosFound)
465    return MustAlias;
466
467  if (ConstantFound) {
468    if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
469      return NoAlias;
470
471    // Otherwise we have to check to see that the distance is more than
472    // the size of the argument... build an index vector that is equal to
473    // the arguments provided, except substitute 0's for any variable
474    // indexes we find...
475    if (TD &&
476        cast<PointerType>(BasePtr->getType())->getElementType()->isSized()) {
477      for (unsigned i = 0; i != GEPOperands.size(); ++i)
478        if (!isa<ConstantInt>(GEPOperands[i]))
479          GEPOperands[i] = Constant::getNullValue(GEPOperands[i]->getType());
480      int64_t Offset = TD->getIndexedOffset(BasePtr->getType(),
481                                            &GEPOperands[0],
482                                            GEPOperands.size());
483
484      if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
485        return NoAlias;
486    }
487  }
488
489  return MayAlias;
490}
491
492// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
493// against another.
494AliasAnalysis::AliasResult
495BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
496                             const Value *V2, unsigned V2Size) {
497  // The PHI node has already been visited, avoid recursion any further.
498  if (!VisitedPHIs.insert(PN))
499    return MayAlias;
500
501  SmallSet<Value*, 4> UniqueSrc;
502  SmallVector<Value*, 4> V1Srcs;
503  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
504    Value *PV1 = PN->getIncomingValue(i);
505    if (isa<PHINode>(PV1))
506      // If any of the source itself is a PHI, return MayAlias conservatively
507      // to avoid compile time explosion. The worst possible case is if both
508      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
509      // and 'n' are the number of PHI sources.
510      return MayAlias;
511    if (UniqueSrc.insert(PV1))
512      V1Srcs.push_back(PV1);
513  }
514
515  AliasResult Alias = aliasCheck(V1Srcs[0], PNSize, V2, V2Size);
516  // Early exit if the check of the first PHI source against V2 is MayAlias.
517  // Other results are not possible.
518  if (Alias == MayAlias)
519    return MayAlias;
520
521  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
522  // NoAlias / MustAlias. Otherwise, returns MayAlias.
523  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
524    Value *V = V1Srcs[i];
525    AliasResult ThisAlias = aliasCheck(V, PNSize, V2, V2Size);
526    if (ThisAlias != Alias || ThisAlias == MayAlias)
527      return MayAlias;
528  }
529
530  return Alias;
531}
532
533// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
534// such as array references.
535//
536AliasAnalysis::AliasResult
537BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
538                               const Value *V2, unsigned V2Size) {
539  // Strip off any casts if they exist.
540  V1 = V1->stripPointerCasts();
541  V2 = V2->stripPointerCasts();
542
543  // Are we checking for alias of the same value?
544  if (V1 == V2) return MustAlias;
545
546  if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
547    return NoAlias;  // Scalars cannot alias each other
548
549  // Figure out what objects these things are pointing to if we can.
550  const Value *O1 = V1->getUnderlyingObject();
551  const Value *O2 = V2->getUnderlyingObject();
552
553  if (O1 != O2) {
554    // If V1/V2 point to two different objects we know that we have no alias.
555    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
556      return NoAlias;
557
558    // Arguments can't alias with local allocations or noalias calls.
559    if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
560        (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
561      return NoAlias;
562
563    // Most objects can't alias null.
564    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
565        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
566      return NoAlias;
567  }
568
569  // If the size of one access is larger than the entire object on the other
570  // side, then we know such behavior is undefined and can assume no alias.
571  LLVMContext &Context = V1->getContext();
572  if (TD)
573    if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, Context, *TD)) ||
574        (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, Context, *TD)))
575      return NoAlias;
576
577  // If one pointer is the result of a call/invoke and the other is a
578  // non-escaping local object, then we know the object couldn't escape to a
579  // point where the call could return it.
