AsmPrinter.cpp revision 14b0a2b13705d47916b6ea7e2d7c0db898a0fb81
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/Support/Mangler.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Target/TargetAsmInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34#include <cerrno>
35using namespace llvm;
36
37char AsmPrinter::ID = 0;
38AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
39                       const TargetAsmInfo *T)
40  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
41    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
42    IsInTextSection(false)
43{}
44
45AsmPrinter::~AsmPrinter() {
46  for (gcp_iterator I = GCMetadataPrinters.begin(),
47                    E = GCMetadataPrinters.end(); I != E; ++I)
48    delete I->second;
49}
50
51std::string AsmPrinter::getSectionForFunction(const Function &F) const {
52  return TAI->getTextSection();
53}
54
55
56/// SwitchToTextSection - Switch to the specified text section of the executable
57/// if we are not already in it!
58///
59void AsmPrinter::SwitchToTextSection(const char *NewSection,
60                                     const GlobalValue *GV) {
61  std::string NS;
62  if (GV && GV->hasSection())
63    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
64  else
65    NS = NewSection;
66
67  // If we're already in this section, we're done.
68  if (CurrentSection == NS) return;
69
70  // Close the current section, if applicable.
71  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
72    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
73
74  CurrentSection = NS;
75
76  if (!CurrentSection.empty())
77    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
78
79  IsInTextSection = true;
80}
81
82/// SwitchToDataSection - Switch to the specified data section of the executable
83/// if we are not already in it!
84///
85void AsmPrinter::SwitchToDataSection(const char *NewSection,
86                                     const GlobalValue *GV) {
87  std::string NS;
88  if (GV && GV->hasSection())
89    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
90  else
91    NS = NewSection;
92
93  // If we're already in this section, we're done.
94  if (CurrentSection == NS) return;
95
96  // Close the current section, if applicable.
97  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
98    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
99
100  CurrentSection = NS;
101
102  if (!CurrentSection.empty())
103    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
104
105  IsInTextSection = false;
106}
107
108
109void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
110  MachineFunctionPass::getAnalysisUsage(AU);
111  AU.addRequired<GCModuleInfo>();
112}
113
114bool AsmPrinter::doInitialization(Module &M) {
115  Mang = new Mangler(M, TAI->getGlobalPrefix());
116
117  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
118  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
119  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
120    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
121      MP->beginAssembly(O, *this, *TAI);
122
123  if (!M.getModuleInlineAsm().empty())
124    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
125      << M.getModuleInlineAsm()
126      << '\n' << TAI->getCommentString()
127      << " End of file scope inline assembly\n";
128
129  SwitchToDataSection("");   // Reset back to no section.
130
131  MMI = getAnalysisToUpdate<MachineModuleInfo>();
132  if (MMI) MMI->AnalyzeModule(M);
133
134  return false;
135}
136
137bool AsmPrinter::doFinalization(Module &M) {
138  if (TAI->getWeakRefDirective()) {
139    if (!ExtWeakSymbols.empty())
140      SwitchToDataSection("");
141
142    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
143         e = ExtWeakSymbols.end(); i != e; ++i) {
144      const GlobalValue *GV = *i;
145      std::string Name = Mang->getValueName(GV);
146      O << TAI->getWeakRefDirective() << Name << '\n';
147    }
148  }
149
150  if (TAI->getSetDirective()) {
151    if (!M.alias_empty())
152      SwitchToTextSection(TAI->getTextSection());
153
154    O << '\n';
155    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
156         I!=E; ++I) {
157      std::string Name = Mang->getValueName(I);
158      std::string Target;
159
160      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
161      Target = Mang->getValueName(GV);
162
163      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
164        O << "\t.globl\t" << Name << '\n';
165      else if (I->hasWeakLinkage())
166        O << TAI->getWeakRefDirective() << Name << '\n';
167      else if (!I->hasInternalLinkage())
168        assert(0 && "Invalid alias linkage");
169
170      if (I->hasHiddenVisibility()) {
171        if (const char *Directive = TAI->getHiddenDirective())
172          O << Directive << Name << '\n';
173      } else if (I->hasProtectedVisibility()) {
174        if (const char *Directive = TAI->getProtectedDirective())
175          O << Directive << Name << '\n';
176      }
177
178      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
179
180      // If the aliasee has external weak linkage it can be referenced only by
181      // alias itself. In this case it can be not in ExtWeakSymbols list. Emit
182      // weak reference in such case.
183      if (GV->hasExternalWeakLinkage()) {
184        if (TAI->getWeakRefDirective())
185          O << TAI->getWeakRefDirective() << Target << '\n';
186        else
187          O << "\t.globl\t" << Target << '\n';
188      }
189    }
190  }
191
192  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
193  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
194  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
195    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
196      MP->finishAssembly(O, *this, *TAI);
197
198  // If we don't have any trampolines, then we don't require stack memory
199  // to be executable. Some targets have a directive to declare this.
200  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
201  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
202    if (TAI->getNonexecutableStackDirective())
203      O << TAI->getNonexecutableStackDirective() << '\n';
204
205  delete Mang; Mang = 0;
206  return false;
207}
208
209std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
210  assert(MF && "No machine function?");
211  std::string Name = MF->getFunction()->getName();
212  if (Name.empty())
213    Name = Mang->getValueName(MF->getFunction());
214  return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix());
215}
216
217void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
218  // What's my mangled name?
219  CurrentFnName = Mang->getValueName(MF.getFunction());
220  IncrementFunctionNumber();
221}
222
223/// EmitConstantPool - Print to the current output stream assembly
224/// representations of the constants in the constant pool MCP. This is
225/// used to print out constants which have been "spilled to memory" by
226/// the code generator.
