InstructionSimplify.cpp revision 09c3253d3034ac8ed31f04d21181004827224d47
1//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
11// that do not require creating new instructions.  This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14// ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "instsimplify"
21#include "llvm/Operator.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/Support/ConstantRange.h"
28#include "llvm/Support/PatternMatch.h"
29#include "llvm/Support/ValueHandle.h"
30#include "llvm/Target/TargetData.h"
31using namespace llvm;
32using namespace llvm::PatternMatch;
33
34enum { RecursionLimit = 3 };
35
36STATISTIC(NumExpand,  "Number of expansions");
37STATISTIC(NumFactor , "Number of factorizations");
38STATISTIC(NumReassoc, "Number of reassociations");
39
40static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
41                              const DominatorTree *, unsigned);
42static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
43                            const DominatorTree *, unsigned);
44static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
45                              const DominatorTree *, unsigned);
46static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
47                             const DominatorTree *, unsigned);
48static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
49                              const DominatorTree *, unsigned);
50
51/// getFalse - For a boolean type, or a vector of boolean type, return false, or
52/// a vector with every element false, as appropriate for the type.
53static Constant *getFalse(Type *Ty) {
54  assert((Ty->isIntegerTy(1) ||
55          (Ty->isVectorTy() &&
56           cast<VectorType>(Ty)->getElementType()->isIntegerTy(1))) &&
57         "Expected i1 type or a vector of i1!");
58  return Constant::getNullValue(Ty);
59}
60
61/// getTrue - For a boolean type, or a vector of boolean type, return true, or
62/// a vector with every element true, as appropriate for the type.
63static Constant *getTrue(Type *Ty) {
64  assert((Ty->isIntegerTy(1) ||
65          (Ty->isVectorTy() &&
66           cast<VectorType>(Ty)->getElementType()->isIntegerTy(1))) &&
67         "Expected i1 type or a vector of i1!");
68  return Constant::getAllOnesValue(Ty);
69}
70
71/// ValueDominatesPHI - Does the given value dominate the specified phi node?
72static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
73  Instruction *I = dyn_cast<Instruction>(V);
74  if (!I)
75    // Arguments and constants dominate all instructions.
76    return true;
77
78  // If we have a DominatorTree then do a precise test.
79  if (DT)
80    return DT->dominates(I, P);
81
82  // Otherwise, if the instruction is in the entry block, and is not an invoke,
83  // then it obviously dominates all phi nodes.
84  if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
85      !isa<InvokeInst>(I))
86    return true;
87
88  return false;
89}
90
91/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
92/// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
93/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
94/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
95/// Returns the simplified value, or null if no simplification was performed.
96static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
97                          unsigned OpcToExpand, const TargetData *TD,
98                          const DominatorTree *DT, unsigned MaxRecurse) {
99  Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
100  // Recursion is always used, so bail out at once if we already hit the limit.
101  if (!MaxRecurse--)
102    return 0;
103
104  // Check whether the expression has the form "(A op' B) op C".
105  if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
106    if (Op0->getOpcode() == OpcodeToExpand) {
107      // It does!  Try turning it into "(A op C) op' (B op C)".
108      Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
109      // Do "A op C" and "B op C" both simplify?
110      if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
111        if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
112          // They do! Return "L op' R" if it simplifies or is already available.
113          // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
114          if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
115                                     && L == B && R == A)) {
116            ++NumExpand;
117            return LHS;
118          }
119          // Otherwise return "L op' R" if it simplifies.
120          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
121                                       MaxRecurse)) {
122            ++NumExpand;
123            return V;
124          }
125        }
126    }
127
128  // Check whether the expression has the form "A op (B op' C)".
129  if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
130    if (Op1->getOpcode() == OpcodeToExpand) {
131      // It does!  Try turning it into "(A op B) op' (A op C)".
132      Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
133      // Do "A op B" and "A op C" both simplify?
134      if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
135        if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
136          // They do! Return "L op' R" if it simplifies or is already available.
137          // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
138          if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
139                                     && L == C && R == B)) {
140            ++NumExpand;
141            return RHS;
142          }
143          // Otherwise return "L op' R" if it simplifies.
144          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
145                                       MaxRecurse)) {
146            ++NumExpand;
147            return V;
148          }
149        }
150    }
151
152  return 0;
153}
154
155/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
156/// using the operation OpCodeToExtract.  For example, when Opcode is Add and
157/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
158/// Returns the simplified value, or null if no simplification was performed.
159static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
160                             unsigned OpcToExtract, const TargetData *TD,
161                             const DominatorTree *DT, unsigned MaxRecurse) {
162  Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
163  // Recursion is always used, so bail out at once if we already hit the limit.
164  if (!MaxRecurse--)
165    return 0;
166
167  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
168  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
169
170  if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
171      !Op1 || Op1->getOpcode() != OpcodeToExtract)
172    return 0;
173
174  // The expression has the form "(A op' B) op (C op' D)".
175  Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
176  Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
177
178  // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
179  // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
180  // commutative case, "(A op' B) op (C op' A)"?
181  if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
182    Value *DD = A == C ? D : C;
183    // Form "A op' (B op DD)" if it simplifies completely.
184    // Does "B op DD" simplify?
185    if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
186      // It does!  Return "A op' V" if it simplifies or is already available.
187      // If V equals B then "A op' V" is just the LHS.  If V equals DD then
188      // "A op' V" is just the RHS.
189      if (V == B || V == DD) {
190        ++NumFactor;
191        return V == B ? LHS : RHS;
192      }
193      // Otherwise return "A op' V" if it simplifies.
194      if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
195        ++NumFactor;
196        return W;
197      }
198    }
199  }
200
201  // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
202  // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
203  // commutative case, "(A op' B) op (B op' D)"?
204  if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
205    Value *CC = B == D ? C : D;
206    // Form "(A op CC) op' B" if it simplifies completely..
207    // Does "A op CC" simplify?
208    if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
209      // It does!  Return "V op' B" if it simplifies or is already available.
210      // If V equals A then "V op' B" is just the LHS.  If V equals CC then
211      // "V op' B" is just the RHS.
212      if (V == A || V == CC) {
213        ++NumFactor;
214        return V == A ? LHS : RHS;
215      }
216      // Otherwise return "V op' B" if it simplifies.
217      if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
218        ++NumFactor;
219        return W;
220      }
221    }
222  }
223
224  return 0;
225}
226
227/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
228/// operations.  Returns the simpler value, or null if none was found.
229static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
230                                       const TargetData *TD,
231                                       const DominatorTree *DT,
232                                       unsigned MaxRecurse) {
233  Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
234  assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
235
236  // Recursion is always used, so bail out at once if we already hit the limit.
237  if (!MaxRecurse--)
238    return 0;
239
240  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
241  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
242
243  // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
244  if (Op0 && Op0->getOpcode() == Opcode) {
245    Value *A = Op0->getOperand(0);
246    Value *B = Op0->getOperand(1);
247    Value *C = RHS;
248
249    // Does "B op C" simplify?
250    if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
251      // It does!  Return "A op V" if it simplifies or is already available.
252      // If V equals B then "A op V" is just the LHS.
253      if (V == B) return LHS;
254      // Otherwise return "A op V" if it simplifies.
255      if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
256        ++NumReassoc;
257        return W;
258      }
259    }
260  }
261
262  // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
263  if (Op1 && Op1->getOpcode() == Opcode) {
264    Value *A = LHS;
265    Value *B = Op1->getOperand(0);
266    Value *C = Op1->getOperand(1);
267
268    // Does "A op B" simplify?
269    if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
270      // It does!  Return "V op C" if it simplifies or is already available.
271      // If V equals B then "V op C" is just the RHS.
272      if (V == B) return RHS;
273      // Otherwise return "V op C" if it simplifies.
274      if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
275        ++NumReassoc;
276        return W;
277      }
278    }
279  }
280
281  // The remaining transforms require commutativity as well as associativity.
282  if (!Instruction::isCommutative(Opcode))
283    return 0;
284
285  // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
286  if (Op0 && Op0->getOpcode() == Opcode) {
287    Value *A = Op0->getOperand(0);
288    Value *B = Op0->getOperand(1);
289    Value *C = RHS;
290
291    // Does "C op A" simplify?
292    if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
293      // It does!  Return "V op B" if it simplifies or is already available.
294      // If V equals A then "V op B" is just the LHS.
295      if (V == A) return LHS;
296      // Otherwise return "V op B" if it simplifies.
297      if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
298        ++NumReassoc;
299        return W;
300      }
301    }
302  }
303
304  // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
305  if (Op1 && Op1->getOpcode() == Opcode) {
306    Value *A = LHS;
307    Value *B = Op1->getOperand(0);
308    Value *C = Op1->getOperand(1);
309
310    // Does "C op A" simplify?
311    if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
312      // It does!  Return "B op V" if it simplifies or is already available.
313      // If V equals C then "B op V" is just the RHS.
314      if (V == C) return RHS;
315      // Otherwise return "B op V" if it simplifies.
316      if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
317        ++NumReassoc;
318        return W;
319      }
320    }
321  }
322
323  return 0;
324}
325
326/// ThreadBinOpOverSelect - In the case of a binary operation with a select
327/// instruction as an operand, try to simplify the binop by seeing whether
328/// evaluating it on both branches of the select results in the same value.
329/// Returns the common value if so, otherwise returns null.
330static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
331                                    const TargetData *TD,
332                                    const DominatorTree *DT,
333                                    unsigned MaxRecurse) {
334  // Recursion is always used, so bail out at once if we already hit the limit.
335  if (!MaxRecurse--)
336    return 0;
337
338  SelectInst *SI;
339  if (isa<SelectInst>(LHS)) {
340    SI = cast<SelectInst>(LHS);
341  } else {
342    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
343    SI = cast<SelectInst>(RHS);
344  }
345
346  // Evaluate the BinOp on the true and false branches of the select.
347  Value *TV;
348  Value *FV;
349  if (SI == LHS) {
350    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
351    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
352  } else {
353    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
354    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
355  }
356
357  // If they simplified to the same value, then return the common value.
358  // If they both failed to simplify then return null.
