AsmPrinter.cpp revision 0734d35044c304dd072f20e49840bcbea427db9c
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineFunction.h" 22#include "llvm/CodeGen/MachineJumpTableInfo.h" 23#include "llvm/CodeGen/MachineLoopInfo.h" 24#include "llvm/CodeGen/MachineModuleInfo.h" 25#include "llvm/CodeGen/DwarfWriter.h" 26#include "llvm/Analysis/DebugInfo.h" 27#include "llvm/MC/MCContext.h" 28#include "llvm/MC/MCInst.h" 29#include "llvm/MC/MCSection.h" 30#include "llvm/MC/MCStreamer.h" 31#include "llvm/Support/CommandLine.h" 32#include "llvm/Support/ErrorHandling.h" 33#include "llvm/Support/FormattedStream.h" 34#include "llvm/Support/Mangler.h" 35#include "llvm/MC/MCAsmInfo.h" 36#include "llvm/Target/TargetData.h" 37#include "llvm/Target/TargetLowering.h" 38#include "llvm/Target/TargetLoweringObjectFile.h" 39#include "llvm/Target/TargetOptions.h" 40#include "llvm/Target/TargetRegisterInfo.h" 41#include "llvm/ADT/SmallPtrSet.h" 42#include "llvm/ADT/SmallString.h" 43#include "llvm/ADT/StringExtras.h" 44#include <cerrno> 45using namespace llvm; 46 47static cl::opt<cl::boolOrDefault> 48AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 49 cl::init(cl::BOU_UNSET)); 50 51char AsmPrinter::ID = 0; 52AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm, 53 const MCAsmInfo *T, bool VDef) 54 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 55 TM(tm), MAI(T), TRI(tm.getRegisterInfo()), 56 57 OutContext(*new MCContext()), 58 OutStreamer(*createAsmStreamer(OutContext, O, *T, this)), 59 60 LastMI(0), LastFn(0), Counter(~0U), 61 PrevDLT(0, ~0U, ~0U) { 62 DW = 0; MMI = 0; 63 switch (AsmVerbose) { 64 case cl::BOU_UNSET: VerboseAsm = VDef; break; 65 case cl::BOU_TRUE: VerboseAsm = true; break; 66 case cl::BOU_FALSE: VerboseAsm = false; break; 67 } 68} 69 70AsmPrinter::~AsmPrinter() { 71 for (gcp_iterator I = GCMetadataPrinters.begin(), 72 E = GCMetadataPrinters.end(); I != E; ++I) 73 delete I->second; 74 75 delete &OutStreamer; 76 delete &OutContext; 77} 78 79TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 80 return TM.getTargetLowering()->getObjFileLowering(); 81} 82 83/// getCurrentSection() - Return the current section we are emitting to. 84const MCSection *AsmPrinter::getCurrentSection() const { 85 return OutStreamer.getCurrentSection(); 86} 87 88 89void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 90 AU.setPreservesAll(); 91 MachineFunctionPass::getAnalysisUsage(AU); 92 AU.addRequired<GCModuleInfo>(); 93 if (VerboseAsm) 94 AU.addRequired<MachineLoopInfo>(); 95} 96 97bool AsmPrinter::doInitialization(Module &M) { 98 // Initialize TargetLoweringObjectFile. 99 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 100 .Initialize(OutContext, TM); 101 102 Mang = new Mangler(M, MAI->getGlobalPrefix(), MAI->getPrivateGlobalPrefix(), 103 MAI->getLinkerPrivateGlobalPrefix()); 104 105 if (MAI->doesAllowQuotesInName()) 106 Mang->setUseQuotes(true); 107 108 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 109 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 110 111 if (MAI->hasSingleParameterDotFile()) { 112 /* Very minimal debug info. It is ignored if we emit actual 113 debug info. If we don't, this at helps the user find where 114 a function came from. */ 115 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 116 } 117 118 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 119 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 120 MP->beginAssembly(O, *this, *MAI); 121 122 if (!M.getModuleInlineAsm().empty()) 123 O << MAI->getCommentString() << " Start of file scope inline assembly\n" 124 << M.getModuleInlineAsm() 125 << '\n' << MAI->getCommentString() 126 << " End of file scope inline assembly\n"; 127 128 if (MAI->doesSupportDebugInformation() || 129 MAI->doesSupportExceptionHandling()) { 130 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 131 if (MMI) 132 MMI->AnalyzeModule(M); 133 DW = getAnalysisIfAvailable<DwarfWriter>(); 134 if (DW) 135 DW->BeginModule(&M, MMI, O, this, MAI); 136 } 137 138 return false; 139} 140 141bool AsmPrinter::doFinalization(Module &M) { 142 // Emit global variables. 143 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 144 I != E; ++I) 145 PrintGlobalVariable(I); 146 147 // Emit final debug information. 148 if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling()) 149 DW->EndModule(); 150 151 // If the target wants to know about weak references, print them all. 152 if (MAI->getWeakRefDirective()) { 153 // FIXME: This is not lazy, it would be nice to only print weak references 154 // to stuff that is actually used. Note that doing so would require targets 155 // to notice uses in operands (due to constant exprs etc). This should 156 // happen with the MC stuff eventually. 157 158 // Print out module-level global variables here. 159 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 160 I != E; ++I) { 161 if (I->hasExternalWeakLinkage()) 162 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 163 } 164 165 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 166 if (I->hasExternalWeakLinkage()) 167 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 168 } 169 } 170 171 if (MAI->getSetDirective()) { 172 O << '\n'; 173 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 174 I != E; ++I) { 175 std::string Name = Mang->getMangledName(I); 176 177 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 178 std::string Target = Mang->getMangledName(GV); 179 180 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 181 O << "\t.globl\t" << Name << '\n'; 182 else if (I->hasWeakLinkage()) 183 O << MAI->getWeakRefDirective() << Name << '\n'; 184 else if (!I->hasLocalLinkage()) 185 llvm_unreachable("Invalid alias linkage"); 186 187 printVisibility(Name, I->getVisibility()); 188 189 O << MAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 190 } 191 } 192 193 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 194 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 195 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 196 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 197 MP->finishAssembly(O, *this, *MAI); 198 199 // If we don't have any trampolines, then we don't require stack memory 200 // to be executable. Some targets have a directive to declare this. 201 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 202 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 203 if (MAI->getNonexecutableStackDirective()) 204 O << MAI->getNonexecutableStackDirective() << '\n'; 205 206 delete Mang; Mang = 0; 207 DW = 0; MMI = 0; 208 209 OutStreamer.Finish(); 210 return false; 211} 212 213std::string 214AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const { 215 assert(MF && "No machine function?"); 216 return Mang->getMangledName(MF->getFunction(), ".eh", 217 MAI->is_EHSymbolPrivate()); 218} 219 220void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 221 // What's my mangled name? 222 CurrentFnName = Mang->getMangledName(MF.getFunction()); 223 IncrementFunctionNumber(); 224 225 if (VerboseAsm) { 226 LI = &getAnalysis<MachineLoopInfo>(); 227 } 228} 229 230namespace { 231 // SectionCPs - Keep track the alignment, constpool entries per Section. 232 struct SectionCPs { 233 const MCSection *S; 234 unsigned Alignment; 235 SmallVector<unsigned, 4> CPEs; 236 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}; 237 }; 238} 239 240/// EmitConstantPool - Print to the current output stream assembly 241/// representations of the constants in the constant pool MCP. This is 242/// used to print out constants which have been "spilled to memory" by 243/// the code generator. 244/// 245void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 246 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 247 if (CP.empty()) return; 248 249 // Calculate sections for constant pool entries. We collect entries to go into 250 // the same section together to reduce amount of section switch statements. 