InstructionSimplify.cpp revision ff739c1575df58f3926c2f3b6e00a6c45f773523
1//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
11// that do not require creating new instructions.  This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14// ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "instsimplify"
21#include "llvm/GlobalAlias.h"
22#include "llvm/Operator.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/InstructionSimplify.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Analysis/Dominators.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/Support/ConstantRange.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/PatternMatch.h"
32#include "llvm/Support/ValueHandle.h"
33#include "llvm/Target/TargetData.h"
34using namespace llvm;
35using namespace llvm::PatternMatch;
36
37enum { RecursionLimit = 3 };
38
39STATISTIC(NumExpand,  "Number of expansions");
40STATISTIC(NumFactor , "Number of factorizations");
41STATISTIC(NumReassoc, "Number of reassociations");
42
43struct Query {
44  const TargetData *TD;
45  const TargetLibraryInfo *TLI;
46  const DominatorTree *DT;
47
48  Query(const TargetData *td, const TargetLibraryInfo *tli,
49        const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {};
50};
51
52static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
53static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
54                            unsigned);
55static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
56                              unsigned);
57static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
58static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
59static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
60
61/// getFalse - For a boolean type, or a vector of boolean type, return false, or
62/// a vector with every element false, as appropriate for the type.
63static Constant *getFalse(Type *Ty) {
64  assert(Ty->getScalarType()->isIntegerTy(1) &&
65         "Expected i1 type or a vector of i1!");
66  return Constant::getNullValue(Ty);
67}
68
69/// getTrue - For a boolean type, or a vector of boolean type, return true, or
70/// a vector with every element true, as appropriate for the type.
71static Constant *getTrue(Type *Ty) {
72  assert(Ty->getScalarType()->isIntegerTy(1) &&
73         "Expected i1 type or a vector of i1!");
74  return Constant::getAllOnesValue(Ty);
75}
76
77/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
78static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
79                          Value *RHS) {
80  CmpInst *Cmp = dyn_cast<CmpInst>(V);
81  if (!Cmp)
82    return false;
83  CmpInst::Predicate CPred = Cmp->getPredicate();
84  Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
85  if (CPred == Pred && CLHS == LHS && CRHS == RHS)
86    return true;
87  return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
88    CRHS == LHS;
89}
90
91/// ValueDominatesPHI - Does the given value dominate the specified phi node?
92static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
93  Instruction *I = dyn_cast<Instruction>(V);
94  if (!I)
95    // Arguments and constants dominate all instructions.
96    return true;
97
98  // If we are processing instructions (and/or basic blocks) that have not been
99  // fully added to a function, the parent nodes may still be null. Simply
100  // return the conservative answer in these cases.
101  if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
102    return false;
103
104  // If we have a DominatorTree then do a precise test.
105  if (DT) {
106    if (!DT->isReachableFromEntry(P->getParent()))
107      return true;
108    if (!DT->isReachableFromEntry(I->getParent()))
109      return false;
110    return DT->dominates(I, P);
111  }
112
113  // Otherwise, if the instruction is in the entry block, and is not an invoke,
114  // then it obviously dominates all phi nodes.
115  if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
116      !isa<InvokeInst>(I))
117    return true;
118
119  return false;
120}
121
122/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
123/// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
124/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
125/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
126/// Returns the simplified value, or null if no simplification was performed.
127static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
128                          unsigned OpcToExpand, const Query &Q,
129                          unsigned MaxRecurse) {
130  Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
131  // Recursion is always used, so bail out at once if we already hit the limit.
132  if (!MaxRecurse--)
133    return 0;
134
135  // Check whether the expression has the form "(A op' B) op C".
136  if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
137    if (Op0->getOpcode() == OpcodeToExpand) {
138      // It does!  Try turning it into "(A op C) op' (B op C)".
139      Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
140      // Do "A op C" and "B op C" both simplify?
141      if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
142        if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
143          // They do! Return "L op' R" if it simplifies or is already available.
144          // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
145          if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
146                                     && L == B && R == A)) {
147            ++NumExpand;
148            return LHS;
149          }
150          // Otherwise return "L op' R" if it simplifies.
151          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
152            ++NumExpand;
153            return V;
154          }
155        }
156    }
157
158  // Check whether the expression has the form "A op (B op' C)".
159  if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
160    if (Op1->getOpcode() == OpcodeToExpand) {
161      // It does!  Try turning it into "(A op B) op' (A op C)".
162      Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
163      // Do "A op B" and "A op C" both simplify?
164      if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
165        if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
166          // They do! Return "L op' R" if it simplifies or is already available.
167          // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
168          if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
169                                     && L == C && R == B)) {
170            ++NumExpand;
171            return RHS;
172          }
173          // Otherwise return "L op' R" if it simplifies.
174          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
175            ++NumExpand;
176            return V;
177          }
178        }
179    }
180
181  return 0;
182}
183
184/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
185/// using the operation OpCodeToExtract.  For example, when Opcode is Add and
186/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
187/// Returns the simplified value, or null if no simplification was performed.
188static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
189                             unsigned OpcToExtract, const Query &Q,
190                             unsigned MaxRecurse) {
191  Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
192  // Recursion is always used, so bail out at once if we already hit the limit.
193  if (!MaxRecurse--)
194    return 0;
195
196  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
197  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
198
199  if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
200      !Op1 || Op1->getOpcode() != OpcodeToExtract)
201    return 0;
202
203  // The expression has the form "(A op' B) op (C op' D)".
204  Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
205  Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
206
207  // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
208  // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
209  // commutative case, "(A op' B) op (C op' A)"?
210  if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
211    Value *DD = A == C ? D : C;
212    // Form "A op' (B op DD)" if it simplifies completely.
213    // Does "B op DD" simplify?
214    if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) {
215      // It does!  Return "A op' V" if it simplifies or is already available.
216      // If V equals B then "A op' V" is just the LHS.  If V equals DD then
217      // "A op' V" is just the RHS.
218      if (V == B || V == DD) {
219        ++NumFactor;
220        return V == B ? LHS : RHS;
221      }
222      // Otherwise return "A op' V" if it simplifies.
223      if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) {
224        ++NumFactor;
225        return W;
226      }
227    }
228  }
229
230  // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
231  // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
232  // commutative case, "(A op' B) op (B op' D)"?
233  if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
234    Value *CC = B == D ? C : D;
235    // Form "(A op CC) op' B" if it simplifies completely..
236    // Does "A op CC" simplify?
237    if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) {
238      // It does!  Return "V op' B" if it simplifies or is already available.
239      // If V equals A then "V op' B" is just the LHS.  If V equals CC then
240      // "V op' B" is just the RHS.
241      if (V == A || V == CC) {
242        ++NumFactor;
243        return V == A ? LHS : RHS;
244      }
245      // Otherwise return "V op' B" if it simplifies.
246      if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) {
247        ++NumFactor;
248        return W;
249      }
250    }
251  }
252
253  return 0;
254}
255
256/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
257/// operations.  Returns the simpler value, or null if none was found.
258static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
259                                       const Query &Q, unsigned MaxRecurse) {
260  Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
261  assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
262
263  // Recursion is always used, so bail out at once if we already hit the limit.
264  if (!MaxRecurse--)
265    return 0;
266
267  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
268  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
269
270  // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
271  if (Op0 && Op0->getOpcode() == Opcode) {
272    Value *A = Op0->getOperand(0);
273    Value *B = Op0->getOperand(1);
274    Value *C = RHS;
275
276    // Does "B op C" simplify?
277    if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
278      // It does!  Return "A op V" if it simplifies or is already available.
279      // If V equals B then "A op V" is just the LHS.
280      if (V == B) return LHS;
281      // Otherwise return "A op V" if it simplifies.
282      if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
283        ++NumReassoc;
284        return W;
285      }
286    }
287  }
288
289  // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
290  if (Op1 && Op1->getOpcode() == Opcode) {
291    Value *A = LHS;
292    Value *B = Op1->getOperand(0);
293    Value *C = Op1->getOperand(1);
294
295    // Does "A op B" simplify?
296    if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
297      // It does!  Return "V op C" if it simplifies or is already available.
298      // If V equals B then "V op C" is just the RHS.
299      if (V == B) return RHS;
300      // Otherwise return "V op C" if it simplifies.
301      if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
302        ++NumReassoc;
303        return W;
304      }
305    }
306  }
307
308  // The remaining transforms require commutativity as well as associativity.
309  if (!Instruction::isCommutative(Opcode))
310    return 0;
311
312  // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
313  if (Op0 && Op0->getOpcode() == Opcode) {
314    Value *A = Op0->getOperand(0);
315    Value *B = Op0->getOperand(1);
316    Value *C = RHS;
317
318    // Does "C op A" simplify?
319    if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
320      // It does!  Return "V op B" if it simplifies or is already available.
321      // If V equals A then "V op B" is just the LHS.
322      if (V == A) return LHS;
323      // Otherwise return "V op B" if it simplifies.
324      if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
325        ++NumReassoc;
326        return W;
327      }
328    }
329  }
330
331  // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
332  if (Op1 && Op1->getOpcode() == Opcode) {
333    Value *A = LHS;
334    Value *B = Op1->getOperand(0);
335    Value *C = Op1->getOperand(1);
336
337    // Does "C op A" simplify?
338    if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
339      // It does!  Return "B op V" if it simplifies or is already available.
340      // If V equals C then "B op V" is just the RHS.
341      if (V == C) return RHS;
342      // Otherwise return "B op V" if it simplifies.
343      if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
344        ++NumReassoc;
345        return W;
346      }
347    }
348  }
349
350  return 0;
351}
352
353/// ThreadBinOpOverSelect - In the case of a binary operation with a select
354/// instruction as an operand, try to simplify the binop by seeing whether
355/// evaluating it on both branches of the select results in the same value.
356/// Returns the common value if so, otherwise returns null.
357static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
358                                    const Query &Q, unsigned MaxRecurse) {
359  // Recursion is always used, so bail out at once if we already hit the limit.
360  if (!MaxRecurse--)
361    return 0;
362
363  SelectInst *SI;
364  if (isa<SelectInst>(LHS)) {
365    SI = cast<SelectInst>(LHS);
366  } else {
367    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
368    SI = cast<SelectInst>(RHS);
369  }
370
371  // Evaluate the BinOp on the true and false branches of the select.
372  Value *TV;
373  Value *FV;
374  if (SI == LHS) {
375    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
376    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
377  } else {
378    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
379    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
380  }
381
382  // If they simplified to the same value, then return the common value.
383  // If they both failed to simplify then return null.
384  if (TV == FV)
385    return TV;
386
387  // If one branch simplified to undef, return the other one.
388  if (TV && isa<UndefValue>(TV))
389    return FV;
390  if (FV && isa<UndefValue>(FV))
391    return TV;
392
393  // If applying the operation did not change the true and false select values,
394  // then the result of the binop is the select itself.
395  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
396    return SI;
397
398  // If one branch simplified and the other did not, and the simplified
399  // value is equal to the unsimplified one, return the simplified value.
400  // For example, select (cond, X, X & Z) & Z -> X & Z.
