BasicAliasAnalysis.cpp revision b576c94c15af9a440f69d9d03c2afead7971118c
1//===- llvm/Analysis/BasicAliasAnalysis.h - Alias Analysis Impl -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Pass.h"
18#include "llvm/Argument.h"
19#include "llvm/iMemory.h"
20#include "llvm/iOther.h"
21#include "llvm/ConstantHandling.h"
22#include "llvm/GlobalValue.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Target/TargetData.h"
25
26// Make sure that anything that uses AliasAnalysis pulls in this file...
27void BasicAAStub() {}
28
29
30namespace {
31  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
32
33    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
34      AliasAnalysis::getAnalysisUsage(AU);
35    }
36
37    virtual void initializePass();
38
39    // alias - This is the only method here that does anything interesting...
40    //
41    AliasResult alias(const Value *V1, unsigned V1Size,
42                      const Value *V2, unsigned V2Size);
43  private:
44    // CheckGEPInstructions - Check two GEP instructions of compatible types and
45    // equal number of arguments.  This checks to see if the index expressions
46    // preclude the pointers from aliasing...
47    AliasResult CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1Size,
48                                     GetElementPtrInst *GEP2, unsigned G2Size);
49  };
50
51  // Register this pass...
52  RegisterOpt<BasicAliasAnalysis>
53  X("basicaa", "Basic Alias Analysis (default AA impl)");
54
55  // Declare that we implement the AliasAnalysis interface
56  RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y;
57}  // End of anonymous namespace
58
59void BasicAliasAnalysis::initializePass() {
60  InitializeAliasAnalysis(this);
61}
62
63
64
65// hasUniqueAddress - Return true if the specified value points to something
66// with a unique, discernable, address.
67static inline bool hasUniqueAddress(const Value *V) {
68  return isa<GlobalValue>(V) || isa<AllocationInst>(V);
69}
70
71// getUnderlyingObject - This traverses the use chain to figure out what object
72// the specified value points to.  If the value points to, or is derived from, a
73// unique object or an argument, return it.
74static const Value *getUnderlyingObject(const Value *V) {
75  if (!isa<PointerType>(V->getType())) return 0;
76
77  // If we are at some type of object... return it.
78  if (hasUniqueAddress(V) || isa<Argument>(V)) return V;
79
80  // Traverse through different addressing mechanisms...
81  if (const Instruction *I = dyn_cast<Instruction>(V)) {
82    if (isa<CastInst>(I) || isa<GetElementPtrInst>(I))
83      return getUnderlyingObject(I->getOperand(0));
84  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
85    if (CE->getOpcode() == Instruction::Cast ||
86        CE->getOpcode() == Instruction::GetElementPtr)
87      return getUnderlyingObject(CE->getOperand(0));
88  } else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) {
89    return CPR->getValue();
90  }
91  return 0;
92}
93
94
95// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
96// as array references.  Note that this function is heavily tail recursive.
97// Hopefully we have a smart C++ compiler.  :)
98//
99AliasAnalysis::AliasResult
100BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
101                          const Value *V2, unsigned V2Size) {
102  // Strip off constant pointer refs if they exist
103  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1))
104    V1 = CPR->getValue();
105  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2))
106    V2 = CPR->getValue();
107
108  // Are we checking for alias of the same value?
109  if (V1 == V2) return MustAlias;
110
111  if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
112      V1->getType() != Type::LongTy && V2->getType() != Type::LongTy)
113    return NoAlias;  // Scalars cannot alias each other
114
115  // Strip off cast instructions...
116  if (const Instruction *I = dyn_cast<CastInst>(V1))
117    return alias(I->getOperand(0), V1Size, V2, V2Size);
118  if (const Instruction *I = dyn_cast<CastInst>(V2))
119    return alias(V1, V1Size, I->getOperand(0), V2Size);
120
121  // Figure out what objects these things are pointing to if we can...
122  const Value *O1 = getUnderlyingObject(V1);
123  const Value *O2 = getUnderlyingObject(V2);
124
125  // Pointing at a discernible object?
126  if (O1 && O2) {
127    if (isa<Argument>(O1)) {
128      // Incoming argument cannot alias locally allocated object!
129      if (isa<AllocationInst>(O2)) return NoAlias;
130      // Otherwise, nothing is known...
131    } else if (isa<Argument>(O2)) {
132      // Incoming argument cannot alias locally allocated object!
133      if (isa<AllocationInst>(O1)) return NoAlias;
134      // Otherwise, nothing is known...
135    } else {
136      // If they are two different objects, we know that we have no alias...
137      if (O1 != O2) return NoAlias;
138    }
139
140    // If they are the same object, they we can look at the indexes.  If they
141    // index off of the object is the same for both pointers, they must alias.