359  if (TV == FV)
360    return TV;
361
362  // If one branch simplified to undef, return the other one.
363  if (TV && isa<UndefValue>(TV))
364    return FV;
365  if (FV && isa<UndefValue>(FV))
366    return TV;
367
368  // If applying the operation did not change the true and false select values,
369  // then the result of the binop is the select itself.
370  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
371    return SI;
372
373  // If one branch simplified and the other did not, and the simplified
374  // value is equal to the unsimplified one, return the simplified value.
375  // For example, select (cond, X, X & Z) & Z -> X & Z.
376  if ((FV && !TV) || (TV && !FV)) {
377    // Check that the simplified value has the form "X op Y" where "op" is the
378    // same as the original operation.
379    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
380    if (Simplified && Simplified->getOpcode() == Opcode) {
381      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
382      // We already know that "op" is the same as for the simplified value.  See
383      // if the operands match too.  If so, return the simplified value.
384      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
385      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
386      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
387      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
388          Simplified->getOperand(1) == UnsimplifiedRHS)
389        return Simplified;
390      if (Simplified->isCommutative() &&
391          Simplified->getOperand(1) == UnsimplifiedLHS &&
392          Simplified->getOperand(0) == UnsimplifiedRHS)
393        return Simplified;
394    }
395  }
396
397  return 0;
398}
399
400/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
401/// try to simplify the comparison by seeing whether both branches of the select
402/// result in the same value.  Returns the common value if so, otherwise returns
403/// null.
404static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
405                                  Value *RHS, const TargetData *TD,
406                                  const DominatorTree *DT,
407                                  unsigned MaxRecurse) {
408  // Recursion is always used, so bail out at once if we already hit the limit.
409  if (!MaxRecurse--)
410    return 0;
411
412  // Make sure the select is on the LHS.
413  if (!isa<SelectInst>(LHS)) {
414    std::swap(LHS, RHS);
415    Pred = CmpInst::getSwappedPredicate(Pred);
416  }
417  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
418  SelectInst *SI = cast<SelectInst>(LHS);
419
420  // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
421  // Does "cmp TV, RHS" simplify?
422  if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
423                                    MaxRecurse)) {
424    // It does!  Does "cmp FV, RHS" simplify?
425    if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
426                                      MaxRecurse)) {
427      // It does!  If they simplified to the same value, then use it as the
428      // result of the original comparison.
429      if (TCmp == FCmp)
430        return TCmp;
431      Value *Cond = SI->getCondition();
432      // If the false value simplified to false, then the result of the compare
433      // is equal to "Cond && TCmp".  This also catches the case when the false
434      // value simplified to false and the true value to true, returning "Cond".
435      if (match(FCmp, m_Zero()))
436        if (Value *V = SimplifyAndInst(Cond, TCmp, TD, DT, MaxRecurse))
437          return V;
438      // If the true value simplified to true, then the result of the compare
439      // is equal to "Cond || FCmp".
440      if (match(TCmp, m_One()))
441        if (Value *V = SimplifyOrInst(Cond, FCmp, TD, DT, MaxRecurse))
442          return V;
443      // Finally, if the false value simplified to true and the true value to
444      // false, then the result of the compare is equal to "!Cond".
445      if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
446        if (Value *V =
447            SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
448                            TD, DT, MaxRecurse))
449          return V;
450    }
451  }
452
453  return 0;
454}
455
456/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
457/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
458/// it on the incoming phi values yields the same result for every value.  If so
459/// returns the common value, otherwise returns null.
460static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
461                                 const TargetData *TD, const DominatorTree *DT,
462                                 unsigned MaxRecurse) {
463  // Recursion is always used, so bail out at once if we already hit the limit.
464  if (!MaxRecurse--)
465    return 0;
466
467  PHINode *PI;
468  if (isa<PHINode>(LHS)) {
469    PI = cast<PHINode>(LHS);
470    // Bail out if RHS and the phi may be mutually interdependent due to a loop.
471    if (!ValueDominatesPHI(RHS, PI, DT))
472      return 0;
473  } else {
474    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
475    PI = cast<PHINode>(RHS);
476    // Bail out if LHS and the phi may be mutually interdependent due to a loop.
477    if (!ValueDominatesPHI(LHS, PI, DT))
478      return 0;
479  }
480
481  // Evaluate the BinOp on the incoming phi values.
482  Value *CommonValue = 0;
483  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
484    Value *Incoming = PI->getIncomingValue(i);
485    // If the incoming value is the phi node itself, it can safely be skipped.
486    if (Incoming == PI) continue;
487    Value *V = PI == LHS ?
488      SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
489      SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
490    // If the operation failed to simplify, or simplified to a different value
491    // to previously, then give up.
492    if (!V || (CommonValue && V != CommonValue))
493      return 0;
494    CommonValue = V;
495  }
496
497  return CommonValue;
498}
499
500/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
501/// try to simplify the comparison by seeing whether comparing with all of the
502/// incoming phi values yields the same result every time.  If so returns the
503/// common result, otherwise returns null.
504static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
505                               const TargetData *TD, const DominatorTree *DT,
506                               unsigned MaxRecurse) {
507  // Recursion is always used, so bail out at once if we already hit the limit.
508  if (!MaxRecurse--)
509    return 0;
510
511  // Make sure the phi is on the LHS.
512  if (!isa<PHINode>(LHS)) {
513    std::swap(LHS, RHS);
514    Pred = CmpInst::getSwappedPredicate(Pred);
515  }
516  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
517  PHINode *PI = cast<PHINode>(LHS);
518
519  // Bail out if RHS and the phi may be mutually interdependent due to a loop.
520  if (!ValueDominatesPHI(RHS, PI, DT))
521    return 0;
522
523  // Evaluate the BinOp on the incoming phi values.
524  Value *CommonValue = 0;
525  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
526    Value *Incoming = PI->getIncomingValue(i);
527    // If the incoming value is the phi node itself, it can safely be skipped.
528    if (Incoming == PI) continue;
529    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
530    // If the operation failed to simplify, or simplified to a different value
531    // to previously, then give up.
532    if (!V || (CommonValue && V != CommonValue))
533      return 0;
534    CommonValue = V;
535  }
536
537  return CommonValue;
538}
539
540/// SimplifyAddInst - Given operands for an Add, see if we can
541/// fold the result.  If not, this returns null.
542static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
543                              const TargetData *TD, const DominatorTree *DT,
544                              unsigned MaxRecurse) {
545  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
546    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
547      Constant *Ops[] = { CLHS, CRHS };
548      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
549                                      Ops, TD);
550    }
551
552    // Canonicalize the constant to the RHS.
553    std::swap(Op0, Op1);
554  }
555
556  // X + undef -> undef
557  if (match(Op1, m_Undef()))
558    return Op1;
559
560  // X + 0 -> X
561  if (match(Op1, m_Zero()))
562    return Op0;
563
564  // X + (Y - X) -> Y
565  // (Y - X) + X -> Y
566  // Eg: X + -X -> 0
567  Value *Y = 0;
568  if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
569      match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
570    return Y;
571
572  // X + ~X -> -1   since   ~X = -X-1
573  if (match(Op0, m_Not(m_Specific(Op1))) ||
574      match(Op1, m_Not(m_Specific(Op0))))
575    return Constant::getAllOnesValue(Op0->getType());
576
577  /// i1 add -> xor.
578  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
579    if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
580      return V;
581
582  // Try some generic simplifications for associative operations.
583  if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
584                                          MaxRecurse))
585    return V;
586
587  // Mul distributes over Add.  Try some generic simplifications based on this.
588  if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
589                                TD, DT, MaxRecurse))
590    return V;
591
592  // Threading Add over selects and phi nodes is pointless, so don't bother.
593  // Threading over the select in "A + select(cond, B, C)" means evaluating
594  // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
595  // only if B and C are equal.  If B and C are equal then (since we assume
596  // that operands have already been simplified) "select(cond, B, C)" should
597  // have been simplified to the common value of B and C already.  Analysing
598  // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
599  // for threading over phi nodes.
600
601  return 0;
602}
603
604Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
605                             const TargetData *TD, const DominatorTree *DT) {
606  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
607}
608
609/// SimplifySubInst - Given operands for a Sub, see if we can
610/// fold the result.  If not, this returns null.
611static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
612                              const TargetData *TD, const DominatorTree *DT,
613                              unsigned MaxRecurse) {
614  if (Constant *CLHS = dyn_cast<Constant>(Op0))
615    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
616      Constant *Ops[] = { CLHS, CRHS };
617      return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
618                                      Ops, TD);
619    }
620
621  // X - undef -> undef
622  // undef - X -> undef
623  if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
624    return UndefValue::get(Op0->getType());
625
626  // X - 0 -> X
627  if (match(Op1, m_Zero()))
628    return Op0;
629
630  // X - X -> 0
631  if (Op0 == Op1)
632    return Constant::getNullValue(Op0->getType());
633
634  // (X*2) - X -> X
635  // (X<<1) - X -> X
636  Value *X = 0;
637  if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
638      match(Op0, m_Shl(m_Specific(Op1), m_One())))
639    return Op1;
640
641  // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
642  // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
643  Value *Y = 0, *Z = Op1;
644  if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
645    // See if "V === Y - Z" simplifies.
646    if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, DT, MaxRecurse-1))
647      // It does!  Now see if "X + V" simplifies.
648      if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, DT,
649                                   MaxRecurse-1)) {
650        // It does, we successfully reassociated!
651        ++NumReassoc;
652        return W;
653      }
654    // See if "V === X - Z" simplifies.
655    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
656      // It does!  Now see if "Y + V" simplifies.
657      if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, DT,
658                                   MaxRecurse-1)) {
659        // It does, we successfully reassociated!
660        ++NumReassoc;
661        return W;
662      }
663  }
664
665  // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
666  // For example, X - (X + 1) -> -1
667  X = Op0;
668  if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
669    // See if "V === X - Y" simplifies.
670    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, DT, MaxRecurse-1))
671      // It does!  Now see if "V - Z" simplifies.
672      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, DT,
673                                   MaxRecurse-1)) {
674        // It does, we successfully reassociated!