401  if ((FV && !TV) || (TV && !FV)) {
402    // Check that the simplified value has the form "X op Y" where "op" is the
403    // same as the original operation.
404    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
405    if (Simplified && Simplified->getOpcode() == Opcode) {
406      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
407      // We already know that "op" is the same as for the simplified value.  See
408      // if the operands match too.  If so, return the simplified value.
409      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
410      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
411      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
412      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
413          Simplified->getOperand(1) == UnsimplifiedRHS)
414        return Simplified;
415      if (Simplified->isCommutative() &&
416          Simplified->getOperand(1) == UnsimplifiedLHS &&
417          Simplified->getOperand(0) == UnsimplifiedRHS)
418        return Simplified;
419    }
420  }
421
422  return 0;
423}
424
425/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
426/// try to simplify the comparison by seeing whether both branches of the select
427/// result in the same value.  Returns the common value if so, otherwise returns
428/// null.
429static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
430                                  Value *RHS, const Query &Q,
431                                  unsigned MaxRecurse) {
432  // Recursion is always used, so bail out at once if we already hit the limit.
433  if (!MaxRecurse--)
434    return 0;
435
436  // Make sure the select is on the LHS.
437  if (!isa<SelectInst>(LHS)) {
438    std::swap(LHS, RHS);
439    Pred = CmpInst::getSwappedPredicate(Pred);
440  }
441  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
442  SelectInst *SI = cast<SelectInst>(LHS);
443  Value *Cond = SI->getCondition();
444  Value *TV = SI->getTrueValue();
445  Value *FV = SI->getFalseValue();
446
447  // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
448  // Does "cmp TV, RHS" simplify?
449  Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
450  if (TCmp == Cond) {
451    // It not only simplified, it simplified to the select condition.  Replace
452    // it with 'true'.
453    TCmp = getTrue(Cond->getType());
454  } else if (!TCmp) {
455    // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
456    // condition then we can replace it with 'true'.  Otherwise give up.
457    if (!isSameCompare(Cond, Pred, TV, RHS))
458      return 0;
459    TCmp = getTrue(Cond->getType());
460  }
461
462  // Does "cmp FV, RHS" simplify?
463  Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
464  if (FCmp == Cond) {
465    // It not only simplified, it simplified to the select condition.  Replace
466    // it with 'false'.
467    FCmp = getFalse(Cond->getType());
468  } else if (!FCmp) {
469    // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
470    // condition then we can replace it with 'false'.  Otherwise give up.
471    if (!isSameCompare(Cond, Pred, FV, RHS))
472      return 0;
473    FCmp = getFalse(Cond->getType());
474  }
475
476  // If both sides simplified to the same value, then use it as the result of
477  // the original comparison.
478  if (TCmp == FCmp)
479    return TCmp;
480
481  // The remaining cases only make sense if the select condition has the same
482  // type as the result of the comparison, so bail out if this is not so.
483  if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
484    return 0;
485  // If the false value simplified to false, then the result of the compare
486  // is equal to "Cond && TCmp".  This also catches the case when the false
487  // value simplified to false and the true value to true, returning "Cond".
488  if (match(FCmp, m_Zero()))
489    if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
490      return V;
491  // If the true value simplified to true, then the result of the compare
492  // is equal to "Cond || FCmp".
493  if (match(TCmp, m_One()))
494    if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
495      return V;
496  // Finally, if the false value simplified to true and the true value to
497  // false, then the result of the compare is equal to "!Cond".
498  if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
499    if (Value *V =
500        SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
501                        Q, MaxRecurse))
502      return V;
503
504  return 0;
505}
506
507/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
508/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
509/// it on the incoming phi values yields the same result for every value.  If so
510/// returns the common value, otherwise returns null.
511static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
512                                 const Query &Q, unsigned MaxRecurse) {
513  // Recursion is always used, so bail out at once if we already hit the limit.
514  if (!MaxRecurse--)
515    return 0;
516
517  PHINode *PI;
518  if (isa<PHINode>(LHS)) {
519    PI = cast<PHINode>(LHS);
520    // Bail out if RHS and the phi may be mutually interdependent due to a loop.
521    if (!ValueDominatesPHI(RHS, PI, Q.DT))
522      return 0;
523  } else {
524    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
525    PI = cast<PHINode>(RHS);
526    // Bail out if LHS and the phi may be mutually interdependent due to a loop.
527    if (!ValueDominatesPHI(LHS, PI, Q.DT))
528      return 0;
529  }
530
531  // Evaluate the BinOp on the incoming phi values.
532  Value *CommonValue = 0;
533  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
534    Value *Incoming = PI->getIncomingValue(i);
535    // If the incoming value is the phi node itself, it can safely be skipped.
536    if (Incoming == PI) continue;
537    Value *V = PI == LHS ?
538      SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
539      SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
540    // If the operation failed to simplify, or simplified to a different value
541    // to previously, then give up.
542    if (!V || (CommonValue && V != CommonValue))
543      return 0;
544    CommonValue = V;
545  }
546
547  return CommonValue;
548}
549
550/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
551/// try to simplify the comparison by seeing whether comparing with all of the
552/// incoming phi values yields the same result every time.  If so returns the
553/// common result, otherwise returns null.
554static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
555                               const Query &Q, unsigned MaxRecurse) {
556  // Recursion is always used, so bail out at once if we already hit the limit.
557  if (!MaxRecurse--)
558    return 0;
559
560  // Make sure the phi is on the LHS.
561  if (!isa<PHINode>(LHS)) {
562    std::swap(LHS, RHS);
563    Pred = CmpInst::getSwappedPredicate(Pred);
564  }
565  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
566  PHINode *PI = cast<PHINode>(LHS);
567
568  // Bail out if RHS and the phi may be mutually interdependent due to a loop.
569  if (!ValueDominatesPHI(RHS, PI, Q.DT))
570    return 0;
571
572  // Evaluate the BinOp on the incoming phi values.
573  Value *CommonValue = 0;
574  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
575    Value *Incoming = PI->getIncomingValue(i);
576    // If the incoming value is the phi node itself, it can safely be skipped.
577    if (Incoming == PI) continue;
578    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
579    // If the operation failed to simplify, or simplified to a different value
580    // to previously, then give up.
581    if (!V || (CommonValue && V != CommonValue))
582      return 0;
583    CommonValue = V;
584  }
585
586  return CommonValue;
587}
588
589/// SimplifyAddInst - Given operands for an Add, see if we can
590/// fold the result.  If not, this returns null.
591static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
592                              const Query &Q, unsigned MaxRecurse) {
593  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
594    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
595      Constant *Ops[] = { CLHS, CRHS };
596      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
597                                      Q.TD, Q.TLI);
598    }
599
600    // Canonicalize the constant to the RHS.
601    std::swap(Op0, Op1);
602  }
603
604  // X + undef -> undef
605  if (match(Op1, m_Undef()))
606    return Op1;
607
608  // X + 0 -> X
609  if (match(Op1, m_Zero()))
610    return Op0;
611
612  // X + (Y - X) -> Y
613  // (Y - X) + X -> Y
614  // Eg: X + -X -> 0
615  Value *Y = 0;
616  if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
617      match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
618    return Y;
619
620  // X + ~X -> -1   since   ~X = -X-1
621  if (match(Op0, m_Not(m_Specific(Op1))) ||
622      match(Op1, m_Not(m_Specific(Op0))))
623    return Constant::getAllOnesValue(Op0->getType());
624
625  /// i1 add -> xor.
626  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
627    if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
628      return V;
629
630  // Try some generic simplifications for associative operations.
631  if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
632                                          MaxRecurse))
633    return V;
634
635  // Mul distributes over Add.  Try some generic simplifications based on this.
636  if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
637                                Q, MaxRecurse))
638    return V;
639
640  // Threading Add over selects and phi nodes is pointless, so don't bother.
641  // Threading over the select in "A + select(cond, B, C)" means evaluating
642  // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
643  // only if B and C are equal.  If B and C are equal then (since we assume
644  // that operands have already been simplified) "select(cond, B, C)" should
645  // have been simplified to the common value of B and C already.  Analysing
646  // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
647  // for threading over phi nodes.
648
649  return 0;
650}
651
652Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
653                             const TargetData *TD, const TargetLibraryInfo *TLI,
654                             const DominatorTree *DT) {
655  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
656                           RecursionLimit);
657}
658
659/// \brief Accumulate the constant integer offset a GEP represents.
660///
661/// Given a getelementptr instruction/constantexpr, accumulate the constant
662/// offset from the base pointer into the provided APInt 'Offset'. Returns true
663/// if the GEP has all-constant indices. Returns false if any non-constant
664/// index is encountered leaving the 'Offset' in an undefined state. The
665/// 'Offset' APInt must be the bitwidth of the target's pointer size.
666static bool accumulateGEPOffset(const TargetData &TD, GEPOperator *GEP,
667                                APInt &Offset) {
668  unsigned IntPtrWidth = TD.getPointerSizeInBits();
669  assert(IntPtrWidth == Offset.getBitWidth());
670
671  gep_type_iterator GTI = gep_type_begin(GEP);
672  for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); I != E;
673       ++I, ++GTI) {
674    ConstantInt *OpC = dyn_cast<ConstantInt>(*I);
675    if (!OpC) return false;
676    if (OpC->isZero()) continue;
677
678    // Handle a struct index, which adds its field offset to the pointer.
679    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
680      unsigned ElementIdx = OpC->getZExtValue();
681      const StructLayout *SL = TD.getStructLayout(STy);
682      Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
683      continue;
684    }
685
686    APInt TypeSize(IntPtrWidth, TD.getTypeAllocSize(GTI.getIndexedType()));
687    Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
688  }
689  return true;
690}
691
692/// \brief Compute the base pointer and cumulative constant offsets for V.
693///
694/// This strips all constant offsets off of V, leaving it the base pointer, and
695/// accumulates the total constant offset applied in the returned constant. It
696/// returns 0 if V is not a pointer, and returns the constant '0' if there are
697/// no constant offsets applied.
698static Constant *stripAndComputeConstantOffsets(const TargetData &TD,
699                                                Value *&V) {
700  if (!V->getType()->isPointerTy())
701    return 0;
702
703  unsigned IntPtrWidth = TD.getPointerSizeInBits();
704  APInt Offset = APInt::getNullValue(IntPtrWidth);
705
706  // Even though we don't look through PHI nodes, we could be called on an
707  // instruction in an unreachable block, which may be on a cycle.
708  SmallPtrSet<Value *, 4> Visited;
709  Visited.insert(V);
710  do {
711    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
712      if (!accumulateGEPOffset(TD, GEP, Offset))
713        break;
714      V = GEP->getPointerOperand();
715    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
716      V = cast<Operator>(V)->getOperand(0);
717    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
718      if (GA->mayBeOverridden())
719        break;
720      V = GA->getAliasee();
721    } else {
722      break;
723    }
724    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
725  } while (Visited.insert(V));
726
727  Type *IntPtrTy = TD.getIntPtrType(V->getContext());
728  return ConstantInt::get(IntPtrTy, Offset);
729}
730
731/// \brief Compute the constant difference between two pointer values.
