BasicAliasAnalysis.cpp revision cd38485b8ae2928cc8cb3bb67dcff7c7b7529ebe
1//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the primary stateless implementation of the
11// Alias Analysis interface that implements identities (two different
12// globals cannot alias, etc), but does no stateful analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Pass.h"
28#include "llvm/Analysis/CaptureTracking.h"
29#include "llvm/Analysis/MemoryBuiltins.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetLibraryInfo.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/GetElementPtrTypeIterator.h"
38#include <algorithm>
39using namespace llvm;
40
41//===----------------------------------------------------------------------===//
42// Useful predicates
43//===----------------------------------------------------------------------===//
44
45/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
46/// object that never escapes from the function.
47static bool isNonEscapingLocalObject(const Value *V) {
48  // If this is a local allocation, check to see if it escapes.
49  if (isa<AllocaInst>(V) || isNoAliasCall(V))
50    // Set StoreCaptures to True so that we can assume in our callers that the
51    // pointer is not the result of a load instruction. Currently
52    // PointerMayBeCaptured doesn't have any special analysis for the
53    // StoreCaptures=false case; if it did, our callers could be refined to be
54    // more precise.
55    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
56
57  // If this is an argument that corresponds to a byval or noalias argument,
58  // then it has not escaped before entering the function.  Check if it escapes
59  // inside the function.
60  if (const Argument *A = dyn_cast<Argument>(V))
61    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
62      // Don't bother analyzing arguments already known not to escape.
63      if (A->hasNoCaptureAttr())
64        return true;
65      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
66    }
67  return false;
68}
69
70/// isEscapeSource - Return true if the pointer is one which would have
71/// been considered an escape by isNonEscapingLocalObject.
72static bool isEscapeSource(const Value *V) {
73  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
74    return true;
75
76  // The load case works because isNonEscapingLocalObject considers all
77  // stores to be escapes (it passes true for the StoreCaptures argument
78  // to PointerMayBeCaptured).
79  if (isa<LoadInst>(V))
80    return true;
81
82  return false;
83}
84
85/// getObjectSize - Return the size of the object specified by V, or
86/// UnknownSize if unknown.
87static uint64_t getObjectSize(const Value *V, const TargetData &TD,
88                              bool RoundToAlign = false) {
89  Type *AccessTy;
90  unsigned Align;
91  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
92    if (!GV->hasDefinitiveInitializer())
93      return AliasAnalysis::UnknownSize;
94    AccessTy = GV->getType()->getElementType();
95    Align = GV->getAlignment();
96  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
97    if (!AI->isArrayAllocation())
98      AccessTy = AI->getType()->getElementType();
99    else
100      return AliasAnalysis::UnknownSize;
101    Align = AI->getAlignment();
102  } else if (const CallInst* CI = extractMallocCall(V)) {
103    if (!RoundToAlign && !isArrayMalloc(V, &TD))
104      // The size is the argument to the malloc call.
105      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
106        return C->getZExtValue();
107    return AliasAnalysis::UnknownSize;
108  } else if (const Argument *A = dyn_cast<Argument>(V)) {
109    if (A->hasByValAttr()) {
110      AccessTy = cast<PointerType>(A->getType())->getElementType();
111      Align = A->getParamAlignment();
112    } else {
113      return AliasAnalysis::UnknownSize;
114    }
115  } else {
116    return AliasAnalysis::UnknownSize;
117  }
118
119  if (!AccessTy->isSized())
120    return AliasAnalysis::UnknownSize;
121
122  uint64_t Size = TD.getTypeAllocSize(AccessTy);
123  // If there is an explicitly specified alignment, and we need to
124  // take alignment into account, round up the size. (If the alignment
125  // is implicit, getTypeAllocSize is sufficient.)
126  if (RoundToAlign && Align)
127    Size = RoundUpToAlignment(Size, Align);
128
129  return Size;
130}
131
132/// isObjectSmallerThan - Return true if we can prove that the object specified
133/// by V is smaller than Size.
134static bool isObjectSmallerThan(const Value *V, uint64_t Size,
135                                const TargetData &TD) {
136  // This function needs to use the aligned object size because we allow
137  // reads a bit past the end given sufficient alignment.
138  uint64_t ObjectSize = getObjectSize(V, TD, /*RoundToAlign*/true);
139
140  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
141}
142
143/// isObjectSize - Return true if we can prove that the object specified
144/// by V has size Size.
145static bool isObjectSize(const Value *V, uint64_t Size,
146                         const TargetData &TD) {
147  uint64_t ObjectSize = getObjectSize(V, TD);
148  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
149}
150
151//===----------------------------------------------------------------------===//
152// GetElementPtr Instruction Decomposition and Analysis
153//===----------------------------------------------------------------------===//
154
155namespace {
156  enum ExtensionKind {
157    EK_NotExtended,
158    EK_SignExt,
159    EK_ZeroExt
160  };
161
162  struct VariableGEPIndex {
163    const Value *V;
164    ExtensionKind Extension;
165    int64_t Scale;
166  };
167}
168
169
170/// GetLinearExpression - Analyze the specified value as a linear expression:
171/// "A*V + B", where A and B are constant integers.  Return the scale and offset
172/// values as APInts and return V as a Value*, and return whether we looked
173/// through any sign or zero extends.  The incoming Value is known to have
174/// IntegerType and it may already be sign or zero extended.
