BasicAliasAnalysis.cpp revision 681a33e26dd3222477f13520b94e7417bff59e32
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/CaptureTracking.h"
18#include "llvm/Analysis/MallocHelper.h"
19#include "llvm/Analysis/Passes.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Operator.h"
28#include "llvm/Pass.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/Compiler.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include <algorithm>
37using namespace llvm;
38
39//===----------------------------------------------------------------------===//
40// Useful predicates
41//===----------------------------------------------------------------------===//
42
43static const GEPOperator *isGEP(const Value *V) {
44  return dyn_cast<GEPOperator>(V);
45}
46
47static const Value *GetGEPOperands(const Value *V,
48                                   SmallVector<Value*, 16> &GEPOps) {
49  assert(GEPOps.empty() && "Expect empty list to populate!");
50  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
51                cast<User>(V)->op_end());
52
53  // Accumulate all of the chained indexes into the operand array
54  V = cast<User>(V)->getOperand(0);
55
56  while (const User *G = isGEP(V)) {
57    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
58        !cast<Constant>(GEPOps[0])->isNullValue())
59      break;  // Don't handle folding arbitrary pointer offsets yet...
60    GEPOps.erase(GEPOps.begin());   // Drop the zero index
61    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
62    V = G->getOperand(0);
63  }
64  return V;
65}
66
67/// isKnownNonNull - Return true if we know that the specified value is never
68/// null.
69static bool isKnownNonNull(const Value *V) {
70  // Alloca never returns null, malloc might.
71  if (isa<AllocaInst>(V)) return true;
72
73  // A byval argument is never null.
74  if (const Argument *A = dyn_cast<Argument>(V))
75    return A->hasByValAttr();
76
77  // Global values are not null unless extern weak.
78  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
79    return !GV->hasExternalWeakLinkage();
80  return false;
81}
82
83/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
84/// object that never escapes from the function.
85static bool isNonEscapingLocalObject(const Value *V) {
86  // If this is a local allocation, check to see if it escapes.
87  if (isa<AllocationInst>(V) || isNoAliasCall(V))
88    return !PointerMayBeCaptured(V, false);
89
90  // If this is an argument that corresponds to a byval or noalias argument,
91  // then it has not escaped before entering the function.  Check if it escapes
92  // inside the function.
93  if (const Argument *A = dyn_cast<Argument>(V))
94    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
95      // Don't bother analyzing arguments already known not to escape.
96      if (A->hasNoCaptureAttr())
97        return true;
98      return !PointerMayBeCaptured(V, false);
99    }
100  return false;
101}
102
103
104/// isObjectSmallerThan - Return true if we can prove that the object specified
105/// by V is smaller than Size.
106static bool isObjectSmallerThan(const Value *V, unsigned Size,
107                                LLVMContext &Context, const TargetData &TD) {
108  const Type *AccessTy;
109  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
110    AccessTy = GV->getType()->getElementType();
111  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
112    if (!AI->isArrayAllocation())
113      AccessTy = AI->getType()->getElementType();
114    else
115      return false;
116  } else if (const CallInst* CI = extractMallocCall(V)) {
117    if (!isArrayMalloc(V, Context, &TD))
118      // The size is the argument to the malloc call.
119      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getOperand(1)))
120        return (C->getZExtValue() < Size);
121    return false;
122  } else if (const Argument *A = dyn_cast<Argument>(V)) {
123    if (A->hasByValAttr())
124      AccessTy = cast<PointerType>(A->getType())->getElementType();
125    else
126      return false;
127  } else {
128    return false;
129  }
130
131  if (AccessTy->isSized())
132    return TD.getTypeAllocSize(AccessTy) < Size;
133  return false;
134}
135
136//===----------------------------------------------------------------------===//
137// NoAA Pass
138//===----------------------------------------------------------------------===//
139
140namespace {
141  /// NoAA - This class implements the -no-aa pass, which always returns "I
142  /// don't know" for alias queries.  NoAA is unlike other alias analysis
143  /// implementations, in that it does not chain to a previous analysis.  As
144  /// such it doesn't follow many of the rules that other alias analyses must.