732/// If the difference is not a constant, returns zero.
733static Constant *computePointerDifference(const TargetData &TD,
734                                          Value *LHS, Value *RHS) {
735  Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
736  if (!LHSOffset)
737    return 0;
738  Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
739  if (!RHSOffset)
740    return 0;
741
742  // If LHS and RHS are not related via constant offsets to the same base
743  // value, there is nothing we can do here.
744  if (LHS != RHS)
745    return 0;
746
747  // Otherwise, the difference of LHS - RHS can be computed as:
748  //    LHS - RHS
749  //  = (LHSOffset + Base) - (RHSOffset + Base)
750  //  = LHSOffset - RHSOffset
751  return ConstantExpr::getSub(LHSOffset, RHSOffset);
752}
753
754/// SimplifySubInst - Given operands for a Sub, see if we can
755/// fold the result.  If not, this returns null.
756static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
757                              const Query &Q, unsigned MaxRecurse) {
758  if (Constant *CLHS = dyn_cast<Constant>(Op0))
759    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
760      Constant *Ops[] = { CLHS, CRHS };
761      return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
762                                      Ops, Q.TD, Q.TLI);
763    }
764
765  // X - undef -> undef
766  // undef - X -> undef
767  if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
768    return UndefValue::get(Op0->getType());
769
770  // X - 0 -> X
771  if (match(Op1, m_Zero()))
772    return Op0;
773
774  // X - X -> 0
775  if (Op0 == Op1)
776    return Constant::getNullValue(Op0->getType());
777
778  // (X*2) - X -> X
779  // (X<<1) - X -> X
780  Value *X = 0;
781  if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
782      match(Op0, m_Shl(m_Specific(Op1), m_One())))
783    return Op1;
784
785  // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
786  // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
787  Value *Y = 0, *Z = Op1;
788  if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
789    // See if "V === Y - Z" simplifies.
790    if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
791      // It does!  Now see if "X + V" simplifies.
792      if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
793        // It does, we successfully reassociated!
794        ++NumReassoc;
795        return W;
796      }
797    // See if "V === X - Z" simplifies.
798    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
799      // It does!  Now see if "Y + V" simplifies.
800      if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
801        // It does, we successfully reassociated!
802        ++NumReassoc;
803        return W;
804      }
805  }
806
807  // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
808  // For example, X - (X + 1) -> -1
809  X = Op0;
810  if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
811    // See if "V === X - Y" simplifies.
812    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
813      // It does!  Now see if "V - Z" simplifies.
814      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
815        // It does, we successfully reassociated!
816        ++NumReassoc;
817        return W;
818      }
819    // See if "V === X - Z" simplifies.
820    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
821      // It does!  Now see if "V - Y" simplifies.
822      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
823        // It does, we successfully reassociated!
824        ++NumReassoc;
825        return W;
826      }
827  }
828
829  // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
830  // For example, X - (X - Y) -> Y.
831  Z = Op0;
832  if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
833    // See if "V === Z - X" simplifies.
834    if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
835      // It does!  Now see if "V + Y" simplifies.
836      if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
837        // It does, we successfully reassociated!
838        ++NumReassoc;
839        return W;
840      }
841
842  // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
843  if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
844      match(Op1, m_Trunc(m_Value(Y))))
845    if (X->getType() == Y->getType())
846      // See if "V === X - Y" simplifies.
847      if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
848        // It does!  Now see if "trunc V" simplifies.
849        if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
850          // It does, return the simplified "trunc V".
851          return W;
852
853  // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
854  if (Q.TD && match(Op0, m_PtrToInt(m_Value(X))) &&
855      match(Op1, m_PtrToInt(m_Value(Y))))
856    if (Constant *Result = computePointerDifference(*Q.TD, X, Y))
857      return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
858
859  // Mul distributes over Sub.  Try some generic simplifications based on this.
860  if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
861                                Q, MaxRecurse))
862    return V;
863
864  // i1 sub -> xor.
865  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
866    if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
867      return V;
868
869  // Threading Sub over selects and phi nodes is pointless, so don't bother.
870  // Threading over the select in "A - select(cond, B, C)" means evaluating
871  // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
872  // only if B and C are equal.  If B and C are equal then (since we assume
873  // that operands have already been simplified) "select(cond, B, C)" should
874  // have been simplified to the common value of B and C already.  Analysing
875  // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
876  // for threading over phi nodes.
877
878  return 0;
879}
880
881Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
882                             const TargetData *TD, const TargetLibraryInfo *TLI,
883                             const DominatorTree *DT) {
884  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
885                           RecursionLimit);
886}
887
888/// SimplifyMulInst - Given operands for a Mul, see if we can
889/// fold the result.  If not, this returns null.
890static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
891                              unsigned MaxRecurse) {
892  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
893    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
894      Constant *Ops[] = { CLHS, CRHS };
895      return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
896                                      Ops, Q.TD, Q.TLI);
897    }
898
899    // Canonicalize the constant to the RHS.
900    std::swap(Op0, Op1);
901  }
902
903  // X * undef -> 0
904  if (match(Op1, m_Undef()))
905    return Constant::getNullValue(Op0->getType());
906
907  // X * 0 -> 0
908  if (match(Op1, m_Zero()))
909    return Op1;
910
911  // X * 1 -> X
912  if (match(Op1, m_One()))
913    return Op0;
914
915  // (X / Y) * Y -> X if the division is exact.
916  Value *X = 0;
917  if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
918      match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
919    return X;
920
921  // i1 mul -> and.
922  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
923    if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
924      return V;
925
926  // Try some generic simplifications for associative operations.
927  if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
928                                          MaxRecurse))
929    return V;
930
931  // Mul distributes over Add.  Try some generic simplifications based on this.
932  if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
933                             Q, MaxRecurse))
934    return V;
935
936  // If the operation is with the result of a select instruction, check whether
937  // operating on either branch of the select always yields the same value.
938  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
939    if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
940                                         MaxRecurse))
941      return V;
942
943  // If the operation is with the result of a phi instruction, check whether
944  // operating on all incoming values of the phi always yields the same value.
945  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
946    if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
947                                      MaxRecurse))
948      return V;
949
950  return 0;
951}
952
953Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
954                             const TargetLibraryInfo *TLI,
955                             const DominatorTree *DT) {
956  return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
957}
958
959/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
960/// fold the result.  If not, this returns null.
961static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
962                          const Query &Q, unsigned MaxRecurse) {
963  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
964    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
965      Constant *Ops[] = { C0, C1 };
966      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
967    }
968  }
969
970  bool isSigned = Opcode == Instruction::SDiv;
971
972  // X / undef -> undef
973  if (match(Op1, m_Undef()))
974    return Op1;
975
976  // undef / X -> 0
977  if (match(Op0, m_Undef()))
978    return Constant::getNullValue(Op0->getType());
979
980  // 0 / X -> 0, we don't need to preserve faults!
981  if (match(Op0, m_Zero()))
982    return Op0;
983
984  // X / 1 -> X
985  if (match(Op1, m_One()))
986    return Op0;
987
988  if (Op0->getType()->isIntegerTy(1))
989    // It can't be division by zero, hence it must be division by one.
990    return Op0;
991
992  // X / X -> 1
993  if (Op0 == Op1)
994    return ConstantInt::get(Op0->getType(), 1);
995
996  // (X * Y) / Y -> X if the multiplication does not overflow.
997  Value *X = 0, *Y = 0;
998  if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
999    if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1000    OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1001    // If the Mul knows it does not overflow, then we are good to go.
1002    if ((isSigned && Mul->hasNoSignedWrap()) ||
1003        (!isSigned && Mul->hasNoUnsignedWrap()))
1004      return X;
1005    // If X has the form X = A / Y then X * Y cannot overflow.
1006    if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1007      if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1008        return X;
1009  }
1010
1011  // (X rem Y) / Y -> 0
1012  if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1013      (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1014    return Constant::getNullValue(Op0->getType());
1015
1016  // If the operation is with the result of a select instruction, check whether
1017  // operating on either branch of the select always yields the same value.
1018  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1019    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1020      return V;
1021
1022  // If the operation is with the result of a phi instruction, check whether
1023  // operating on all incoming values of the phi always yields the same value.
1024  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1025    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1026      return V;
1027
1028  return 0;
1029}
1030
1031/// SimplifySDivInst - Given operands for an SDiv, see if we can
1032/// fold the result.  If not, this returns null.
1033static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1034                               unsigned MaxRecurse) {
1035  if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1036    return V;
1037
1038  return 0;
1039}
1040
1041Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
1042                              const TargetLibraryInfo *TLI,
1043                              const DominatorTree *DT) {
1044  return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1045}
1046
1047/// SimplifyUDivInst - Given operands for a UDiv, see if we can
1048/// fold the result.  If not, this returns null.
1049static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1050                               unsigned MaxRecurse) {
1051  if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1052    return V;
1053
1054  return 0;
1055}
1056
1057Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
1058                              const TargetLibraryInfo *TLI,
1059                              const DominatorTree *DT) {
1060  return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1061}
1062
1063static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
1064                               unsigned) {
1065  // undef / X -> undef    (the undef could be a snan).
1066  if (match(Op0, m_Undef()))
1067    return Op0;
1068
1069  // X / undef -> undef
1070  if (match(Op1, m_Undef()))
1071    return Op1;
1072
1073  return 0;
1074}
1075
1076Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
1077                              const TargetLibraryInfo *TLI,
1078                              const DominatorTree *DT) {
1079  return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1080}
1081
1082/// SimplifyRem - Given operands for an SRem or URem, see if we can
1083/// fold the result.  If not, this returns null.
1084static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1085                          const Query &Q, unsigned MaxRecurse) {
1086  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1087    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1088      Constant *Ops[] = { C0, C1 };
1089      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1090    }
1091  }
1092
1093  // X % undef -> undef
1094  if (match(Op1, m_Undef()))
1095    return Op1;
1096
1097  // undef % X -> 0
1098  if (match(Op0, m_Undef()))
1099    return Constant::getNullValue(Op0->getType());
1100
1101  // 0 % X -> 0, we don't need to preserve faults!
1102  if (match(Op0, m_Zero()))
1103    return Op0;
1104
1105  // X % 0 -> undef, we don't need to preserve faults!
1106  if (match(Op1, m_Zero()))
1107    return UndefValue::get(Op0->getType());
1108
1109  // X % 1 -> 0
1110  if (match(Op1, m_One()))
1111    return Constant::getNullValue(Op0->getType());
1112
1113  if (Op0->getType()->isIntegerTy(1))
1114    // It can't be remainder by zero, hence it must be remainder by one.
1115    return Constant::getNullValue(Op0->getType());
1116
1117  // X % X -> 0
1118  if (Op0 == Op1)
1119    return Constant::getNullValue(Op0->getType());
1120
1121  // If the operation is with the result of a select instruction, check whether
1122  // operating on either branch of the select always yields the same value.