175///
176/// Note that this looks through extends, so the high bits may not be
177/// represented in the result.
178static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
179                                  ExtensionKind &Extension,
180                                  const TargetData &TD, unsigned Depth) {
181  assert(V->getType()->isIntegerTy() && "Not an integer value");
182
183  // Limit our recursion depth.
184  if (Depth == 6) {
185    Scale = 1;
186    Offset = 0;
187    return V;
188  }
189
190  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
191    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
192      switch (BOp->getOpcode()) {
193      default: break;
194      case Instruction::Or:
195        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
196        // analyze it.
197        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
198          break;
199        // FALL THROUGH.
200      case Instruction::Add:
201        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
202                                TD, Depth+1);
203        Offset += RHSC->getValue();
204        return V;
205      case Instruction::Mul:
206        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
207                                TD, Depth+1);
208        Offset *= RHSC->getValue();
209        Scale *= RHSC->getValue();
210        return V;
211      case Instruction::Shl:
212        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
213                                TD, Depth+1);
214        Offset <<= RHSC->getValue().getLimitedValue();
215        Scale <<= RHSC->getValue().getLimitedValue();
216        return V;
217      }
218    }
219  }
220
221  // Since GEP indices are sign extended anyway, we don't care about the high
222  // bits of a sign or zero extended value - just scales and offsets.  The
223  // extensions have to be consistent though.
224  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
225      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
226    Value *CastOp = cast<CastInst>(V)->getOperand(0);
227    unsigned OldWidth = Scale.getBitWidth();
228    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
229    Scale = Scale.trunc(SmallWidth);
230    Offset = Offset.trunc(SmallWidth);
231    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
232
233    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
234                                        TD, Depth+1);
235    Scale = Scale.zext(OldWidth);
236    Offset = Offset.zext(OldWidth);
237
238    return Result;
239  }
240
241  Scale = 1;
242  Offset = 0;
243  return V;
244}
245
246/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
247/// into a base pointer with a constant offset and a number of scaled symbolic
248/// offsets.
249///
250/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
251/// the VarIndices vector) are Value*'s that are known to be scaled by the
252/// specified amount, but which may have other unrepresented high bits. As such,
253/// the gep cannot necessarily be reconstructed from its decomposed form.
254///
255/// When TargetData is around, this function is capable of analyzing everything
256/// that GetUnderlyingObject can look through.  When not, it just looks
257/// through pointer casts.
258///
259static const Value *
260DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
261                       SmallVectorImpl<VariableGEPIndex> &VarIndices,
262                       const TargetData *TD) {
263  // Limit recursion depth to limit compile time in crazy cases.
264  unsigned MaxLookup = 6;
265
266  BaseOffs = 0;
267  do {
268    // See if this is a bitcast or GEP.
269    const Operator *Op = dyn_cast<Operator>(V);
270    if (Op == 0) {
271      // The only non-operator case we can handle are GlobalAliases.
272      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
273        if (!GA->mayBeOverridden()) {
274          V = GA->getAliasee();
275          continue;
276        }
277      }
278      return V;
279    }
280
281    if (Op->getOpcode() == Instruction::BitCast) {
282      V = Op->getOperand(0);
283      continue;
284    }
285
286    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
287    if (GEPOp == 0) {
288      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
289      // can come up with something. This matches what GetUnderlyingObject does.
290      if (const Instruction *I = dyn_cast<Instruction>(V))
291        // TODO: Get a DominatorTree and use it here.
292        if (const Value *Simplified =
293              SimplifyInstruction(const_cast<Instruction *>(I), TD)) {
294          V = Simplified;
295          continue;
296        }
297
298      return V;
299    }
300
301    // Don't attempt to analyze GEPs over unsized objects.
302    if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
303        ->getElementType()->isSized())
304      return V;
305
306    // If we are lacking TargetData information, we can't compute the offets of
307    // elements computed by GEPs.  However, we can handle bitcast equivalent
308    // GEPs.
309    if (TD == 0) {
310      if (!GEPOp->hasAllZeroIndices())
311        return V;
312      V = GEPOp->getOperand(0);
313      continue;
314    }
315
316    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
317    gep_type_iterator GTI = gep_type_begin(GEPOp);
318    for (User::const_op_iterator I = GEPOp->op_begin()+1,
319         E = GEPOp->op_end(); I != E; ++I) {
320      Value *Index = *I;
321      // Compute the (potentially symbolic) offset in bytes for this index.
322      if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
323        // For a struct, add the member offset.
324        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
325        if (FieldNo == 0) continue;
326
327        BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
328        continue;
329      }
330
331      // For an array/pointer, add the element offset, explicitly scaled.