142    // If they are provably different, they must not alias.  Otherwise, we can't
143    // tell anything.
144  } else if (O1 && !isa<Argument>(O1) && isa<ConstantPointerNull>(V2)) {
145    return NoAlias;                    // Unique values don't alias null
146  } else if (O2 && !isa<Argument>(O2) && isa<ConstantPointerNull>(V1)) {
147    return NoAlias;                    // Unique values don't alias null
148  }
149
150  // If we have two gep instructions with identical indices, return an alias
151  // result equal to the alias result of the original pointer...
152  //
153  if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(V1))
154    if (const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(V2))
155      if (GEP1->getNumOperands() == GEP2->getNumOperands() &&
156          GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType()) {
157        AliasResult GAlias =
158          CheckGEPInstructions((GetElementPtrInst*)GEP1, V1Size,
159                               (GetElementPtrInst*)GEP2, V2Size);
160        if (GAlias != MayAlias)
161          return GAlias;
162      }
163
164  // Check to see if these two pointers are related by a getelementptr
165  // instruction.  If one pointer is a GEP with a non-zero index of the other
166  // pointer, we know they cannot alias.
167  //
168  if (isa<GetElementPtrInst>(V2)) {
169    std::swap(V1, V2);
170    std::swap(V1Size, V2Size);
171  }
172
173  if (V1Size != ~0U && V2Size != ~0U)
174    if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V1)) {
175      AliasResult R = alias(GEP->getOperand(0), V1Size, V2, V2Size);
176      if (R == MustAlias) {
177        // If there is at least one non-zero constant index, we know they cannot
178        // alias.
179        bool ConstantFound = false;
180        for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
181          if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i)))
182            if (!C->isNullValue()) {
183              ConstantFound = true;
184              break;
185          }
186        if (ConstantFound) {
187          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
188            return NoAlias;
189
190          // Otherwise we have to check to see that the distance is more than
191          // the size of the argument... build an index vector that is equal to
192          // the arguments provided, except substitute 0's for any variable
193          // indexes we find...
194
195          std::vector<Value*> Indices;
196          Indices.reserve(GEP->getNumOperands()-1);
197          for (unsigned i = 1; i != GEP->getNumOperands(); ++i)
198            if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i)))
199              Indices.push_back((Value*)C);
200            else
201              Indices.push_back(Constant::getNullValue(Type::LongTy));
202          const Type *Ty = GEP->getOperand(0)->getType();
203          int Offset = getTargetData().getIndexedOffset(Ty, Indices);
204          if (Offset >= (int)V2Size || Offset <= -(int)V1Size)
205            return NoAlias;
206        }
207      }
208    }
209
210  return MayAlias;
211}
212
213static Value *CheckArrayIndicesForOverflow(const Type *PtrTy,
214                                           const std::vector<Value*> &Indices,
215                                           const ConstantInt *Idx) {
216  if (const ConstantSInt *IdxS = dyn_cast<ConstantSInt>(Idx)) {
217    if (IdxS->getValue() < 0)   // Underflow on the array subscript?
218      return Constant::getNullValue(Type::LongTy);
219    else {                       // Check for overflow
220      const ArrayType *ATy =
221        cast<ArrayType>(GetElementPtrInst::getIndexedType(PtrTy, Indices,true));
222      if (IdxS->getValue() >= (int64_t)ATy->getNumElements())
223        return ConstantSInt::get(Type::LongTy, ATy->getNumElements()-1);
224    }
225  }
226  return (Value*)Idx;  // Everything is acceptable.
227}
228
229// CheckGEPInstructions - Check two GEP instructions of compatible types and
230// equal number of arguments.  This checks to see if the index expressions
231// preclude the pointers from aliasing...
232//
233AliasAnalysis::AliasResult
234BasicAliasAnalysis::CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1S,
235                                         GetElementPtrInst *GEP2, unsigned G2S){
236  // Do the base pointers alias?
237  AliasResult BaseAlias = alias(GEP1->getOperand(0), G1S,
238                                GEP2->getOperand(0), G2S);
239  if (BaseAlias != MustAlias)   // No or May alias: We cannot add anything...
240    return BaseAlias;
241
242  // Find the (possibly empty) initial sequence of equal values...
243  unsigned NumGEPOperands = GEP1->getNumOperands();
244  unsigned UnequalOper = 1;
245  while (UnequalOper != NumGEPOperands &&
246         GEP1->getOperand(UnequalOper) == GEP2->getOperand(UnequalOper))
247    ++UnequalOper;
248
249  // If all operands equal each other, then the derived pointers must
250  // alias each other...
251  if (UnequalOper == NumGEPOperands) return MustAlias;
252
253  // So now we know that the indexes derived from the base pointers,
254  // which are known to alias, are different.  We can still determine a
255  // no-alias result if there are differing constant pairs in the index
256  // chain.  For example:
257  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
258  //
259  unsigned SizeMax = std::max(G1S, G2S);
260  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work...