675        ++NumReassoc;
676        return W;
677      }
678    // See if "V === X - Z" simplifies.
679    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
680      // It does!  Now see if "V - Y" simplifies.
681      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, DT,
682                                   MaxRecurse-1)) {
683        // It does, we successfully reassociated!
684        ++NumReassoc;
685        return W;
686      }
687  }
688
689  // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
690  // For example, X - (X - Y) -> Y.
691  Z = Op0;
692  if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
693    // See if "V === Z - X" simplifies.
694    if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1))
695      // It does!  Now see if "V + Y" simplifies.
696      if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT,
697                                   MaxRecurse-1)) {
698        // It does, we successfully reassociated!
699        ++NumReassoc;
700        return W;
701      }
702
703  // Mul distributes over Sub.  Try some generic simplifications based on this.
704  if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
705                                TD, DT, MaxRecurse))
706    return V;
707
708  // i1 sub -> xor.
709  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
710    if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
711      return V;
712
713  // Threading Sub over selects and phi nodes is pointless, so don't bother.
714  // Threading over the select in "A - select(cond, B, C)" means evaluating
715  // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
716  // only if B and C are equal.  If B and C are equal then (since we assume
717  // that operands have already been simplified) "select(cond, B, C)" should
718  // have been simplified to the common value of B and C already.  Analysing
719  // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
720  // for threading over phi nodes.
721
722  return 0;
723}
724
725Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
726                             const TargetData *TD, const DominatorTree *DT) {
727  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
728}
729
730/// SimplifyMulInst - Given operands for a Mul, see if we can
731/// fold the result.  If not, this returns null.
732static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
733                              const DominatorTree *DT, unsigned MaxRecurse) {
734  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
735    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
736      Constant *Ops[] = { CLHS, CRHS };
737      return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
738                                      Ops, TD);
739    }
740
741    // Canonicalize the constant to the RHS.
742    std::swap(Op0, Op1);
743  }
744
745  // X * undef -> 0
746  if (match(Op1, m_Undef()))
747    return Constant::getNullValue(Op0->getType());
748
749  // X * 0 -> 0
750  if (match(Op1, m_Zero()))
751    return Op1;
752
753  // X * 1 -> X
754  if (match(Op1, m_One()))
755    return Op0;
756
757  // (X / Y) * Y -> X if the division is exact.
758  Value *X = 0, *Y = 0;
759  if ((match(Op0, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y
760      (match(Op1, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y)
761    PossiblyExactOperator *Div =
762      cast<PossiblyExactOperator>(Y == Op1 ? Op0 : Op1);
763    if (Div->isExact())
764      return X;
765  }
766
767  // i1 mul -> and.
768  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
769    if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
770      return V;
771
772  // Try some generic simplifications for associative operations.
773  if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
774                                          MaxRecurse))
775    return V;
776
777  // Mul distributes over Add.  Try some generic simplifications based on this.
778  if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
779                             TD, DT, MaxRecurse))
780    return V;
781
782  // If the operation is with the result of a select instruction, check whether
783  // operating on either branch of the select always yields the same value.
784  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
785    if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
786                                         MaxRecurse))
787      return V;
788
789  // If the operation is with the result of a phi instruction, check whether
790  // operating on all incoming values of the phi always yields the same value.
791  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
792    if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
793                                      MaxRecurse))
794      return V;
795
796  return 0;
797}
798
799Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
800                             const DominatorTree *DT) {
801  return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
802}
803
804/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
805/// fold the result.  If not, this returns null.
806static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
807                          const TargetData *TD, const DominatorTree *DT,
808                          unsigned MaxRecurse) {
809  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
810    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
811      Constant *Ops[] = { C0, C1 };
812      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD);
813    }
814  }
815
816  bool isSigned = Opcode == Instruction::SDiv;
817
818  // X / undef -> undef
819  if (match(Op1, m_Undef()))
820    return Op1;
821
822  // undef / X -> 0
823  if (match(Op0, m_Undef()))
824    return Constant::getNullValue(Op0->getType());
825
826  // 0 / X -> 0, we don't need to preserve faults!
827  if (match(Op0, m_Zero()))
828    return Op0;
829
830  // X / 1 -> X
831  if (match(Op1, m_One()))
832    return Op0;
833
834  if (Op0->getType()->isIntegerTy(1))
835    // It can't be division by zero, hence it must be division by one.
836    return Op0;
837
838  // X / X -> 1
839  if (Op0 == Op1)
840    return ConstantInt::get(Op0->getType(), 1);
841
842  // (X * Y) / Y -> X if the multiplication does not overflow.
843  Value *X = 0, *Y = 0;
844  if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
845    if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
846    OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
847    // If the Mul knows it does not overflow, then we are good to go.
848    if ((isSigned && Mul->hasNoSignedWrap()) ||
849        (!isSigned && Mul->hasNoUnsignedWrap()))
850      return X;
851    // If X has the form X = A / Y then X * Y cannot overflow.
852    if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
853      if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
854        return X;
855  }
856
857  // (X rem Y) / Y -> 0
858  if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
859      (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
860    return Constant::getNullValue(Op0->getType());
861
862  // If the operation is with the result of a select instruction, check whether
863  // operating on either branch of the select always yields the same value.
864  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
865    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
866      return V;
867
868  // If the operation is with the result of a phi instruction, check whether
869  // operating on all incoming values of the phi always yields the same value.
870  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
871    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
872      return V;
873
874  return 0;
875}
876
877/// SimplifySDivInst - Given operands for an SDiv, see if we can
878/// fold the result.  If not, this returns null.
879static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
880                               const DominatorTree *DT, unsigned MaxRecurse) {
881  if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, DT, MaxRecurse))
882    return V;
883
884  return 0;
885}
886
887Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
888                              const DominatorTree *DT) {
889  return ::SimplifySDivInst(Op0, Op1, TD, DT, RecursionLimit);
890}
891
892/// SimplifyUDivInst - Given operands for a UDiv, see if we can
893/// fold the result.  If not, this returns null.
894static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
895                               const DominatorTree *DT, unsigned MaxRecurse) {
896  if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, DT, MaxRecurse))
897    return V;
898
899  return 0;
900}
901
902Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
903                              const DominatorTree *DT) {
904  return ::SimplifyUDivInst(Op0, Op1, TD, DT, RecursionLimit);
905}
906
907static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *,
908                               const DominatorTree *, unsigned) {
909  // undef / X -> undef    (the undef could be a snan).
910  if (match(Op0, m_Undef()))
911    return Op0;
912
913  // X / undef -> undef
914  if (match(Op1, m_Undef()))
915    return Op1;
916
917  return 0;
918}
919
920Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
921                              const DominatorTree *DT) {
922  return ::SimplifyFDivInst(Op0, Op1, TD, DT, RecursionLimit);
923}
924
925/// SimplifyRem - Given operands for an SRem or URem, see if we can
926/// fold the result.  If not, this returns null.
927static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
928                          const TargetData *TD, const DominatorTree *DT,
929                          unsigned MaxRecurse) {
930  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
931    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
932      Constant *Ops[] = { C0, C1 };
933      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD);
934    }
935  }
936
937  // X % undef -> undef
938  if (match(Op1, m_Undef()))
939    return Op1;
940
941  // undef % X -> 0
942  if (match(Op0, m_Undef()))
943    return Constant::getNullValue(Op0->getType());
944
945  // 0 % X -> 0, we don't need to preserve faults!
946  if (match(Op0, m_Zero()))
947    return Op0;
948
949  // X % 0 -> undef, we don't need to preserve faults!
950  if (match(Op1, m_Zero()))
951    return UndefValue::get(Op0->getType());
952
953  // X % 1 -> 0
954  if (match(Op1, m_One()))
955    return Constant::getNullValue(Op0->getType());
956
957  if (Op0->getType()->isIntegerTy(1))
958    // It can't be remainder by zero, hence it must be remainder by one.
959    return Constant::getNullValue(Op0->getType());
960
961  // X % X -> 0
962  if (Op0 == Op1)
963    return Constant::getNullValue(Op0->getType());
964
965  // If the operation is with the result of a select instruction, check whether
966  // operating on either branch of the select always yields the same value.
967  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
968    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
969      return V;
970
971  // If the operation is with the result of a phi instruction, check whether
972  // operating on all incoming values of the phi always yields the same value.
973  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
974    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
975      return V;
976
977  return 0;
978}
979
980/// SimplifySRemInst - Given operands for an SRem, see if we can
981/// fold the result.  If not, this returns null.
982static Value *SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
983                               const DominatorTree *DT, unsigned MaxRecurse) {
984  if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, TD, DT, MaxRecurse))
985    return V;
986
987  return 0;
988}
989
990Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
991                              const DominatorTree *DT) {
992  return ::SimplifySRemInst(Op0, Op1, TD, DT, RecursionLimit);
993}
994
995/// SimplifyURemInst - Given operands for a URem, see if we can
996/// fold the result.  If not, this returns null.
997static Value *SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
998                               const DominatorTree *DT, unsigned MaxRecurse) {
999  if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, TD, DT, MaxRecurse))
1000    return V;
1001
1002  return 0;
1003}
1004
1005Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
1006                              const DominatorTree *DT) {
1007  return ::SimplifyURemInst(Op0, Op1, TD, DT, RecursionLimit);
1008}
1009
1010static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *,
1011                               const DominatorTree *, unsigned) {
1012  // undef % X -> undef    (the undef could be a snan).
1013  if (match(Op0, m_Undef()))
1014    return Op0;
1015
1016  // X % undef -> undef
1017  if (match(Op1, m_Undef()))
1018    return Op1;
1019
1020  return 0;
1021}
1022
1023Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1024                              const DominatorTree *DT) {
1025  return ::SimplifyFRemInst(Op0, Op1, TD, DT, RecursionLimit);
1026}
1027
1028/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1029/// fold the result.  If not, this returns null.
1030static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1031                            const TargetData *TD, const DominatorTree *DT,
1032                            unsigned MaxRecurse) {
1033  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1034    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1035      Constant *Ops[] = { C0, C1 };
1036      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD);
1037    }
1038  }
1039
1040  // 0 shift by X -> 0
1041  if (match(Op0, m_Zero()))
1042    return Op0;
1043
1044  // X shift by 0 -> X
1045  if (match(Op1, m_Zero()))
1046    return Op0;
1047
1048  // X shift by undef -> undef because it may shift by the bitwidth.