227///
228void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
229  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
230  if (CP.empty()) return;
231
232  // Some targets require 4-, 8-, and 16- byte constant literals to be placed
233  // in special sections.
234  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > FourByteCPs;
235  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > EightByteCPs;
236  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > SixteenByteCPs;
237  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > OtherCPs;
238  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > TargetCPs;
239  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
240    MachineConstantPoolEntry CPE = CP[i];
241    const Type *Ty = CPE.getType();
242    if (TAI->getFourByteConstantSection() &&
243        TM.getTargetData()->getABITypeSize(Ty) == 4)
244      FourByteCPs.push_back(std::make_pair(CPE, i));
245    else if (TAI->getEightByteConstantSection() &&
246             TM.getTargetData()->getABITypeSize(Ty) == 8)
247      EightByteCPs.push_back(std::make_pair(CPE, i));
248    else if (TAI->getSixteenByteConstantSection() &&
249             TM.getTargetData()->getABITypeSize(Ty) == 16)
250      SixteenByteCPs.push_back(std::make_pair(CPE, i));
251    else
252      OtherCPs.push_back(std::make_pair(CPE, i));
253  }
254
255  unsigned Alignment = MCP->getConstantPoolAlignment();
256  EmitConstantPool(Alignment, TAI->getFourByteConstantSection(), FourByteCPs);
257  EmitConstantPool(Alignment, TAI->getEightByteConstantSection(), EightByteCPs);
258  EmitConstantPool(Alignment, TAI->getSixteenByteConstantSection(),
259                   SixteenByteCPs);
260  EmitConstantPool(Alignment, TAI->getConstantPoolSection(), OtherCPs);
261}
262
263void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section,
264               std::vector<std::pair<MachineConstantPoolEntry,unsigned> > &CP) {
265  if (CP.empty()) return;
266
267  SwitchToDataSection(Section);
268  EmitAlignment(Alignment);
269  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
270    O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
271      << CP[i].second << ":\t\t\t\t\t";
272    // O << TAI->getCommentString() << ' ' <<
273    //      WriteTypeSymbolic(O, CP[i].first.getType(), 0);
274    O << '\n';
275    if (CP[i].first.isMachineConstantPoolEntry())
276      EmitMachineConstantPoolValue(CP[i].first.Val.MachineCPVal);
277     else
278      EmitGlobalConstant(CP[i].first.Val.ConstVal);
279    if (i != e-1) {
280      const Type *Ty = CP[i].first.getType();
281      unsigned EntSize =
282        TM.getTargetData()->getABITypeSize(Ty);
283      unsigned ValEnd = CP[i].first.getOffset() + EntSize;
284      // Emit inter-object padding for alignment.
285      EmitZeros(CP[i+1].first.getOffset()-ValEnd);
286    }
287  }
288}
289
290/// EmitJumpTableInfo - Print assembly representations of the jump tables used
291/// by the current function to the current output stream.
292///
293void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
294                                   MachineFunction &MF) {
295  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
296  if (JT.empty()) return;
297
298  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
299
300  // Pick the directive to use to print the jump table entries, and switch to
301  // the appropriate section.
302  TargetLowering *LoweringInfo = TM.getTargetLowering();
303
304  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
305  const Function *F = MF.getFunction();
306  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
307  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
308     !JumpTableDataSection ||
309      SectionFlags & SectionFlags::Linkonce) {
310    // In PIC mode, we need to emit the jump table to the same section as the
311    // function body itself, otherwise the label differences won't make sense.
312    // We should also do if the section name is NULL or function is declared in
313    // discardable section.
314    SwitchToTextSection(getSectionForFunction(*F).c_str(), F);
315  } else {
316    SwitchToDataSection(JumpTableDataSection);
317  }
318
319  EmitAlignment(Log2_32(MJTI->getAlignment()));
320
321  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
322    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
323
324    // If this jump table was deleted, ignore it.
325    if (JTBBs.empty()) continue;
326
327    // For PIC codegen, if possible we want to use the SetDirective to reduce
328    // the number of relocations the assembler will generate for the jump table.
329    // Set directives are all printed before the jump table itself.
330    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
331    if (TAI->getSetDirective() && IsPic)
332      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
333        if (EmittedSets.insert(JTBBs[ii]))
334          printPICJumpTableSetLabel(i, JTBBs[ii]);
335
336    // On some targets (e.g. darwin) we want to emit two consequtive labels
337    // before each jump table.  The first label is never referenced, but tells
338    // the assembler and linker the extents of the jump table object.  The
339    // second label is actually referenced by the code.
340    if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
341      O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
342
343    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
344      << '_' << i << ":\n";
345
346    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
347      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
348      O << '\n';
349    }
350  }
351}
352
353void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
354                                        const MachineBasicBlock *MBB,
355                                        unsigned uid)  const {
356  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
357
358  // Use JumpTableDirective otherwise honor the entry size from the jump table
359  // info.
360  const char *JTEntryDirective = TAI->getJumpTableDirective();
361  bool HadJTEntryDirective = JTEntryDirective != NULL;
362  if (!HadJTEntryDirective) {
363    JTEntryDirective = MJTI->getEntrySize() == 4 ?
364      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
365  }
366
367  O << JTEntryDirective << ' ';
368
369  // If we have emitted set directives for the jump table entries, print
370  // them rather than the entries themselves.  If we're emitting PIC, then
371  // emit the table entries as differences between two text section labels.
372  // If we're emitting non-PIC code, then emit the entries as direct
373  // references to the target basic blocks.
374  if (IsPic) {
375    if (TAI->getSetDirective()) {
376      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
377        << '_' << uid << "_set_" << MBB->getNumber();
378    } else {
379      printBasicBlockLabel(MBB, false, false, false);
380      // If the arch uses custom Jump Table directives, don't calc relative to
381      // JT
382      if (!HadJTEntryDirective)
383        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
384          << getFunctionNumber() << '_' << uid;
385    }
386  } else {
387    printBasicBlockLabel(MBB, false, false, false);
388  }
389}
390
391
392/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
393/// special global used by LLVM.  If so, emit it and return true, otherwise
394/// do nothing and return false.
395bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
396  if (GV->getName() == "llvm.used") {
397    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
398      EmitLLVMUsedList(GV->getInitializer());
399    return true;
400  }
401
402  // Ignore debug and non-emitted data.
403  if (GV->getSection() == "llvm.metadata") return true;
404
405  if (!GV->hasAppendingLinkage()) return false;
406
407  assert(GV->hasInitializer() && "Not a special LLVM global!");
408
409  const TargetData *TD = TM.getTargetData();
410  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
411  if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
412    SwitchToDataSection(TAI->getStaticCtorsSection());
413    EmitAlignment(Align, 0);
414    EmitXXStructorList(GV->getInitializer());
415    return true;
416  }
417
418  if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
419    SwitchToDataSection(TAI->getStaticDtorsSection());
420    EmitAlignment(Align, 0);
421    EmitXXStructorList(GV->getInitializer());
422    return true;
423  }
424
425  return false;
426}
427
428/// findGlobalValue - if CV is an expression equivalent to a single
429/// global value, return that value.
430const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
431  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
432    return GV;
433  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
434    const TargetData *TD = TM.getTargetData();
435    unsigned Opcode = CE->getOpcode();
436    switch (Opcode) {
437    case Instruction::GetElementPtr: {
438      const Constant *ptrVal = CE->getOperand(0);
439      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
440      if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
441        return 0;
442      return findGlobalValue(ptrVal);
443    }
444    case Instruction::BitCast:
445      return findGlobalValue(CE->getOperand(0));
446    default:
447      return 0;
448    }
449  }
450  return 0;
451}
452
453/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
454/// global in the specified llvm.used list as being used with this directive.
455/// Non-globals (i.e. internal linkage) should not be emitted.
456void AsmPrinter::EmitLLVMUsedList(Constant *List) {
457  const char *Directive = TAI->getUsedDirective();
458
459  // Should be an array of 'sbyte*'.
460  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
461  if (InitList == 0) return;
462
463  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
464    const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
465    if (GV && (!GV->hasInternalLinkage() || isa<Function>(GV))) {
466      O << Directive;
467      EmitConstantValueOnly(InitList->getOperand(i));
468      O << '\n';
469    }
470  }
471}
472
473/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
474/// function pointers, ignoring the init priority.
475void AsmPrinter::EmitXXStructorList(Constant *List) {
476  // Should be an array of '{ int, void ()* }' structs.  The first value is the
477  // init priority, which we ignore.
478  if (!isa<ConstantArray>(List)) return;
479  ConstantArray *InitList = cast<ConstantArray>(List);
480  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
481    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
482      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
483
484      if (CS->getOperand(1)->isNullValue())
485        return;  // Found a null terminator, exit printing.
486      // Emit the function pointer.
487      EmitGlobalConstant(CS->getOperand(1));
488    }
489}
490
491/// getGlobalLinkName - Returns the asm/link name of of the specified
492/// global variable.  Should be overridden by each target asm printer to
493/// generate the appropriate value.
494const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
495  std::string LinkName;
496
497  if (isa<Function>(GV)) {
498    LinkName += TAI->getFunctionAddrPrefix();
499    LinkName += Mang->getValueName(GV);
500    LinkName += TAI->getFunctionAddrSuffix();
501  } else {
502    LinkName += TAI->getGlobalVarAddrPrefix();
503    LinkName += Mang->getValueName(GV);
504    LinkName += TAI->getGlobalVarAddrSuffix();
505  }
506
507  return LinkName;
508}
509
510/// EmitExternalGlobal - Emit the external reference to a global variable.
511/// Should be overridden if an indirect reference should be used.
512void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
513  O << getGlobalLinkName(GV);
514}
515
516
517
518//===----------------------------------------------------------------------===//
519/// LEB 128 number encoding.
520
521/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
522/// representing an unsigned leb128 value.
523void AsmPrinter::PrintULEB128(unsigned Value) const {
524  do {
525    unsigned Byte = Value & 0x7f;
526    Value >>= 7;
527    if (Value) Byte |= 0x80;
528    O << "0x" <<  utohexstr(Byte);
529    if (Value) O << ", ";
530  } while (Value);
531}
532
533/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
534/// representing a signed leb128 value.
535void AsmPrinter::PrintSLEB128(int Value) const {
536  int Sign = Value >> (8 * sizeof(Value) - 1);
537  bool IsMore;
538
539  do {
540    unsigned Byte = Value & 0x7f;
541    Value >>= 7;
542    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
543    if (IsMore) Byte |= 0x80;
544    O << "0x" << utohexstr(Byte);
545    if (IsMore) O << ", ";
546  } while (IsMore);
547}
548
549//===--------------------------------------------------------------------===//
550// Emission and print routines
551//
552
553/// PrintHex - Print a value as a hexidecimal value.
554///
555void AsmPrinter::PrintHex(int Value) const {
556  O << "0x" << utohexstr(static_cast<unsigned>(Value));
557}
558
559/// EOL - Print a newline character to asm stream.  If a comment is present
560/// then it will be printed first.  Comments should not contain '\n'.
561void AsmPrinter::EOL() const {
562  O << '\n';
563}
564
565void AsmPrinter::EOL(const std::string &Comment) const {
566  if (VerboseAsm && !Comment.empty()) {
567    O << '\t'
568      << TAI->getCommentString()
569      << ' '
570      << Comment;
571  }
572  O << '\n';
573}
574
575void AsmPrinter::EOL(const char* Comment) const {
576  if (VerboseAsm && *Comment) {
577    O << '\t'
578      << TAI->getCommentString()
579      << ' '
580      << Comment;
581  }
582  O << '\n';
583}
584
585/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
586/// unsigned leb128 value.