1123  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1124    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1125      return V;
1126
1127  // If the operation is with the result of a phi instruction, check whether
1128  // operating on all incoming values of the phi always yields the same value.
1129  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1130    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1131      return V;
1132
1133  return 0;
1134}
1135
1136/// SimplifySRemInst - Given operands for an SRem, see if we can
1137/// fold the result.  If not, this returns null.
1138static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1139                               unsigned MaxRecurse) {
1140  if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1141    return V;
1142
1143  return 0;
1144}
1145
1146Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1147                              const TargetLibraryInfo *TLI,
1148                              const DominatorTree *DT) {
1149  return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1150}
1151
1152/// SimplifyURemInst - Given operands for a URem, see if we can
1153/// fold the result.  If not, this returns null.
1154static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1155                               unsigned MaxRecurse) {
1156  if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1157    return V;
1158
1159  return 0;
1160}
1161
1162Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
1163                              const TargetLibraryInfo *TLI,
1164                              const DominatorTree *DT) {
1165  return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1166}
1167
1168static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
1169                               unsigned) {
1170  // undef % X -> undef    (the undef could be a snan).
1171  if (match(Op0, m_Undef()))
1172    return Op0;
1173
1174  // X % undef -> undef
1175  if (match(Op1, m_Undef()))
1176    return Op1;
1177
1178  return 0;
1179}
1180
1181Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1182                              const TargetLibraryInfo *TLI,
1183                              const DominatorTree *DT) {
1184  return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1185}
1186
1187/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1188/// fold the result.  If not, this returns null.
1189static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1190                            const Query &Q, unsigned MaxRecurse) {
1191  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1192    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1193      Constant *Ops[] = { C0, C1 };
1194      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1195    }
1196  }
1197
1198  // 0 shift by X -> 0
1199  if (match(Op0, m_Zero()))
1200    return Op0;
1201
1202  // X shift by 0 -> X
1203  if (match(Op1, m_Zero()))
1204    return Op0;
1205
1206  // X shift by undef -> undef because it may shift by the bitwidth.
1207  if (match(Op1, m_Undef()))
1208    return Op1;
1209
1210  // Shifting by the bitwidth or more is undefined.
1211  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1212    if (CI->getValue().getLimitedValue() >=
1213        Op0->getType()->getScalarSizeInBits())
1214      return UndefValue::get(Op0->getType());
1215
1216  // If the operation is with the result of a select instruction, check whether
1217  // operating on either branch of the select always yields the same value.
1218  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1219    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1220      return V;
1221
1222  // If the operation is with the result of a phi instruction, check whether
1223  // operating on all incoming values of the phi always yields the same value.
1224  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1225    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1226      return V;
1227
1228  return 0;
1229}
1230
1231/// SimplifyShlInst - Given operands for an Shl, see if we can
1232/// fold the result.  If not, this returns null.
1233static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1234                              const Query &Q, unsigned MaxRecurse) {
1235  if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1236    return V;
1237
1238  // undef << X -> 0
1239  if (match(Op0, m_Undef()))
1240    return Constant::getNullValue(Op0->getType());
1241
1242  // (X >> A) << A -> X
1243  Value *X;
1244  if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1245    return X;
1246  return 0;
1247}
1248
1249Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1250                             const TargetData *TD, const TargetLibraryInfo *TLI,
1251                             const DominatorTree *DT) {
1252  return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
1253                           RecursionLimit);
1254}
1255
1256/// SimplifyLShrInst - Given operands for an LShr, see if we can
1257/// fold the result.  If not, this returns null.
1258static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1259                               const Query &Q, unsigned MaxRecurse) {
1260  if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
1261    return V;
1262
1263  // undef >>l X -> 0
1264  if (match(Op0, m_Undef()))
1265    return Constant::getNullValue(Op0->getType());
1266
1267  // (X << A) >> A -> X
1268  Value *X;
1269  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1270      cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1271    return X;
1272
1273  return 0;
1274}
1275
1276Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1277                              const TargetData *TD,
1278                              const TargetLibraryInfo *TLI,
1279                              const DominatorTree *DT) {
1280  return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1281                            RecursionLimit);
1282}
1283
1284/// SimplifyAShrInst - Given operands for an AShr, see if we can
1285/// fold the result.  If not, this returns null.
1286static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1287                               const Query &Q, unsigned MaxRecurse) {
1288  if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
1289    return V;
1290
1291  // all ones >>a X -> all ones
1292  if (match(Op0, m_AllOnes()))
1293    return Op0;
1294
1295  // undef >>a X -> all ones
1296  if (match(Op0, m_Undef()))
1297    return Constant::getAllOnesValue(Op0->getType());
1298
1299  // (X << A) >> A -> X
1300  Value *X;
1301  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1302      cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1303    return X;
1304
1305  return 0;
1306}
1307
1308Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1309                              const TargetData *TD,
1310                              const TargetLibraryInfo *TLI,
1311                              const DominatorTree *DT) {
1312  return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1313                            RecursionLimit);
1314}
1315
1316/// SimplifyAndInst - Given operands for an And, see if we can
1317/// fold the result.  If not, this returns null.
1318static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1319                              unsigned MaxRecurse) {
1320  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1321    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1322      Constant *Ops[] = { CLHS, CRHS };
1323      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1324                                      Ops, Q.TD, Q.TLI);
1325    }
1326
1327    // Canonicalize the constant to the RHS.
1328    std::swap(Op0, Op1);
1329  }
1330
1331  // X & undef -> 0
1332  if (match(Op1, m_Undef()))
1333    return Constant::getNullValue(Op0->getType());
1334
1335  // X & X = X
1336  if (Op0 == Op1)
1337    return Op0;
1338
1339  // X & 0 = 0
1340  if (match(Op1, m_Zero()))
1341    return Op1;
1342
1343  // X & -1 = X
1344  if (match(Op1, m_AllOnes()))
1345    return Op0;
1346
1347  // A & ~A  =  ~A & A  =  0
1348  if (match(Op0, m_Not(m_Specific(Op1))) ||
1349      match(Op1, m_Not(m_Specific(Op0))))
1350    return Constant::getNullValue(Op0->getType());
1351
1352  // (A | ?) & A = A
1353  Value *A = 0, *B = 0;
1354  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1355      (A == Op1 || B == Op1))
1356    return Op1;
1357
1358  // A & (A | ?) = A
1359  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1360      (A == Op0 || B == Op0))
1361    return Op0;
1362
1363  // A & (-A) = A if A is a power of two or zero.
1364  if (match(Op0, m_Neg(m_Specific(Op1))) ||
1365      match(Op1, m_Neg(m_Specific(Op0)))) {
1366    if (isPowerOfTwo(Op0, Q.TD, /*OrZero*/true))
1367      return Op0;
1368    if (isPowerOfTwo(Op1, Q.TD, /*OrZero*/true))
1369      return Op1;
1370  }
1371
1372  // Try some generic simplifications for associative operations.
1373  if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1374                                          MaxRecurse))
1375    return V;
1376
1377  // And distributes over Or.  Try some generic simplifications based on this.
1378  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1379                             Q, MaxRecurse))
1380    return V;
1381
1382  // And distributes over Xor.  Try some generic simplifications based on this.
1383  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1384                             Q, MaxRecurse))
1385    return V;
1386
1387  // Or distributes over And.  Try some generic simplifications based on this.
1388  if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1389                                Q, MaxRecurse))
1390    return V;
1391
1392  // If the operation is with the result of a select instruction, check whether
1393  // operating on either branch of the select always yields the same value.
1394  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1395    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1396                                         MaxRecurse))
1397      return V;
1398
1399  // If the operation is with the result of a phi instruction, check whether
1400  // operating on all incoming values of the phi always yields the same value.
1401  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1402    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1403                                      MaxRecurse))
1404      return V;
1405
1406  return 0;
1407}
1408
1409Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1410                             const TargetLibraryInfo *TLI,
1411                             const DominatorTree *DT) {
1412  return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1413}
1414
1415/// SimplifyOrInst - Given operands for an Or, see if we can
1416/// fold the result.  If not, this returns null.
1417static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1418                             unsigned MaxRecurse) {
1419  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1420    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1421      Constant *Ops[] = { CLHS, CRHS };
1422      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1423                                      Ops, Q.TD, Q.TLI);
1424    }
1425
1426    // Canonicalize the constant to the RHS.
1427    std::swap(Op0, Op1);
1428  }
1429
1430  // X | undef -> -1
1431  if (match(Op1, m_Undef()))
1432    return Constant::getAllOnesValue(Op0->getType());
1433
1434  // X | X = X
1435  if (Op0 == Op1)
1436    return Op0;
1437
1438  // X | 0 = X
1439  if (match(Op1, m_Zero()))
1440    return Op0;
1441
1442  // X | -1 = -1
1443  if (match(Op1, m_AllOnes()))
1444    return Op1;
1445
1446  // A | ~A  =  ~A | A  =  -1
1447  if (match(Op0, m_Not(m_Specific(Op1))) ||
1448      match(Op1, m_Not(m_Specific(Op0))))
1449    return Constant::getAllOnesValue(Op0->getType());
1450
1451  // (A & ?) | A = A
1452  Value *A = 0, *B = 0;
1453  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1454      (A == Op1 || B == Op1))
1455    return Op1;
1456
1457  // A | (A & ?) = A
1458  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1459      (A == Op0 || B == Op0))
1460    return Op0;
1461
1462  // ~(A & ?) | A = -1
1463  if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1464      (A == Op1 || B == Op1))
1465    return Constant::getAllOnesValue(Op1->getType());
1466
1467  // A | ~(A & ?) = -1
1468  if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1469      (A == Op0 || B == Op0))
1470    return Constant::getAllOnesValue(Op0->getType());
1471
1472  // Try some generic simplifications for associative operations.
1473  if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1474                                          MaxRecurse))
1475    return V;
1476
1477  // Or distributes over And.  Try some generic simplifications based on this.
1478  if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1479                             MaxRecurse))
1480    return V;
1481
1482  // And distributes over Or.  Try some generic simplifications based on this.
1483  if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1484                                Q, MaxRecurse))
1485    return V;
1486
1487  // If the operation is with the result of a select instruction, check whether
1488  // operating on either branch of the select always yields the same value.
1489  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1490    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1491                                         MaxRecurse))
1492      return V;
1493
1494  // If the operation is with the result of a phi instruction, check whether
1495  // operating on all incoming values of the phi always yields the same value.
1496  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1497    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1498      return V;
1499
1500  return 0;
1501}
1502
1503Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1504                            const TargetLibraryInfo *TLI,
1505                            const DominatorTree *DT) {
1506  return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1507}
1508
1509/// SimplifyXorInst - Given operands for a Xor, see if we can
1510/// fold the result.  If not, this returns null.
1511static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1512                              unsigned MaxRecurse) {
1513  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1514    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1515      Constant *Ops[] = { CLHS, CRHS };
1516      return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1517                                      Ops, Q.TD, Q.TLI);
1518    }
1519
1520    // Canonicalize the constant to the RHS.