1049  if (match(Op1, m_Undef()))
1050    return Op1;
1051
1052  // Shifting by the bitwidth or more is undefined.
1053  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1054    if (CI->getValue().getLimitedValue() >=
1055        Op0->getType()->getScalarSizeInBits())
1056      return UndefValue::get(Op0->getType());
1057
1058  // If the operation is with the result of a select instruction, check whether
1059  // operating on either branch of the select always yields the same value.
1060  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1061    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
1062      return V;
1063
1064  // If the operation is with the result of a phi instruction, check whether
1065  // operating on all incoming values of the phi always yields the same value.
1066  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1067    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
1068      return V;
1069
1070  return 0;
1071}
1072
1073/// SimplifyShlInst - Given operands for an Shl, see if we can
1074/// fold the result.  If not, this returns null.
1075static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1076                              const TargetData *TD, const DominatorTree *DT,
1077                              unsigned MaxRecurse) {
1078  if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse))
1079    return V;
1080
1081  // undef << X -> 0
1082  if (match(Op0, m_Undef()))
1083    return Constant::getNullValue(Op0->getType());
1084
1085  // (X >> A) << A -> X
1086  Value *X;
1087  if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1))) &&
1088      cast<PossiblyExactOperator>(Op0)->isExact())
1089    return X;
1090  return 0;
1091}
1092
1093Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1094                             const TargetData *TD, const DominatorTree *DT) {
1095  return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
1096}
1097
1098/// SimplifyLShrInst - Given operands for an LShr, see if we can
1099/// fold the result.  If not, this returns null.
1100static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1101                               const TargetData *TD, const DominatorTree *DT,
1102                               unsigned MaxRecurse) {
1103  if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse))
1104    return V;
1105
1106  // undef >>l X -> 0
1107  if (match(Op0, m_Undef()))
1108    return Constant::getNullValue(Op0->getType());
1109
1110  // (X << A) >> A -> X
1111  Value *X;
1112  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1113      cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1114    return X;
1115
1116  return 0;
1117}
1118
1119Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1120                              const TargetData *TD, const DominatorTree *DT) {
1121  return ::SimplifyLShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
1122}
1123
1124/// SimplifyAShrInst - Given operands for an AShr, see if we can
1125/// fold the result.  If not, this returns null.
1126static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1127                               const TargetData *TD, const DominatorTree *DT,
1128                               unsigned MaxRecurse) {
1129  if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse))
1130    return V;
1131
1132  // all ones >>a X -> all ones
1133  if (match(Op0, m_AllOnes()))
1134    return Op0;
1135
1136  // undef >>a X -> all ones
1137  if (match(Op0, m_Undef()))
1138    return Constant::getAllOnesValue(Op0->getType());
1139
1140  // (X << A) >> A -> X
1141  Value *X;
1142  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1143      cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1144    return X;
1145
1146  return 0;
1147}
1148
1149Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1150                              const TargetData *TD, const DominatorTree *DT) {
1151  return ::SimplifyAShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
1152}
1153
1154/// SimplifyAndInst - Given operands for an And, see if we can
1155/// fold the result.  If not, this returns null.
1156static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1157                              const DominatorTree *DT, unsigned MaxRecurse) {
1158  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1159    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1160      Constant *Ops[] = { CLHS, CRHS };
1161      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1162                                      Ops, TD);
1163    }
1164
1165    // Canonicalize the constant to the RHS.
1166    std::swap(Op0, Op1);
1167  }
1168
1169  // X & undef -> 0
1170  if (match(Op1, m_Undef()))
1171    return Constant::getNullValue(Op0->getType());
1172
1173  // X & X = X
1174  if (Op0 == Op1)
1175    return Op0;
1176
1177  // X & 0 = 0
1178  if (match(Op1, m_Zero()))
1179    return Op1;
1180
1181  // X & -1 = X
1182  if (match(Op1, m_AllOnes()))
1183    return Op0;
1184
1185  // A & ~A  =  ~A & A  =  0
1186  if (match(Op0, m_Not(m_Specific(Op1))) ||
1187      match(Op1, m_Not(m_Specific(Op0))))
1188    return Constant::getNullValue(Op0->getType());
1189
1190  // (A | ?) & A = A
1191  Value *A = 0, *B = 0;
1192  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1193      (A == Op1 || B == Op1))
1194    return Op1;
1195
1196  // A & (A | ?) = A
1197  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1198      (A == Op0 || B == Op0))
1199    return Op0;
1200
1201  // A & (-A) = A if A is a power of two or zero.
1202  if (match(Op0, m_Neg(m_Specific(Op1))) ||
1203      match(Op1, m_Neg(m_Specific(Op0)))) {
1204    if (isPowerOfTwo(Op0, TD, /*OrZero*/true))
1205      return Op0;
1206    if (isPowerOfTwo(Op1, TD, /*OrZero*/true))
1207      return Op1;
1208  }
1209
1210  // Try some generic simplifications for associative operations.
1211  if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
1212                                          MaxRecurse))
1213    return V;
1214
1215  // And distributes over Or.  Try some generic simplifications based on this.
1216  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1217                             TD, DT, MaxRecurse))
1218    return V;
1219
1220  // And distributes over Xor.  Try some generic simplifications based on this.
1221  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1222                             TD, DT, MaxRecurse))
1223    return V;
1224
1225  // Or distributes over And.  Try some generic simplifications based on this.
1226  if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1227                                TD, DT, MaxRecurse))
1228    return V;
1229
1230  // If the operation is with the result of a select instruction, check whether
1231  // operating on either branch of the select always yields the same value.
1232  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1233    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
1234                                         MaxRecurse))
1235      return V;
1236
1237  // If the operation is with the result of a phi instruction, check whether
1238  // operating on all incoming values of the phi always yields the same value.
1239  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1240    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
1241                                      MaxRecurse))
1242      return V;
1243
1244  return 0;
1245}
1246
1247Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1248                             const DominatorTree *DT) {
1249  return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
1250}
1251
1252/// SimplifyOrInst - Given operands for an Or, see if we can
1253/// fold the result.  If not, this returns null.
1254static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1255                             const DominatorTree *DT, unsigned MaxRecurse) {
1256  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1257    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1258      Constant *Ops[] = { CLHS, CRHS };
1259      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1260                                      Ops, TD);
1261    }
1262
1263    // Canonicalize the constant to the RHS.
1264    std::swap(Op0, Op1);
1265  }
1266
1267  // X | undef -> -1
1268  if (match(Op1, m_Undef()))
1269    return Constant::getAllOnesValue(Op0->getType());
1270
1271  // X | X = X
1272  if (Op0 == Op1)
1273    return Op0;
1274
1275  // X | 0 = X
1276  if (match(Op1, m_Zero()))
1277    return Op0;
1278
1279  // X | -1 = -1
1280  if (match(Op1, m_AllOnes()))
1281    return Op1;
1282
1283  // A | ~A  =  ~A | A  =  -1
1284  if (match(Op0, m_Not(m_Specific(Op1))) ||
1285      match(Op1, m_Not(m_Specific(Op0))))
1286    return Constant::getAllOnesValue(Op0->getType());
1287
1288  // (A & ?) | A = A
1289  Value *A = 0, *B = 0;
1290  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1291      (A == Op1 || B == Op1))
1292    return Op1;
1293
1294  // A | (A & ?) = A
1295  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1296      (A == Op0 || B == Op0))
1297    return Op0;
1298
1299  // ~(A & ?) | A = -1
1300  if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1301      (A == Op1 || B == Op1))
1302    return Constant::getAllOnesValue(Op1->getType());
1303
1304  // A | ~(A & ?) = -1
1305  if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1306      (A == Op0 || B == Op0))
1307    return Constant::getAllOnesValue(Op0->getType());
1308
1309  // Try some generic simplifications for associative operations.
1310  if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
1311                                          MaxRecurse))
1312    return V;
1313
1314  // Or distributes over And.  Try some generic simplifications based on this.
1315  if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1316                             TD, DT, MaxRecurse))
1317    return V;
1318
1319  // And distributes over Or.  Try some generic simplifications based on this.
1320  if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1321                                TD, DT, MaxRecurse))
1322    return V;
1323
1324  // If the operation is with the result of a select instruction, check whether
1325  // operating on either branch of the select always yields the same value.
1326  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1327    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
1328                                         MaxRecurse))
1329      return V;
1330
1331  // If the operation is with the result of a phi instruction, check whether
1332  // operating on all incoming values of the phi always yields the same value.
1333  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1334    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
1335                                      MaxRecurse))
1336      return V;
1337
1338  return 0;
1339}
1340
1341Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1342                            const DominatorTree *DT) {
1343  return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
1344}
1345
1346/// SimplifyXorInst - Given operands for a Xor, see if we can
1347/// fold the result.  If not, this returns null.
1348static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1349                              const DominatorTree *DT, unsigned MaxRecurse) {
1350  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1351    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1352      Constant *Ops[] = { CLHS, CRHS };
1353      return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1354                                      Ops, TD);
1355    }
1356
1357    // Canonicalize the constant to the RHS.
1358    std::swap(Op0, Op1);
1359  }
1360
1361  // A ^ undef -> undef
1362  if (match(Op1, m_Undef()))
1363    return Op1;
1364
1365  // A ^ 0 = A
1366  if (match(Op1, m_Zero()))
1367    return Op0;
1368
1369  // A ^ A = 0
1370  if (Op0 == Op1)
1371    return Constant::getNullValue(Op0->getType());
1372
1373  // A ^ ~A  =  ~A ^ A  =  -1
1374  if (match(Op0, m_Not(m_Specific(Op1))) ||
1375      match(Op1, m_Not(m_Specific(Op0))))
1376    return Constant::getAllOnesValue(Op0->getType());
1377
1378  // Try some generic simplifications for associative operations.
1379  if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
1380                                          MaxRecurse))
1381    return V;
1382
1383  // And distributes over Xor.  Try some generic simplifications based on this.