587void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
588  if (TAI->hasLEB128()) {
589    O << "\t.uleb128\t"
590      << Value;
591  } else {
592    O << TAI->getData8bitsDirective();
593    PrintULEB128(Value);
594  }
595}
596
597/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
598/// signed leb128 value.
599void AsmPrinter::EmitSLEB128Bytes(int Value) const {
600  if (TAI->hasLEB128()) {
601    O << "\t.sleb128\t"
602      << Value;
603  } else {
604    O << TAI->getData8bitsDirective();
605    PrintSLEB128(Value);
606  }
607}
608
609/// EmitInt8 - Emit a byte directive and value.
610///
611void AsmPrinter::EmitInt8(int Value) const {
612  O << TAI->getData8bitsDirective();
613  PrintHex(Value & 0xFF);
614}
615
616/// EmitInt16 - Emit a short directive and value.
617///
618void AsmPrinter::EmitInt16(int Value) const {
619  O << TAI->getData16bitsDirective();
620  PrintHex(Value & 0xFFFF);
621}
622
623/// EmitInt32 - Emit a long directive and value.
624///
625void AsmPrinter::EmitInt32(int Value) const {
626  O << TAI->getData32bitsDirective();
627  PrintHex(Value);
628}
629
630/// EmitInt64 - Emit a long long directive and value.
631///
632void AsmPrinter::EmitInt64(uint64_t Value) const {
633  if (TAI->getData64bitsDirective()) {
634    O << TAI->getData64bitsDirective();
635    PrintHex(Value);
636  } else {
637    if (TM.getTargetData()->isBigEndian()) {
638      EmitInt32(unsigned(Value >> 32)); O << '\n';
639      EmitInt32(unsigned(Value));
640    } else {
641      EmitInt32(unsigned(Value)); O << '\n';
642      EmitInt32(unsigned(Value >> 32));
643    }
644  }
645}
646
647/// toOctal - Convert the low order bits of X into an octal digit.
648///
649static inline char toOctal(int X) {
650  return (X&7)+'0';
651}
652
653/// printStringChar - Print a char, escaped if necessary.
654///
655static void printStringChar(raw_ostream &O, char C) {
656  if (C == '"') {
657    O << "\\\"";
658  } else if (C == '\\') {
659    O << "\\\\";
660  } else if (isprint(C)) {
661    O << C;
662  } else {
663    switch(C) {
664    case '\b': O << "\\b"; break;
665    case '\f': O << "\\f"; break;
666    case '\n': O << "\\n"; break;
667    case '\r': O << "\\r"; break;
668    case '\t': O << "\\t"; break;
669    default:
670      O << '\\';
671      O << toOctal(C >> 6);
672      O << toOctal(C >> 3);
673      O << toOctal(C >> 0);
674      break;
675    }
676  }
677}
678
679/// EmitString - Emit a string with quotes and a null terminator.
680/// Special characters are emitted properly.
681/// \literal (Eg. '\t') \endliteral
682void AsmPrinter::EmitString(const std::string &String) const {
683  const char* AscizDirective = TAI->getAscizDirective();
684  if (AscizDirective)
685    O << AscizDirective;
686  else
687    O << TAI->getAsciiDirective();
688  O << '\"';
689  for (unsigned i = 0, N = String.size(); i < N; ++i) {
690    unsigned char C = String[i];
691    printStringChar(O, C);
692  }
693  if (AscizDirective)
694    O << '\"';
695  else
696    O << "\\0\"";
697}
698
699
700/// EmitFile - Emit a .file directive.
701void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
702  O << "\t.file\t" << Number << " \"";
703  for (unsigned i = 0, N = Name.size(); i < N; ++i) {
704    unsigned char C = Name[i];
705    printStringChar(O, C);
706  }
707  O << '\"';
708}
709
710
711//===----------------------------------------------------------------------===//
712
713// EmitAlignment - Emit an alignment directive to the specified power of
714// two boundary.  For example, if you pass in 3 here, you will get an 8
715// byte alignment.  If a global value is specified, and if that global has
716// an explicit alignment requested, it will unconditionally override the
717// alignment request.  However, if ForcedAlignBits is specified, this value
718// has final say: the ultimate alignment will be the max of ForcedAlignBits
719// and the alignment computed with NumBits and the global.
720//
721// The algorithm is:
722//     Align = NumBits;
723//     if (GV && GV->hasalignment) Align = GV->getalignment();
724//     Align = std::max(Align, ForcedAlignBits);
725//
726void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
727                               unsigned ForcedAlignBits,
728                               bool UseFillExpr) const {
729  if (GV && GV->getAlignment())
730    NumBits = Log2_32(GV->getAlignment());
731  NumBits = std::max(NumBits, ForcedAlignBits);
732
733  if (NumBits == 0) return;   // No need to emit alignment.
734  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
735  O << TAI->getAlignDirective() << NumBits;
736
737  unsigned FillValue = TAI->getTextAlignFillValue();
738  UseFillExpr &= IsInTextSection && FillValue;
739  if (UseFillExpr) O << ",0x" << utohexstr(FillValue);
740  O << '\n';
741}
742
743
744/// EmitZeros - Emit a block of zeros.
745///
746void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
747  if (NumZeros) {
748    if (TAI->getZeroDirective()) {
749      O << TAI->getZeroDirective() << NumZeros;
750      if (TAI->getZeroDirectiveSuffix())
751        O << TAI->getZeroDirectiveSuffix();
752      O << '\n';
753    } else {
754      for (; NumZeros; --NumZeros)
755        O << TAI->getData8bitsDirective() << "0\n";
756    }
757  }
758}
759
760// Print out the specified constant, without a storage class.  Only the
761// constants valid in constant expressions can occur here.