332      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
333        if (CIdx->isZero()) continue;
334        BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
335        continue;
336      }
337
338      uint64_t Scale = TD->getTypeAllocSize(*GTI);
339      ExtensionKind Extension = EK_NotExtended;
340
341      // If the integer type is smaller than the pointer size, it is implicitly
342      // sign extended to pointer size.
343      unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
344      if (TD->getPointerSizeInBits() > Width)
345        Extension = EK_SignExt;
346
347      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
348      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
349      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
350                                  *TD, 0);
351
352      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
353      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
354      BaseOffs += IndexOffset.getSExtValue()*Scale;
355      Scale *= IndexScale.getSExtValue();
356
357
358      // If we already had an occurrence of this index variable, merge this
359      // scale into it.  For example, we want to handle:
360      //   A[x][x] -> x*16 + x*4 -> x*20
361      // This also ensures that 'x' only appears in the index list once.
362      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
363        if (VarIndices[i].V == Index &&
364            VarIndices[i].Extension == Extension) {
365          Scale += VarIndices[i].Scale;
366          VarIndices.erase(VarIndices.begin()+i);
367          break;
368        }
369      }
370
371      // Make sure that we have a scale that makes sense for this target's
372      // pointer size.
373      if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
374        Scale <<= ShiftBits;
375        Scale = (int64_t)Scale >> ShiftBits;
376      }
377
378      if (Scale) {
379        VariableGEPIndex Entry = {Index, Extension,
380                                  static_cast<int64_t>(Scale)};
381        VarIndices.push_back(Entry);
382      }
383    }
384
385    // Analyze the base pointer next.
386    V = GEPOp->getOperand(0);
387  } while (--MaxLookup);
388
389  // If the chain of expressions is too deep, just return early.
390  return V;
391}
392
393/// GetIndexDifference - Dest and Src are the variable indices from two
394/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
395/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
396/// difference between the two pointers.
397static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
398                               const SmallVectorImpl<VariableGEPIndex> &Src) {
399  if (Src.empty()) return;
400
401  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
402    const Value *V = Src[i].V;
403    ExtensionKind Extension = Src[i].Extension;
404    int64_t Scale = Src[i].Scale;
405
406    // Find V in Dest.  This is N^2, but pointer indices almost never have more
407    // than a few variable indexes.
408    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
409      if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
410
411      // If we found it, subtract off Scale V's from the entry in Dest.  If it
412      // goes to zero, remove the entry.
413      if (Dest[j].Scale != Scale)
414        Dest[j].Scale -= Scale;
415      else
416        Dest.erase(Dest.begin()+j);
417      Scale = 0;
418      break;
419    }
420
421    // If we didn't consume this entry, add it to the end of the Dest list.
422    if (Scale) {
423      VariableGEPIndex Entry = { V, Extension, -Scale };
424      Dest.push_back(Entry);
425    }
426  }
427}
428
429//===----------------------------------------------------------------------===//
430// BasicAliasAnalysis Pass
431//===----------------------------------------------------------------------===//
432
433#ifndef NDEBUG
434static const Function *getParent(const Value *V) {
435  if (const Instruction *inst = dyn_cast<Instruction>(V))
436    return inst->getParent()->getParent();
437
438  if (const Argument *arg = dyn_cast<Argument>(V))
439    return arg->getParent();
440
441  return NULL;
442}
443
444static bool notDifferentParent(const Value *O1, const Value *O2) {
445
446  const Function *F1 = getParent(O1);
447  const Function *F2 = getParent(O2);
448
449  return !F1 || !F2 || F1 == F2;
450}
451#endif
452
453namespace {
454  /// BasicAliasAnalysis - This is the primary alias analysis implementation.
455  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
456    static char ID; // Class identification, replacement for typeinfo
457    BasicAliasAnalysis() : ImmutablePass(ID),
458                           // AliasCache rarely has more than 1 or 2 elements,
459                           // so start it off fairly small so that clear()
460                           // doesn't have to tromp through 64 (the default)
461                           // elements on each alias query. This really wants
462                           // something like a SmallDenseMap.
463                           AliasCache(8) {
464      initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
465    }
466
467    virtual void initializePass() {
468      InitializeAliasAnalysis(this);
469    }
470
471    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
472      AU.addRequired<AliasAnalysis>();
473      AU.addRequired<TargetLibraryInfo>();
474    }
475
476    virtual AliasResult alias(const Location &LocA,
477                              const Location &LocB) {
478      assert(AliasCache.empty() && "AliasCache must be cleared after use!");
479      assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
480             "BasicAliasAnalysis doesn't support interprocedural queries.");
481      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
482                                     LocB.Ptr, LocB.Size, LocB.TBAATag);
483      AliasCache.clear();
484      return Alias;
485    }
486
487    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
488                                       const Location &Loc);
489
490    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
491                                       ImmutableCallSite CS2) {
492      // The AliasAnalysis base class has some smarts, lets use them.
493      return AliasAnalysis::getModRefInfo(CS1, CS2);
494    }
495
496    /// pointsToConstantMemory - Chase pointers until we find a (constant
497    /// global) or not.