251 SmallVector<SectionCPs, 4> CPSections; 252 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 253 const MachineConstantPoolEntry &CPE = CP[i]; 254 unsigned Align = CPE.getAlignment(); 255 256 SectionKind Kind; 257 switch (CPE.getRelocationInfo()) { 258 default: llvm_unreachable("Unknown section kind"); 259 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 260 case 1: 261 Kind = SectionKind::getReadOnlyWithRelLocal(); 262 break; 263 case 0: 264 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 265 case 4: Kind = SectionKind::getMergeableConst4(); break; 266 case 8: Kind = SectionKind::getMergeableConst8(); break; 267 case 16: Kind = SectionKind::getMergeableConst16();break; 268 default: Kind = SectionKind::getMergeableConst(); break; 269 } 270 } 271 272 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 273 274 // The number of sections are small, just do a linear search from the 275 // last section to the first. 276 bool Found = false; 277 unsigned SecIdx = CPSections.size(); 278 while (SecIdx != 0) { 279 if (CPSections[--SecIdx].S == S) { 280 Found = true; 281 break; 282 } 283 } 284 if (!Found) { 285 SecIdx = CPSections.size(); 286 CPSections.push_back(SectionCPs(S, Align)); 287 } 288 289 if (Align > CPSections[SecIdx].Alignment) 290 CPSections[SecIdx].Alignment = Align; 291 CPSections[SecIdx].CPEs.push_back(i); 292 } 293 294 // Now print stuff into the calculated sections. 295 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 296 OutStreamer.SwitchSection(CPSections[i].S); 297 EmitAlignment(Log2_32(CPSections[i].Alignment)); 298 299 unsigned Offset = 0; 300 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 301 unsigned CPI = CPSections[i].CPEs[j]; 302 MachineConstantPoolEntry CPE = CP[CPI]; 303 304 // Emit inter-object padding for alignment. 305 unsigned AlignMask = CPE.getAlignment() - 1; 306 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 307 EmitZeros(NewOffset - Offset); 308 309 const Type *Ty = CPE.getType(); 310 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 311 312 O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 313 << CPI << ':'; 314 if (VerboseAsm) { 315 O.PadToColumn(MAI->getCommentColumn()); 316 O << MAI->getCommentString() << " constant "; 317 WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent()); 318 } 319 O << '\n'; 320 if (CPE.isMachineConstantPoolEntry()) 321 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 322 else 323 EmitGlobalConstant(CPE.Val.ConstVal); 324 } 325 } 326} 327 328/// EmitJumpTableInfo - Print assembly representations of the jump tables used 329/// by the current function to the current output stream. 330/// 331void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 332 MachineFunction &MF) { 333 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 334 if (JT.empty()) return; 335 336 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 337 338 // Pick the directive to use to print the jump table entries, and switch to 339 // the appropriate section. 340 TargetLowering *LoweringInfo = TM.getTargetLowering(); 341 342 const Function *F = MF.getFunction(); 343 bool JTInDiffSection = false; 344 if (F->isWeakForLinker() || 345 (IsPic && !LoweringInfo->usesGlobalOffsetTable())) { 346 // In PIC mode, we need to emit the jump table to the same section as the 347 // function body itself, otherwise the label differences won't make sense. 348 // We should also do if the section name is NULL or function is declared in 349 // discardable section. 350 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, 351 TM)); 352 } else { 353 // Otherwise, drop it in the readonly section. 354 const MCSection *ReadOnlySection = 355 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 356 OutStreamer.SwitchSection(ReadOnlySection); 357 JTInDiffSection = true; 358 } 359 360 EmitAlignment(Log2_32(MJTI->getAlignment())); 361 362 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 363 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 364 365 // If this jump table was deleted, ignore it. 366 if (JTBBs.empty()) continue; 367 368 // For PIC codegen, if possible we want to use the SetDirective to reduce 369 // the number of relocations the assembler will generate for the jump table. 370 // Set directives are all printed before the jump table itself. 371 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 372 if (MAI->getSetDirective() && IsPic) 373 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 374 if (EmittedSets.insert(JTBBs[ii])) 375 printPICJumpTableSetLabel(i, JTBBs[ii]); 376 377 // On some targets (e.g. darwin) we want to emit two consequtive labels 378 // before each jump table. The first label is never referenced, but tells 379 // the assembler and linker the extents of the jump table object. The 380 // second label is actually referenced by the code. 381 if (JTInDiffSection) { 382 if (const char *JTLabelPrefix = MAI->getJumpTableSpecialLabelPrefix()) 383 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 384 } 385 386 O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 387 << '_' << i << ":\n"; 388 389 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 390 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 391 O << '\n'; 392 } 393 } 394} 395 396void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 397 const MachineBasicBlock *MBB, 398 unsigned uid) const { 399 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 400 401 // Use JumpTableDirective otherwise honor the entry size from the jump table 402 // info. 403 const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC); 404 bool HadJTEntryDirective = JTEntryDirective != NULL; 405 if (!HadJTEntryDirective) { 406 JTEntryDirective = MJTI->getEntrySize() == 4 ? 407 MAI->getData32bitsDirective() : MAI->getData64bitsDirective(); 408 } 409 410 O << JTEntryDirective << ' '; 411 412 // If we have emitted set directives for the jump table entries, print 413 // them rather than the entries themselves. If we're emitting PIC, then 414 // emit the table entries as differences between two text section labels. 415 // If we're emitting non-PIC code, then emit the entries as direct 416 // references to the target basic blocks. 417 if (!isPIC) { 418 printBasicBlockLabel(MBB, false, false, false); 419 } else if (MAI->getSetDirective()) { 420 O << MAI->getPrivateGlobalPrefix() << getFunctionNumber() 421 << '_' << uid << "_set_" << MBB->getNumber(); 422 } else { 423 printBasicBlockLabel(MBB, false, false, false); 424 // If the arch uses custom Jump Table directives, don't calc relative to 425 // JT 426 if (!HadJTEntryDirective) 427 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" 428 << getFunctionNumber() << '_' << uid; 429 } 430} 431 432 433/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 434/// special global used by LLVM. If so, emit it and return true, otherwise 435/// do nothing and return false. 436bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 437 if (GV->getName() == "llvm.used") { 438 if (MAI->getUsedDirective() != 0) // No need to emit this at all. 439 EmitLLVMUsedList(GV->getInitializer()); 440 return true; 441 } 442 443 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 444 if (GV->getSection() == "llvm.metadata" || 445 GV->hasAvailableExternallyLinkage()) 446 return true; 447 448 if (!GV->hasAppendingLinkage()) return false; 449 450 assert(GV->hasInitializer() && "Not a special LLVM global!"); 451 452 const TargetData *TD = TM.getTargetData(); 453 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 454 if (GV->getName() == "llvm.global_ctors") { 455 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection()); 456 EmitAlignment(Align, 0); 457 EmitXXStructorList(GV->getInitializer()); 458 return true; 459 } 460 461 if (GV->getName() == "llvm.global_dtors") { 462 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection()); 463 EmitAlignment(Align, 0); 464 EmitXXStructorList(GV->getInitializer()); 465 return true; 466 } 467 468 return false; 469} 470 471/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 472/// global in the specified llvm.used list for which emitUsedDirectiveFor 473/// is true, as being used with this directive. 