145  ///
146  struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
147    static char ID; // Class identification, replacement for typeinfo
148    NoAA() : ImmutablePass(&ID) {}
149    explicit NoAA(void *PID) : ImmutablePass(PID) { }
150
151    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
152    }
153
154    virtual void initializePass() {
155      TD = getAnalysisIfAvailable<TargetData>();
156    }
157
158    virtual AliasResult alias(const Value *V1, unsigned V1Size,
159                              const Value *V2, unsigned V2Size) {
160      return MayAlias;
161    }
162
163    virtual void getArgumentAccesses(Function *F, CallSite CS,
164                                     std::vector<PointerAccessInfo> &Info) {
165      llvm_unreachable("This method may not be called on this function!");
166    }
167
168    virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
169    virtual bool pointsToConstantMemory(const Value *P) { return false; }
170    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
171      return ModRef;
172    }
173    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
174      return ModRef;
175    }
176    virtual bool hasNoModRefInfoForCalls() const { return true; }
177
178    virtual void deleteValue(Value *V) {}
179    virtual void copyValue(Value *From, Value *To) {}
180  };
181}  // End of anonymous namespace
182
183// Register this pass...
184char NoAA::ID = 0;
185static RegisterPass<NoAA>
186U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
187
188// Declare that we implement the AliasAnalysis interface
189static RegisterAnalysisGroup<AliasAnalysis> V(U);
190
191ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
192
193//===----------------------------------------------------------------------===//
194// BasicAA Pass
195//===----------------------------------------------------------------------===//
196
197namespace {
198  /// BasicAliasAnalysis - This is the default alias analysis implementation.
199  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
200  /// derives from the NoAA class.
201  struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
202    static char ID; // Class identification, replacement for typeinfo
203    BasicAliasAnalysis() : NoAA(&ID) {}
204    AliasResult alias(const Value *V1, unsigned V1Size,
205                      const Value *V2, unsigned V2Size) {
206      VisitedPHIs.clear();
207      return aliasCheck(V1, V1Size, V2, V2Size);
208    }
209
210    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
211    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
212
213    /// hasNoModRefInfoForCalls - We can provide mod/ref information against
214    /// non-escaping allocations.
215    virtual bool hasNoModRefInfoForCalls() const { return false; }
216
217    /// pointsToConstantMemory - Chase pointers until we find a (constant
218    /// global) or not.
219    bool pointsToConstantMemory(const Value *P);
220
221  private:
222    // VisitedPHIs - Track PHI nodes visited by a aliasCheck() call.
223    SmallSet<const PHINode*, 16> VisitedPHIs;
224
225    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
226    // against another.
227    AliasResult aliasGEP(const Value *V1, unsigned V1Size,
228                         const Value *V2, unsigned V2Size);
229
230    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
231    // against another.
232    AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
233                         const Value *V2, unsigned V2Size);
234
235    AliasResult aliasCheck(const Value *V1, unsigned V1Size,
236                           const Value *V2, unsigned V2Size);
237
238    // CheckGEPInstructions - Check two GEP instructions with known
239    // must-aliasing base pointers.  This checks to see if the index expressions
240    // preclude the pointers from aliasing...
241    AliasResult
242    CheckGEPInstructions(const Type* BasePtr1Ty,
243                         Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
244                         const Type *BasePtr2Ty,
245                         Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
246  };
247}  // End of anonymous namespace
248
249// Register this pass...
250char BasicAliasAnalysis::ID = 0;
251static RegisterPass<BasicAliasAnalysis>
252X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
253
254// Declare that we implement the AliasAnalysis interface
255static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
256
257ImmutablePass *llvm::createBasicAliasAnalysisPass() {
258  return new BasicAliasAnalysis();
259}
260
261
262/// pointsToConstantMemory - Chase pointers until we find a (constant
263/// global) or not.
264bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
265  if (const GlobalVariable *GV =
266        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
267    return GV->isConstant();
268  return false;
269}
270
271
272// getModRefInfo - Check to see if the specified callsite can clobber the
273// specified memory object.  Since we only look at local properties of this
274// function, we really can't say much about this query.  We do, however, use
275// simple "address taken" analysis on local objects.
276//
277AliasAnalysis::ModRefResult
278BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
279  if (!isa<Constant>(P)) {
280    const Value *Object = P->getUnderlyingObject();
281
282    // If this is a tail call and P points to a stack location, we know that
283    // the tail call cannot access or modify the local stack.
284    // We cannot exclude byval arguments here; these belong to the caller of
285    // the current function not to the current function, and a tail callee
286    // may reference them.
287    if (isa<AllocaInst>(Object))
288      if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
289        if (CI->isTailCall())
290          return NoModRef;
291
292    // If the pointer is to a locally allocated object that does not escape,
293    // then the call can not mod/ref the pointer unless the call takes the
294    // argument without capturing it.
295    if (isNonEscapingLocalObject(Object) && CS.getInstruction() != Object) {
296      bool passedAsArg = false;
297      // TODO: Eventually only check 'nocapture' arguments.
298      for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
299           CI != CE; ++CI)
300        if (isa<PointerType>((*CI)->getType()) &&
301            alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
302          passedAsArg = true;
303
304      if (!passedAsArg)
305        return NoModRef;
306    }
307
308    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
309      switch (II->getIntrinsicID()) {
310      default: break;
311      case Intrinsic::atomic_cmp_swap:
312      case Intrinsic::atomic_swap:
313      case Intrinsic::atomic_load_add:
314      case Intrinsic::atomic_load_sub:
315      case Intrinsic::atomic_load_and:
316      case Intrinsic::atomic_load_nand:
317      case Intrinsic::atomic_load_or:
318      case Intrinsic::atomic_load_xor:
319      case Intrinsic::atomic_load_max:
320      case Intrinsic::atomic_load_min:
321      case Intrinsic::atomic_load_umax:
322      case Intrinsic::atomic_load_umin:
323        if (alias(II->getOperand(1), Size, P, Size) == NoAlias)
324          return NoModRef;
325        break;
326      }
327    }
328  }
329
330  // The AliasAnalysis base class has some smarts, lets use them.
331  return AliasAnalysis::getModRefInfo(CS, P, Size);
332}
333
334
335AliasAnalysis::ModRefResult
336BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
337  // If CS1 or CS2 are readnone, they don't interact.
338  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
339  if (CS1B == DoesNotAccessMemory) return NoModRef;
340
341  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
342  if (CS2B == DoesNotAccessMemory) return NoModRef;
343
344  // If they both only read from memory, just return ref.
345  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
346    return Ref;
347
348  // Otherwise, fall back to NoAA (mod+ref).
349  return NoAA::getModRefInfo(CS1, CS2);
350}
351
352// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
353// against another.
354//
355AliasAnalysis::AliasResult
356BasicAliasAnalysis::aliasGEP(const Value *V1, unsigned V1Size,
357                             const Value *V2, unsigned V2Size) {
358  // If we have two gep instructions with must-alias'ing base pointers, figure
359  // out if the indexes to the GEP tell us anything about the derived pointer.
360  // Note that we also handle chains of getelementptr instructions as well as
361  // constant expression getelementptrs here.
362  //
363  if (isGEP(V1) && isGEP(V2)) {
364    const User *GEP1 = cast<User>(V1);
365    const User *GEP2 = cast<User>(V2);
366
367    // If V1 and V2 are identical GEPs, just recurse down on both of them.
368    // This allows us to analyze things like:
369    //   P = gep A, 0, i, 1
370    //   Q = gep B, 0, i, 1
371    // by just analyzing A and B.  This is even safe for variable indices.