498    virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
499
500    /// getModRefBehavior - Return the behavior when calling the given
501    /// call site.
502    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
503
504    /// getModRefBehavior - Return the behavior when calling the given function.
505    /// For use when the call site is not known.
506    virtual ModRefBehavior getModRefBehavior(const Function *F);
507
508    /// getAdjustedAnalysisPointer - This method is used when a pass implements
509    /// an analysis interface through multiple inheritance.  If needed, it
510    /// should override this to adjust the this pointer as needed for the
511    /// specified pass info.
512    virtual void *getAdjustedAnalysisPointer(const void *ID) {
513      if (ID == &AliasAnalysis::ID)
514        return (AliasAnalysis*)this;
515      return this;
516    }
517
518  private:
519    // AliasCache - Track alias queries to guard against recursion.
520    typedef std::pair<Location, Location> LocPair;
521    typedef DenseMap<LocPair, AliasResult> AliasCacheTy;
522    AliasCacheTy AliasCache;
523
524    // Visited - Track instructions visited by pointsToConstantMemory.
525    SmallPtrSet<const Value*, 16> Visited;
526
527    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
528    // instruction against another.
529    AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
530                         const Value *V2, uint64_t V2Size,
531                         const MDNode *V2TBAAInfo,
532                         const Value *UnderlyingV1, const Value *UnderlyingV2);
533
534    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
535    // instruction against another.
536    AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
537                         const MDNode *PNTBAAInfo,
538                         const Value *V2, uint64_t V2Size,
539                         const MDNode *V2TBAAInfo);
540
541    /// aliasSelect - Disambiguate a Select instruction against another value.
542    AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
543                            const MDNode *SITBAAInfo,
544                            const Value *V2, uint64_t V2Size,
545                            const MDNode *V2TBAAInfo);
546
547    AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
548                           const MDNode *V1TBAATag,
549                           const Value *V2, uint64_t V2Size,
550                           const MDNode *V2TBAATag);
551  };
552}  // End of anonymous namespace
553
554// Register this pass...
555char BasicAliasAnalysis::ID = 0;
556INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
557                   "Basic Alias Analysis (stateless AA impl)",
558                   false, true, false)
559INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
560INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
561                   "Basic Alias Analysis (stateless AA impl)",
562                   false, true, false)
563
564
565ImmutablePass *llvm::createBasicAliasAnalysisPass() {
566  return new BasicAliasAnalysis();
567}
568
569/// pointsToConstantMemory - Returns whether the given pointer value
570/// points to memory that is local to the function, with global constants being
571/// considered local to all functions.
572bool
573BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
574  assert(Visited.empty() && "Visited must be cleared after use!");
575
576  unsigned MaxLookup = 8;
577  SmallVector<const Value *, 16> Worklist;
578  Worklist.push_back(Loc.Ptr);
579  do {
580    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD);
581    if (!Visited.insert(V)) {
582      Visited.clear();
583      return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
584    }
585
586    // An alloca instruction defines local memory.
587    if (OrLocal && isa<AllocaInst>(V))
588      continue;
589
590    // A global constant counts as local memory for our purposes.
591    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
592      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
593      // global to be marked constant in some modules and non-constant in
594      // others.  GV may even be a declaration, not a definition.
595      if (!GV->isConstant()) {
596        Visited.clear();
597        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
598      }
599      continue;
600    }
601
602    // If both select values point to local memory, then so does the select.
603    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
604      Worklist.push_back(SI->getTrueValue());
605      Worklist.push_back(SI->getFalseValue());
606      continue;
607    }
608
609    // If all values incoming to a phi node point to local memory, then so does
610    // the phi.
611    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
612      // Don't bother inspecting phi nodes with many operands.
613      if (PN->getNumIncomingValues() > MaxLookup) {
614        Visited.clear();
615        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
616      }
617      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
618        Worklist.push_back(PN->getIncomingValue(i));
619      continue;
620    }
621
622    // Otherwise be conservative.
623    Visited.clear();
624    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
625
626  } while (!Worklist.empty() && --MaxLookup);
627
628  Visited.clear();
629  return Worklist.empty();
630}
631
632/// getModRefBehavior - Return the behavior when calling the given call site.
633AliasAnalysis::ModRefBehavior
634BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
635  if (CS.doesNotAccessMemory())
636    // Can't do better than this.
637    return DoesNotAccessMemory;
638
639  ModRefBehavior Min = UnknownModRefBehavior;
640
641  // If the callsite knows it only reads memory, don't return worse
642  // than that.
643  if (CS.onlyReadsMemory())
644    Min = OnlyReadsMemory;
645
646  // The AliasAnalysis base class has some smarts, lets use them.
647  return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
648}
649
650/// getModRefBehavior - Return the behavior when calling the given function.
651/// For use when the call site is not known.
652AliasAnalysis::ModRefBehavior
653BasicAliasAnalysis::getModRefBehavior(const Function *F) {
654  // If the function declares it doesn't access memory, we can't do better.