474void AsmPrinter::EmitLLVMUsedList(Constant *List) { 475 const char *Directive = MAI->getUsedDirective(); 476 477 // Should be an array of 'i8*'. 478 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 479 if (InitList == 0) return; 480 481 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 482 const GlobalValue *GV = 483 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 484 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) { 485 O << Directive; 486 EmitConstantValueOnly(InitList->getOperand(i)); 487 O << '\n'; 488 } 489 } 490} 491 492/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 493/// function pointers, ignoring the init priority. 494void AsmPrinter::EmitXXStructorList(Constant *List) { 495 // Should be an array of '{ int, void ()* }' structs. The first value is the 496 // init priority, which we ignore. 497 if (!isa<ConstantArray>(List)) return; 498 ConstantArray *InitList = cast<ConstantArray>(List); 499 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 500 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 501 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 502 503 if (CS->getOperand(1)->isNullValue()) 504 return; // Found a null terminator, exit printing. 505 // Emit the function pointer. 506 EmitGlobalConstant(CS->getOperand(1)); 507 } 508} 509 510/// getGlobalLinkName - Returns the asm/link name of of the specified 511/// global variable. Should be overridden by each target asm printer to 512/// generate the appropriate value. 513const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV, 514 std::string &LinkName) const { 515 if (isa<Function>(GV)) { 516 LinkName += MAI->getFunctionAddrPrefix(); 517 LinkName += Mang->getMangledName(GV); 518 LinkName += MAI->getFunctionAddrSuffix(); 519 } else { 520 LinkName += MAI->getGlobalVarAddrPrefix(); 521 LinkName += Mang->getMangledName(GV); 522 LinkName += MAI->getGlobalVarAddrSuffix(); 523 } 524 525 return LinkName; 526} 527 528/// EmitExternalGlobal - Emit the external reference to a global variable. 529/// Should be overridden if an indirect reference should be used. 530void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { 531 std::string GLN; 532 O << getGlobalLinkName(GV, GLN); 533} 534 535 536 537//===----------------------------------------------------------------------===// 538/// LEB 128 number encoding. 539 540/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) 541/// representing an unsigned leb128 value. 542void AsmPrinter::PrintULEB128(unsigned Value) const { 543 char Buffer[20]; 544 do { 545 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 546 Value >>= 7; 547 if (Value) Byte |= 0x80; 548 O << "0x" << utohex_buffer(Byte, Buffer+20); 549 if (Value) O << ", "; 550 } while (Value); 551} 552 553/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) 554/// representing a signed leb128 value. 555void AsmPrinter::PrintSLEB128(int Value) const { 556 int Sign = Value >> (8 * sizeof(Value) - 1); 557 bool IsMore; 558 char Buffer[20]; 559 560 do { 561 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 562 Value >>= 7; 563 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 564 if (IsMore) Byte |= 0x80; 565 O << "0x" << utohex_buffer(Byte, Buffer+20); 566 if (IsMore) O << ", "; 567 } while (IsMore); 568} 569 570//===--------------------------------------------------------------------===// 571// Emission and print routines 572// 573 574/// PrintHex - Print a value as a hexidecimal value. 575/// 576void AsmPrinter::PrintHex(int Value) const { 577 char Buffer[20]; 578 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); 579} 580 581/// EOL - Print a newline character to asm stream. If a comment is present 582/// then it will be printed first. Comments should not contain '\n'. 583void AsmPrinter::EOL() const { 584 O << '\n'; 585} 586 587void AsmPrinter::EOL(const std::string &Comment) const { 588 if (VerboseAsm && !Comment.empty()) { 589 O.PadToColumn(MAI->getCommentColumn()); 590 O << MAI->getCommentString() 591 << ' ' 592 << Comment; 593 } 594 O << '\n'; 595} 596 597void AsmPrinter::EOL(const char* Comment) const { 598 if (VerboseAsm && *Comment) { 599 O.PadToColumn(MAI->getCommentColumn()); 600 O << MAI->getCommentString() 601 << ' ' 602 << Comment; 603 } 604 O << '\n'; 605} 606 607static const char *DecodeDWARFEncoding(unsigned Encoding) { 608 switch (Encoding) { 609 case dwarf::DW_EH_PE_absptr: 610 return "absptr"; 611 case dwarf::DW_EH_PE_omit: 612 return "omit"; 613 case dwarf::DW_EH_PE_pcrel: 614 return "pcrel"; 615 case dwarf::DW_EH_PE_udata4: 616 return "udata4"; 617 case dwarf::DW_EH_PE_udata8: 618 return "udata8"; 619 case dwarf::DW_EH_PE_sdata4: 620 return "sdata4"; 621 case dwarf::DW_EH_PE_sdata8: 622 return "sdata8"; 623 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4: 624 return "pcrel udata4"; 625 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4: 626 return "pcrel sdata4"; 627 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8: 628 return "pcrel udata8"; 629 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8: 630 return "pcrel sdata8"; 631 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4: 632 return "indirect pcrel udata4"; 633 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4: 634 return "indirect pcrel sdata4"; 635 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8: 636 return "indirect pcrel udata8"; 637 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8: 638 return "indirect pcrel sdata8"; 639 } 640 641 return 0; 642} 643 644void AsmPrinter::EOL(const char *Comment, unsigned Encoding) const { 645 if (VerboseAsm && *Comment) { 646 O.PadToColumn(MAI->getCommentColumn()); 647 O << MAI->getCommentString() 648 << ' ' 649 << Comment; 650 651 if (const char *EncStr = DecodeDWARFEncoding(Encoding)) 652 O << " (" << EncStr << ')'; 653 } 654 O << '\n'; 655} 656 657/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 658/// unsigned leb128 value. 659void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 660 if (MAI->hasLEB128()) { 661 O << "\t.uleb128\t" 662 << Value; 663 } else { 664 O << MAI->getData8bitsDirective(); 665 PrintULEB128(Value); 666 } 667} 668 669/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 670/// signed leb128 value. 671void AsmPrinter::EmitSLEB128Bytes(int Value) const { 672 if (MAI->hasLEB128()) { 673 O << "\t.sleb128\t" 674 << Value; 675 } else { 676 O << MAI->getData8bitsDirective(); 677 PrintSLEB128(Value); 678 } 679} 680 681/// EmitInt8 - Emit a byte directive and value. 682/// 683void AsmPrinter::EmitInt8(int Value) const { 684 O << MAI->getData8bitsDirective(); 685 PrintHex(Value & 0xFF); 686} 687 688/// EmitInt16 - Emit a short directive and value. 689/// 690void AsmPrinter::EmitInt16(int Value) const { 691 O << MAI->getData16bitsDirective(); 692 PrintHex(Value & 0xFFFF); 693} 694 695/// EmitInt32 - Emit a long directive and value. 696/// 697void AsmPrinter::EmitInt32(int Value) const { 698 O << MAI->getData32bitsDirective(); 699 PrintHex(Value); 700} 701 702/// EmitInt64 - Emit a long long directive and value. 703/// 704void AsmPrinter::EmitInt64(uint64_t Value) const { 705 if (MAI->getData64bitsDirective()) { 706 O << MAI->getData64bitsDirective(); 707 PrintHex(Value); 708 } else { 709 if (TM.getTargetData()->isBigEndian()) { 710 EmitInt32(unsigned(Value >> 32)); O << '\n'; 711 EmitInt32(unsigned(Value)); 712 } else { 713 EmitInt32(unsigned(Value)); O << '\n'; 714 EmitInt32(unsigned(Value >> 32)); 715 } 716 } 717} 718 719/// toOctal - Convert the low order bits of X into an octal digit. 