372    if (GEP1->getType() == GEP2->getType() &&
373        GEP1->getNumOperands() == GEP2->getNumOperands() &&
374        GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
375        // All operands are the same, ignoring the base.
376        std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
377      return aliasCheck(GEP1->getOperand(0), V1Size,
378                        GEP2->getOperand(0), V2Size);
379
380    // Drill down into the first non-gep value, to test for must-aliasing of
381    // the base pointers.
382    while (isGEP(GEP1->getOperand(0)) &&
383           GEP1->getOperand(1) ==
384           Constant::getNullValue(GEP1->getOperand(1)->getType()))
385      GEP1 = cast<User>(GEP1->getOperand(0));
386    const Value *BasePtr1 = GEP1->getOperand(0);
387
388    while (isGEP(GEP2->getOperand(0)) &&
389           GEP2->getOperand(1) ==
390           Constant::getNullValue(GEP2->getOperand(1)->getType()))
391      GEP2 = cast<User>(GEP2->getOperand(0));
392    const Value *BasePtr2 = GEP2->getOperand(0);
393
394    // Do the base pointers alias?
395    AliasResult BaseAlias = aliasCheck(BasePtr1, ~0U, BasePtr2, ~0U);
396    if (BaseAlias == NoAlias) return NoAlias;
397    if (BaseAlias == MustAlias) {
398      // If the base pointers alias each other exactly, check to see if we can
399      // figure out anything about the resultant pointers, to try to prove
400      // non-aliasing.
401
402      // Collect all of the chained GEP operands together into one simple place
403      SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
404      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
405      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
406
407      // If GetGEPOperands were able to fold to the same must-aliased pointer,
408      // do the comparison.
409      if (BasePtr1 == BasePtr2) {
410        AliasResult GAlias =
411          CheckGEPInstructions(BasePtr1->getType(),
412                               &GEP1Ops[0], GEP1Ops.size(), V1Size,
413                               BasePtr2->getType(),
414                               &GEP2Ops[0], GEP2Ops.size(), V2Size);
415        if (GAlias != MayAlias)
416          return GAlias;
417      }
418    }
419  }
420
421  // Check to see if these two pointers are related by a getelementptr
422  // instruction.  If one pointer is a GEP with a non-zero index of the other
423  // pointer, we know they cannot alias.
424  //
425  if (V1Size == ~0U || V2Size == ~0U)
426    return MayAlias;
427
428  SmallVector<Value*, 16> GEPOperands;
429  const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
430
431  AliasResult R = aliasCheck(BasePtr, ~0U, V2, V2Size);
432  if (R != MustAlias)
433    // If V2 may alias GEP base pointer, conservatively returns MayAlias.
434    // If V2 is known not to alias GEP base pointer, then the two values
435    // cannot alias per GEP semantics: "A pointer value formed from a
436    // getelementptr instruction is associated with the addresses associated
437    // with the first operand of the getelementptr".
438    return R;
439
440  // If there is at least one non-zero constant index, we know they cannot
441  // alias.
442  bool ConstantFound = false;
443  bool AllZerosFound = true;
444  for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
445    if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
446      if (!C->isNullValue()) {
447        ConstantFound = true;
448        AllZerosFound = false;
449        break;
450      }
451    } else {
452      AllZerosFound = false;
453    }
454
455  // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
456  // the ptr, the end result is a must alias also.
457  if (AllZerosFound)
458    return MustAlias;
459
460  if (ConstantFound) {
461    if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
462      return NoAlias;
463
464    // Otherwise we have to check to see that the distance is more than
465    // the size of the argument... build an index vector that is equal to
466    // the arguments provided, except substitute 0's for any variable
467    // indexes we find...
468    if (TD &&
469        cast<PointerType>(BasePtr->getType())->getElementType()->isSized()) {
470      for (unsigned i = 0; i != GEPOperands.size(); ++i)
471        if (!isa<ConstantInt>(GEPOperands[i]))
472          GEPOperands[i] = Constant::getNullValue(GEPOperands[i]->getType());
473      int64_t Offset = TD->getIndexedOffset(BasePtr->getType(),
474                                            &GEPOperands[0],
475                                            GEPOperands.size());
476
477      if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
478        return NoAlias;
479    }
480  }
481
482  return MayAlias;
483}
484
485// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
486// against another.