1521    std::swap(Op0, Op1);
1522  }
1523
1524  // A ^ undef -> undef
1525  if (match(Op1, m_Undef()))
1526    return Op1;
1527
1528  // A ^ 0 = A
1529  if (match(Op1, m_Zero()))
1530    return Op0;
1531
1532  // A ^ A = 0
1533  if (Op0 == Op1)
1534    return Constant::getNullValue(Op0->getType());
1535
1536  // A ^ ~A  =  ~A ^ A  =  -1
1537  if (match(Op0, m_Not(m_Specific(Op1))) ||
1538      match(Op1, m_Not(m_Specific(Op0))))
1539    return Constant::getAllOnesValue(Op0->getType());
1540
1541  // Try some generic simplifications for associative operations.
1542  if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1543                                          MaxRecurse))
1544    return V;
1545
1546  // And distributes over Xor.  Try some generic simplifications based on this.
1547  if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1548                                Q, MaxRecurse))
1549    return V;
1550
1551  // Threading Xor over selects and phi nodes is pointless, so don't bother.
1552  // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1553  // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1554  // only if B and C are equal.  If B and C are equal then (since we assume
1555  // that operands have already been simplified) "select(cond, B, C)" should
1556  // have been simplified to the common value of B and C already.  Analysing
1557  // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1558  // for threading over phi nodes.
1559
1560  return 0;
1561}
1562
1563Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1564                             const TargetLibraryInfo *TLI,
1565                             const DominatorTree *DT) {
1566  return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1567}
1568
1569static Type *GetCompareTy(Value *Op) {
1570  return CmpInst::makeCmpResultType(Op->getType());
1571}
1572
1573/// ExtractEquivalentCondition - Rummage around inside V looking for something
1574/// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
1575/// otherwise return null.  Helper function for analyzing max/min idioms.
1576static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1577                                         Value *LHS, Value *RHS) {
1578  SelectInst *SI = dyn_cast<SelectInst>(V);
1579  if (!SI)
1580    return 0;
1581  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1582  if (!Cmp)
1583    return 0;
1584  Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1585  if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1586    return Cmp;
1587  if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1588      LHS == CmpRHS && RHS == CmpLHS)
1589    return Cmp;
1590  return 0;
1591}
1592
1593
1594/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1595/// fold the result.  If not, this returns null.
1596static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1597                               const Query &Q, unsigned MaxRecurse) {
1598  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1599  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1600
1601  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1602    if (Constant *CRHS = dyn_cast<Constant>(RHS))
1603      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
1604
1605    // If we have a constant, make sure it is on the RHS.
1606    std::swap(LHS, RHS);
1607    Pred = CmpInst::getSwappedPredicate(Pred);
1608  }
1609
1610  Type *ITy = GetCompareTy(LHS); // The return type.
1611  Type *OpTy = LHS->getType();   // The operand type.
1612
1613  // icmp X, X -> true/false
1614  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
1615  // because X could be 0.
1616  if (LHS == RHS || isa<UndefValue>(RHS))
1617    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1618
1619  // Special case logic when the operands have i1 type.
1620  if (OpTy->getScalarType()->isIntegerTy(1)) {
1621    switch (Pred) {
1622    default: break;
1623    case ICmpInst::ICMP_EQ:
1624      // X == 1 -> X
1625      if (match(RHS, m_One()))
1626        return LHS;
1627      break;
1628    case ICmpInst::ICMP_NE:
1629      // X != 0 -> X
1630      if (match(RHS, m_Zero()))
1631        return LHS;
1632      break;
1633    case ICmpInst::ICMP_UGT:
1634      // X >u 0 -> X
1635      if (match(RHS, m_Zero()))
1636        return LHS;
1637      break;
1638    case ICmpInst::ICMP_UGE:
1639      // X >=u 1 -> X
1640      if (match(RHS, m_One()))
1641        return LHS;
1642      break;
1643    case ICmpInst::ICMP_SLT:
1644      // X <s 0 -> X
1645      if (match(RHS, m_Zero()))
1646        return LHS;
1647      break;
1648    case ICmpInst::ICMP_SLE:
1649      // X <=s -1 -> X
1650      if (match(RHS, m_One()))
1651        return LHS;
1652      break;
1653    }
1654  }
1655
1656  // icmp <object*>, <object*/null> - Different identified objects have
1657  // different addresses (unless null), and what's more the address of an
1658  // identified local is never equal to another argument (again, barring null).
1659  // Note that generalizing to the case where LHS is a global variable address
1660  // or null is pointless, since if both LHS and RHS are constants then we
1661  // already constant folded the compare, and if only one of them is then we
1662  // moved it to RHS already.
1663  Value *LHSPtr = LHS->stripPointerCasts();
1664  Value *RHSPtr = RHS->stripPointerCasts();
1665  if (LHSPtr == RHSPtr)
1666    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1667
1668  // Be more aggressive about stripping pointer adjustments when checking a
1669  // comparison of an alloca address to another object.  We can rip off all
1670  // inbounds GEP operations, even if they are variable.
1671  LHSPtr = LHSPtr->stripInBoundsOffsets();
1672  if (llvm::isIdentifiedObject(LHSPtr)) {
1673    RHSPtr = RHSPtr->stripInBoundsOffsets();
1674    if (llvm::isKnownNonNull(LHSPtr) || llvm::isKnownNonNull(RHSPtr)) {
1675      // If both sides are different identified objects, they aren't equal
1676      // unless they're null.
1677      if (LHSPtr != RHSPtr && llvm::isIdentifiedObject(RHSPtr) &&
1678          Pred == CmpInst::ICMP_EQ)
1679        return ConstantInt::get(ITy, false);
1680
1681      // A local identified object (alloca or noalias call) can't equal any
1682      // incoming argument, unless they're both null.
1683      if (isa<Instruction>(LHSPtr) && isa<Argument>(RHSPtr) &&
1684          Pred == CmpInst::ICMP_EQ)
1685        return ConstantInt::get(ITy, false);
1686    }
1687
1688    // Assume that the constant null is on the right.
1689    if (llvm::isKnownNonNull(LHSPtr) && isa<ConstantPointerNull>(RHSPtr)) {
1690      if (Pred == CmpInst::ICMP_EQ)
1691        return ConstantInt::get(ITy, false);
1692      else if (Pred == CmpInst::ICMP_NE)
1693        return ConstantInt::get(ITy, true);
1694    }
1695  } else if (isa<Argument>(LHSPtr)) {
1696    RHSPtr = RHSPtr->stripInBoundsOffsets();
1697    // An alloca can't be equal to an argument.
1698    if (isa<AllocaInst>(RHSPtr)) {
1699      if (Pred == CmpInst::ICMP_EQ)
1700        return ConstantInt::get(ITy, false);
1701      else if (Pred == CmpInst::ICMP_NE)
1702        return ConstantInt::get(ITy, true);
1703    }
1704  }
1705
1706  // If we are comparing with zero then try hard since this is a common case.
1707  if (match(RHS, m_Zero())) {
1708    bool LHSKnownNonNegative, LHSKnownNegative;
1709    switch (Pred) {
1710    default: llvm_unreachable("Unknown ICmp predicate!");
1711    case ICmpInst::ICMP_ULT:
1712      return getFalse(ITy);
1713    case ICmpInst::ICMP_UGE:
1714      return getTrue(ITy);
1715    case ICmpInst::ICMP_EQ:
1716    case ICmpInst::ICMP_ULE:
1717      if (isKnownNonZero(LHS, Q.TD))
1718        return getFalse(ITy);
1719      break;
1720    case ICmpInst::ICMP_NE:
1721    case ICmpInst::ICMP_UGT:
1722      if (isKnownNonZero(LHS, Q.TD))
1723        return getTrue(ITy);
1724      break;
1725    case ICmpInst::ICMP_SLT:
1726      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1727      if (LHSKnownNegative)
1728        return getTrue(ITy);
1729      if (LHSKnownNonNegative)
1730        return getFalse(ITy);
1731      break;
1732    case ICmpInst::ICMP_SLE:
1733      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1734      if (LHSKnownNegative)
1735        return getTrue(ITy);
1736      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
1737        return getFalse(ITy);
1738      break;
1739    case ICmpInst::ICMP_SGE:
1740      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1741      if (LHSKnownNegative)
1742        return getFalse(ITy);
1743      if (LHSKnownNonNegative)
1744        return getTrue(ITy);
1745      break;
1746    case ICmpInst::ICMP_SGT:
1747      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1748      if (LHSKnownNegative)
1749        return getFalse(ITy);
1750      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
1751        return getTrue(ITy);
1752      break;
1753    }
1754  }
1755
1756  // See if we are doing a comparison with a constant integer.
1757  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1758    // Rule out tautological comparisons (eg., ult 0 or uge 0).
1759    ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1760    if (RHS_CR.isEmptySet())
1761      return ConstantInt::getFalse(CI->getContext());
1762    if (RHS_CR.isFullSet())
1763      return ConstantInt::getTrue(CI->getContext());
1764
1765    // Many binary operators with constant RHS have easy to compute constant
1766    // range.  Use them to check whether the comparison is a tautology.
1767    uint32_t Width = CI->getBitWidth();
1768    APInt Lower = APInt(Width, 0);
1769    APInt Upper = APInt(Width, 0);
1770    ConstantInt *CI2;
1771    if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1772      // 'urem x, CI2' produces [0, CI2).
1773      Upper = CI2->getValue();
1774    } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1775      // 'srem x, CI2' produces (-|CI2|, |CI2|).
1776      Upper = CI2->getValue().abs();
1777      Lower = (-Upper) + 1;
1778    } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1779      // 'udiv CI2, x' produces [0, CI2].
1780      Upper = CI2->getValue() + 1;
1781    } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1782      // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1783      APInt NegOne = APInt::getAllOnesValue(Width);
1784      if (!CI2->isZero())
1785        Upper = NegOne.udiv(CI2->getValue()) + 1;
1786    } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1787      // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1788      APInt IntMin = APInt::getSignedMinValue(Width);
1789      APInt IntMax = APInt::getSignedMaxValue(Width);
1790      APInt Val = CI2->getValue().abs();
1791      if (!Val.isMinValue()) {
1792        Lower = IntMin.sdiv(Val);
1793        Upper = IntMax.sdiv(Val) + 1;
1794      }
1795    } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1796      // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1797      APInt NegOne = APInt::getAllOnesValue(Width);
1798      if (CI2->getValue().ult(Width))
1799        Upper = NegOne.lshr(CI2->getValue()) + 1;
1800    } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1801      // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1802      APInt IntMin = APInt::getSignedMinValue(Width);
1803      APInt IntMax = APInt::getSignedMaxValue(Width);
1804      if (CI2->getValue().ult(Width)) {
1805        Lower = IntMin.ashr(CI2->getValue());
1806        Upper = IntMax.ashr(CI2->getValue()) + 1;
1807      }
1808    } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
1809      // 'or x, CI2' produces [CI2, UINT_MAX].
1810      Lower = CI2->getValue();
1811    } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
1812      // 'and x, CI2' produces [0, CI2].