1384  if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1385                                TD, DT, MaxRecurse))
1386    return V;
1387
1388  // Threading Xor over selects and phi nodes is pointless, so don't bother.
1389  // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1390  // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1391  // only if B and C are equal.  If B and C are equal then (since we assume
1392  // that operands have already been simplified) "select(cond, B, C)" should
1393  // have been simplified to the common value of B and C already.  Analysing
1394  // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1395  // for threading over phi nodes.
1396
1397  return 0;
1398}
1399
1400Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1401                             const DominatorTree *DT) {
1402  return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
1403}
1404
1405static Type *GetCompareTy(Value *Op) {
1406  return CmpInst::makeCmpResultType(Op->getType());
1407}
1408
1409/// ExtractEquivalentCondition - Rummage around inside V looking for something
1410/// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
1411/// otherwise return null.  Helper function for analyzing max/min idioms.
1412static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1413                                         Value *LHS, Value *RHS) {
1414  SelectInst *SI = dyn_cast<SelectInst>(V);
1415  if (!SI)
1416    return 0;
1417  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1418  if (!Cmp)
1419    return 0;
1420  Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1421  if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1422    return Cmp;
1423  if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1424      LHS == CmpRHS && RHS == CmpLHS)
1425    return Cmp;
1426  return 0;
1427}
1428
1429/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1430/// fold the result.  If not, this returns null.
1431static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1432                               const TargetData *TD, const DominatorTree *DT,
1433                               unsigned MaxRecurse) {
1434  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1435  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1436
1437  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1438    if (Constant *CRHS = dyn_cast<Constant>(RHS))
1439      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
1440
1441    // If we have a constant, make sure it is on the RHS.
1442    std::swap(LHS, RHS);
1443    Pred = CmpInst::getSwappedPredicate(Pred);
1444  }
1445
1446  Type *ITy = GetCompareTy(LHS); // The return type.
1447  Type *OpTy = LHS->getType();   // The operand type.
1448
1449  // icmp X, X -> true/false
1450  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
1451  // because X could be 0.
1452  if (LHS == RHS || isa<UndefValue>(RHS))
1453    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1454
1455  // Special case logic when the operands have i1 type.
1456  if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() &&
1457       cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) {
1458    switch (Pred) {
1459    default: break;
1460    case ICmpInst::ICMP_EQ:
1461      // X == 1 -> X
1462      if (match(RHS, m_One()))
1463        return LHS;
1464      break;
1465    case ICmpInst::ICMP_NE:
1466      // X != 0 -> X
1467      if (match(RHS, m_Zero()))
1468        return LHS;
1469      break;
1470    case ICmpInst::ICMP_UGT:
1471      // X >u 0 -> X
1472      if (match(RHS, m_Zero()))
1473        return LHS;
1474      break;
1475    case ICmpInst::ICMP_UGE:
1476      // X >=u 1 -> X
1477      if (match(RHS, m_One()))
1478        return LHS;
1479      break;
1480    case ICmpInst::ICMP_SLT:
1481      // X <s 0 -> X
1482      if (match(RHS, m_Zero()))
1483        return LHS;
1484      break;
1485    case ICmpInst::ICMP_SLE:
1486      // X <=s -1 -> X
1487      if (match(RHS, m_One()))
1488        return LHS;
1489      break;
1490    }
1491  }
1492
1493  // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
1494  // different addresses, and what's more the address of a stack variable is
1495  // never null or equal to the address of a global.  Note that generalizing
1496  // to the case where LHS is a global variable address or null is pointless,
1497  // since if both LHS and RHS are constants then we already constant folded
1498  // the compare, and if only one of them is then we moved it to RHS already.
1499  if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
1500                               isa<ConstantPointerNull>(RHS)))
1501    // We already know that LHS != RHS.
1502    return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
1503
1504  // If we are comparing with zero then try hard since this is a common case.
1505  if (match(RHS, m_Zero())) {
1506    bool LHSKnownNonNegative, LHSKnownNegative;
1507    switch (Pred) {
1508    default:
1509      assert(false && "Unknown ICmp predicate!");
1510    case ICmpInst::ICMP_ULT:
1511      return getFalse(ITy);
1512    case ICmpInst::ICMP_UGE:
1513      return getTrue(ITy);
1514    case ICmpInst::ICMP_EQ:
1515    case ICmpInst::ICMP_ULE:
1516      if (isKnownNonZero(LHS, TD))
1517        return getFalse(ITy);
1518      break;
1519    case ICmpInst::ICMP_NE:
1520    case ICmpInst::ICMP_UGT:
1521      if (isKnownNonZero(LHS, TD))
1522        return getTrue(ITy);
1523      break;
1524    case ICmpInst::ICMP_SLT:
1525      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1526      if (LHSKnownNegative)
1527        return getTrue(ITy);
1528      if (LHSKnownNonNegative)
1529        return getFalse(ITy);
1530      break;
1531    case ICmpInst::ICMP_SLE:
1532      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1533      if (LHSKnownNegative)
1534        return getTrue(ITy);
1535      if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1536        return getFalse(ITy);
1537      break;
1538    case ICmpInst::ICMP_SGE:
1539      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1540      if (LHSKnownNegative)
1541        return getFalse(ITy);
1542      if (LHSKnownNonNegative)
1543        return getTrue(ITy);
1544      break;
1545    case ICmpInst::ICMP_SGT:
1546      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1547      if (LHSKnownNegative)
1548        return getFalse(ITy);
1549      if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1550        return getTrue(ITy);
1551      break;
1552    }
1553  }
1554
1555  // See if we are doing a comparison with a constant integer.
1556  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1557    // Rule out tautological comparisons (eg., ult 0 or uge 0).
1558    ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1559    if (RHS_CR.isEmptySet())
1560      return ConstantInt::getFalse(CI->getContext());
1561    if (RHS_CR.isFullSet())
1562      return ConstantInt::getTrue(CI->getContext());
1563
1564    // Many binary operators with constant RHS have easy to compute constant
1565    // range.  Use them to check whether the comparison is a tautology.
1566    uint32_t Width = CI->getBitWidth();
1567    APInt Lower = APInt(Width, 0);
1568    APInt Upper = APInt(Width, 0);
1569    ConstantInt *CI2;
1570    if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1571      // 'urem x, CI2' produces [0, CI2).
1572      Upper = CI2->getValue();
1573    } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1574      // 'srem x, CI2' produces (-|CI2|, |CI2|).
1575      Upper = CI2->getValue().abs();
1576      Lower = (-Upper) + 1;
1577    } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1578      // 'udiv CI2, x' produces [0, CI2].
1579      Upper = CI2->getValue();
1580    } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1581      // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1582      APInt NegOne = APInt::getAllOnesValue(Width);
1583      if (!CI2->isZero())
1584        Upper = NegOne.udiv(CI2->getValue()) + 1;
1585    } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1586      // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1587      APInt IntMin = APInt::getSignedMinValue(Width);
1588      APInt IntMax = APInt::getSignedMaxValue(Width);
1589      APInt Val = CI2->getValue().abs();
1590      if (!Val.isMinValue()) {
1591        Lower = IntMin.sdiv(Val);
1592        Upper = IntMax.sdiv(Val) + 1;
1593      }
1594    } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1595      // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1596      APInt NegOne = APInt::getAllOnesValue(Width);
1597      if (CI2->getValue().ult(Width))
1598        Upper = NegOne.lshr(CI2->getValue()) + 1;
1599    } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1600      // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1601      APInt IntMin = APInt::getSignedMinValue(Width);
1602      APInt IntMax = APInt::getSignedMaxValue(Width);
1603      if (CI2->getValue().ult(Width)) {
1604        Lower = IntMin.ashr(CI2->getValue());
1605        Upper = IntMax.ashr(CI2->getValue()) + 1;
1606      }
1607    } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
1608      // 'or x, CI2' produces [CI2, UINT_MAX].
1609      Lower = CI2->getValue();
1610    } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
1611      // 'and x, CI2' produces [0, CI2].
1612      Upper = CI2->getValue() + 1;
1613    }
1614    if (Lower != Upper) {
1615      ConstantRange LHS_CR = ConstantRange(Lower, Upper);
1616      if (RHS_CR.contains(LHS_CR))
1617        return ConstantInt::getTrue(RHS->getContext());
1618      if (RHS_CR.inverse().contains(LHS_CR))
1619        return ConstantInt::getFalse(RHS->getContext());
1620    }
1621  }
1622
1623  // Compare of cast, for example (zext X) != 0 -> X != 0
1624  if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1625    Instruction *LI = cast<CastInst>(LHS);
1626    Value *SrcOp = LI->getOperand(0);
1627    Type *SrcTy = SrcOp->getType();
1628    Type *DstTy = LI->getType();
1629
1630    // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1631    // if the integer type is the same size as the pointer type.
1632    if (MaxRecurse && TD && isa<PtrToIntInst>(LI) &&
1633        TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
1634      if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1635        // Transfer the cast to the constant.
1636        if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1637                                        ConstantExpr::getIntToPtr(RHSC, SrcTy),
1638                                        TD, DT, MaxRecurse-1))
1639          return V;
1640      } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1641        if (RI->getOperand(0)->getType() == SrcTy)
1642          // Compare without the cast.
1643          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1644                                          TD, DT, MaxRecurse-1))
1645            return V;
1646      }
1647    }
1648
1649    if (isa<ZExtInst>(LHS)) {
1650      // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1651      // same type.
1652      if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1653        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1654          // Compare X and Y.  Note that signed predicates become unsigned.
1655          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1656                                          SrcOp, RI->getOperand(0), TD, DT,
1657                                          MaxRecurse-1))
1658            return V;
1659      }
1660      // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1661      // too.  If not, then try to deduce the result of the comparison.
1662      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1663        // Compute the constant that would happen if we truncated to SrcTy then
1664        // reextended to DstTy.
1665        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1666        Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1667
1668        // If the re-extended constant didn't change then this is effectively
1669        // also a case of comparing two zero-extended values.
1670        if (RExt == CI && MaxRecurse)
1671          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1672                                          SrcOp, Trunc, TD, DT, MaxRecurse-1))
1673            return V;
1674
1675        // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1676        // there.  Use this to work out the result of the comparison.