762void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
763  if (CV->isNullValue() || isa<UndefValue>(CV))
764    O << '0';
765  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
766    O << CI->getZExtValue();
767  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
768    // This is a constant address for a global variable or function. Use the
769    // name of the variable or function as the address value, possibly
770    // decorating it with GlobalVarAddrPrefix/Suffix or
771    // FunctionAddrPrefix/Suffix (these all default to "" )
772    if (isa<Function>(GV)) {
773      O << TAI->getFunctionAddrPrefix()
774        << Mang->getValueName(GV)
775        << TAI->getFunctionAddrSuffix();
776    } else {
777      O << TAI->getGlobalVarAddrPrefix()
778        << Mang->getValueName(GV)
779        << TAI->getGlobalVarAddrSuffix();
780    }
781  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
782    const TargetData *TD = TM.getTargetData();
783    unsigned Opcode = CE->getOpcode();
784    switch (Opcode) {
785    case Instruction::GetElementPtr: {
786      // generate a symbolic expression for the byte address
787      const Constant *ptrVal = CE->getOperand(0);
788      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
789      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
790                                                idxVec.size())) {
791        if (Offset)
792          O << '(';
793        EmitConstantValueOnly(ptrVal);
794        if (Offset > 0)
795          O << ") + " << Offset;
796        else if (Offset < 0)
797          O << ") - " << -Offset;
798      } else {
799        EmitConstantValueOnly(ptrVal);
800      }
801      break;
802    }
803    case Instruction::Trunc:
804    case Instruction::ZExt:
805    case Instruction::SExt:
806    case Instruction::FPTrunc:
807    case Instruction::FPExt:
808    case Instruction::UIToFP:
809    case Instruction::SIToFP:
810    case Instruction::FPToUI:
811    case Instruction::FPToSI:
812      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
813      break;
814    case Instruction::BitCast:
815      return EmitConstantValueOnly(CE->getOperand(0));
816
817    case Instruction::IntToPtr: {
818      // Handle casts to pointers by changing them into casts to the appropriate
819      // integer type.  This promotes constant folding and simplifies this code.
820      Constant *Op = CE->getOperand(0);
821      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
822      return EmitConstantValueOnly(Op);
823    }
824
825
826    case Instruction::PtrToInt: {
827      // Support only foldable casts to/from pointers that can be eliminated by
828      // changing the pointer to the appropriately sized integer type.
829      Constant *Op = CE->getOperand(0);
830      const Type *Ty = CE->getType();
831
832      // We can emit the pointer value into this slot if the slot is an
833      // integer slot greater or equal to the size of the pointer.
834      if (TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType()))
835        return EmitConstantValueOnly(Op);
836
837      O << "((";
838      EmitConstantValueOnly(Op);
839      APInt ptrMask = APInt::getAllOnesValue(TD->getABITypeSizeInBits(Ty));
840
841      SmallString<40> S;
842      ptrMask.toStringUnsigned(S);
843      O << ") & " << S.c_str() << ')';
844      break;
845    }
846    case Instruction::Add:
847    case Instruction::Sub:
848    case Instruction::And:
849    case Instruction::Or:
850    case Instruction::Xor:
851      O << '(';
852      EmitConstantValueOnly(CE->getOperand(0));
853      O << ')';
854      switch (Opcode) {
855      case Instruction::Add:
856       O << " + ";
857       break;
858      case Instruction::Sub:
859       O << " - ";
860       break;
861      case Instruction::And:
862       O << " & ";
863       break;
864      case Instruction::Or:
865       O << " | ";
866       break;
867      case Instruction::Xor:
868       O << " ^ ";
869       break;
870      default:
871       break;
872      }
873      O << '(';
874      EmitConstantValueOnly(CE->getOperand(1));
875      O << ')';
876      break;
877    default:
878      assert(0 && "Unsupported operator!");
879    }
880  } else {
881    assert(0 && "Unknown constant value!");
882  }
883}
884
885/// printAsCString - Print the specified array as a C compatible string, only if
886/// the predicate isString is true.
887///
888static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
889                           unsigned LastElt) {
890  assert(CVA->isString() && "Array is not string compatible!");
891
892  O << '\"';
893  for (unsigned i = 0; i != LastElt; ++i) {
894    unsigned char C =
895        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
896    printStringChar(O, C);
897  }
898  O << '\"';
899}
900
901/// EmitString - Emit a zero-byte-terminated string constant.
902///
903void AsmPrinter::EmitString(const ConstantArray *CVA) const {
904  unsigned NumElts = CVA->getNumOperands();
905  if (TAI->getAscizDirective() && NumElts &&
906      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
907    O << TAI->getAscizDirective();
908    printAsCString(O, CVA, NumElts-1);
909  } else {
910    O << TAI->getAsciiDirective();
911    printAsCString(O, CVA, NumElts);
912  }
913  O << '\n';
914}
915
916/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
917void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
918  const TargetData *TD = TM.getTargetData();
919  unsigned Size = TD->getABITypeSize(CV->getType());
920
921  if (CV->isNullValue() || isa<UndefValue>(CV)) {
922    EmitZeros(Size);
923    return;
924  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
925    if (CVA->isString()) {
926      EmitString(CVA);
927    } else { // Not a string.  Print the values in successive locations
928      for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
929        EmitGlobalConstant(CVA->getOperand(i));
930    }
931    return;
932  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
933    // Print the fields in successive locations. Pad to align if needed!
934    const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
935    uint64_t sizeSoFar = 0;
936    for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
937      const Constant* field = CVS->getOperand(i);
938
939      // Check if padding is needed and insert one or more 0s.