1813      Upper = CI2->getValue() + 1;
1814    }
1815    if (Lower != Upper) {
1816      ConstantRange LHS_CR = ConstantRange(Lower, Upper);
1817      if (RHS_CR.contains(LHS_CR))
1818        return ConstantInt::getTrue(RHS->getContext());
1819      if (RHS_CR.inverse().contains(LHS_CR))
1820        return ConstantInt::getFalse(RHS->getContext());
1821    }
1822  }
1823
1824  // Compare of cast, for example (zext X) != 0 -> X != 0
1825  if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1826    Instruction *LI = cast<CastInst>(LHS);
1827    Value *SrcOp = LI->getOperand(0);
1828    Type *SrcTy = SrcOp->getType();
1829    Type *DstTy = LI->getType();
1830
1831    // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1832    // if the integer type is the same size as the pointer type.
1833    if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
1834        Q.TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
1835      if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1836        // Transfer the cast to the constant.
1837        if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1838                                        ConstantExpr::getIntToPtr(RHSC, SrcTy),
1839                                        Q, MaxRecurse-1))
1840          return V;
1841      } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1842        if (RI->getOperand(0)->getType() == SrcTy)
1843          // Compare without the cast.
1844          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1845                                          Q, MaxRecurse-1))
1846            return V;
1847      }
1848    }
1849
1850    if (isa<ZExtInst>(LHS)) {
1851      // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1852      // same type.
1853      if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1854        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1855          // Compare X and Y.  Note that signed predicates become unsigned.
1856          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1857                                          SrcOp, RI->getOperand(0), Q,
1858                                          MaxRecurse-1))
1859            return V;
1860      }
1861      // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1862      // too.  If not, then try to deduce the result of the comparison.
1863      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1864        // Compute the constant that would happen if we truncated to SrcTy then
1865        // reextended to DstTy.
1866        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1867        Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1868
1869        // If the re-extended constant didn't change then this is effectively
1870        // also a case of comparing two zero-extended values.
1871        if (RExt == CI && MaxRecurse)
1872          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1873                                        SrcOp, Trunc, Q, MaxRecurse-1))
1874            return V;
1875
1876        // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1877        // there.  Use this to work out the result of the comparison.
1878        if (RExt != CI) {
1879          switch (Pred) {
1880          default: llvm_unreachable("Unknown ICmp predicate!");
1881          // LHS <u RHS.
1882          case ICmpInst::ICMP_EQ:
1883          case ICmpInst::ICMP_UGT:
1884          case ICmpInst::ICMP_UGE:
1885            return ConstantInt::getFalse(CI->getContext());
1886
1887          case ICmpInst::ICMP_NE:
1888          case ICmpInst::ICMP_ULT:
1889          case ICmpInst::ICMP_ULE:
1890            return ConstantInt::getTrue(CI->getContext());
1891
1892          // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
1893          // is non-negative then LHS <s RHS.
1894          case ICmpInst::ICMP_SGT:
1895          case ICmpInst::ICMP_SGE:
1896            return CI->getValue().isNegative() ?
1897              ConstantInt::getTrue(CI->getContext()) :
1898              ConstantInt::getFalse(CI->getContext());
1899
1900          case ICmpInst::ICMP_SLT:
1901          case ICmpInst::ICMP_SLE:
1902            return CI->getValue().isNegative() ?
1903              ConstantInt::getFalse(CI->getContext()) :
1904              ConstantInt::getTrue(CI->getContext());
1905          }
1906        }
1907      }
1908    }
1909
1910    if (isa<SExtInst>(LHS)) {
1911      // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1912      // same type.
1913      if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1914        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1915          // Compare X and Y.  Note that the predicate does not change.
1916          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1917                                          Q, MaxRecurse-1))
1918            return V;
1919      }
1920      // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1921      // too.  If not, then try to deduce the result of the comparison.
1922      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1923        // Compute the constant that would happen if we truncated to SrcTy then
1924        // reextended to DstTy.
1925        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1926        Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1927
1928        // If the re-extended constant didn't change then this is effectively
1929        // also a case of comparing two sign-extended values.
1930        if (RExt == CI && MaxRecurse)
1931          if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
1932            return V;
1933
1934        // Otherwise the upper bits of LHS are all equal, while RHS has varying
1935        // bits there.  Use this to work out the result of the comparison.
1936        if (RExt != CI) {
1937          switch (Pred) {
1938          default: llvm_unreachable("Unknown ICmp predicate!");
1939          case ICmpInst::ICMP_EQ:
1940            return ConstantInt::getFalse(CI->getContext());
1941          case ICmpInst::ICMP_NE:
1942            return ConstantInt::getTrue(CI->getContext());
1943
1944          // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
1945          // LHS >s RHS.
1946          case ICmpInst::ICMP_SGT:
1947          case ICmpInst::ICMP_SGE:
1948            return CI->getValue().isNegative() ?
1949              ConstantInt::getTrue(CI->getContext()) :
1950              ConstantInt::getFalse(CI->getContext());
1951          case ICmpInst::ICMP_SLT:
1952          case ICmpInst::ICMP_SLE:
1953            return CI->getValue().isNegative() ?
1954              ConstantInt::getFalse(CI->getContext()) :
1955              ConstantInt::getTrue(CI->getContext());
1956
1957          // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
1958          // LHS >u RHS.
1959          case ICmpInst::ICMP_UGT:
1960          case ICmpInst::ICMP_UGE:
1961            // Comparison is true iff the LHS <s 0.
1962            if (MaxRecurse)
1963              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
1964                                              Constant::getNullValue(SrcTy),
1965                                              Q, MaxRecurse-1))
1966                return V;
1967            break;
1968          case ICmpInst::ICMP_ULT:
1969          case ICmpInst::ICMP_ULE:
1970            // Comparison is true iff the LHS >=s 0.
1971            if (MaxRecurse)
1972              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
1973                                              Constant::getNullValue(SrcTy),
1974                                              Q, MaxRecurse-1))
1975                return V;
1976            break;
1977          }
1978        }
1979      }
1980    }
1981  }
1982
1983  // Special logic for binary operators.
1984  BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
1985  BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
1986  if (MaxRecurse && (LBO || RBO)) {
1987    // Analyze the case when either LHS or RHS is an add instruction.
1988    Value *A = 0, *B = 0, *C = 0, *D = 0;
1989    // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
1990    bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
1991    if (LBO && LBO->getOpcode() == Instruction::Add) {
1992      A = LBO->getOperand(0); B = LBO->getOperand(1);
1993      NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
1994        (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
1995        (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
1996    }
1997    if (RBO && RBO->getOpcode() == Instruction::Add) {
1998      C = RBO->getOperand(0); D = RBO->getOperand(1);
1999      NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2000        (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2001        (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2002    }
2003
2004    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2005    if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2006      if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2007                                      Constant::getNullValue(RHS->getType()),
2008                                      Q, MaxRecurse-1))
2009        return V;
2010
2011    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2012    if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2013      if (Value *V = SimplifyICmpInst(Pred,
2014                                      Constant::getNullValue(LHS->getType()),
2015                                      C == LHS ? D : C, Q, MaxRecurse-1))
2016        return V;
2017
2018    // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2019    if (A && C && (A == C || A == D || B == C || B == D) &&
2020        NoLHSWrapProblem && NoRHSWrapProblem) {
2021      // Determine Y and Z in the form icmp (X+Y), (X+Z).
2022      Value *Y = (A == C || A == D) ? B : A;
2023      Value *Z = (C == A || C == B) ? D : C;
2024      if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
2025        return V;
2026    }
2027  }
2028
2029  if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2030    bool KnownNonNegative, KnownNegative;
2031    switch (Pred) {
2032    default:
2033      break;
2034    case ICmpInst::ICMP_SGT:
2035    case ICmpInst::ICMP_SGE:
2036      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
2037      if (!KnownNonNegative)
2038        break;
2039      // fall-through
2040    case ICmpInst::ICMP_EQ:
2041    case ICmpInst::ICMP_UGT:
2042    case ICmpInst::ICMP_UGE:
2043      return getFalse(ITy);
2044    case ICmpInst::ICMP_SLT:
2045    case ICmpInst::ICMP_SLE:
2046      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
2047      if (!KnownNonNegative)
2048        break;
2049      // fall-through
2050    case ICmpInst::ICMP_NE:
2051    case ICmpInst::ICMP_ULT:
2052    case ICmpInst::ICMP_ULE:
2053      return getTrue(ITy);
2054    }
2055  }
2056  if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2057    bool KnownNonNegative, KnownNegative;
2058    switch (Pred) {
2059    default:
2060      break;
2061    case ICmpInst::ICMP_SGT:
2062    case ICmpInst::ICMP_SGE:
2063      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
2064      if (!KnownNonNegative)
2065        break;
2066      // fall-through
2067    case ICmpInst::ICMP_NE:
2068    case ICmpInst::ICMP_UGT:
2069    case ICmpInst::ICMP_UGE:
2070      return getTrue(ITy);
2071    case ICmpInst::ICMP_SLT:
2072    case ICmpInst::ICMP_SLE:
2073      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
2074      if (!KnownNonNegative)
2075        break;
2076      // fall-through
2077    case ICmpInst::ICMP_EQ:
2078    case ICmpInst::ICMP_ULT:
2079    case ICmpInst::ICMP_ULE:
2080      return getFalse(ITy);
2081    }
2082  }
2083
2084  // x udiv y <=u x.
2085  if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2086    // icmp pred (X /u Y), X
2087    if (Pred == ICmpInst::ICMP_UGT)
2088      return getFalse(ITy);
2089    if (Pred == ICmpInst::ICMP_ULE)
2090      return getTrue(ITy);
2091  }
2092
2093  if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2094      LBO->getOperand(1) == RBO->getOperand(1)) {
2095    switch (LBO->getOpcode()) {
2096    default: break;
2097    case Instruction::UDiv:
2098    case Instruction::LShr:
2099      if (ICmpInst::isSigned(Pred))
2100        break;
2101      // fall-through
2102    case Instruction::SDiv:
2103    case Instruction::AShr:
2104      if (!LBO->isExact() || !RBO->isExact())
2105        break;
2106      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2107                                      RBO->getOperand(0), Q, MaxRecurse-1))
2108        return V;
2109      break;
2110    case Instruction::Shl: {
2111      bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2112      bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2113      if (!NUW && !NSW)
2114        break;
2115      if (!NSW && ICmpInst::isSigned(Pred))
2116        break;
2117      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2118                                      RBO->getOperand(0), Q, MaxRecurse-1))
2119        return V;
2120      break;
2121    }
2122    }
2123  }
2124
2125  // Simplify comparisons involving max/min.
2126  Value *A, *B;
2127  CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2128  CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2129
2130  // Signed variants on "max(a,b)>=a -> true".
2131  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2132    if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2133    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2134    // We analyze this as smax(A, B) pred A.
2135    P = Pred;
2136  } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2137             (A == LHS || B == LHS)) {
2138    if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2139    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2140    // We analyze this as smax(A, B) swapped-pred A.