487AliasAnalysis::AliasResult
488BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
489                             const Value *V2, unsigned V2Size) {
490  // The PHI node has already been visited, avoid recursion any further.
491  if (!VisitedPHIs.insert(PN))
492    return MayAlias;
493
494  SmallSet<Value*, 4> UniqueSrc;
495  SmallVector<Value*, 4> V1Srcs;
496  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
497    Value *PV1 = PN->getIncomingValue(i);
498    if (isa<PHINode>(PV1))
499      // If any of the source itself is a PHI, return MayAlias conservatively
500      // to avoid compile time explosion. The worst possible case is if both
501      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
502      // and 'n' are the number of PHI sources.
503      return MayAlias;
504    if (UniqueSrc.insert(PV1))
505      V1Srcs.push_back(PV1);
506  }
507
508  AliasResult Alias = aliasCheck(V1Srcs[0], PNSize, V2, V2Size);
509  // Early exit if the check of the first PHI source against V2 is MayAlias.
510  // Other results are not possible.
511  if (Alias == MayAlias)
512    return MayAlias;
513
514  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
515  // NoAlias / MustAlias. Otherwise, returns MayAlias.
516  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
517    Value *V = V1Srcs[i];
518    AliasResult ThisAlias = aliasCheck(V, PNSize, V2, V2Size);
519    if (ThisAlias != Alias || ThisAlias == MayAlias)
520      return MayAlias;
521  }
522
523  return Alias;
524}
525
526// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
527// such as array references.
528//
529AliasAnalysis::AliasResult
530BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
531                               const Value *V2, unsigned V2Size) {
532  // Strip off any casts if they exist.
533  V1 = V1->stripPointerCasts();
534  V2 = V2->stripPointerCasts();
535
536  // Are we checking for alias of the same value?
537  if (V1 == V2) return MustAlias;
538
539  if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
540    return NoAlias;  // Scalars cannot alias each other
541
542  // Figure out what objects these things are pointing to if we can.
543  const Value *O1 = V1->getUnderlyingObject();
544  const Value *O2 = V2->getUnderlyingObject();
545
546  if (O1 != O2) {
547    // If V1/V2 point to two different objects we know that we have no alias.
548    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
549      return NoAlias;
550
551    // Arguments can't alias with local allocations or noalias calls.
552    if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
553        (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
554      return NoAlias;
555
556    // Most objects can't alias null.
557    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
558        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
559      return NoAlias;
560  }
561
562  // If the size of one access is larger than the entire object on the other
563  // side, then we know such behavior is undefined and can assume no alias.
564  LLVMContext &Context = V1->getContext();
565  if (TD)
566    if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, Context, *TD)) ||
567        (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, Context, *TD)))
568      return NoAlias;
569
570  // If one pointer is the result of a call/invoke and the other is a
571  // non-escaping local object, then we know the object couldn't escape to a
572  // point where the call could return it.
573  if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
574      isNonEscapingLocalObject(O2) && O1 != O2)
575    return NoAlias;
576  if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
577      isNonEscapingLocalObject(O1) && O1 != O2)
578    return NoAlias;
579
580  if (!isGEP(V1) && isGEP(V2)) {
581    std::swap(V1, V2);
582    std::swap(V1Size, V2Size);
583  }
584  if (isGEP(V1))
585    return aliasGEP(V1, V1Size, V2, V2Size);
586
587  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
588    std::swap(V1, V2);
589    std::swap(V1Size, V2Size);
590  }
591  if (const PHINode *PN = dyn_cast<PHINode>(V1))
592    return aliasPHI(PN, V1Size, V2, V2Size);
593
594  return MayAlias;
595}
596
597// This function is used to determine if the indices of two GEP instructions are
598// equal. V1 and V2 are the indices.