720/// 721static inline char toOctal(int X) { 722 return (X&7)+'0'; 723} 724 725/// printStringChar - Print a char, escaped if necessary. 726/// 727static void printStringChar(formatted_raw_ostream &O, unsigned char C) { 728 if (C == '"') { 729 O << "\\\""; 730 } else if (C == '\\') { 731 O << "\\\\"; 732 } else if (isprint((unsigned char)C)) { 733 O << C; 734 } else { 735 switch(C) { 736 case '\b': O << "\\b"; break; 737 case '\f': O << "\\f"; break; 738 case '\n': O << "\\n"; break; 739 case '\r': O << "\\r"; break; 740 case '\t': O << "\\t"; break; 741 default: 742 O << '\\'; 743 O << toOctal(C >> 6); 744 O << toOctal(C >> 3); 745 O << toOctal(C >> 0); 746 break; 747 } 748 } 749} 750 751/// EmitString - Emit a string with quotes and a null terminator. 752/// Special characters are emitted properly. 753/// \literal (Eg. '\t') \endliteral 754void AsmPrinter::EmitString(const std::string &String) const { 755 EmitString(String.c_str(), String.size()); 756} 757 758void AsmPrinter::EmitString(const char *String, unsigned Size) const { 759 const char* AscizDirective = MAI->getAscizDirective(); 760 if (AscizDirective) 761 O << AscizDirective; 762 else 763 O << MAI->getAsciiDirective(); 764 O << '\"'; 765 for (unsigned i = 0; i < Size; ++i) 766 printStringChar(O, String[i]); 767 if (AscizDirective) 768 O << '\"'; 769 else 770 O << "\\0\""; 771} 772 773 774/// EmitFile - Emit a .file directive. 775void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 776 O << "\t.file\t" << Number << " \""; 777 for (unsigned i = 0, N = Name.size(); i < N; ++i) 778 printStringChar(O, Name[i]); 779 O << '\"'; 780} 781 782 783//===----------------------------------------------------------------------===// 784 785// EmitAlignment - Emit an alignment directive to the specified power of 786// two boundary. For example, if you pass in 3 here, you will get an 8 787// byte alignment. If a global value is specified, and if that global has 788// an explicit alignment requested, it will unconditionally override the 789// alignment request. However, if ForcedAlignBits is specified, this value 790// has final say: the ultimate alignment will be the max of ForcedAlignBits 791// and the alignment computed with NumBits and the global. 792// 793// The algorithm is: 794// Align = NumBits; 795// if (GV && GV->hasalignment) Align = GV->getalignment(); 796// Align = std::max(Align, ForcedAlignBits); 797// 798void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 799 unsigned ForcedAlignBits, 800 bool UseFillExpr) const { 801 if (GV && GV->getAlignment()) 802 NumBits = Log2_32(GV->getAlignment()); 803 NumBits = std::max(NumBits, ForcedAlignBits); 804 805 if (NumBits == 0) return; // No need to emit alignment. 806 807 unsigned FillValue = 0; 808 if (getCurrentSection()->getKind().isText()) 809 FillValue = MAI->getTextAlignFillValue(); 810 811 OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0); 812} 813 814/// EmitZeros - Emit a block of zeros. 815/// 816void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const { 817 if (NumZeros) { 818 if (MAI->getZeroDirective()) { 819 O << MAI->getZeroDirective() << NumZeros; 820 if (MAI->getZeroDirectiveSuffix()) 821 O << MAI->getZeroDirectiveSuffix(); 822 O << '\n'; 823 } else { 824 for (; NumZeros; --NumZeros) 825 O << MAI->getData8bitsDirective(AddrSpace) << "0\n"; 826 } 827 } 828} 829 830// Print out the specified constant, without a storage class. Only the 831// constants valid in constant expressions can occur here. 832void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 833 if (CV->isNullValue() || isa<UndefValue>(CV)) 834 O << '0'; 835 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 836 O << CI->getZExtValue(); 837 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 838 // This is a constant address for a global variable or function. Use the 839 // name of the variable or function as the address value, possibly 840 // decorating it with GlobalVarAddrPrefix/Suffix or 841 // FunctionAddrPrefix/Suffix (these all default to "" ) 842 if (isa<Function>(GV)) { 843 O << MAI->getFunctionAddrPrefix() 844 << Mang->getMangledName(GV) 845 << MAI->getFunctionAddrSuffix(); 846 } else { 847 O << MAI->getGlobalVarAddrPrefix() 848 << Mang->getMangledName(GV) 849 << MAI->getGlobalVarAddrSuffix(); 850 } 851 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 852 const TargetData *TD = TM.getTargetData(); 853 unsigned Opcode = CE->getOpcode(); 854 switch (Opcode) { 855 case Instruction::Trunc: 856 case Instruction::ZExt: 857 case Instruction::SExt: 858 case Instruction::FPTrunc: 859 case Instruction::FPExt: 860 case Instruction::UIToFP: 861 case Instruction::SIToFP: 862 case Instruction::FPToUI: 863 case Instruction::FPToSI: 864 llvm_unreachable("FIXME: Don't support this constant cast expr"); 865 case Instruction::GetElementPtr: { 866 // generate a symbolic expression for the byte address 867 const Constant *ptrVal = CE->getOperand(0); 868 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 869 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 870 idxVec.size())) { 871 // Truncate/sext the offset to the pointer size. 872 if (TD->getPointerSizeInBits() != 64) { 873 int SExtAmount = 64-TD->getPointerSizeInBits(); 874 Offset = (Offset << SExtAmount) >> SExtAmount; 875 } 876 877 if (Offset) 878 O << '('; 879 EmitConstantValueOnly(ptrVal); 880 if (Offset > 0) 881 O << ") + " << Offset; 882 else if (Offset < 0) 883 O << ") - " << -Offset; 884 } else { 885 EmitConstantValueOnly(ptrVal); 886 } 887 break; 888 } 889 case Instruction::BitCast: 890 return EmitConstantValueOnly(CE->getOperand(0)); 891 892 case Instruction::IntToPtr: { 893 // Handle casts to pointers by changing them into casts to the appropriate 894 // integer type. This promotes constant folding and simplifies this code. 895 Constant *Op = CE->getOperand(0); 896 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()), 897 false/*ZExt*/); 898 return EmitConstantValueOnly(Op); 899 } 900 901 902 case Instruction::PtrToInt: { 903 // Support only foldable casts to/from pointers that can be eliminated by 904 // changing the pointer to the appropriately sized integer type. 905 Constant *Op = CE->getOperand(0); 906 const Type *Ty = CE->getType(); 907 908 // We can emit the pointer value into this slot if the slot is an 909 // integer slot greater or equal to the size of the pointer. 910 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType())) 911 return EmitConstantValueOnly(Op); 912 913 O << "(("; 914 EmitConstantValueOnly(Op); 915 APInt ptrMask = 916 APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType())); 917 918 SmallString<40> S; 919 ptrMask.toStringUnsigned(S); 920 O << ") & " << S.str() << ')'; 921 break; 922 } 923 case Instruction::Add: 924 case Instruction::Sub: 925 case Instruction::And: 926 case Instruction::Or: 927 case Instruction::Xor: 928 O << '('; 929 EmitConstantValueOnly(CE->getOperand(0)); 930 O << ')'; 931 switch (Opcode) { 932 case Instruction::Add: 933 O << " + "; 934 break; 935 case Instruction::Sub: 936 O << " - "; 937 break; 938 case Instruction::And: 939 O << " & "; 940 break; 941 case Instruction::Or: 942 O << " | "; 943 break; 944 case Instruction::Xor: 945 O << " ^ "; 946 break; 947 default: 948 break; 949 } 950 O << '('; 951 EmitConstantValueOnly(CE->getOperand(1)); 952 O << ')'; 953 break; 954 default: 955 llvm_unreachable("Unsupported operator!"); 956 } 957 } else { 958 llvm_unreachable("Unknown constant value!"); 959 } 960} 961 962/// printAsCString - Print the specified array as a C compatible string, only if 963/// the predicate isString is true. 964/// 965static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA, 966 unsigned LastElt) { 967 assert(CVA->isString() && "Array is not string compatible!"); 968 969 O << '\"'; 970 for (unsigned i = 0; i != LastElt; ++i) { 971 unsigned char C = 972 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 973 printStringChar(O, C); 974 } 975 O << '\"'; 976} 977 978/// EmitString - Emit a zero-byte-terminated string constant. 