940      uint64_t fieldSize = TD->getABITypeSize(field->getType());
941      uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
942                          - cvsLayout->getElementOffset(i)) - fieldSize;
943      sizeSoFar += fieldSize + padSize;
944
945      // Now print the actual field value.
946      EmitGlobalConstant(field);
947
948      // Insert padding - this may include padding to increase the size of the
949      // current field up to the ABI size (if the struct is not packed) as well
950      // as padding to ensure that the next field starts at the right offset.
951      EmitZeros(padSize);
952    }
953    assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
954           "Layout of constant struct may be incorrect!");
955    return;
956  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
957    // FP Constants are printed as integer constants to avoid losing
958    // precision...
959    if (CFP->getType() == Type::DoubleTy) {
960      double Val = CFP->getValueAPF().convertToDouble();  // for comment only
961      uint64_t i = CFP->getValueAPF().convertToAPInt().getZExtValue();
962      if (TAI->getData64bitsDirective())
963        O << TAI->getData64bitsDirective() << i << '\t'
964          << TAI->getCommentString() << " double value: " << Val << '\n';
965      else if (TD->isBigEndian()) {
966        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
967          << '\t' << TAI->getCommentString()
968          << " double most significant word " << Val << '\n';
969        O << TAI->getData32bitsDirective() << unsigned(i)
970          << '\t' << TAI->getCommentString()
971          << " double least significant word " << Val << '\n';
972      } else {
973        O << TAI->getData32bitsDirective() << unsigned(i)
974          << '\t' << TAI->getCommentString()
975          << " double least significant word " << Val << '\n';
976        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
977          << '\t' << TAI->getCommentString()
978          << " double most significant word " << Val << '\n';
979      }
980      return;
981    } else if (CFP->getType() == Type::FloatTy) {
982      float Val = CFP->getValueAPF().convertToFloat();  // for comment only
983      O << TAI->getData32bitsDirective()
984        << CFP->getValueAPF().convertToAPInt().getZExtValue()
985        << '\t' << TAI->getCommentString() << " float " << Val << '\n';
986      return;
987    } else if (CFP->getType() == Type::X86_FP80Ty) {
988      // all long double variants are printed as hex
989      // api needed to prevent premature destruction
990      APInt api = CFP->getValueAPF().convertToAPInt();
991      const uint64_t *p = api.getRawData();
992      APFloat DoubleVal = CFP->getValueAPF();
993      DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
994      if (TD->isBigEndian()) {
995        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
996          << '\t' << TAI->getCommentString()
997          << " long double most significant halfword of ~"
998          << DoubleVal.convertToDouble() << '\n';
999        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1000          << '\t' << TAI->getCommentString()
1001          << " long double next halfword\n";
1002        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1003          << '\t' << TAI->getCommentString()
1004          << " long double next halfword\n";
1005        O << TAI->getData16bitsDirective() << uint16_t(p[0])
1006          << '\t' << TAI->getCommentString()
1007          << " long double next halfword\n";
1008        O << TAI->getData16bitsDirective() << uint16_t(p[1])
1009          << '\t' << TAI->getCommentString()
1010          << " long double least significant halfword\n";
1011       } else {
1012        O << TAI->getData16bitsDirective() << uint16_t(p[1])
1013          << '\t' << TAI->getCommentString()
1014          << " long double least significant halfword of ~"
1015          << DoubleVal.convertToDouble() << '\n';
1016        O << TAI->getData16bitsDirective() << uint16_t(p[0])
1017          << '\t' << TAI->getCommentString()
1018          << " long double next halfword\n";
1019        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1020          << '\t' << TAI->getCommentString()
1021          << " long double next halfword\n";
1022        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1023          << '\t' << TAI->getCommentString()
1024          << " long double next halfword\n";
1025        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1026          << '\t' << TAI->getCommentString()
1027          << " long double most significant halfword\n";
1028      }
1029      EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty));
1030      return;
1031    } else if (CFP->getType() == Type::PPC_FP128Ty) {
1032      // all long double variants are printed as hex
1033      // api needed to prevent premature destruction
1034      APInt api = CFP->getValueAPF().convertToAPInt();
1035      const uint64_t *p = api.getRawData();
1036      if (TD->isBigEndian()) {
1037        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1038          << '\t' << TAI->getCommentString()
1039          << " long double most significant word\n";
1040        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1041          << '\t' << TAI->getCommentString()
1042          << " long double next word\n";
1043        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1044          << '\t' << TAI->getCommentString()
1045          << " long double next word\n";
1046        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1047          << '\t' << TAI->getCommentString()
1048          << " long double least significant word\n";
1049       } else {
1050        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1051          << '\t' << TAI->getCommentString()
1052          << " long double least significant word\n";
1053        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1054          << '\t' << TAI->getCommentString()
1055          << " long double next word\n";
1056        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1057          << '\t' << TAI->getCommentString()
1058          << " long double next word\n";
1059        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1060          << '\t' << TAI->getCommentString()
1061          << " long double most significant word\n";
1062      }
1063      return;
1064    } else assert(0 && "Floating point constant type not handled");
1065  } else if (CV->getType()->isInteger() &&
1066             cast<IntegerType>(CV->getType())->getBitWidth() >= 64) {
1067    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1068      unsigned BitWidth = CI->getBitWidth();
1069      assert(isPowerOf2_32(BitWidth) &&
1070             "Non-power-of-2-sized integers not handled!");
1071
1072      // We don't expect assemblers to support integer data directives
1073      // for more than 64 bits, so we emit the data in at most 64-bit
1074      // quantities at a time.