580  if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
581      isNonEscapingLocalObject(O2) && O1 != O2)
582    return NoAlias;
583  if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
584      isNonEscapingLocalObject(O1) && O1 != O2)
585    return NoAlias;
586
587  if (!isGEP(V1) && isGEP(V2)) {
588    std::swap(V1, V2);
589    std::swap(V1Size, V2Size);
590  }
591  if (isGEP(V1))
592    return aliasGEP(V1, V1Size, V2, V2Size);
593
594  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
595    std::swap(V1, V2);
596    std::swap(V1Size, V2Size);
597  }
598  if (const PHINode *PN = dyn_cast<PHINode>(V1))
599    return aliasPHI(PN, V1Size, V2, V2Size);
600
601  return MayAlias;
602}
603
604// This function is used to determine if the indices of two GEP instructions are
605// equal. V1 and V2 are the indices.
606static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext &Context) {
607  if (V1->getType() == V2->getType())
608    return V1 == V2;
609  if (Constant *C1 = dyn_cast<Constant>(V1))
610    if (Constant *C2 = dyn_cast<Constant>(V2)) {
611      // Sign extend the constants to long types, if necessary
612      if (C1->getType() != Type::getInt64Ty(Context))
613        C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(Context));
614      if (C2->getType() != Type::getInt64Ty(Context))
615        C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(Context));
616      return C1 == C2;
617    }
618  return false;
619}
620
621/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
622/// base pointers.  This checks to see if the index expressions preclude the
623/// pointers from aliasing...
624AliasAnalysis::AliasResult
625BasicAliasAnalysis::CheckGEPInstructions(
626  const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
627  const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
628  // We currently can't handle the case when the base pointers have different
629  // primitive types.  Since this is uncommon anyway, we are happy being
630  // extremely conservative.
631  if (BasePtr1Ty != BasePtr2Ty)
632    return MayAlias;
633
634  const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
635
636  LLVMContext &Context = GEPPointerTy->getContext();
637
638  // Find the (possibly empty) initial sequence of equal values... which are not
639  // necessarily constants.
640  unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
641  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
642  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
643  unsigned UnequalOper = 0;
644  while (UnequalOper != MinOperands &&
645         IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper],
646         Context)) {
647    // Advance through the type as we go...
648    ++UnequalOper;
649    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
650      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
651    else {
652      // If all operands equal each other, then the derived pointers must
653      // alias each other...
654      BasePtr1Ty = 0;
655      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
656             "Ran out of type nesting, but not out of operands?");
657      return MustAlias;
658    }
659  }
660
661  // If we have seen all constant operands, and run out of indexes on one of the
662  // getelementptrs, check to see if the tail of the leftover one is all zeros.
663  // If so, return mustalias.
664  if (UnequalOper == MinOperands) {
665    if (NumGEP1Ops < NumGEP2Ops) {
666      std::swap(GEP1Ops, GEP2Ops);
667      std::swap(NumGEP1Ops, NumGEP2Ops);
668    }
669
670    bool AllAreZeros = true;
671    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
672      if (!isa<Constant>(GEP1Ops[i]) ||
673          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
674        AllAreZeros = false;
675        break;
676      }
677    if (AllAreZeros) return MustAlias;
678  }
679
680
681  // So now we know that the indexes derived from the base pointers,
682  // which are known to alias, are different.  We can still determine a
683  // no-alias result if there are differing constant pairs in the index
684  // chain.  For example:
685  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
686  //
687  // We have to be careful here about array accesses.  In particular, consider:
688  //        A[1][0] vs A[0][i]
689  // In this case, we don't *know* that the array will be accessed in bounds:
690  // the index could even be negative.  Because of this, we have to
691  // conservatively *give up* and return may alias.  We disregard differing
692  // array subscripts that are followed by a variable index without going
693  // through a struct.
694  //
695  unsigned SizeMax = std::max(G1S, G2S);
696  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
697
698  // Scan for the first operand that is constant and unequal in the
699  // two getelementptrs...
700  unsigned FirstConstantOper = UnequalOper;
701  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
702    const Value *G1Oper = GEP1Ops[FirstConstantOper];
703    const Value *G2Oper = GEP2Ops[FirstConstantOper];
704
705    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
706      if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
707        if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
708          if (G1OC->getType() != G2OC->getType()) {
709            // Sign extend both operands to long.