2141    P = CmpInst::getSwappedPredicate(Pred);
2142  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2143             (A == RHS || B == RHS)) {
2144    if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2145    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2146    // We analyze this as smax(-A, -B) swapped-pred -A.
2147    // Note that we do not need to actually form -A or -B thanks to EqP.
2148    P = CmpInst::getSwappedPredicate(Pred);
2149  } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2150             (A == LHS || B == LHS)) {
2151    if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2152    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2153    // We analyze this as smax(-A, -B) pred -A.
2154    // Note that we do not need to actually form -A or -B thanks to EqP.
2155    P = Pred;
2156  }
2157  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2158    // Cases correspond to "max(A, B) p A".
2159    switch (P) {
2160    default:
2161      break;
2162    case CmpInst::ICMP_EQ:
2163    case CmpInst::ICMP_SLE:
2164      // Equivalent to "A EqP B".  This may be the same as the condition tested
2165      // in the max/min; if so, we can just return that.
2166      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2167        return V;
2168      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2169        return V;
2170      // Otherwise, see if "A EqP B" simplifies.
2171      if (MaxRecurse)
2172        if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2173          return V;
2174      break;
2175    case CmpInst::ICMP_NE:
2176    case CmpInst::ICMP_SGT: {
2177      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2178      // Equivalent to "A InvEqP B".  This may be the same as the condition
2179      // tested in the max/min; if so, we can just return that.
2180      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2181        return V;
2182      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2183        return V;
2184      // Otherwise, see if "A InvEqP B" simplifies.
2185      if (MaxRecurse)
2186        if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2187          return V;
2188      break;
2189    }
2190    case CmpInst::ICMP_SGE:
2191      // Always true.
2192      return getTrue(ITy);
2193    case CmpInst::ICMP_SLT:
2194      // Always false.
2195      return getFalse(ITy);
2196    }
2197  }
2198
2199  // Unsigned variants on "max(a,b)>=a -> true".
2200  P = CmpInst::BAD_ICMP_PREDICATE;
2201  if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2202    if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2203    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2204    // We analyze this as umax(A, B) pred A.
2205    P = Pred;
2206  } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2207             (A == LHS || B == LHS)) {
2208    if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2209    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2210    // We analyze this as umax(A, B) swapped-pred A.
2211    P = CmpInst::getSwappedPredicate(Pred);
2212  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2213             (A == RHS || B == RHS)) {
2214    if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
2215    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2216    // We analyze this as umax(-A, -B) swapped-pred -A.
2217    // Note that we do not need to actually form -A or -B thanks to EqP.
2218    P = CmpInst::getSwappedPredicate(Pred);
2219  } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2220             (A == LHS || B == LHS)) {
2221    if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2222    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2223    // We analyze this as umax(-A, -B) pred -A.
2224    // Note that we do not need to actually form -A or -B thanks to EqP.
2225    P = Pred;
2226  }
2227  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2228    // Cases correspond to "max(A, B) p A".
2229    switch (P) {
2230    default:
2231      break;
2232    case CmpInst::ICMP_EQ:
2233    case CmpInst::ICMP_ULE:
2234      // Equivalent to "A EqP B".  This may be the same as the condition tested
2235      // in the max/min; if so, we can just return that.
2236      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2237        return V;
2238      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2239        return V;
2240      // Otherwise, see if "A EqP B" simplifies.
2241      if (MaxRecurse)
2242        if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2243          return V;
2244      break;
2245    case CmpInst::ICMP_NE:
2246    case CmpInst::ICMP_UGT: {
2247      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2248      // Equivalent to "A InvEqP B".  This may be the same as the condition
2249      // tested in the max/min; if so, we can just return that.
2250      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2251        return V;
2252      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2253        return V;
2254      // Otherwise, see if "A InvEqP B" simplifies.
2255      if (MaxRecurse)
2256        if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2257          return V;
2258      break;
2259    }
2260    case CmpInst::ICMP_UGE:
2261      // Always true.
2262      return getTrue(ITy);
2263    case CmpInst::ICMP_ULT:
2264      // Always false.
2265      return getFalse(ITy);
2266    }
2267  }
2268
2269  // Variants on "max(x,y) >= min(x,z)".
2270  Value *C, *D;
2271  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2272      match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2273      (A == C || A == D || B == C || B == D)) {
2274    // max(x, ?) pred min(x, ?).
2275    if (Pred == CmpInst::ICMP_SGE)
2276      // Always true.
2277      return getTrue(ITy);
2278    if (Pred == CmpInst::ICMP_SLT)
2279      // Always false.
2280      return getFalse(ITy);
2281  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2282             match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2283             (A == C || A == D || B == C || B == D)) {
2284    // min(x, ?) pred max(x, ?).
2285    if (Pred == CmpInst::ICMP_SLE)
2286      // Always true.
2287      return getTrue(ITy);
2288    if (Pred == CmpInst::ICMP_SGT)
2289      // Always false.
2290      return getFalse(ITy);
2291  } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2292             match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2293             (A == C || A == D || B == C || B == D)) {
2294    // max(x, ?) pred min(x, ?).
2295    if (Pred == CmpInst::ICMP_UGE)
2296      // Always true.
2297      return getTrue(ITy);
2298    if (Pred == CmpInst::ICMP_ULT)
2299      // Always false.
2300      return getFalse(ITy);
2301  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2302             match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2303             (A == C || A == D || B == C || B == D)) {
2304    // min(x, ?) pred max(x, ?).
2305    if (Pred == CmpInst::ICMP_ULE)
2306      // Always true.
2307      return getTrue(ITy);
2308    if (Pred == CmpInst::ICMP_UGT)
2309      // Always false.
2310      return getFalse(ITy);
2311  }
2312
2313  // Simplify comparisons of GEPs.
2314  if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
2315    if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
2316      if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
2317          GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
2318          (ICmpInst::isEquality(Pred) ||
2319           (GLHS->isInBounds() && GRHS->isInBounds() &&
2320            Pred == ICmpInst::getSignedPredicate(Pred)))) {
2321        // The bases are equal and the indices are constant.  Build a constant
2322        // expression GEP with the same indices and a null base pointer to see
2323        // what constant folding can make out of it.
2324        Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
2325        SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
2326        Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
2327
2328        SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
2329        Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
2330        return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
2331      }
2332    }
2333  }
2334
2335  // If the comparison is with the result of a select instruction, check whether
2336  // comparing with either branch of the select always yields the same value.
2337  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2338    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
2339      return V;
2340
2341  // If the comparison is with the result of a phi instruction, check whether
2342  // doing the compare with each incoming phi value yields a common result.
2343  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2344    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
2345      return V;
2346
2347  return 0;
2348}
2349
2350Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2351                              const TargetData *TD,
2352                              const TargetLibraryInfo *TLI,
2353                              const DominatorTree *DT) {
2354  return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2355                            RecursionLimit);
2356}
2357
2358/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2359/// fold the result.  If not, this returns null.
2360static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2361                               const Query &Q, unsigned MaxRecurse) {
2362  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2363  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2364
2365  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2366    if (Constant *CRHS = dyn_cast<Constant>(RHS))
2367      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
2368
2369    // If we have a constant, make sure it is on the RHS.
2370    std::swap(LHS, RHS);
2371    Pred = CmpInst::getSwappedPredicate(Pred);
2372  }
2373
2374  // Fold trivial predicates.
2375  if (Pred == FCmpInst::FCMP_FALSE)
2376    return ConstantInt::get(GetCompareTy(LHS), 0);
2377  if (Pred == FCmpInst::FCMP_TRUE)
2378    return ConstantInt::get(GetCompareTy(LHS), 1);
2379
2380  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
2381    return UndefValue::get(GetCompareTy(LHS));
2382
2383  // fcmp x,x -> true/false.  Not all compares are foldable.
2384  if (LHS == RHS) {
2385    if (CmpInst::isTrueWhenEqual(Pred))
2386      return ConstantInt::get(GetCompareTy(LHS), 1);
2387    if (CmpInst::isFalseWhenEqual(Pred))
2388      return ConstantInt::get(GetCompareTy(LHS), 0);
2389  }
2390
2391  // Handle fcmp with constant RHS
2392  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2393    // If the constant is a nan, see if we can fold the comparison based on it.
2394    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2395      if (CFP->getValueAPF().isNaN()) {
2396        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
2397          return ConstantInt::getFalse(CFP->getContext());
2398        assert(FCmpInst::isUnordered(Pred) &&
2399               "Comparison must be either ordered or unordered!");
2400        // True if unordered.
2401        return ConstantInt::getTrue(CFP->getContext());
2402      }
2403      // Check whether the constant is an infinity.
2404      if (CFP->getValueAPF().isInfinity()) {
2405        if (CFP->getValueAPF().isNegative()) {
2406          switch (Pred) {
2407          case FCmpInst::FCMP_OLT:
2408            // No value is ordered and less than negative infinity.
2409            return ConstantInt::getFalse(CFP->getContext());
2410          case FCmpInst::FCMP_UGE:
2411            // All values are unordered with or at least negative infinity.
2412            return ConstantInt::getTrue(CFP->getContext());
2413          default:
2414            break;
2415          }
2416        } else {
2417          switch (Pred) {
2418          case FCmpInst::FCMP_OGT:
2419            // No value is ordered and greater than infinity.
2420            return ConstantInt::getFalse(CFP->getContext());
2421          case FCmpInst::FCMP_ULE:
2422            // All values are unordered with and at most infinity.
2423            return ConstantInt::getTrue(CFP->getContext());
2424          default:
2425            break;
2426          }
2427        }
2428      }
2429    }
2430  }
2431
2432  // If the comparison is with the result of a select instruction, check whether
2433  // comparing with either branch of the select always yields the same value.
2434  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2435    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
2436      return V;
2437
2438  // If the comparison is with the result of a phi instruction, check whether
2439  // doing the compare with each incoming phi value yields a common result.
2440  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2441    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
2442      return V;
2443
2444  return 0;
2445}
2446
2447Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2448                              const TargetData *TD,
2449                              const TargetLibraryInfo *TLI,
2450                              const DominatorTree *DT) {
2451  return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2452                            RecursionLimit);
2453}
2454
2455/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2456/// the result.  If not, this returns null.
2457static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
2458                                 Value *FalseVal, const Query &Q,
2459                                 unsigned MaxRecurse) {
2460  // select true, X, Y  -> X
2461  // select false, X, Y -> Y
2462  if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2463    return CB->getZExtValue() ? TrueVal : FalseVal;
2464
2465  // select C, X, X -> X
2466  if (TrueVal == FalseVal)
2467    return TrueVal;
2468
2469  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
2470    if (isa<Constant>(TrueVal))
2471      return TrueVal;
2472    return FalseVal;
2473  }
2474  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
2475    return FalseVal;
2476  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
2477    return TrueVal;
2478
2479  return 0;
2480}
2481
2482Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
2483                                const TargetData *TD,
2484                                const TargetLibraryInfo *TLI,
2485                                const DominatorTree *DT) {
2486  return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
2487                              RecursionLimit);
2488}
2489
2490/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2491/// fold the result.  If not, this returns null.
2492static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
2493  // The type of the GEP pointer operand.