1677        if (RExt != CI) {
1678          switch (Pred) {
1679          default:
1680            assert(false && "Unknown ICmp predicate!");
1681          // LHS <u RHS.
1682          case ICmpInst::ICMP_EQ:
1683          case ICmpInst::ICMP_UGT:
1684          case ICmpInst::ICMP_UGE:
1685            return ConstantInt::getFalse(CI->getContext());
1686
1687          case ICmpInst::ICMP_NE:
1688          case ICmpInst::ICMP_ULT:
1689          case ICmpInst::ICMP_ULE:
1690            return ConstantInt::getTrue(CI->getContext());
1691
1692          // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
1693          // is non-negative then LHS <s RHS.
1694          case ICmpInst::ICMP_SGT:
1695          case ICmpInst::ICMP_SGE:
1696            return CI->getValue().isNegative() ?
1697              ConstantInt::getTrue(CI->getContext()) :
1698              ConstantInt::getFalse(CI->getContext());
1699
1700          case ICmpInst::ICMP_SLT:
1701          case ICmpInst::ICMP_SLE:
1702            return CI->getValue().isNegative() ?
1703              ConstantInt::getFalse(CI->getContext()) :
1704              ConstantInt::getTrue(CI->getContext());
1705          }
1706        }
1707      }
1708    }
1709
1710    if (isa<SExtInst>(LHS)) {
1711      // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1712      // same type.
1713      if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1714        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1715          // Compare X and Y.  Note that the predicate does not change.
1716          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1717                                          TD, DT, MaxRecurse-1))
1718            return V;
1719      }
1720      // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1721      // too.  If not, then try to deduce the result of the comparison.
1722      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1723        // Compute the constant that would happen if we truncated to SrcTy then
1724        // reextended to DstTy.
1725        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1726        Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1727
1728        // If the re-extended constant didn't change then this is effectively
1729        // also a case of comparing two sign-extended values.
1730        if (RExt == CI && MaxRecurse)
1731          if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, DT,
1732                                          MaxRecurse-1))
1733            return V;
1734
1735        // Otherwise the upper bits of LHS are all equal, while RHS has varying
1736        // bits there.  Use this to work out the result of the comparison.
1737        if (RExt != CI) {
1738          switch (Pred) {
1739          default:
1740            assert(false && "Unknown ICmp predicate!");
1741          case ICmpInst::ICMP_EQ:
1742            return ConstantInt::getFalse(CI->getContext());
1743          case ICmpInst::ICMP_NE:
1744            return ConstantInt::getTrue(CI->getContext());
1745
1746          // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
1747          // LHS >s RHS.
1748          case ICmpInst::ICMP_SGT:
1749          case ICmpInst::ICMP_SGE:
1750            return CI->getValue().isNegative() ?
1751              ConstantInt::getTrue(CI->getContext()) :
1752              ConstantInt::getFalse(CI->getContext());
1753          case ICmpInst::ICMP_SLT:
1754          case ICmpInst::ICMP_SLE:
1755            return CI->getValue().isNegative() ?
1756              ConstantInt::getFalse(CI->getContext()) :
1757              ConstantInt::getTrue(CI->getContext());
1758
1759          // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
1760          // LHS >u RHS.
1761          case ICmpInst::ICMP_UGT:
1762          case ICmpInst::ICMP_UGE:
1763            // Comparison is true iff the LHS <s 0.
1764            if (MaxRecurse)
1765              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
1766                                              Constant::getNullValue(SrcTy),
1767                                              TD, DT, MaxRecurse-1))
1768                return V;
1769            break;
1770          case ICmpInst::ICMP_ULT:
1771          case ICmpInst::ICMP_ULE:
1772            // Comparison is true iff the LHS >=s 0.
1773            if (MaxRecurse)
1774              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
1775                                              Constant::getNullValue(SrcTy),
1776                                              TD, DT, MaxRecurse-1))
1777                return V;
1778            break;
1779          }
1780        }
1781      }
1782    }
1783  }
1784
1785  // Special logic for binary operators.
1786  BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
1787  BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
1788  if (MaxRecurse && (LBO || RBO)) {
1789    // Analyze the case when either LHS or RHS is an add instruction.
1790    Value *A = 0, *B = 0, *C = 0, *D = 0;
1791    // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
1792    bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
1793    if (LBO && LBO->getOpcode() == Instruction::Add) {
1794      A = LBO->getOperand(0); B = LBO->getOperand(1);
1795      NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
1796        (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
1797        (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
1798    }
1799    if (RBO && RBO->getOpcode() == Instruction::Add) {
1800      C = RBO->getOperand(0); D = RBO->getOperand(1);
1801      NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
1802        (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
1803        (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
1804    }
1805
1806    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
1807    if ((A == RHS || B == RHS) && NoLHSWrapProblem)
1808      if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
1809                                      Constant::getNullValue(RHS->getType()),
1810                                      TD, DT, MaxRecurse-1))
1811        return V;
1812
1813    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
1814    if ((C == LHS || D == LHS) && NoRHSWrapProblem)
1815      if (Value *V = SimplifyICmpInst(Pred,
1816                                      Constant::getNullValue(LHS->getType()),
1817                                      C == LHS ? D : C, TD, DT, MaxRecurse-1))
1818        return V;
1819
1820    // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
1821    if (A && C && (A == C || A == D || B == C || B == D) &&
1822        NoLHSWrapProblem && NoRHSWrapProblem) {
1823      // Determine Y and Z in the form icmp (X+Y), (X+Z).
1824      Value *Y = (A == C || A == D) ? B : A;
1825      Value *Z = (C == A || C == B) ? D : C;
1826      if (Value *V = SimplifyICmpInst(Pred, Y, Z, TD, DT, MaxRecurse-1))
1827        return V;
1828    }
1829  }
1830
1831  if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
1832    bool KnownNonNegative, KnownNegative;
1833    switch (Pred) {
1834    default:
1835      break;
1836    case ICmpInst::ICMP_SGT:
1837    case ICmpInst::ICMP_SGE:
1838      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
1839      if (!KnownNonNegative)
1840        break;
1841      // fall-through
1842    case ICmpInst::ICMP_EQ:
1843    case ICmpInst::ICMP_UGT:
1844    case ICmpInst::ICMP_UGE:
1845      return getFalse(ITy);
1846    case ICmpInst::ICMP_SLT:
1847    case ICmpInst::ICMP_SLE:
1848      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
1849      if (!KnownNonNegative)
1850        break;
1851      // fall-through
1852    case ICmpInst::ICMP_NE:
1853    case ICmpInst::ICMP_ULT:
1854    case ICmpInst::ICMP_ULE:
1855      return getTrue(ITy);
1856    }
1857  }
1858  if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
1859    bool KnownNonNegative, KnownNegative;
1860    switch (Pred) {
1861    default:
1862      break;
1863    case ICmpInst::ICMP_SGT:
1864    case ICmpInst::ICMP_SGE:
1865      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
1866      if (!KnownNonNegative)
1867        break;
1868      // fall-through
1869    case ICmpInst::ICMP_NE:
1870    case ICmpInst::ICMP_UGT:
1871    case ICmpInst::ICMP_UGE:
1872      return getTrue(ITy);
1873    case ICmpInst::ICMP_SLT:
1874    case ICmpInst::ICMP_SLE:
1875      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
1876      if (!KnownNonNegative)
1877        break;
1878      // fall-through
1879    case ICmpInst::ICMP_EQ:
1880    case ICmpInst::ICMP_ULT:
1881    case ICmpInst::ICMP_ULE:
1882      return getFalse(ITy);
1883    }
1884  }
1885
1886  // x udiv y <=u x.
1887  if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
1888    // icmp pred (X /u Y), X
1889    if (Pred == ICmpInst::ICMP_UGT)
1890      return getFalse(ITy);
1891    if (Pred == ICmpInst::ICMP_ULE)
1892      return getTrue(ITy);
1893  }
1894
1895  if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
1896      LBO->getOperand(1) == RBO->getOperand(1)) {
1897    switch (LBO->getOpcode()) {
1898    default: break;
1899    case Instruction::UDiv:
1900    case Instruction::LShr:
1901      if (ICmpInst::isSigned(Pred))
1902        break;
1903      // fall-through
1904    case Instruction::SDiv:
1905    case Instruction::AShr:
1906      if (!LBO->isExact() || !RBO->isExact())
1907        break;
1908      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
1909                                      RBO->getOperand(0), TD, DT, MaxRecurse-1))
1910        return V;
1911      break;
1912    case Instruction::Shl: {
1913      bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
1914      bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
1915      if (!NUW && !NSW)
1916        break;
1917      if (!NSW && ICmpInst::isSigned(Pred))
1918        break;
1919      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
1920                                      RBO->getOperand(0), TD, DT, MaxRecurse-1))
1921        return V;
1922      break;
1923    }
1924    }
1925  }
1926
1927  // Simplify comparisons involving max/min.
1928  Value *A, *B;
1929  CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
1930  CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
1931
1932  // Signed variants on "max(a,b)>=a -> true".
1933  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
1934    if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
1935    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
1936    // We analyze this as smax(A, B) pred A.
1937    P = Pred;
1938  } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
1939             (A == LHS || B == LHS)) {
1940    if (A != LHS) std::swap(A, B); // A pred smax(A, B).
1941    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
1942    // We analyze this as smax(A, B) swapped-pred A.
1943    P = CmpInst::getSwappedPredicate(Pred);
1944  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
1945             (A == RHS || B == RHS)) {
1946    if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
1947    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
1948    // We analyze this as smax(-A, -B) swapped-pred -A.
1949    // Note that we do not need to actually form -A or -B thanks to EqP.
1950    P = CmpInst::getSwappedPredicate(Pred);
1951  } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
1952             (A == LHS || B == LHS)) {
1953    if (A != LHS) std::swap(A, B); // A pred smin(A, B).
1954    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
1955    // We analyze this as smax(-A, -B) pred -A.
1956    // Note that we do not need to actually form -A or -B thanks to EqP.