599static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext &Context) {
600  if (V1->getType() == V2->getType())
601    return V1 == V2;
602  if (Constant *C1 = dyn_cast<Constant>(V1))
603    if (Constant *C2 = dyn_cast<Constant>(V2)) {
604      // Sign extend the constants to long types, if necessary
605      if (C1->getType() != Type::getInt64Ty(Context))
606        C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(Context));
607      if (C2->getType() != Type::getInt64Ty(Context))
608        C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(Context));
609      return C1 == C2;
610    }
611  return false;
612}
613
614/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
615/// base pointers.  This checks to see if the index expressions preclude the
616/// pointers from aliasing...
617AliasAnalysis::AliasResult
618BasicAliasAnalysis::CheckGEPInstructions(
619  const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
620  const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
621  // We currently can't handle the case when the base pointers have different
622  // primitive types.  Since this is uncommon anyway, we are happy being
623  // extremely conservative.
624  if (BasePtr1Ty != BasePtr2Ty)
625    return MayAlias;
626
627  const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
628
629  LLVMContext &Context = GEPPointerTy->getContext();
630
631  // Find the (possibly empty) initial sequence of equal values... which are not
632  // necessarily constants.
633  unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
634  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
635  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
636  unsigned UnequalOper = 0;
637  while (UnequalOper != MinOperands &&
638         IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper],
639         Context)) {
640    // Advance through the type as we go...
641    ++UnequalOper;
642    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
643      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
644    else {
645      // If all operands equal each other, then the derived pointers must
646      // alias each other...
647      BasePtr1Ty = 0;
648      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
649             "Ran out of type nesting, but not out of operands?");
650      return MustAlias;
651    }
652  }
653
654  // If we have seen all constant operands, and run out of indexes on one of the
655  // getelementptrs, check to see if the tail of the leftover one is all zeros.
656  // If so, return mustalias.
657  if (UnequalOper == MinOperands) {
658    if (NumGEP1Ops < NumGEP2Ops) {
659      std::swap(GEP1Ops, GEP2Ops);
660      std::swap(NumGEP1Ops, NumGEP2Ops);
661    }
662
663    bool AllAreZeros = true;
664    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
665      if (!isa<Constant>(GEP1Ops[i]) ||
666          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
667        AllAreZeros = false;
668        break;
669      }
670    if (AllAreZeros) return MustAlias;
671  }
672
673
674  // So now we know that the indexes derived from the base pointers,
675  // which are known to alias, are different.  We can still determine a
676  // no-alias result if there are differing constant pairs in the index
677  // chain.  For example:
678  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
679  //
680  // We have to be careful here about array accesses.  In particular, consider:
681  //        A[1][0] vs A[0][i]
682  // In this case, we don't *know* that the array will be accessed in bounds:
683  // the index could even be negative.  Because of this, we have to
684  // conservatively *give up* and return may alias.  We disregard differing
685  // array subscripts that are followed by a variable index without going
686  // through a struct.
687  //
688  unsigned SizeMax = std::max(G1S, G2S);
689  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
690
691  // Scan for the first operand that is constant and unequal in the
692  // two getelementptrs...
693  unsigned FirstConstantOper = UnequalOper;
694  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
695    const Value *G1Oper = GEP1Ops[FirstConstantOper];
696    const Value *G2Oper = GEP2Ops[FirstConstantOper];
697
698    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
699      if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
700        if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
701          if (G1OC->getType() != G2OC->getType()) {
702            // Sign extend both operands to long.
703            if (G1OC->getType() != Type::getInt64Ty(Context))
704              G1OC = ConstantExpr::getSExt(G1OC, Type::getInt64Ty(Context));
705            if (G2OC->getType() != Type::getInt64Ty(Context))
706              G2OC = ConstantExpr::getSExt(G2OC, Type::getInt64Ty(Context));
707            GEP1Ops[FirstConstantOper] = G1OC;
708            GEP2Ops[FirstConstantOper] = G2OC;
709          }
710
711          if (G1OC != G2OC) {
712            // Handle the "be careful" case above: if this is an array/vector
713            // subscript, scan for a subsequent variable array index.