1075      const uint64_t *RawData = CI->getValue().getRawData();
1076      for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1077        uint64_t Val;
1078        if (TD->isBigEndian())
1079          Val = RawData[e - i - 1];
1080        else
1081          Val = RawData[i];
1082
1083        if (TAI->getData64bitsDirective())
1084          O << TAI->getData64bitsDirective() << Val << '\n';
1085        else if (TD->isBigEndian()) {
1086          O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1087            << '\t' << TAI->getCommentString()
1088            << " Double-word most significant word " << Val << '\n';
1089          O << TAI->getData32bitsDirective() << unsigned(Val)
1090            << '\t' << TAI->getCommentString()
1091            << " Double-word least significant word " << Val << '\n';
1092        } else {
1093          O << TAI->getData32bitsDirective() << unsigned(Val)
1094            << '\t' << TAI->getCommentString()
1095            << " Double-word least significant word " << Val << '\n';
1096          O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1097            << '\t' << TAI->getCommentString()
1098            << " Double-word most significant word " << Val << '\n';
1099        }
1100      }
1101      return;
1102    }
1103  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1104    const VectorType *PTy = CP->getType();
1105
1106    for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
1107      EmitGlobalConstant(CP->getOperand(I));
1108
1109    return;
1110  }
1111
1112  const Type *type = CV->getType();
1113  printDataDirective(type);
1114  EmitConstantValueOnly(CV);
1115  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1116    SmallString<40> S;
1117    CI->getValue().toStringUnsigned(S, 16);
1118    O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1119  }
1120  O << '\n';
1121}
1122
1123void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1124  // Target doesn't support this yet!
1125  abort();
1126}
1127
1128/// PrintSpecial - Print information related to the specified machine instr
1129/// that is independent of the operand, and may be independent of the instr
1130/// itself.  This can be useful for portably encoding the comment character
1131/// or other bits of target-specific knowledge into the asmstrings.  The
1132/// syntax used is ${:comment}.  Targets can override this to add support
1133/// for their own strange codes.
1134void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
1135  if (!strcmp(Code, "private")) {
1136    O << TAI->getPrivateGlobalPrefix();
1137  } else if (!strcmp(Code, "comment")) {
1138    O << TAI->getCommentString();
1139  } else if (!strcmp(Code, "uid")) {
1140    // Assign a unique ID to this machine instruction.
1141    static const MachineInstr *LastMI = 0;
1142    static const Function *F = 0;
1143    static unsigned Counter = 0U-1;
1144
1145    // Comparing the address of MI isn't sufficient, because machineinstrs may
1146    // be allocated to the same address across functions.
1147    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1148
1149    // If this is a new machine instruction, bump the counter.
1150    if (LastMI != MI || F != ThisF) {
1151      ++Counter;
1152      LastMI = MI;
1153      F = ThisF;
1154    }
1155    O << Counter;
1156  } else {
1157    cerr << "Unknown special formatter '" << Code
1158         << "' for machine instr: " << *MI;
1159    exit(1);
1160  }
1161}
1162
1163
1164/// printInlineAsm - This method formats and prints the specified machine
1165/// instruction that is an inline asm.
1166void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1167  unsigned NumOperands = MI->getNumOperands();
1168
1169  // Count the number of register definitions.
1170  unsigned NumDefs = 0;
1171  for (; MI->getOperand(NumDefs).isRegister() && MI->getOperand(NumDefs).isDef();
1172       ++NumDefs)
1173    assert(NumDefs != NumOperands-1 && "No asm string?");
1174
1175  assert(MI->getOperand(NumDefs).isExternalSymbol() && "No asm string?");
1176
1177  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1178  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1179
1180  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1181  // These are useful to see where empty asm's wound up.
1182  if (AsmStr[0] == 0) {
1183    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1184    return;
1185  }
1186
1187  O << TAI->getInlineAsmStart() << "\n\t";
1188
1189  // The variant of the current asmprinter.
1190  int AsmPrinterVariant = TAI->getAssemblerDialect();
1191
1192  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1193  const char *LastEmitted = AsmStr; // One past the last character emitted.
1194
1195  while (*LastEmitted) {
1196    switch (*LastEmitted) {
1197    default: {
1198      // Not a special case, emit the string section literally.
1199      const char *LiteralEnd = LastEmitted+1;
1200      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1201             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1202        ++LiteralEnd;
1203      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1204        O.write(LastEmitted, LiteralEnd-LastEmitted);
1205      LastEmitted = LiteralEnd;
1206      break;
1207    }
1208    case '\n':
1209      ++LastEmitted;   // Consume newline character.
1210      O << '\n';       // Indent code with newline.
1211      break;
1212    case '$': {
1213      ++LastEmitted;   // Consume '$' character.
1214      bool Done = true;
1215
1216      // Handle escapes.
1217      switch (*LastEmitted) {
1218      default: Done = false; break;
1219      case '$':     // $$ -> $
1220        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1221          O << '$';
1222        ++LastEmitted;  // Consume second '$' character.
1223        break;
1224      case '(':             // $( -> same as GCC's { character.
1225        ++LastEmitted;      // Consume '(' character.
1226        if (CurVariant != -1) {
1227          cerr << "Nested variants found in inline asm string: '"
1228               << AsmStr << "'\n";
1229          exit(1);
1230        }
1231        CurVariant = 0;     // We're in the first variant now.
1232        break;
1233      case '|':
1234        ++LastEmitted;  // consume '|' character.
1235        if (CurVariant == -1) {
1236          cerr << "Found '|' character outside of variant in inline asm "
1237               << "string: '" << AsmStr << "'\n";
1238          exit(1);
1239        }
1240        ++CurVariant;   // We're in the next variant.
1241        break;
1242      case ')':         // $) -> same as GCC's } char.
1243        ++LastEmitted;  // consume ')' character.