1957    P = Pred;
1958  }
1959  if (P != CmpInst::BAD_ICMP_PREDICATE) {
1960    // Cases correspond to "max(A, B) p A".
1961    switch (P) {
1962    default:
1963      break;
1964    case CmpInst::ICMP_EQ:
1965    case CmpInst::ICMP_SLE:
1966      // Equivalent to "A EqP B".  This may be the same as the condition tested
1967      // in the max/min; if so, we can just return that.
1968      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
1969        return V;
1970      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
1971        return V;
1972      // Otherwise, see if "A EqP B" simplifies.
1973      if (MaxRecurse)
1974        if (Value *V = SimplifyICmpInst(EqP, A, B, TD, DT, MaxRecurse-1))
1975          return V;
1976      break;
1977    case CmpInst::ICMP_NE:
1978    case CmpInst::ICMP_SGT: {
1979      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
1980      // Equivalent to "A InvEqP B".  This may be the same as the condition
1981      // tested in the max/min; if so, we can just return that.
1982      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
1983        return V;
1984      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
1985        return V;
1986      // Otherwise, see if "A InvEqP B" simplifies.
1987      if (MaxRecurse)
1988        if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, DT, MaxRecurse-1))
1989          return V;
1990      break;
1991    }
1992    case CmpInst::ICMP_SGE:
1993      // Always true.
1994      return getTrue(ITy);
1995    case CmpInst::ICMP_SLT:
1996      // Always false.
1997      return getFalse(ITy);
1998    }
1999  }
2000
2001  // Unsigned variants on "max(a,b)>=a -> true".
2002  P = CmpInst::BAD_ICMP_PREDICATE;
2003  if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2004    if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2005    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2006    // We analyze this as umax(A, B) pred A.
2007    P = Pred;
2008  } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2009             (A == LHS || B == LHS)) {
2010    if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2011    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2012    // We analyze this as umax(A, B) swapped-pred A.
2013    P = CmpInst::getSwappedPredicate(Pred);
2014  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2015             (A == RHS || B == RHS)) {
2016    if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
2017    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2018    // We analyze this as umax(-A, -B) swapped-pred -A.
2019    // Note that we do not need to actually form -A or -B thanks to EqP.
2020    P = CmpInst::getSwappedPredicate(Pred);
2021  } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2022             (A == LHS || B == LHS)) {
2023    if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2024    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2025    // We analyze this as umax(-A, -B) pred -A.
2026    // Note that we do not need to actually form -A or -B thanks to EqP.
2027    P = Pred;
2028  }
2029  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2030    // Cases correspond to "max(A, B) p A".
2031    switch (P) {
2032    default:
2033      break;
2034    case CmpInst::ICMP_EQ:
2035    case CmpInst::ICMP_ULE:
2036      // Equivalent to "A EqP B".  This may be the same as the condition tested
2037      // in the max/min; if so, we can just return that.
2038      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2039        return V;
2040      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2041        return V;
2042      // Otherwise, see if "A EqP B" simplifies.
2043      if (MaxRecurse)
2044        if (Value *V = SimplifyICmpInst(EqP, A, B, TD, DT, MaxRecurse-1))
2045          return V;
2046      break;
2047    case CmpInst::ICMP_NE:
2048    case CmpInst::ICMP_UGT: {
2049      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2050      // Equivalent to "A InvEqP B".  This may be the same as the condition
2051      // tested in the max/min; if so, we can just return that.
2052      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2053        return V;
2054      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2055        return V;
2056      // Otherwise, see if "A InvEqP B" simplifies.
2057      if (MaxRecurse)
2058        if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, DT, MaxRecurse-1))
2059          return V;
2060      break;
2061    }
2062    case CmpInst::ICMP_UGE:
2063      // Always true.
2064      return getTrue(ITy);
2065    case CmpInst::ICMP_ULT:
2066      // Always false.
2067      return getFalse(ITy);
2068    }
2069  }
2070
2071  // Variants on "max(x,y) >= min(x,z)".
2072  Value *C, *D;
2073  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2074      match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2075      (A == C || A == D || B == C || B == D)) {
2076    // max(x, ?) pred min(x, ?).
2077    if (Pred == CmpInst::ICMP_SGE)
2078      // Always true.
2079      return getTrue(ITy);
2080    if (Pred == CmpInst::ICMP_SLT)
2081      // Always false.
2082      return getFalse(ITy);
2083  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2084             match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2085             (A == C || A == D || B == C || B == D)) {
2086    // min(x, ?) pred max(x, ?).
2087    if (Pred == CmpInst::ICMP_SLE)
2088      // Always true.
2089      return getTrue(ITy);
2090    if (Pred == CmpInst::ICMP_SGT)
2091      // Always false.
2092      return getFalse(ITy);
2093  } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2094             match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2095             (A == C || A == D || B == C || B == D)) {
2096    // max(x, ?) pred min(x, ?).
2097    if (Pred == CmpInst::ICMP_UGE)
2098      // Always true.
2099      return getTrue(ITy);
2100    if (Pred == CmpInst::ICMP_ULT)
2101      // Always false.
2102      return getFalse(ITy);
2103  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2104             match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2105             (A == C || A == D || B == C || B == D)) {
2106    // min(x, ?) pred max(x, ?).
2107    if (Pred == CmpInst::ICMP_ULE)
2108      // Always true.
2109      return getTrue(ITy);
2110    if (Pred == CmpInst::ICMP_UGT)
2111      // Always false.
2112      return getFalse(ITy);
2113  }
2114
2115  // If the comparison is with the result of a select instruction, check whether
2116  // comparing with either branch of the select always yields the same value.
2117  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2118    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
2119      return V;
2120
2121  // If the comparison is with the result of a phi instruction, check whether
2122  // doing the compare with each incoming phi value yields a common result.
2123  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2124    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
2125      return V;
2126
2127  return 0;
2128}
2129
2130Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2131                              const TargetData *TD, const DominatorTree *DT) {
2132  return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
2133}
2134
2135/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2136/// fold the result.  If not, this returns null.
2137static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2138                               const TargetData *TD, const DominatorTree *DT,
2139                               unsigned MaxRecurse) {
2140  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2141  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2142
2143  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2144    if (Constant *CRHS = dyn_cast<Constant>(RHS))
2145      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
2146
2147    // If we have a constant, make sure it is on the RHS.
2148    std::swap(LHS, RHS);
2149    Pred = CmpInst::getSwappedPredicate(Pred);
2150  }
2151
2152  // Fold trivial predicates.
2153  if (Pred == FCmpInst::FCMP_FALSE)
2154    return ConstantInt::get(GetCompareTy(LHS), 0);
2155  if (Pred == FCmpInst::FCMP_TRUE)
2156    return ConstantInt::get(GetCompareTy(LHS), 1);
2157
2158  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
2159    return UndefValue::get(GetCompareTy(LHS));
2160
2161  // fcmp x,x -> true/false.  Not all compares are foldable.
2162  if (LHS == RHS) {
2163    if (CmpInst::isTrueWhenEqual(Pred))
2164      return ConstantInt::get(GetCompareTy(LHS), 1);
2165    if (CmpInst::isFalseWhenEqual(Pred))
2166      return ConstantInt::get(GetCompareTy(LHS), 0);
2167  }
2168
2169  // Handle fcmp with constant RHS
2170  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2171    // If the constant is a nan, see if we can fold the comparison based on it.
2172    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2173      if (CFP->getValueAPF().isNaN()) {
2174        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
2175          return ConstantInt::getFalse(CFP->getContext());
2176        assert(FCmpInst::isUnordered(Pred) &&
2177               "Comparison must be either ordered or unordered!");
2178        // True if unordered.
2179        return ConstantInt::getTrue(CFP->getContext());
2180      }
2181      // Check whether the constant is an infinity.
2182      if (CFP->getValueAPF().isInfinity()) {
2183        if (CFP->getValueAPF().isNegative()) {
2184          switch (Pred) {
2185          case FCmpInst::FCMP_OLT:
2186            // No value is ordered and less than negative infinity.
2187            return ConstantInt::getFalse(CFP->getContext());
2188          case FCmpInst::FCMP_UGE:
2189            // All values are unordered with or at least negative infinity.
2190            return ConstantInt::getTrue(CFP->getContext());
2191          default:
2192            break;
2193          }
2194        } else {
2195          switch (Pred) {
2196          case FCmpInst::FCMP_OGT:
2197            // No value is ordered and greater than infinity.
2198            return ConstantInt::getFalse(CFP->getContext());
2199          case FCmpInst::FCMP_ULE:
2200            // All values are unordered with and at most infinity.
2201            return ConstantInt::getTrue(CFP->getContext());
2202          default:
2203            break;
2204          }
2205        }
2206      }
2207    }
2208  }
2209
2210  // If the comparison is with the result of a select instruction, check whether
2211  // comparing with either branch of the select always yields the same value.
2212  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2213    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
2214      return V;
2215
2216  // If the comparison is with the result of a phi instruction, check whether
2217  // doing the compare with each incoming phi value yields a common result.
2218  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2219    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
2220      return V;
2221
2222  return 0;
2223}
2224
2225Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2226                              const TargetData *TD, const DominatorTree *DT) {
2227  return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
2228}
2229
2230/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2231/// the result.  If not, this returns null.
2232Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
2233                                const TargetData *TD, const DominatorTree *) {
2234  // select true, X, Y  -> X
2235  // select false, X, Y -> Y
2236  if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2237    return CB->getZExtValue() ? TrueVal : FalseVal;
2238
2239  // select C, X, X -> X
2240  if (TrueVal == FalseVal)
2241    return TrueVal;
2242
2243  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
2244    if (isa<Constant>(TrueVal))
2245      return TrueVal;
2246    return FalseVal;
2247  }
2248  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
2249    return FalseVal;
2250  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
2251    return TrueVal;
2252
2253  return 0;
2254}
2255
2256/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2257/// fold the result.  If not, this returns null.
2258Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops,
2259                             const TargetData *TD, const DominatorTree *) {
2260  // The type of the GEP pointer operand.
2261  PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());
2262
2263  // getelementptr P -> P.