655  if (F->doesNotAccessMemory())
656    return DoesNotAccessMemory;
657
658  // For intrinsics, we can check the table.
659  if (unsigned iid = F->getIntrinsicID()) {
660#define GET_INTRINSIC_MODREF_BEHAVIOR
661#include "llvm/Intrinsics.gen"
662#undef GET_INTRINSIC_MODREF_BEHAVIOR
663  }
664
665  ModRefBehavior Min = UnknownModRefBehavior;
666
667  // If the function declares it only reads memory, go with that.
668  if (F->onlyReadsMemory())
669    Min = OnlyReadsMemory;
670
671  // Otherwise be conservative.
672  return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
673}
674
675/// getModRefInfo - Check to see if the specified callsite can clobber the
676/// specified memory object.  Since we only look at local properties of this
677/// function, we really can't say much about this query.  We do, however, use
678/// simple "address taken" analysis on local objects.
679AliasAnalysis::ModRefResult
680BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
681                                  const Location &Loc) {
682  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
683         "AliasAnalysis query involving multiple functions!");
684
685  const Value *Object = GetUnderlyingObject(Loc.Ptr, TD);
686
687  // If this is a tail call and Loc.Ptr points to a stack location, we know that
688  // the tail call cannot access or modify the local stack.
689  // We cannot exclude byval arguments here; these belong to the caller of
690  // the current function not to the current function, and a tail callee
691  // may reference them.
692  if (isa<AllocaInst>(Object))
693    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
694      if (CI->isTailCall())
695        return NoModRef;
696
697  // If the pointer is to a locally allocated object that does not escape,
698  // then the call can not mod/ref the pointer unless the call takes the pointer
699  // as an argument, and itself doesn't capture it.
700  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
701      isNonEscapingLocalObject(Object)) {
702    bool PassedAsArg = false;
703    unsigned ArgNo = 0;
704    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
705         CI != CE; ++CI, ++ArgNo) {
706      // Only look at the no-capture or byval pointer arguments.  If this
707      // pointer were passed to arguments that were neither of these, then it
708      // couldn't be no-capture.
709      if (!(*CI)->getType()->isPointerTy() ||
710          (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
711        continue;
712
713      // If this is a no-capture pointer argument, see if we can tell that it
714      // is impossible to alias the pointer we're checking.  If not, we have to
715      // assume that the call could touch the pointer, even though it doesn't
716      // escape.
717      if (!isNoAlias(Location(*CI), Location(Object))) {
718        PassedAsArg = true;
719        break;
720      }
721    }
722
723    if (!PassedAsArg)
724      return NoModRef;
725  }
726
727  const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
728  ModRefResult Min = ModRef;
729
730  // Finally, handle specific knowledge of intrinsics.
731  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
732  if (II != 0)
733    switch (II->getIntrinsicID()) {
734    default: break;
735    case Intrinsic::memcpy:
736    case Intrinsic::memmove: {
737      uint64_t Len = UnknownSize;
738      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
739        Len = LenCI->getZExtValue();
740      Value *Dest = II->getArgOperand(0);
741      Value *Src = II->getArgOperand(1);
742      // If it can't overlap the source dest, then it doesn't modref the loc.
743      if (isNoAlias(Location(Dest, Len), Loc)) {
744        if (isNoAlias(Location(Src, Len), Loc))
745          return NoModRef;
746        // If it can't overlap the dest, then worst case it reads the loc.
747        Min = Ref;
748      } else if (isNoAlias(Location(Src, Len), Loc)) {
749        // If it can't overlap the source, then worst case it mutates the loc.
750        Min = Mod;
751      }
752      break;
753    }
754    case Intrinsic::memset:
755      // Since memset is 'accesses arguments' only, the AliasAnalysis base class
756      // will handle it for the variable length case.
757      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
758        uint64_t Len = LenCI->getZExtValue();
759        Value *Dest = II->getArgOperand(0);
760        if (isNoAlias(Location(Dest, Len), Loc))
761          return NoModRef;
762      }
763      // We know that memset doesn't load anything.
764      Min = Mod;
765      break;
766    case Intrinsic::lifetime_start:
767    case Intrinsic::lifetime_end:
768    case Intrinsic::invariant_start: {
769      uint64_t PtrSize =
770        cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
771      if (isNoAlias(Location(II->getArgOperand(1),
772                             PtrSize,
773                             II->getMetadata(LLVMContext::MD_tbaa)),
774                    Loc))
775        return NoModRef;
776      break;
777    }
778    case Intrinsic::invariant_end: {
779      uint64_t PtrSize =
780        cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
781      if (isNoAlias(Location(II->getArgOperand(2),
782                             PtrSize,
783                             II->getMetadata(LLVMContext::MD_tbaa)),
784                    Loc))
785        return NoModRef;
786      break;
787    }
788    case Intrinsic::arm_neon_vld1: {
789      // LLVM's vld1 and vst1 intrinsics currently only support a single
790      // vector register.