2494  PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
2495  // The GEP pointer operand is not a pointer, it's a vector of pointers.
2496  if (!PtrTy)
2497    return 0;
2498
2499  // getelementptr P -> P.
2500  if (Ops.size() == 1)
2501    return Ops[0];
2502
2503  if (isa<UndefValue>(Ops[0])) {
2504    // Compute the (pointer) type returned by the GEP instruction.
2505    Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
2506    Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
2507    return UndefValue::get(GEPTy);
2508  }
2509
2510  if (Ops.size() == 2) {
2511    // getelementptr P, 0 -> P.
2512    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2513      if (C->isZero())
2514        return Ops[0];
2515    // getelementptr P, N -> P if P points to a type of zero size.
2516    if (Q.TD) {
2517      Type *Ty = PtrTy->getElementType();
2518      if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
2519        return Ops[0];
2520    }
2521  }
2522
2523  // Check to see if this is constant foldable.
2524  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2525    if (!isa<Constant>(Ops[i]))
2526      return 0;
2527
2528  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
2529}
2530
2531Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const TargetData *TD,
2532                             const TargetLibraryInfo *TLI,
2533                             const DominatorTree *DT) {
2534  return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
2535}
2536
2537/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2538/// can fold the result.  If not, this returns null.
2539static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
2540                                      ArrayRef<unsigned> Idxs, const Query &Q,
2541                                      unsigned) {
2542  if (Constant *CAgg = dyn_cast<Constant>(Agg))
2543    if (Constant *CVal = dyn_cast<Constant>(Val))
2544      return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2545
2546  // insertvalue x, undef, n -> x
2547  if (match(Val, m_Undef()))
2548    return Agg;
2549
2550  // insertvalue x, (extractvalue y, n), n
2551  if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
2552    if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2553        EV->getIndices() == Idxs) {
2554      // insertvalue undef, (extractvalue y, n), n -> y
2555      if (match(Agg, m_Undef()))
2556        return EV->getAggregateOperand();
2557
2558      // insertvalue y, (extractvalue y, n), n -> y
2559      if (Agg == EV->getAggregateOperand())
2560        return Agg;
2561    }
2562
2563  return 0;
2564}
2565
2566Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2567                                     ArrayRef<unsigned> Idxs,
2568                                     const TargetData *TD,
2569                                     const TargetLibraryInfo *TLI,
2570                                     const DominatorTree *DT) {
2571  return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
2572                                   RecursionLimit);
2573}
2574
2575/// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
2576static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
2577  // If all of the PHI's incoming values are the same then replace the PHI node
2578  // with the common value.
2579  Value *CommonValue = 0;
2580  bool HasUndefInput = false;
2581  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2582    Value *Incoming = PN->getIncomingValue(i);
2583    // If the incoming value is the phi node itself, it can safely be skipped.
2584    if (Incoming == PN) continue;
2585    if (isa<UndefValue>(Incoming)) {
2586      // Remember that we saw an undef value, but otherwise ignore them.
2587      HasUndefInput = true;
2588      continue;
2589    }
2590    if (CommonValue && Incoming != CommonValue)
2591      return 0;  // Not the same, bail out.
2592    CommonValue = Incoming;
2593  }
2594
2595  // If CommonValue is null then all of the incoming values were either undef or
2596  // equal to the phi node itself.
2597  if (!CommonValue)
2598    return UndefValue::get(PN->getType());
2599
2600  // If we have a PHI node like phi(X, undef, X), where X is defined by some
2601  // instruction, we cannot return X as the result of the PHI node unless it
2602  // dominates the PHI block.
2603  if (HasUndefInput)
2604    return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0;
2605
2606  return CommonValue;
2607}
2608
2609static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
2610  if (Constant *C = dyn_cast<Constant>(Op))
2611    return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
2612
2613  return 0;
2614}
2615
2616Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const TargetData *TD,
2617                               const TargetLibraryInfo *TLI,
2618                               const DominatorTree *DT) {
2619  return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
2620}
2621
2622//=== Helper functions for higher up the class hierarchy.
2623
2624/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2625/// fold the result.  If not, this returns null.
2626static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2627                            const Query &Q, unsigned MaxRecurse) {
2628  switch (Opcode) {
2629  case Instruction::Add:
2630    return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2631                           Q, MaxRecurse);
2632  case Instruction::Sub:
2633    return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2634                           Q, MaxRecurse);
2635  case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
2636  case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
2637  case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
2638  case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
2639  case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
2640  case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
2641  case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
2642  case Instruction::Shl:
2643    return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2644                           Q, MaxRecurse);
2645  case Instruction::LShr:
2646    return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2647  case Instruction::AShr:
2648    return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2649  case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
2650  case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
2651  case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
2652  default:
2653    if (Constant *CLHS = dyn_cast<Constant>(LHS))
2654      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2655        Constant *COps[] = {CLHS, CRHS};
2656        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
2657                                        Q.TLI);
2658      }
2659
2660    // If the operation is associative, try some generic simplifications.
2661    if (Instruction::isAssociative(Opcode))
2662      if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
2663        return V;
2664
2665    // If the operation is with the result of a select instruction check whether
2666    // operating on either branch of the select always yields the same value.
2667    if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2668      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
2669        return V;
2670
2671    // If the operation is with the result of a phi instruction, check whether
2672    // operating on all incoming values of the phi always yields the same value.
2673    if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2674      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
2675        return V;
2676
2677    return 0;
2678  }
2679}
2680
2681Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2682                           const TargetData *TD, const TargetLibraryInfo *TLI,
2683                           const DominatorTree *DT) {
2684  return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
2685}
2686
2687/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2688/// fold the result.
2689static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2690                              const Query &Q, unsigned MaxRecurse) {
2691  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
2692    return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2693  return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2694}
2695
2696Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2697                             const TargetData *TD, const TargetLibraryInfo *TLI,
2698                             const DominatorTree *DT) {
2699  return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2700                           RecursionLimit);
2701}
2702
2703static Value *SimplifyCallInst(CallInst *CI, const Query &) {
2704  // call undef -> undef
2705  if (isa<UndefValue>(CI->getCalledValue()))
2706    return UndefValue::get(CI->getType());
2707
2708  return 0;
2709}
2710
2711/// SimplifyInstruction - See if we can compute a simplified version of this
2712/// instruction.  If not, this returns null.
2713Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
2714                                 const TargetLibraryInfo *TLI,
2715                                 const DominatorTree *DT) {
2716  Value *Result;
2717
2718  switch (I->getOpcode()) {
2719  default:
2720    Result = ConstantFoldInstruction(I, TD, TLI);
2721    break;
2722  case Instruction::Add:
2723    Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
2724                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2725                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2726                             TD, TLI, DT);
2727    break;
2728  case Instruction::Sub:
2729    Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
2730                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2731                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2732                             TD, TLI, DT);
2733    break;
2734  case Instruction::Mul:
2735    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2736    break;
2737  case Instruction::SDiv:
2738    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2739    break;
2740  case Instruction::UDiv:
2741    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2742    break;
2743  case Instruction::FDiv:
2744    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2745    break;
2746  case Instruction::SRem:
2747    Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2748    break;
2749  case Instruction::URem:
2750    Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2751    break;
2752  case Instruction::FRem:
2753    Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2754    break;
2755  case Instruction::Shl:
2756    Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
2757                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2758                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2759                             TD, TLI, DT);
2760    break;
2761  case Instruction::LShr:
2762    Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
2763                              cast<BinaryOperator>(I)->isExact(),
2764                              TD, TLI, DT);
2765    break;
2766  case Instruction::AShr:
2767    Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
2768                              cast<BinaryOperator>(I)->isExact(),
2769                              TD, TLI, DT);
2770    break;
2771  case Instruction::And:
2772    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2773    break;
2774  case Instruction::Or:
2775    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2776    break;
2777  case Instruction::Xor:
2778    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2779    break;
2780  case Instruction::ICmp:
2781    Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
2782                              I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2783    break;
2784  case Instruction::FCmp:
2785    Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
2786                              I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2787    break;
2788  case Instruction::Select:
2789    Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
2790                                I->getOperand(2), TD, TLI, DT);
2791    break;
2792  case Instruction::GetElementPtr: {
2793    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
2794    Result = SimplifyGEPInst(Ops, TD, TLI, DT);
2795    break;
2796  }
2797  case Instruction::InsertValue: {
2798    InsertValueInst *IV = cast<InsertValueInst>(I);
2799    Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
2800                                     IV->getInsertedValueOperand(),
2801                                     IV->getIndices(), TD, TLI, DT);
2802    break;
2803  }
2804  case Instruction::PHI:
2805    Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
2806    break;
2807  case Instruction::Call:
2808    Result = SimplifyCallInst(cast<CallInst>(I), Query (TD, TLI, DT));
2809    break;
2810  case Instruction::Trunc:
2811    Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
2812    break;
2813  }
2814
2815  /// If called on unreachable code, the above logic may report that the
2816  /// instruction simplified to itself.  Make life easier for users by
2817  /// detecting that case here, returning a safe value instead.
2818  return Result == I ? UndefValue::get(I->getType()) : Result;
2819}
2820
2821/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
2822/// delete the From instruction.  In addition to a basic RAUW, this does a
2823/// recursive simplification of the newly formed instructions.  This catches
2824/// things where one simplification exposes other opportunities.  This only
2825/// simplifies and deletes scalar operations, it does not change the CFG.
2826///
2827void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
2828                                     const TargetData *TD,
2829                                     const TargetLibraryInfo *TLI,
2830                                     const DominatorTree *DT) {
2831  assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
2832
2833  // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
2834  // we can know if it gets deleted out from under us or replaced in a
2835  // recursive simplification.
2836  WeakVH FromHandle(From);
2837  WeakVH ToHandle(To);
2838
2839  while (!From->use_empty()) {
2840    // Update the instruction to use the new value.
2841    Use &TheUse = From->use_begin().getUse();
2842    Instruction *User = cast<Instruction>(TheUse.getUser());
2843    TheUse = To;
2844
2845    // Check to see if the instruction can be folded due to the operand
2846    // replacement.  For example changing (or X, Y) into (or X, -1) can replace
2847    // the 'or' with -1.
2848    Value *SimplifiedVal;
2849    {
2850      // Sanity check to make sure 'User' doesn't dangle across
2851      // SimplifyInstruction.
2852      AssertingVH<> UserHandle(User);
2853
2854      SimplifiedVal = SimplifyInstruction(User, TD, TLI, DT);
2855      if (SimplifiedVal == 0) continue;
2856    }
2857
2858    // Recursively simplify this user to the new value.
2859    ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, TLI, DT);
2860    From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
2861    To = ToHandle;
2862
2863    assert(ToHandle && "To value deleted by recursive simplification?");
2864
2865    // If the recursive simplification ended up revisiting and deleting
2866    // 'From' then we're done.
2867    if (From == 0)
2868      return;
2869  }
2870
2871  // If 'From' has value handles referring to it, do a real RAUW to update them.
2872  From->replaceAllUsesWith(To);
2873
2874  From->eraseFromParent();
2875}
2876