261
262  // Scan for the first operand that is constant and unequal in the
263  // two getelemenptrs...
264  unsigned FirstConstantOper = UnequalOper;
265  for (; FirstConstantOper != NumGEPOperands; ++FirstConstantOper) {
266    const Value *G1Oper = GEP1->getOperand(FirstConstantOper);
267    const Value *G2Oper = GEP2->getOperand(FirstConstantOper);
268    if (G1Oper != G2Oper &&   // Found non-equal constant indexes...
269        isa<Constant>(G1Oper) && isa<Constant>(G2Oper)) {
270      // Make sure they are comparable...  and make sure the GEP with
271      // the smaller leading constant is GEP1.
272      ConstantBool *Compare =
273        *cast<Constant>(GEP1->getOperand(FirstConstantOper)) >
274        *cast<Constant>(GEP2->getOperand(FirstConstantOper));
275      if (Compare) {  // If they are comparable...
276        if (Compare->getValue())
277          std::swap(GEP1, GEP2);  // Make GEP1 < GEP2
278        break;
279      }
280    }
281  }
282
283  // No constant operands, we cannot tell anything...
284  if (FirstConstantOper == NumGEPOperands) return MayAlias;
285
286  // If there are non-equal constants arguments, then we can figure
287  // out a minimum known delta between the two index expressions... at
288  // this point we know that the first constant index of GEP1 is less
289  // than the first constant index of GEP2.
290  //
291  std::vector<Value*> Indices1;
292  Indices1.reserve(NumGEPOperands-1);
293  for (unsigned i = 1; i != FirstConstantOper; ++i)
294    if (GEP1->getOperand(i)->getType() == Type::UByteTy)
295      Indices1.push_back(GEP1->getOperand(i));
296    else
297      Indices1.push_back(Constant::getNullValue(Type::LongTy));
298  std::vector<Value*> Indices2;
299  Indices2.reserve(NumGEPOperands-1);
300  Indices2 = Indices1;           // Copy the zeros prefix...
301
302  // Add the two known constant operands...
303  Indices1.push_back((Value*)GEP1->getOperand(FirstConstantOper));
304  Indices2.push_back((Value*)GEP2->getOperand(FirstConstantOper));
305
306  const Type *GEPPointerTy = GEP1->getOperand(0)->getType();
307
308  // Loop over the rest of the operands...
309  for (unsigned i = FirstConstantOper+1; i != NumGEPOperands; ++i) {
310    const Value *Op1 = GEP1->getOperand(i);
311    const Value *Op2 = GEP2->getOperand(i);
312    if (Op1 == Op2) {   // If they are equal, use a zero index...
313      if (!isa<Constant>(Op1)) {
314        Indices1.push_back(Constant::getNullValue(Op1->getType()));
315        Indices2.push_back(Indices1.back());
316      } else {
317        Indices1.push_back((Value*)Op1);
318        Indices2.push_back((Value*)Op2);
319      }
320    } else {
321      if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
322        // If this is an array index, make sure the array element is in range...
323        if (i != 1)   // The pointer index can be "out of range"
324          Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices1, Op1C);
325
326        Indices1.push_back((Value*)Op1);
327      } else {
328        // GEP1 is known to produce a value less than GEP2.  To be
329        // conservatively correct, we must assume the largest possible constant
330        // is used in this position.  This cannot be the initial index to the
331        // GEP instructions (because we know we have at least one element before
332        // this one with the different constant arguments), so we know that the
333        // current index must be into either a struct or array.  Because we know
334        // it's not constant, this cannot be a structure index.  Because of
335        // this, we can calculate the maximum value possible.
336        //
337        const ArrayType *ElTy =
338          cast<ArrayType>(GEP1->getIndexedType(GEPPointerTy, Indices1, true));
339        Indices1.push_back(ConstantSInt::get(Type::LongTy,
340                                             ElTy->getNumElements()-1));
341      }
342
343      if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op2)) {
344        // If this is an array index, make sure the array element is in range...
345        if (i != 1)   // The pointer index can be "out of range"
346          Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices2, Op1C);
347
348        Indices2.push_back((Value*)Op2);
349      }
350      else // Conservatively assume the minimum value for this index
351        Indices2.push_back(Constant::getNullValue(Op2->getType()));
352    }
353  }
354
355  int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, Indices1);
356  int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, Indices2);
357  assert(Offset1 < Offset2 &&"There is at least one different constant here!");
358
359  if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
360    //std::cerr << "Determined that these two GEP's don't alias ["
361    //          << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
362    return NoAlias;
363  }
364  return MayAlias;
365}
366
367