710            if (G1OC->getType() != Type::getInt64Ty(Context))
711              G1OC = ConstantExpr::getSExt(G1OC, Type::getInt64Ty(Context));
712            if (G2OC->getType() != Type::getInt64Ty(Context))
713              G2OC = ConstantExpr::getSExt(G2OC, Type::getInt64Ty(Context));
714            GEP1Ops[FirstConstantOper] = G1OC;
715            GEP2Ops[FirstConstantOper] = G2OC;
716          }
717
718          if (G1OC != G2OC) {
719            // Handle the "be careful" case above: if this is an array/vector
720            // subscript, scan for a subsequent variable array index.
721            if (const SequentialType *STy =
722                  dyn_cast<SequentialType>(BasePtr1Ty)) {
723              const Type *NextTy = STy;
724              bool isBadCase = false;
725
726              for (unsigned Idx = FirstConstantOper;
727                   Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
728                const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
729                if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
730                  isBadCase = true;
731                  break;
732                }
733                // If the array is indexed beyond the bounds of the static type
734                // at this level, it will also fall into the "be careful" case.
735                // It would theoretically be possible to analyze these cases,
736                // but for now just be conservatively correct.
737                if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
738                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
739                        ATy->getNumElements() ||
740                      cast<ConstantInt>(G2OC)->getZExtValue() >=
741                        ATy->getNumElements()) {
742                    isBadCase = true;
743                    break;
744                  }
745                if (const VectorType *VTy = dyn_cast<VectorType>(STy))
746                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
747                        VTy->getNumElements() ||
748                      cast<ConstantInt>(G2OC)->getZExtValue() >=
749                        VTy->getNumElements()) {
750                    isBadCase = true;
751                    break;
752                  }
753                STy = cast<SequentialType>(NextTy);
754                NextTy = cast<SequentialType>(NextTy)->getElementType();
755              }
756
757              if (isBadCase) G1OC = 0;
758            }
759
760            // Make sure they are comparable (ie, not constant expressions), and
761            // make sure the GEP with the smaller leading constant is GEP1.
762            if (G1OC) {
763              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
764                                                        G1OC, G2OC);
765              if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
766                if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
767                  std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
768                  std::swap(NumGEP1Ops, NumGEP2Ops);
769                }
770                break;
771              }
772            }
773          }
774        }
775    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
776  }
777
778  // No shared constant operands, and we ran out of common operands.  At this
779  // point, the GEP instructions have run through all of their operands, and we
780  // haven't found evidence that there are any deltas between the GEP's.
781  // However, one GEP may have more operands than the other.  If this is the
782  // case, there may still be hope.  Check this now.
783  if (FirstConstantOper == MinOperands) {
784    // Without TargetData, we won't know what the offsets are.
785    if (!TD)
786      return MayAlias;
787
788    // Make GEP1Ops be the longer one if there is a longer one.
789    if (NumGEP1Ops < NumGEP2Ops) {
790      std::swap(GEP1Ops, GEP2Ops);
791      std::swap(NumGEP1Ops, NumGEP2Ops);
792    }
793
794    // Is there anything to check?
795    if (NumGEP1Ops > MinOperands) {
796      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
797        if (isa<ConstantInt>(GEP1Ops[i]) &&
798            !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
799          // Yup, there's a constant in the tail.  Set all variables to
800          // constants in the GEP instruction to make it suitable for
801          // TargetData::getIndexedOffset.
802          for (i = 0; i != MaxOperands; ++i)
803            if (!isa<ConstantInt>(GEP1Ops[i]))
804              GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
805          // Okay, now get the offset.  This is the relative offset for the full
806          // instruction.
807          int64_t Offset1 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
808                                                 NumGEP1Ops);
809
810          // Now check without any constants at the end.
811          int64_t Offset2 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
812                                                 MinOperands);
813
814          // Make sure we compare the absolute difference.
815          if (Offset1 > Offset2)
816            std::swap(Offset1, Offset2);
817
818          // If the tail provided a bit enough offset, return noalias!
819          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
820            return NoAlias;
821          // Otherwise break - we don't look for another constant in the tail.
822          break;
823        }
824    }
825
826    // Couldn't find anything useful.