791      uint64_t Size =
792        TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize;
793      if (isNoAlias(Location(II->getArgOperand(0), Size,
794                             II->getMetadata(LLVMContext::MD_tbaa)),
795                    Loc))
796        return NoModRef;
797      break;
798    }
799    case Intrinsic::arm_neon_vst1: {
800      uint64_t Size =
801        TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize;
802      if (isNoAlias(Location(II->getArgOperand(0), Size,
803                             II->getMetadata(LLVMContext::MD_tbaa)),
804                    Loc))
805        return NoModRef;
806      break;
807    }
808    }
809
810  // We can bound the aliasing properties of memset_pattern16 just as we can
811  // for memcpy/memset.  This is particularly important because the
812  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
813  // whenever possible.
814  else if (TLI.has(LibFunc::memset_pattern16) &&
815           CS.getCalledFunction() &&
816           CS.getCalledFunction()->getName() == "memset_pattern16") {
817    const Function *MS = CS.getCalledFunction();
818    FunctionType *MemsetType = MS->getFunctionType();
819    if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
820        isa<PointerType>(MemsetType->getParamType(0)) &&
821        isa<PointerType>(MemsetType->getParamType(1)) &&
822        isa<IntegerType>(MemsetType->getParamType(2))) {
823      uint64_t Len = UnknownSize;
824      if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2)))
825        Len = LenCI->getZExtValue();
826      const Value *Dest = CS.getArgument(0);
827      const Value *Src = CS.getArgument(1);
828      // If it can't overlap the source dest, then it doesn't modref the loc.
829      if (isNoAlias(Location(Dest, Len), Loc)) {
830        // Always reads 16 bytes of the source.
831        if (isNoAlias(Location(Src, 16), Loc))
832          return NoModRef;
833        // If it can't overlap the dest, then worst case it reads the loc.
834        Min = Ref;
835      // Always reads 16 bytes of the source.
836      } else if (isNoAlias(Location(Src, 16), Loc)) {
837        // If it can't overlap the source, then worst case it mutates the loc.
838        Min = Mod;
839      }
840    }
841  }
842
843  // The AliasAnalysis base class has some smarts, lets use them.
844  return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
845}
846
847/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
848/// against another pointer.  We know that V1 is a GEP, but we don't know
849/// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, TD),
850/// UnderlyingV2 is the same for V2.
851///
852AliasAnalysis::AliasResult
853BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
854                             const Value *V2, uint64_t V2Size,
855                             const MDNode *V2TBAAInfo,
856                             const Value *UnderlyingV1,
857                             const Value *UnderlyingV2) {
858  int64_t GEP1BaseOffset;
859  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
860
861  // If we have two gep instructions with must-alias'ing base pointers, figure
862  // out if the indexes to the GEP tell us anything about the derived pointer.
863  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
864    // Do the base pointers alias?
865    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
866                                       UnderlyingV2, UnknownSize, 0);
867
868    // If we get a No or May, then return it immediately, no amount of analysis
869    // will improve this situation.
870    if (BaseAlias != MustAlias) return BaseAlias;
871
872    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
873    // exactly, see if the computed offset from the common pointer tells us
874    // about the relation of the resulting pointer.
875    const Value *GEP1BasePtr =
876      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
877
878    int64_t GEP2BaseOffset;
879    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
880    const Value *GEP2BasePtr =
881      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
882
883    // If DecomposeGEPExpression isn't able to look all the way through the
884    // addressing operation, we must not have TD and this is too complex for us
885    // to handle without it.
886    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
887      assert(TD == 0 &&
888             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
889      return MayAlias;
890    }
891
892    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
893    // symbolic difference.
894    GEP1BaseOffset -= GEP2BaseOffset;
895    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
896
897  } else {
898    // Check to see if these two pointers are related by the getelementptr
899    // instruction.  If one pointer is a GEP with a non-zero index of the other
900    // pointer, we know they cannot alias.
901
902    // If both accesses are unknown size, we can't do anything useful here.
903    if (V1Size == UnknownSize && V2Size == UnknownSize)
904      return MayAlias;
905
906    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
907                               V2, V2Size, V2TBAAInfo);
908    if (R != MustAlias)
909      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
910      // If V2 is known not to alias GEP base pointer, then the two values
911      // cannot alias per GEP semantics: "A pointer value formed from a
912      // getelementptr instruction is associated with the addresses associated
913      // with the first operand of the getelementptr".
914      return R;
915
916    const Value *GEP1BasePtr =
917      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
918
919    // If DecomposeGEPExpression isn't able to look all the way through the
920    // addressing operation, we must not have TD and this is too complex for us
921    // to handle without it.
922    if (GEP1BasePtr != UnderlyingV1) {
923      assert(TD == 0 &&
924             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
925      return MayAlias;
926    }
927  }
928
929  // In the two GEP Case, if there is no difference in the offsets of the
930  // computed pointers, the resultant pointers are a must alias.  This
931  // hapens when we have two lexically identical GEP's (for example).
932  //
933  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
934  // must aliases the GEP, the end result is a must alias also.