979/// 980void AsmPrinter::EmitString(const ConstantArray *CVA) const { 981 unsigned NumElts = CVA->getNumOperands(); 982 if (MAI->getAscizDirective() && NumElts && 983 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 984 O << MAI->getAscizDirective(); 985 printAsCString(O, CVA, NumElts-1); 986 } else { 987 O << MAI->getAsciiDirective(); 988 printAsCString(O, CVA, NumElts); 989 } 990 O << '\n'; 991} 992 993void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA, 994 unsigned AddrSpace) { 995 if (CVA->isString()) { 996 EmitString(CVA); 997 } else { // Not a string. Print the values in successive locations 998 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 999 EmitGlobalConstant(CVA->getOperand(i), AddrSpace); 1000 } 1001} 1002 1003void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) { 1004 const VectorType *PTy = CP->getType(); 1005 1006 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 1007 EmitGlobalConstant(CP->getOperand(I)); 1008} 1009 1010void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS, 1011 unsigned AddrSpace) { 1012 // Print the fields in successive locations. Pad to align if needed! 1013 const TargetData *TD = TM.getTargetData(); 1014 unsigned Size = TD->getTypeAllocSize(CVS->getType()); 1015 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 1016 uint64_t sizeSoFar = 0; 1017 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 1018 const Constant* field = CVS->getOperand(i); 1019 1020 // Check if padding is needed and insert one or more 0s. 1021 uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); 1022 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 1023 - cvsLayout->getElementOffset(i)) - fieldSize; 1024 sizeSoFar += fieldSize + padSize; 1025 1026 // Now print the actual field value. 1027 EmitGlobalConstant(field, AddrSpace); 1028 1029 // Insert padding - this may include padding to increase the size of the 1030 // current field up to the ABI size (if the struct is not packed) as well 1031 // as padding to ensure that the next field starts at the right offset. 1032 EmitZeros(padSize, AddrSpace); 1033 } 1034 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 1035 "Layout of constant struct may be incorrect!"); 1036} 1037 1038void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP, 1039 unsigned AddrSpace) { 1040 // FP Constants are printed as integer constants to avoid losing 1041 // precision... 1042 LLVMContext &Context = CFP->getContext(); 1043 const TargetData *TD = TM.getTargetData(); 1044 if (CFP->getType() == Type::getDoubleTy(Context)) { 1045 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 1046 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1047 if (MAI->getData64bitsDirective(AddrSpace)) { 1048 O << MAI->getData64bitsDirective(AddrSpace) << i; 1049 if (VerboseAsm) { 1050 O.PadToColumn(MAI->getCommentColumn()); 1051 O << MAI->getCommentString() << " double " << Val; 1052 } 1053 O << '\n'; 1054 } else if (TD->isBigEndian()) { 1055 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1056 if (VerboseAsm) { 1057 O.PadToColumn(MAI->getCommentColumn()); 1058 O << MAI->getCommentString() 1059 << " most significant word of double " << Val; 1060 } 1061 O << '\n'; 1062 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1063 if (VerboseAsm) { 1064 O.PadToColumn(MAI->getCommentColumn()); 1065 O << MAI->getCommentString() 1066 << " least significant word of double " << Val; 1067 } 1068 O << '\n'; 1069 } else { 1070 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1071 if (VerboseAsm) { 1072 O.PadToColumn(MAI->getCommentColumn()); 1073 O << MAI->getCommentString() 1074 << " least significant word of double " << Val; 1075 } 1076 O << '\n'; 1077 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1078 if (VerboseAsm) { 1079 O.PadToColumn(MAI->getCommentColumn()); 1080 O << MAI->getCommentString() 1081 << " most significant word of double " << Val; 1082 } 1083 O << '\n'; 1084 } 1085 return; 1086 } else if (CFP->getType() == Type::getFloatTy(Context)) { 1087 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1088 O << MAI->getData32bitsDirective(AddrSpace) 1089 << CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1090 if (VerboseAsm) { 1091 O.PadToColumn(MAI->getCommentColumn()); 1092 O << MAI->getCommentString() << " float " << Val; 1093 } 1094 O << '\n'; 1095 return; 1096 } else if (CFP->getType() == Type::getX86_FP80Ty(Context)) { 1097 // all long double variants are printed as hex 1098 // api needed to prevent premature destruction 1099 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1100 const uint64_t *p = api.getRawData(); 1101 // Convert to double so we can print the approximate val as a comment. 1102 APFloat DoubleVal = CFP->getValueAPF(); 1103 bool ignored; 1104 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1105 &ignored); 1106 if (TD->isBigEndian()) { 1107 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1108 if (VerboseAsm) { 1109 O.PadToColumn(MAI->getCommentColumn()); 1110 O << MAI->getCommentString() 1111 << " most significant halfword of x86_fp80 ~" 1112 << DoubleVal.convertToDouble(); 1113 } 1114 O << '\n'; 1115 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1116 if (VerboseAsm) { 1117 O.PadToColumn(MAI->getCommentColumn()); 1118 O << MAI->getCommentString() << " next halfword"; 1119 } 1120 O << '\n'; 1121 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1122 if (VerboseAsm) { 1123 O.PadToColumn(MAI->getCommentColumn()); 1124 O << MAI->getCommentString() << " next halfword"; 1125 } 1126 O << '\n'; 1127 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1128 if (VerboseAsm) { 1129 O.PadToColumn(MAI->getCommentColumn()); 1130 O << MAI->getCommentString() << " next halfword"; 1131 } 1132 O << '\n'; 1133 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1134 if (VerboseAsm) { 1135 O.PadToColumn(MAI->getCommentColumn()); 1136 O << MAI->getCommentString() 1137 << " least significant halfword"; 1138 } 1139 O << '\n'; 1140 } else { 1141 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1142 if (VerboseAsm) { 1143 O.PadToColumn(MAI->getCommentColumn()); 1144 O << MAI->getCommentString() 1145 << " least significant halfword of x86_fp80 ~" 1146 << DoubleVal.convertToDouble(); 1147 } 1148 O << '\n'; 1149 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1150 if (VerboseAsm) { 1151 O.PadToColumn(MAI->getCommentColumn()); 1152 O << MAI->getCommentString() 1153 << " next halfword"; 1154 } 1155 O << '\n'; 1156 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1157 if (VerboseAsm) { 1158 O.PadToColumn(MAI->getCommentColumn()); 1159 O << MAI->getCommentString() 1160 << " next halfword"; 1161 } 1162 O << '\n'; 1163 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1164 if (VerboseAsm) { 1165 O.PadToColumn(MAI->getCommentColumn()); 1166 O << MAI->getCommentString() 1167 << " next halfword"; 1168 } 1169 O << '\n'; 1170 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1171 if (VerboseAsm) { 1172 O.PadToColumn(MAI->getCommentColumn()); 1173 O << MAI->getCommentString() 1174 << " most significant halfword"; 1175 } 1176 O << '\n'; 1177 } 1178 EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) - 1179 TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace); 1180 return; 1181 } else if (CFP->getType() == Type::getPPC_FP128Ty(Context)) { 1182 // all long double variants are printed as hex 1183 // api needed to prevent premature destruction 1184 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1185 const uint64_t *p = api.getRawData(); 