714            if (const SequentialType *STy =
715                  dyn_cast<SequentialType>(BasePtr1Ty)) {
716              const Type *NextTy = STy;
717              bool isBadCase = false;
718
719              for (unsigned Idx = FirstConstantOper;
720                   Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
721                const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
722                if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
723                  isBadCase = true;
724                  break;
725                }
726                // If the array is indexed beyond the bounds of the static type
727                // at this level, it will also fall into the "be careful" case.
728                // It would theoretically be possible to analyze these cases,
729                // but for now just be conservatively correct.
730                if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
731                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
732                        ATy->getNumElements() ||
733                      cast<ConstantInt>(G2OC)->getZExtValue() >=
734                        ATy->getNumElements()) {
735                    isBadCase = true;
736                    break;
737                  }
738                if (const VectorType *VTy = dyn_cast<VectorType>(STy))
739                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
740                        VTy->getNumElements() ||
741                      cast<ConstantInt>(G2OC)->getZExtValue() >=
742                        VTy->getNumElements()) {
743                    isBadCase = true;
744                    break;
745                  }
746                STy = cast<SequentialType>(NextTy);
747                NextTy = cast<SequentialType>(NextTy)->getElementType();
748              }
749
750              if (isBadCase) G1OC = 0;
751            }
752
753            // Make sure they are comparable (ie, not constant expressions), and
754            // make sure the GEP with the smaller leading constant is GEP1.
755            if (G1OC) {
756              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
757                                                        G1OC, G2OC);
758              if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
759                if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
760                  std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
761                  std::swap(NumGEP1Ops, NumGEP2Ops);
762                }
763                break;
764              }
765            }
766          }
767        }
768    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
769  }
770
771  // No shared constant operands, and we ran out of common operands.  At this
772  // point, the GEP instructions have run through all of their operands, and we
773  // haven't found evidence that there are any deltas between the GEP's.
774  // However, one GEP may have more operands than the other.  If this is the
775  // case, there may still be hope.  Check this now.
776  if (FirstConstantOper == MinOperands) {
777    // Without TargetData, we won't know what the offsets are.
778    if (!TD)
779      return MayAlias;
780
781    // Make GEP1Ops be the longer one if there is a longer one.
782    if (NumGEP1Ops < NumGEP2Ops) {
783      std::swap(GEP1Ops, GEP2Ops);
784      std::swap(NumGEP1Ops, NumGEP2Ops);
785    }
786
787    // Is there anything to check?
788    if (NumGEP1Ops > MinOperands) {
789      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
790        if (isa<ConstantInt>(GEP1Ops[i]) &&
791            !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
792          // Yup, there's a constant in the tail.  Set all variables to
793          // constants in the GEP instruction to make it suitable for
794          // TargetData::getIndexedOffset.
795          for (i = 0; i != MaxOperands; ++i)
796            if (!isa<ConstantInt>(GEP1Ops[i]))
797              GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
798          // Okay, now get the offset.  This is the relative offset for the full
799          // instruction.
800          int64_t Offset1 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
801                                                 NumGEP1Ops);
802
803          // Now check without any constants at the end.
804          int64_t Offset2 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
805                                                 MinOperands);
806
807          // Make sure we compare the absolute difference.
808          if (Offset1 > Offset2)
809            std::swap(Offset1, Offset2);
810
811          // If the tail provided a bit enough offset, return noalias!
812          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
813            return NoAlias;
814          // Otherwise break - we don't look for another constant in the tail.
815          break;
816        }
817    }
818
819    // Couldn't find anything useful.
820    return MayAlias;
821  }
822
823  // If there are non-equal constants arguments, then we can figure
824  // out a minimum known delta between the two index expressions... at
825  // this point we know that the first constant index of GEP1 is less
826  // than the first constant index of GEP2.