827    return MayAlias;
828  }
829
830  // If there are non-equal constants arguments, then we can figure
831  // out a minimum known delta between the two index expressions... at
832  // this point we know that the first constant index of GEP1 is less
833  // than the first constant index of GEP2.
834
835  // Advance BasePtr[12]Ty over this first differing constant operand.
836  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
837      getTypeAtIndex(GEP2Ops[FirstConstantOper]);
838  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
839      getTypeAtIndex(GEP1Ops[FirstConstantOper]);
840
841  // We are going to be using TargetData::getIndexedOffset to determine the
842  // offset that each of the GEP's is reaching.  To do this, we have to convert
843  // all variable references to constant references.  To do this, we convert the
844  // initial sequence of array subscripts into constant zeros to start with.
845  const Type *ZeroIdxTy = GEPPointerTy;
846  for (unsigned i = 0; i != FirstConstantOper; ++i) {
847    if (!isa<StructType>(ZeroIdxTy))
848      GEP1Ops[i] = GEP2Ops[i] =
849                              Constant::getNullValue(Type::getInt32Ty(Context));
850
851    if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
852      ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
853  }
854
855  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
856
857  // Loop over the rest of the operands...
858  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
859    const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
860    const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
861    // If they are equal, use a zero index...
862    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
863      if (!isa<ConstantInt>(Op1))
864        GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
865      // Otherwise, just keep the constants we have.
866    } else {
867      if (Op1) {
868        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
869          // If this is an array index, make sure the array element is in range.
870          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
871            if (Op1C->getZExtValue() >= AT->getNumElements())
872              return MayAlias;  // Be conservative with out-of-range accesses
873          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
874            if (Op1C->getZExtValue() >= VT->getNumElements())
875              return MayAlias;  // Be conservative with out-of-range accesses
876          }
877
878        } else {
879          // GEP1 is known to produce a value less than GEP2.  To be
880          // conservatively correct, we must assume the largest possible
881          // constant is used in this position.  This cannot be the initial
882          // index to the GEP instructions (because we know we have at least one
883          // element before this one with the different constant arguments), so
884          // we know that the current index must be into either a struct or
885          // array.  Because we know it's not constant, this cannot be a
886          // structure index.  Because of this, we can calculate the maximum
887          // value possible.
888          //
889          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
890            GEP1Ops[i] =
891                  ConstantInt::get(Type::getInt64Ty(Context),
892                                   AT->getNumElements()-1);
893          else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
894            GEP1Ops[i] =
895                  ConstantInt::get(Type::getInt64Ty(Context),
896                                   VT->getNumElements()-1);
897        }
898      }
899
900      if (Op2) {
901        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
902          // If this is an array index, make sure the array element is in range.
903          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
904            if (Op2C->getZExtValue() >= AT->getNumElements())
905              return MayAlias;  // Be conservative with out-of-range accesses
906          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
907            if (Op2C->getZExtValue() >= VT->getNumElements())
908              return MayAlias;  // Be conservative with out-of-range accesses
909          }
910        } else {  // Conservatively assume the minimum value for this index
911          GEP2Ops[i] = Constant::getNullValue(Op2->getType());
912        }
913      }
914    }
915
916    if (BasePtr1Ty && Op1) {
917      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
918        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
919      else
920        BasePtr1Ty = 0;
921    }
922
923    if (BasePtr2Ty && Op2) {
924      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
925        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
926      else
927        BasePtr2Ty = 0;
928    }
929  }
930
931  if (TD && GEPPointerTy->getElementType()->isSized()) {
932    int64_t Offset1 =
933      TD->getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
934    int64_t Offset2 =
935      TD->getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
936    assert(Offset1 != Offset2 &&
937           "There is at least one different constant here!");
938
939    // Make sure we compare the absolute difference.
940    if (Offset1 > Offset2)
941      std::swap(Offset1, Offset2);
942
943    if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
944      //cerr << "Determined that these two GEP's don't alias ["
945      //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
946      return NoAlias;
947    }
948  }
949  return MayAlias;
950}
951
952// Make sure that anything that uses AliasAnalysis pulls in this file...
953DEFINING_FILE_FOR(BasicAliasAnalysis)
954