1186 if (TD->isBigEndian()) { 1187 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1188 if (VerboseAsm) { 1189 O.PadToColumn(MAI->getCommentColumn()); 1190 O << MAI->getCommentString() 1191 << " most significant word of ppc_fp128"; 1192 } 1193 O << '\n'; 1194 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1195 if (VerboseAsm) { 1196 O.PadToColumn(MAI->getCommentColumn()); 1197 O << MAI->getCommentString() 1198 << " next word"; 1199 } 1200 O << '\n'; 1201 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1202 if (VerboseAsm) { 1203 O.PadToColumn(MAI->getCommentColumn()); 1204 O << MAI->getCommentString() 1205 << " next word"; 1206 } 1207 O << '\n'; 1208 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1209 if (VerboseAsm) { 1210 O.PadToColumn(MAI->getCommentColumn()); 1211 O << MAI->getCommentString() 1212 << " least significant word"; 1213 } 1214 O << '\n'; 1215 } else { 1216 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1217 if (VerboseAsm) { 1218 O.PadToColumn(MAI->getCommentColumn()); 1219 O << MAI->getCommentString() 1220 << " least significant word of ppc_fp128"; 1221 } 1222 O << '\n'; 1223 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1224 if (VerboseAsm) { 1225 O.PadToColumn(MAI->getCommentColumn()); 1226 O << MAI->getCommentString() 1227 << " next word"; 1228 } 1229 O << '\n'; 1230 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1231 if (VerboseAsm) { 1232 O.PadToColumn(MAI->getCommentColumn()); 1233 O << MAI->getCommentString() 1234 << " next word"; 1235 } 1236 O << '\n'; 1237 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1238 if (VerboseAsm) { 1239 O.PadToColumn(MAI->getCommentColumn()); 1240 O << MAI->getCommentString() 1241 << " most significant word"; 1242 } 1243 O << '\n'; 1244 } 1245 return; 1246 } else llvm_unreachable("Floating point constant type not handled"); 1247} 1248 1249void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 1250 unsigned AddrSpace) { 1251 const TargetData *TD = TM.getTargetData(); 1252 unsigned BitWidth = CI->getBitWidth(); 1253 assert(isPowerOf2_32(BitWidth) && 1254 "Non-power-of-2-sized integers not handled!"); 1255 1256 // We don't expect assemblers to support integer data directives 1257 // for more than 64 bits, so we emit the data in at most 64-bit 1258 // quantities at a time. 1259 const uint64_t *RawData = CI->getValue().getRawData(); 1260 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1261 uint64_t Val; 1262 if (TD->isBigEndian()) 1263 Val = RawData[e - i - 1]; 1264 else 1265 Val = RawData[i]; 1266 1267 if (MAI->getData64bitsDirective(AddrSpace)) 1268 O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n'; 1269 else if (TD->isBigEndian()) { 1270 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1271 if (VerboseAsm) { 1272 O.PadToColumn(MAI->getCommentColumn()); 1273 O << MAI->getCommentString() 1274 << " most significant half of i64 " << Val; 1275 } 1276 O << '\n'; 1277 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1278 if (VerboseAsm) { 1279 O.PadToColumn(MAI->getCommentColumn()); 1280 O << MAI->getCommentString() 1281 << " least significant half of i64 " << Val; 1282 } 1283 O << '\n'; 1284 } else { 1285 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1286 if (VerboseAsm) { 1287 O.PadToColumn(MAI->getCommentColumn()); 1288 O << MAI->getCommentString() 1289 << " least significant half of i64 " << Val; 1290 } 1291 O << '\n'; 1292 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1293 if (VerboseAsm) { 1294 O.PadToColumn(MAI->getCommentColumn()); 1295 O << MAI->getCommentString() 1296 << " most significant half of i64 " << Val; 1297 } 1298 O << '\n'; 1299 } 1300 } 1301} 1302 1303/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1304void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1305 const TargetData *TD = TM.getTargetData(); 1306 const Type *type = CV->getType(); 1307 unsigned Size = TD->getTypeAllocSize(type); 1308 1309 if (CV->isNullValue() || isa<UndefValue>(CV)) { 1310 EmitZeros(Size, AddrSpace); 1311 return; 1312 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 1313 EmitGlobalConstantArray(CVA , AddrSpace); 1314 return; 1315 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 1316 EmitGlobalConstantStruct(CVS, AddrSpace); 1317 return; 1318 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1319 EmitGlobalConstantFP(CFP, AddrSpace); 1320 return; 1321 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1322 // Small integers are handled below; large integers are handled here. 1323 if (Size > 4) { 1324 EmitGlobalConstantLargeInt(CI, AddrSpace); 1325 return; 1326 } 1327 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1328 EmitGlobalConstantVector(CP); 1329 return; 1330 } 1331 1332 printDataDirective(type, AddrSpace); 1333 EmitConstantValueOnly(CV); 1334 if (VerboseAsm) { 1335 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1336 SmallString<40> S; 1337 CI->getValue().toStringUnsigned(S, 16); 1338 O.PadToColumn(MAI->getCommentColumn()); 1339 O << MAI->getCommentString() << " 0x" << S.str(); 1340 } 1341 } 1342 O << '\n'; 1343} 1344 1345void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1346 // Target doesn't support this yet! 1347 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1348} 1349 1350/// PrintSpecial - Print information related to the specified machine instr 1351/// that is independent of the operand, and may be independent of the instr 1352/// itself. This can be useful for portably encoding the comment character 1353/// or other bits of target-specific knowledge into the asmstrings. The 1354/// syntax used is ${:comment}. Targets can override this to add support 1355/// for their own strange codes. 1356void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1357 if (!strcmp(Code, "private")) { 1358 O << MAI->getPrivateGlobalPrefix(); 1359 } else if (!strcmp(Code, "comment")) { 1360 if (VerboseAsm) 1361 O << MAI->getCommentString(); 1362 } else if (!strcmp(Code, "uid")) { 1363 // Comparing the address of MI isn't sufficient, because machineinstrs may 1364 // be allocated to the same address across functions. 1365 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1366 1367 // If this is a new LastFn instruction, bump the counter. 1368 if (LastMI != MI || LastFn != ThisF) { 1369 ++Counter; 1370 LastMI = MI; 1371 LastFn = ThisF; 1372 } 1373 O << Counter; 1374 } else { 1375 std::string msg; 1376 raw_string_ostream Msg(msg); 1377 Msg << "Unknown special formatter '" << Code 1378 << "' for machine instr: " << *MI; 1379 llvm_report_error(Msg.str()); 1380 } 1381} 1382 1383/// processDebugLoc - Processes the debug information of each machine 1384/// instruction's DebugLoc. 1385void AsmPrinter::processDebugLoc(DebugLoc DL) { 1386 if (!MAI || !DW) 1387 return; 1388 1389 if (MAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) { 1390 if (!DL.isUnknown()) { 1391 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL); 1392 1393 if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT) 1394 printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col, 1395 DICompileUnit(CurDLT.CompileUnit))); 1396 1397 PrevDLT = CurDLT; 1398 } 1399 } 1400} 1401 1402/// printInlineAsm - This method formats and prints the specified machine 1403/// instruction that is an inline asm. 1404void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1405 unsigned NumOperands = MI->getNumOperands(); 1406 1407 // Count the number of register definitions. 1408 unsigned NumDefs = 0; 1409 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1410 ++NumDefs) 1411 assert(NumDefs != NumOperands-1 && "No asm string?"); 1412 1413 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1414 1415 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1416 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1417 1418 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1419 // These are useful to see where empty asm's wound up. 1420 if (AsmStr[0] == 0) { 1421 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1422 O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n'; 1423 return; 1424 } 1425 1426 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1427 1428 // The variant of the current asmprinter. 