935  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
936    return MustAlias;
937
938  // If there is a constant difference between the pointers, but the difference
939  // is less than the size of the associated memory object, then we know
940  // that the objects are partially overlapping.  If the difference is
941  // greater, we know they do not overlap.
942  if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
943    if (GEP1BaseOffset >= 0) {
944      if (V2Size != UnknownSize) {
945        if ((uint64_t)GEP1BaseOffset < V2Size)
946          return PartialAlias;
947        return NoAlias;
948      }
949    } else {
950      if (V1Size != UnknownSize) {
951        if (-(uint64_t)GEP1BaseOffset < V1Size)
952          return PartialAlias;
953        return NoAlias;
954      }
955    }
956  }
957
958  // Try to distinguish something like &A[i][1] against &A[42][0].
959  // Grab the least significant bit set in any of the scales.
960  if (!GEP1VariableIndices.empty()) {
961    uint64_t Modulo = 0;
962    for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i)
963      Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
964    Modulo = Modulo ^ (Modulo & (Modulo - 1));
965
966    // We can compute the difference between the two addresses
967    // mod Modulo. Check whether that difference guarantees that the
968    // two locations do not alias.
969    uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
970    if (V1Size != UnknownSize && V2Size != UnknownSize &&
971        ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
972      return NoAlias;
973  }
974
975  // Statically, we can see that the base objects are the same, but the
976  // pointers have dynamic offsets which we can't resolve. And none of our
977  // little tricks above worked.
978  //
979  // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
980  // practical effect of this is protecting TBAA in the case of dynamic
981  // indices into arrays of unions or malloc'd memory.
982  return PartialAlias;
983}
984
985static AliasAnalysis::AliasResult
986MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
987  // If the results agree, take it.
988  if (A == B)
989    return A;
990  // A mix of PartialAlias and MustAlias is PartialAlias.
991  if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
992      (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
993    return AliasAnalysis::PartialAlias;
994  // Otherwise, we don't know anything.
995  return AliasAnalysis::MayAlias;
996}
997
998/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
999/// instruction against another.
1000AliasAnalysis::AliasResult
1001BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
1002                                const MDNode *SITBAAInfo,
1003                                const Value *V2, uint64_t V2Size,
1004                                const MDNode *V2TBAAInfo) {
1005  // If the values are Selects with the same condition, we can do a more precise
1006  // check: just check for aliases between the values on corresponding arms.
1007  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1008    if (SI->getCondition() == SI2->getCondition()) {
1009      AliasResult Alias =
1010        aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
1011                   SI2->getTrueValue(), V2Size, V2TBAAInfo);
1012      if (Alias == MayAlias)
1013        return MayAlias;
1014      AliasResult ThisAlias =
1015        aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
1016                   SI2->getFalseValue(), V2Size, V2TBAAInfo);
1017      return MergeAliasResults(ThisAlias, Alias);
1018    }
1019
1020  // If both arms of the Select node NoAlias or MustAlias V2, then returns
1021  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1022  AliasResult Alias =
1023    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
1024  if (Alias == MayAlias)
1025    return MayAlias;
1026
1027  AliasResult ThisAlias =
1028    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
1029  return MergeAliasResults(ThisAlias, Alias);
1030}
1031
1032// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
1033// against another.
1034AliasAnalysis::AliasResult
1035BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
1036                             const MDNode *PNTBAAInfo,
1037                             const Value *V2, uint64_t V2Size,
1038                             const MDNode *V2TBAAInfo) {
1039  // If the values are PHIs in the same block, we can do a more precise
1040  // as well as efficient check: just check for aliases between the values
1041  // on corresponding edges.
1042  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1043    if (PN2->getParent() == PN->getParent()) {
1044      AliasResult Alias =
1045        aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo,
1046                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
1047                   V2Size, V2TBAAInfo);
1048      if (Alias == MayAlias)
1049        return MayAlias;
1050      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1051        AliasResult ThisAlias =
1052          aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
1053                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1054                     V2Size, V2TBAAInfo);
1055        Alias = MergeAliasResults(ThisAlias, Alias);
1056        if (Alias == MayAlias)
1057          break;
1058      }
1059      return Alias;
1060    }
1061
1062  SmallPtrSet<Value*, 4> UniqueSrc;
1063  SmallVector<Value*, 4> V1Srcs;
1064  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1065    Value *PV1 = PN->getIncomingValue(i);
1066    if (isa<PHINode>(PV1))
1067      // If any of the source itself is a PHI, return MayAlias conservatively
1068      // to avoid compile time explosion. The worst possible case is if both
1069      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1070      // and 'n' are the number of PHI sources.
1071      return MayAlias;
1072    if (UniqueSrc.insert(PV1))
1073      V1Srcs.push_back(PV1);
1074  }
1075
1076  AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
1077                                 V1Srcs[0], PNSize, PNTBAAInfo);
1078  // Early exit if the check of the first PHI source against V2 is MayAlias.
1079  // Other results are not possible.