2264  if (Ops.size() == 1)
2265    return Ops[0];
2266
2267  if (isa<UndefValue>(Ops[0])) {
2268    // Compute the (pointer) type returned by the GEP instruction.
2269    Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
2270    Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
2271    return UndefValue::get(GEPTy);
2272  }
2273
2274  if (Ops.size() == 2) {
2275    // getelementptr P, 0 -> P.
2276    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2277      if (C->isZero())
2278        return Ops[0];
2279    // getelementptr P, N -> P if P points to a type of zero size.
2280    if (TD) {
2281      Type *Ty = PtrTy->getElementType();
2282      if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
2283        return Ops[0];
2284    }
2285  }
2286
2287  // Check to see if this is constant foldable.
2288  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2289    if (!isa<Constant>(Ops[i]))
2290      return 0;
2291
2292  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
2293}
2294
2295/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2296/// can fold the result.  If not, this returns null.
2297Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2298                                     ArrayRef<unsigned> Idxs,
2299                                     const TargetData *,
2300                                     const DominatorTree *) {
2301  if (Constant *CAgg = dyn_cast<Constant>(Agg))
2302    if (Constant *CVal = dyn_cast<Constant>(Val))
2303      return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2304
2305  // insertvalue x, undef, n -> x
2306  if (match(Val, m_Undef()))
2307    return Agg;
2308
2309  // insertvalue x, (extractvalue y, n), n
2310  if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
2311    if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2312        EV->getIndices() == Idxs) {
2313      // insertvalue undef, (extractvalue y, n), n -> y
2314      if (match(Agg, m_Undef()))
2315        return EV->getAggregateOperand();
2316
2317      // insertvalue y, (extractvalue y, n), n -> y
2318      if (Agg == EV->getAggregateOperand())
2319        return Agg;
2320    }
2321
2322  return 0;
2323}
2324
2325/// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
2326static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
2327  // If all of the PHI's incoming values are the same then replace the PHI node
2328  // with the common value.
2329  Value *CommonValue = 0;
2330  bool HasUndefInput = false;
2331  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2332    Value *Incoming = PN->getIncomingValue(i);
2333    // If the incoming value is the phi node itself, it can safely be skipped.
2334    if (Incoming == PN) continue;
2335    if (isa<UndefValue>(Incoming)) {
2336      // Remember that we saw an undef value, but otherwise ignore them.
2337      HasUndefInput = true;
2338      continue;
2339    }
2340    if (CommonValue && Incoming != CommonValue)
2341      return 0;  // Not the same, bail out.
2342    CommonValue = Incoming;
2343  }
2344
2345  // If CommonValue is null then all of the incoming values were either undef or
2346  // equal to the phi node itself.
2347  if (!CommonValue)
2348    return UndefValue::get(PN->getType());
2349
2350  // If we have a PHI node like phi(X, undef, X), where X is defined by some
2351  // instruction, we cannot return X as the result of the PHI node unless it
2352  // dominates the PHI block.
2353  if (HasUndefInput)
2354    return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
2355
2356  return CommonValue;
2357}
2358
2359
2360//=== Helper functions for higher up the class hierarchy.
2361
2362/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2363/// fold the result.  If not, this returns null.
2364static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2365                            const TargetData *TD, const DominatorTree *DT,
2366                            unsigned MaxRecurse) {
2367  switch (Opcode) {
2368  case Instruction::Add:
2369    return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2370                           TD, DT, MaxRecurse);
2371  case Instruction::Sub:
2372    return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2373                           TD, DT, MaxRecurse);
2374  case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, TD, DT, MaxRecurse);
2375  case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse);
2376  case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse);
2377  case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, DT, MaxRecurse);
2378  case Instruction::SRem: return SimplifySRemInst(LHS, RHS, TD, DT, MaxRecurse);
2379  case Instruction::URem: return SimplifyURemInst(LHS, RHS, TD, DT, MaxRecurse);
2380  case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, TD, DT, MaxRecurse);
2381  case Instruction::Shl:
2382    return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2383                           TD, DT, MaxRecurse);
2384  case Instruction::LShr:
2385    return SimplifyLShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
2386  case Instruction::AShr:
2387    return SimplifyAShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
2388  case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
2389  case Instruction::Or:  return SimplifyOrInst (LHS, RHS, TD, DT, MaxRecurse);
2390  case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
2391  default:
2392    if (Constant *CLHS = dyn_cast<Constant>(LHS))
2393      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2394        Constant *COps[] = {CLHS, CRHS};
2395        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, TD);
2396      }
2397
2398    // If the operation is associative, try some generic simplifications.
2399    if (Instruction::isAssociative(Opcode))
2400      if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
2401                                              MaxRecurse))
2402        return V;
2403
2404    // If the operation is with the result of a select instruction, check whether
2405    // operating on either branch of the select always yields the same value.
2406    if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2407      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
2408                                           MaxRecurse))
2409        return V;
2410
2411    // If the operation is with the result of a phi instruction, check whether
2412    // operating on all incoming values of the phi always yields the same value.
2413    if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2414      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
2415        return V;
2416
2417    return 0;
2418  }
2419}
2420
2421Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2422                           const TargetData *TD, const DominatorTree *DT) {
2423  return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
2424}
2425
2426/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2427/// fold the result.
2428static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2429                              const TargetData *TD, const DominatorTree *DT,
2430                              unsigned MaxRecurse) {
2431  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
2432    return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
2433  return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
2434}
2435
2436Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2437                             const TargetData *TD, const DominatorTree *DT) {
2438  return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
2439}
2440
2441/// SimplifyInstruction - See if we can compute a simplified version of this
2442/// instruction.  If not, this returns null.
2443Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
2444                                 const DominatorTree *DT) {
2445  Value *Result;
2446
2447  switch (I->getOpcode()) {
2448  default:
2449    Result = ConstantFoldInstruction(I, TD);
2450    break;
2451  case Instruction::Add:
2452    Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
2453                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2454                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2455                             TD, DT);
2456    break;
2457  case Instruction::Sub:
2458    Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
2459                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2460                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2461                             TD, DT);
2462    break;
2463  case Instruction::Mul:
2464    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
2465    break;
2466  case Instruction::SDiv:
2467    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
2468    break;
2469  case Instruction::UDiv:
2470    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
2471    break;
2472  case Instruction::FDiv:
2473    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
2474    break;
2475  case Instruction::SRem:
2476    Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, DT);
2477    break;
2478  case Instruction::URem:
2479    Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, DT);
2480    break;
2481  case Instruction::FRem:
2482    Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, DT);
2483    break;
2484  case Instruction::Shl:
2485    Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
2486                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2487                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2488                             TD, DT);
2489    break;
2490  case Instruction::LShr:
2491    Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
2492                              cast<BinaryOperator>(I)->isExact(),
2493                              TD, DT);
2494    break;
2495  case Instruction::AShr:
2496    Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
2497                              cast<BinaryOperator>(I)->isExact(),
2498                              TD, DT);
2499    break;
2500  case Instruction::And:
2501    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
2502    break;
2503  case Instruction::Or:
2504    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
2505    break;
2506  case Instruction::Xor:
2507    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
2508    break;
2509  case Instruction::ICmp:
2510    Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
2511                              I->getOperand(0), I->getOperand(1), TD, DT);
2512    break;
2513  case Instruction::FCmp:
2514    Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
2515                              I->getOperand(0), I->getOperand(1), TD, DT);
2516    break;
2517  case Instruction::Select:
2518    Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
2519                                I->getOperand(2), TD, DT);
2520    break;
2521  case Instruction::GetElementPtr: {
2522    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
2523    Result = SimplifyGEPInst(Ops, TD, DT);
2524    break;
2525  }
2526  case Instruction::InsertValue: {
2527    InsertValueInst *IV = cast<InsertValueInst>(I);
2528    Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
2529                                     IV->getInsertedValueOperand(),
2530                                     IV->getIndices(), TD, DT);
2531    break;
2532  }
2533  case Instruction::PHI:
2534    Result = SimplifyPHINode(cast<PHINode>(I), DT);
2535    break;
2536  }
2537
2538  /// If called on unreachable code, the above logic may report that the
2539  /// instruction simplified to itself.  Make life easier for users by
2540  /// detecting that case here, returning a safe value instead.
2541  return Result == I ? UndefValue::get(I->getType()) : Result;
2542}
2543
2544/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
2545/// delete the From instruction.  In addition to a basic RAUW, this does a
2546/// recursive simplification of the newly formed instructions.  This catches
2547/// things where one simplification exposes other opportunities.  This only
2548/// simplifies and deletes scalar operations, it does not change the CFG.
2549///
2550void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
2551                                     const TargetData *TD,
2552                                     const DominatorTree *DT) {
2553  assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
2554
2555  // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
2556  // we can know if it gets deleted out from under us or replaced in a
2557  // recursive simplification.
2558  WeakVH FromHandle(From);
2559  WeakVH ToHandle(To);
2560
2561  while (!From->use_empty()) {
2562    // Update the instruction to use the new value.
2563    Use &TheUse = From->use_begin().getUse();
2564    Instruction *User = cast<Instruction>(TheUse.getUser());
2565    TheUse = To;
2566
2567    // Check to see if the instruction can be folded due to the operand
2568    // replacement.  For example changing (or X, Y) into (or X, -1) can replace
2569    // the 'or' with -1.
2570    Value *SimplifiedVal;
2571    {
2572      // Sanity check to make sure 'User' doesn't dangle across
2573      // SimplifyInstruction.
2574      AssertingVH<> UserHandle(User);
2575
2576      SimplifiedVal = SimplifyInstruction(User, TD, DT);
2577      if (SimplifiedVal == 0) continue;
2578    }
2579
2580    // Recursively simplify this user to the new value.
2581    ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
2582    From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
2583    To = ToHandle;
2584
2585    assert(ToHandle && "To value deleted by recursive simplification?");
2586
2587    // If the recursive simplification ended up revisiting and deleting
2588    // 'From' then we're done.
2589    if (From == 0)
2590      return;
2591  }
2592
2593  // If 'From' has value handles referring to it, do a real RAUW to update them.
2594  From->replaceAllUsesWith(To);
2595
2596  From->eraseFromParent();
2597}
2598