1429 int AsmPrinterVariant = MAI->getAssemblerDialect(); 1430 1431 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1432 const char *LastEmitted = AsmStr; // One past the last character emitted. 1433 1434 while (*LastEmitted) { 1435 switch (*LastEmitted) { 1436 default: { 1437 // Not a special case, emit the string section literally. 1438 const char *LiteralEnd = LastEmitted+1; 1439 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1440 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1441 ++LiteralEnd; 1442 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1443 O.write(LastEmitted, LiteralEnd-LastEmitted); 1444 LastEmitted = LiteralEnd; 1445 break; 1446 } 1447 case '\n': 1448 ++LastEmitted; // Consume newline character. 1449 O << '\n'; // Indent code with newline. 1450 break; 1451 case '$': { 1452 ++LastEmitted; // Consume '$' character. 1453 bool Done = true; 1454 1455 // Handle escapes. 1456 switch (*LastEmitted) { 1457 default: Done = false; break; 1458 case '$': // $$ -> $ 1459 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1460 O << '$'; 1461 ++LastEmitted; // Consume second '$' character. 1462 break; 1463 case '(': // $( -> same as GCC's { character. 1464 ++LastEmitted; // Consume '(' character. 1465 if (CurVariant != -1) { 1466 llvm_report_error("Nested variants found in inline asm string: '" 1467 + std::string(AsmStr) + "'"); 1468 } 1469 CurVariant = 0; // We're in the first variant now. 1470 break; 1471 case '|': 1472 ++LastEmitted; // consume '|' character. 1473 if (CurVariant == -1) 1474 O << '|'; // this is gcc's behavior for | outside a variant 1475 else 1476 ++CurVariant; // We're in the next variant. 1477 break; 1478 case ')': // $) -> same as GCC's } char. 1479 ++LastEmitted; // consume ')' character. 1480 if (CurVariant == -1) 1481 O << '}'; // this is gcc's behavior for } outside a variant 1482 else 1483 CurVariant = -1; 1484 break; 1485 } 1486 if (Done) break; 1487 1488 bool HasCurlyBraces = false; 1489 if (*LastEmitted == '{') { // ${variable} 1490 ++LastEmitted; // Consume '{' character. 1491 HasCurlyBraces = true; 1492 } 1493 1494 // If we have ${:foo}, then this is not a real operand reference, it is a 1495 // "magic" string reference, just like in .td files. Arrange to call 1496 // PrintSpecial. 1497 if (HasCurlyBraces && *LastEmitted == ':') { 1498 ++LastEmitted; 1499 const char *StrStart = LastEmitted; 1500 const char *StrEnd = strchr(StrStart, '}'); 1501 if (StrEnd == 0) { 1502 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '" 1503 + std::string(AsmStr) + "'"); 1504 } 1505 1506 std::string Val(StrStart, StrEnd); 1507 PrintSpecial(MI, Val.c_str()); 1508 LastEmitted = StrEnd+1; 1509 break; 1510 } 1511 1512 const char *IDStart = LastEmitted; 1513 char *IDEnd; 1514 errno = 0; 1515 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1516 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1517 llvm_report_error("Bad $ operand number in inline asm string: '" 1518 + std::string(AsmStr) + "'"); 1519 } 1520 LastEmitted = IDEnd; 1521 1522 char Modifier[2] = { 0, 0 }; 1523 1524 if (HasCurlyBraces) { 1525 // If we have curly braces, check for a modifier character. This 1526 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1527 if (*LastEmitted == ':') { 1528 ++LastEmitted; // Consume ':' character. 1529 if (*LastEmitted == 0) { 1530 llvm_report_error("Bad ${:} expression in inline asm string: '" 1531 + std::string(AsmStr) + "'"); 1532 } 1533 1534 Modifier[0] = *LastEmitted; 1535 ++LastEmitted; // Consume modifier character. 1536 } 1537 1538 if (*LastEmitted != '}') { 1539 llvm_report_error("Bad ${} expression in inline asm string: '" 1540 + std::string(AsmStr) + "'"); 1541 } 1542 ++LastEmitted; // Consume '}' character. 1543 } 1544 1545 if ((unsigned)Val >= NumOperands-1) { 1546 llvm_report_error("Invalid $ operand number in inline asm string: '" 1547 + std::string(AsmStr) + "'"); 1548 } 1549 1550 // Okay, we finally have a value number. Ask the target to print this 1551 // operand! 1552 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1553 unsigned OpNo = 1; 1554 1555 bool Error = false; 1556 1557 // Scan to find the machine operand number for the operand. 1558 for (; Val; --Val) { 1559 if (OpNo >= MI->getNumOperands()) break; 1560 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1561 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1562 } 1563 1564 if (OpNo >= MI->getNumOperands()) { 1565 Error = true; 1566 } else { 1567 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1568 ++OpNo; // Skip over the ID number. 1569 1570 if (Modifier[0]=='l') // labels are target independent 1571 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), 1572 false, false, false); 1573 else { 1574 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1575 if ((OpFlags & 7) == 4) { 1576 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1577 Modifier[0] ? Modifier : 0); 1578 } else { 1579 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1580 Modifier[0] ? Modifier : 0); 1581 } 1582 } 1583 } 1584 if (Error) { 1585 std::string msg; 1586 raw_string_ostream Msg(msg); 1587 Msg << "Invalid operand found in inline asm: '" 1588 << AsmStr << "'\n"; 1589 MI->print(Msg); 1590 llvm_report_error(Msg.str()); 1591 } 1592 } 1593 break; 1594 } 1595 } 1596 } 1597 O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n'; 1598} 1599 1600/// printImplicitDef - This method prints the specified machine instruction 1601/// that is an implicit def. 1602void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1603 if (VerboseAsm) { 1604 O.PadToColumn(MAI->getCommentColumn()); 1605 O << MAI->getCommentString() << " implicit-def: " 1606 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; 1607 } 1608} 1609 1610/// printLabel - This method prints a local label used by debug and 1611/// exception handling tables. 1612void AsmPrinter::printLabel(const MachineInstr *MI) const { 1613 printLabel(MI->getOperand(0).getImm()); 1614} 1615 1616void AsmPrinter::printLabel(unsigned Id) const { 1617 O << MAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; 1618} 1619 1620/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1621/// instruction, using the specified assembler variant. Targets should 1622/// overried this to format as appropriate. 1623bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1624 unsigned AsmVariant, const char *ExtraCode) { 1625 // Target doesn't support this yet! 1626 return true; 1627} 1628 1629bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1630 unsigned AsmVariant, 1631 const char *ExtraCode) { 1632 // Target doesn't support this yet! 1633 return true; 1634} 1635 1636/// printBasicBlockLabel - This method prints the label for the specified 1637/// MachineBasicBlock 1638void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, 1639 bool printAlign, 1640 bool printColon, 1641 bool printComment) const { 1642 if (printAlign) { 1643 unsigned Align = MBB->getAlignment(); 1644 if (Align) 1645 EmitAlignment(Log2_32(Align)); 1646 } 1647 1648 O << MAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' 1649 << MBB->getNumber(); 1650 if (printColon) 1651 O << ':'; 1652 if (printComment) { 1653 if (const BasicBlock *BB = MBB->getBasicBlock()) 1654 if (BB->hasName()) { 1655 O.PadToColumn(MAI->getCommentColumn()); 1656 O << MAI->getCommentString() << ' '; 1657 WriteAsOperand(O, BB, /*PrintType=*/false); 1658 } 1659 1660 if (printColon) 1661 EmitComments(*MBB); 1662 } 1663} 1664 1665/// printPICJumpTableSetLabel - This method prints a set label for the 1666/// specified MachineBasicBlock for a jumptable entry. 