827
828  // Advance BasePtr[12]Ty over this first differing constant operand.
829  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
830      getTypeAtIndex(GEP2Ops[FirstConstantOper]);
831  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
832      getTypeAtIndex(GEP1Ops[FirstConstantOper]);
833
834  // We are going to be using TargetData::getIndexedOffset to determine the
835  // offset that each of the GEP's is reaching.  To do this, we have to convert
836  // all variable references to constant references.  To do this, we convert the
837  // initial sequence of array subscripts into constant zeros to start with.
838  const Type *ZeroIdxTy = GEPPointerTy;
839  for (unsigned i = 0; i != FirstConstantOper; ++i) {
840    if (!isa<StructType>(ZeroIdxTy))
841      GEP1Ops[i] = GEP2Ops[i] =
842                              Constant::getNullValue(Type::getInt32Ty(Context));
843
844    if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
845      ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
846  }
847
848  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
849
850  // Loop over the rest of the operands...
851  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
852    const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
853    const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
854    // If they are equal, use a zero index...
855    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
856      if (!isa<ConstantInt>(Op1))
857        GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
858      // Otherwise, just keep the constants we have.
859    } else {
860      if (Op1) {
861        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
862          // If this is an array index, make sure the array element is in range.
863          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
864            if (Op1C->getZExtValue() >= AT->getNumElements())
865              return MayAlias;  // Be conservative with out-of-range accesses
866          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
867            if (Op1C->getZExtValue() >= VT->getNumElements())
868              return MayAlias;  // Be conservative with out-of-range accesses
869          }
870
871        } else {
872          // GEP1 is known to produce a value less than GEP2.  To be
873          // conservatively correct, we must assume the largest possible
874          // constant is used in this position.  This cannot be the initial
875          // index to the GEP instructions (because we know we have at least one
876          // element before this one with the different constant arguments), so
877          // we know that the current index must be into either a struct or
878          // array.  Because we know it's not constant, this cannot be a
879          // structure index.  Because of this, we can calculate the maximum
880          // value possible.
881          //
882          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
883            GEP1Ops[i] =
884                  ConstantInt::get(Type::getInt64Ty(Context),
885                                   AT->getNumElements()-1);
886          else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
887            GEP1Ops[i] =
888                  ConstantInt::get(Type::getInt64Ty(Context),
889                                   VT->getNumElements()-1);
890        }
891      }
892
893      if (Op2) {
894        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
895          // If this is an array index, make sure the array element is in range.
896          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
897            if (Op2C->getZExtValue() >= AT->getNumElements())
898              return MayAlias;  // Be conservative with out-of-range accesses
899          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
900            if (Op2C->getZExtValue() >= VT->getNumElements())
901              return MayAlias;  // Be conservative with out-of-range accesses
902          }
903        } else {  // Conservatively assume the minimum value for this index
904          GEP2Ops[i] = Constant::getNullValue(Op2->getType());
905        }
906      }
907    }
908
909    if (BasePtr1Ty && Op1) {
910      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
911        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
912      else
913        BasePtr1Ty = 0;
914    }
915
916    if (BasePtr2Ty && Op2) {
917      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
918        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
919      else
920        BasePtr2Ty = 0;
921    }
922  }
923
924  if (TD && GEPPointerTy->getElementType()->isSized()) {
925    int64_t Offset1 =
926      TD->getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
927    int64_t Offset2 =
928      TD->getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
929    assert(Offset1 != Offset2 &&
930           "There is at least one different constant here!");
931
932    // Make sure we compare the absolute difference.
933    if (Offset1 > Offset2)
934      std::swap(Offset1, Offset2);
935
936    if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
937      //cerr << "Determined that these two GEP's don't alias ["
938      //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
939      return NoAlias;
940    }
941  }
942  return MayAlias;
943}
944
945// Make sure that anything that uses AliasAnalysis pulls in this file...
946DEFINING_FILE_FOR(BasicAliasAnalysis)
947