1080  if (Alias == MayAlias)
1081    return MayAlias;
1082
1083  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1084  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1085  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1086    Value *V = V1Srcs[i];
1087
1088    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
1089                                       V, PNSize, PNTBAAInfo);
1090    Alias = MergeAliasResults(ThisAlias, Alias);
1091    if (Alias == MayAlias)
1092      break;
1093  }
1094
1095  return Alias;
1096}
1097
1098// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
1099// such as array references.
1100//
1101AliasAnalysis::AliasResult
1102BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
1103                               const MDNode *V1TBAAInfo,
1104                               const Value *V2, uint64_t V2Size,
1105                               const MDNode *V2TBAAInfo) {
1106  // If either of the memory references is empty, it doesn't matter what the
1107  // pointer values are.
1108  if (V1Size == 0 || V2Size == 0)
1109    return NoAlias;
1110
1111  // Strip off any casts if they exist.
1112  V1 = V1->stripPointerCasts();
1113  V2 = V2->stripPointerCasts();
1114
1115  // Are we checking for alias of the same value?
1116  if (V1 == V2) return MustAlias;
1117
1118  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1119    return NoAlias;  // Scalars cannot alias each other
1120
1121  // Figure out what objects these things are pointing to if we can.
1122  const Value *O1 = GetUnderlyingObject(V1, TD);
1123  const Value *O2 = GetUnderlyingObject(V2, TD);
1124
1125  // Null values in the default address space don't point to any object, so they
1126  // don't alias any other pointer.
1127  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1128    if (CPN->getType()->getAddressSpace() == 0)
1129      return NoAlias;
1130  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1131    if (CPN->getType()->getAddressSpace() == 0)
1132      return NoAlias;
1133
1134  if (O1 != O2) {
1135    // If V1/V2 point to two different objects we know that we have no alias.
1136    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1137      return NoAlias;
1138
1139    // Constant pointers can't alias with non-const isIdentifiedObject objects.
1140    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1141        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1142      return NoAlias;
1143
1144    // Arguments can't alias with local allocations or noalias calls
1145    // in the same function.
1146    if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
1147         (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
1148      return NoAlias;
1149
1150    // Most objects can't alias null.
1151    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1152        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1153      return NoAlias;
1154
1155    // If one pointer is the result of a call/invoke or load and the other is a
1156    // non-escaping local object within the same function, then we know the
1157    // object couldn't escape to a point where the call could return it.
1158    //
1159    // Note that if the pointers are in different functions, there are a
1160    // variety of complications. A call with a nocapture argument may still
1161    // temporary store the nocapture argument's value in a temporary memory
1162    // location if that memory location doesn't escape. Or it may pass a
1163    // nocapture value to other functions as long as they don't capture it.
1164    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1165      return NoAlias;
1166    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1167      return NoAlias;
1168  }
1169
1170  // If the size of one access is larger than the entire object on the other
1171  // side, then we know such behavior is undefined and can assume no alias.
1172  if (TD)
1173    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) ||
1174        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD)))
1175      return NoAlias;
1176
1177  // Check the cache before climbing up use-def chains. This also terminates
1178  // otherwise infinitely recursive queries.
1179  LocPair Locs(Location(V1, V1Size, V1TBAAInfo),
1180               Location(V2, V2Size, V2TBAAInfo));
1181  if (V1 > V2)
1182    std::swap(Locs.first, Locs.second);
1183  std::pair<AliasCacheTy::iterator, bool> Pair =
1184    AliasCache.insert(std::make_pair(Locs, MayAlias));
1185  if (!Pair.second)
1186    return Pair.first->second;
1187
1188  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1189  // GEP can't simplify, we don't even look at the PHI cases.
1190  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1191    std::swap(V1, V2);
1192    std::swap(V1Size, V2Size);
1193    std::swap(O1, O2);
1194  }
1195  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1196    AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, V2TBAAInfo, O1, O2);
1197    if (Result != MayAlias) return AliasCache[Locs] = Result;
1198  }
1199
1200  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1201    std::swap(V1, V2);
1202    std::swap(V1Size, V2Size);
1203  }
1204  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1205    AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
1206                                  V2, V2Size, V2TBAAInfo);
1207    if (Result != MayAlias) return AliasCache[Locs] = Result;
1208  }
1209
1210  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1211    std::swap(V1, V2);
1212    std::swap(V1Size, V2Size);
1213  }
1214  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1215    AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
1216                                     V2, V2Size, V2TBAAInfo);
1217    if (Result != MayAlias) return AliasCache[Locs] = Result;
1218  }
1219
1220  // If both pointers are pointing into the same object and one of them
1221  // accesses is accessing the entire object, then the accesses must
1222  // overlap in some way.
1223  if (TD && O1 == O2)
1224    if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD)) ||
1225        (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD)))
1226      return AliasCache[Locs] = PartialAlias;
1227
1228  AliasResult Result =
1229    AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
1230                         Location(V2, V2Size, V2TBAAInfo));
1231  return AliasCache[Locs] = Result;
1232}
1233