1667void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1668 const MachineBasicBlock *MBB) const { 1669 if (!MAI->getSetDirective()) 1670 return; 1671 1672 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1673 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1674 printBasicBlockLabel(MBB, false, false, false); 1675 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1676 << '_' << uid << '\n'; 1677} 1678 1679void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1680 const MachineBasicBlock *MBB) const { 1681 if (!MAI->getSetDirective()) 1682 return; 1683 1684 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1685 << getFunctionNumber() << '_' << uid << '_' << uid2 1686 << "_set_" << MBB->getNumber() << ','; 1687 printBasicBlockLabel(MBB, false, false, false); 1688 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1689 << '_' << uid << '_' << uid2 << '\n'; 1690} 1691 1692/// printDataDirective - This method prints the asm directive for the 1693/// specified type. 1694void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { 1695 const TargetData *TD = TM.getTargetData(); 1696 switch (type->getTypeID()) { 1697 case Type::FloatTyID: case Type::DoubleTyID: 1698 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1699 assert(0 && "Should have already output floating point constant."); 1700 default: 1701 assert(0 && "Can't handle printing this type of thing"); 1702 case Type::IntegerTyID: { 1703 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1704 if (BitWidth <= 8) 1705 O << MAI->getData8bitsDirective(AddrSpace); 1706 else if (BitWidth <= 16) 1707 O << MAI->getData16bitsDirective(AddrSpace); 1708 else if (BitWidth <= 32) 1709 O << MAI->getData32bitsDirective(AddrSpace); 1710 else if (BitWidth <= 64) { 1711 assert(MAI->getData64bitsDirective(AddrSpace) && 1712 "Target cannot handle 64-bit constant exprs!"); 1713 O << MAI->getData64bitsDirective(AddrSpace); 1714 } else { 1715 llvm_unreachable("Target cannot handle given data directive width!"); 1716 } 1717 break; 1718 } 1719 case Type::PointerTyID: 1720 if (TD->getPointerSize() == 8) { 1721 assert(MAI->getData64bitsDirective(AddrSpace) && 1722 "Target cannot handle 64-bit pointer exprs!"); 1723 O << MAI->getData64bitsDirective(AddrSpace); 1724 } else if (TD->getPointerSize() == 2) { 1725 O << MAI->getData16bitsDirective(AddrSpace); 1726 } else if (TD->getPointerSize() == 1) { 1727 O << MAI->getData8bitsDirective(AddrSpace); 1728 } else { 1729 O << MAI->getData32bitsDirective(AddrSpace); 1730 } 1731 break; 1732 } 1733} 1734 1735void AsmPrinter::printVisibility(const std::string& Name, 1736 unsigned Visibility) const { 1737 if (Visibility == GlobalValue::HiddenVisibility) { 1738 if (const char *Directive = MAI->getHiddenDirective()) 1739 O << Directive << Name << '\n'; 1740 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1741 if (const char *Directive = MAI->getProtectedDirective()) 1742 O << Directive << Name << '\n'; 1743 } 1744} 1745 1746void AsmPrinter::printOffset(int64_t Offset) const { 1747 if (Offset > 0) 1748 O << '+' << Offset; 1749 else if (Offset < 0) 1750 O << Offset; 1751} 1752 1753void AsmPrinter::printMCInst(const MCInst *MI) { 1754 llvm_unreachable("MCInst printing unavailable on this target!"); 1755} 1756 1757GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1758 if (!S->usesMetadata()) 1759 return 0; 1760 1761 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1762 if (GCPI != GCMetadataPrinters.end()) 1763 return GCPI->second; 1764 1765 const char *Name = S->getName().c_str(); 1766 1767 for (GCMetadataPrinterRegistry::iterator 1768 I = GCMetadataPrinterRegistry::begin(), 1769 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1770 if (strcmp(Name, I->getName()) == 0) { 1771 GCMetadataPrinter *GMP = I->instantiate(); 1772 GMP->S = S; 1773 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1774 return GMP; 1775 } 1776 1777 errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1778 llvm_unreachable(0); 1779} 1780 1781/// EmitComments - Pretty-print comments for instructions 1782void AsmPrinter::EmitComments(const MachineInstr &MI) const { 1783 if (!VerboseAsm || 1784 MI.getDebugLoc().isUnknown()) 1785 return; 1786 1787 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); 1788 1789 // Print source line info. 1790 O.PadToColumn(MAI->getCommentColumn()); 1791 O << MAI->getCommentString() << " SrcLine "; 1792 if (DLT.CompileUnit) { 1793 std::string Str; 1794 DICompileUnit CU(DLT.CompileUnit); 1795 O << CU.getFilename(Str) << " "; 1796 } 1797 O << DLT.Line; 1798 if (DLT.Col != 0) 1799 O << ":" << DLT.Col; 1800} 1801 1802/// EmitComments - Pretty-print comments for instructions 1803void AsmPrinter::EmitComments(const MCInst &MI) const { 1804 if (!VerboseAsm || 1805 MI.getDebugLoc().isUnknown()) 1806 return; 1807 1808 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); 1809 1810 // Print source line info 1811 O.PadToColumn(MAI->getCommentColumn()); 1812 O << MAI->getCommentString() << " SrcLine "; 1813 if (DLT.CompileUnit) { 1814 std::string Str; 1815 DICompileUnit CU(DLT.CompileUnit); 1816 O << CU.getFilename(Str) << " "; 1817 } 1818 O << DLT.Line; 1819 if (DLT.Col != 0) 1820 O << ":" << DLT.Col; 1821} 1822 1823/// PrintChildLoopComment - Print comments about child loops within 1824/// the loop for this basic block, with nesting. 1825/// 1826static void PrintChildLoopComment(formatted_raw_ostream &O, 1827 const MachineLoop *loop, 1828 const MCAsmInfo *MAI, 1829 int FunctionNumber) { 1830 // Add child loop information 1831 for(MachineLoop::iterator cl = loop->begin(), 1832 clend = loop->end(); 1833 cl != clend; 1834 ++cl) { 1835 MachineBasicBlock *Header = (*cl)->getHeader(); 1836 assert(Header && "No header for loop"); 1837 1838 O << '\n'; 1839 O.PadToColumn(MAI->getCommentColumn()); 1840 1841 O << MAI->getCommentString(); 1842 O.indent(((*cl)->getLoopDepth()-1)*2) 1843 << " Child Loop BB" << FunctionNumber << "_" 1844 << Header->getNumber() << " Depth " << (*cl)->getLoopDepth(); 1845 1846 PrintChildLoopComment(O, *cl, MAI, FunctionNumber); 1847 } 1848} 1849 1850/// EmitComments - Pretty-print comments for basic blocks 1851void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const 1852{ 1853 if (VerboseAsm) { 1854 // Add loop depth information 1855 const MachineLoop *loop = LI->getLoopFor(&MBB); 1856 1857 if (loop) { 1858 // Print a newline after bb# annotation. 1859 O << "\n"; 1860 O.PadToColumn(MAI->getCommentColumn()); 1861 O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth() 1862 << '\n'; 1863 1864 O.PadToColumn(MAI->getCommentColumn()); 1865 1866 MachineBasicBlock *Header = loop->getHeader(); 1867 assert(Header && "No header for loop"); 1868 1869 if (Header == &MBB) { 1870 O << MAI->getCommentString() << " Loop Header"; 1871 PrintChildLoopComment(O, loop, MAI, getFunctionNumber()); 1872 } 1873 else { 1874 O << MAI->getCommentString() << " Loop Header is BB" 1875 << getFunctionNumber() << "_" << loop->getHeader()->getNumber(); 1876 } 1877 1878 if (loop->empty()) { 1879 O << '\n'; 1880 O.PadToColumn(MAI->getCommentColumn()); 1881 O << MAI->getCommentString() << " Inner Loop"; 1882 } 1883 1884 // Add parent loop information 1885 for (const MachineLoop *CurLoop = loop->getParentLoop(); 1886 CurLoop; 1887 CurLoop = CurLoop->getParentLoop()) { 1888 MachineBasicBlock *Header = CurLoop->getHeader(); 1889 assert(Header && "No header for loop"); 1890 1891 O << '\n'; 1892 O.PadToColumn(MAI->getCommentColumn()); 1893 O << MAI->getCommentString(); 1894 O.indent((CurLoop->getLoopDepth()-1)*2) 1895 << " Inside Loop BB" << getFunctionNumber() << "_" 1896 << Header->getNumber() << " Depth " << CurLoop->getLoopDepth(); 1897 } 1898 } 1899 } 1900} 1901