1244        if (CurVariant == -1) {
1245          cerr << "Found '}' character outside of variant in inline asm "
1246               << "string: '" << AsmStr << "'\n";
1247          exit(1);
1248        }
1249        CurVariant = -1;
1250        break;
1251      }
1252      if (Done) break;
1253
1254      bool HasCurlyBraces = false;
1255      if (*LastEmitted == '{') {     // ${variable}
1256        ++LastEmitted;               // Consume '{' character.
1257        HasCurlyBraces = true;
1258      }
1259
1260      const char *IDStart = LastEmitted;
1261      char *IDEnd;
1262      errno = 0;
1263      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1264      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1265        cerr << "Bad $ operand number in inline asm string: '"
1266             << AsmStr << "'\n";
1267        exit(1);
1268      }
1269      LastEmitted = IDEnd;
1270
1271      char Modifier[2] = { 0, 0 };
1272
1273      if (HasCurlyBraces) {
1274        // If we have curly braces, check for a modifier character.  This
1275        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1276        if (*LastEmitted == ':') {
1277          ++LastEmitted;    // Consume ':' character.
1278          if (*LastEmitted == 0) {
1279            cerr << "Bad ${:} expression in inline asm string: '"
1280                 << AsmStr << "'\n";
1281            exit(1);
1282          }
1283
1284          Modifier[0] = *LastEmitted;
1285          ++LastEmitted;    // Consume modifier character.
1286        }
1287
1288        if (*LastEmitted != '}') {
1289          cerr << "Bad ${} expression in inline asm string: '"
1290               << AsmStr << "'\n";
1291          exit(1);
1292        }
1293        ++LastEmitted;    // Consume '}' character.
1294      }
1295
1296      if ((unsigned)Val >= NumOperands-1) {
1297        cerr << "Invalid $ operand number in inline asm string: '"
1298             << AsmStr << "'\n";
1299        exit(1);
1300      }
1301
1302      // Okay, we finally have a value number.  Ask the target to print this
1303      // operand!
1304      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1305        unsigned OpNo = 1;
1306
1307        bool Error = false;
1308
1309        // Scan to find the machine operand number for the operand.
1310        for (; Val; --Val) {
1311          if (OpNo >= MI->getNumOperands()) break;
1312          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1313          OpNo += (OpFlags >> 3) + 1;
1314        }
1315
1316        if (OpNo >= MI->getNumOperands()) {
1317          Error = true;
1318        } else {
1319          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1320          ++OpNo;  // Skip over the ID number.
1321
1322          if (Modifier[0]=='l')  // labels are target independent
1323            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1324                                 false, false, false);
1325          else {
1326            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1327            if ((OpFlags & 7) == 4 /*ADDR MODE*/) {
1328              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1329                                                Modifier[0] ? Modifier : 0);
1330            } else {
1331              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1332                                          Modifier[0] ? Modifier : 0);
1333            }
1334          }
1335        }
1336        if (Error) {
1337          cerr << "Invalid operand found in inline asm: '"
1338               << AsmStr << "'\n";
1339          MI->dump();
1340          exit(1);
1341        }
1342      }
1343      break;
1344    }
1345    }
1346  }
1347  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1348}
1349
1350/// printImplicitDef - This method prints the specified machine instruction
1351/// that is an implicit def.
1352void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1353  O << '\t' << TAI->getCommentString() << " implicit-def: "
1354    << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1355}
1356
1357/// printLabel - This method prints a local label used by debug and
1358/// exception handling tables.
1359void AsmPrinter::printLabel(const MachineInstr *MI) const {
1360  printLabel(MI->getOperand(0).getImm());
1361}
1362
1363void AsmPrinter::printLabel(unsigned Id) const {
1364  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1365}
1366
1367/// printDeclare - This method prints a local variable declaration used by
1368/// debug tables.
1369/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1370/// entry into dwarf table.
1371void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1372  int FI = MI->getOperand(0).getIndex();
1373  GlobalValue *GV = MI->getOperand(1).getGlobal();
1374  MMI->RecordVariable(GV, FI);
1375}
1376
1377/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1378/// instruction, using the specified assembler variant.  Targets should
1379/// overried this to format as appropriate.
1380bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1381                                 unsigned AsmVariant, const char *ExtraCode) {
1382  // Target doesn't support this yet!
1383  return true;
1384}
1385
1386bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1387                                       unsigned AsmVariant,
1388                                       const char *ExtraCode) {
1389  // Target doesn't support this yet!
1390  return true;
1391}
1392
1393/// printBasicBlockLabel - This method prints the label for the specified
1394/// MachineBasicBlock
1395void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1396                                      bool printAlign,
1397                                      bool printColon,
1398                                      bool printComment) const {
1399  if (printAlign) {
1400    unsigned Align = MBB->getAlignment();
1401    if (Align)
1402      EmitAlignment(Log2_32(Align));
1403  }
1404
1405  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1406    << MBB->getNumber();
1407  if (printColon)
1408    O << ':';
1409  if (printComment && MBB->getBasicBlock())
1410    O << '\t' << TAI->getCommentString() << ' '
1411      << MBB->getBasicBlock()->getNameStart();
1412}
1413
1414/// printPICJumpTableSetLabel - This method prints a set label for the
1415/// specified MachineBasicBlock for a jumptable entry.
1416void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1417                                           const MachineBasicBlock *MBB) const {
1418  if (!TAI->getSetDirective())
1419    return;
1420
1421  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1422    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1423  printBasicBlockLabel(MBB, false, false, false);
1424  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1425    << '_' << uid << '\n';
1426}
1427
1428void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1429                                           const MachineBasicBlock *MBB) const {
1430  if (!TAI->getSetDirective())
1431    return;
1432
1433  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1434    << getFunctionNumber() << '_' << uid << '_' << uid2
1435    << "_set_" << MBB->getNumber() << ',';
1436  printBasicBlockLabel(MBB, false, false, false);
1437  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1438    << '_' << uid << '_' << uid2 << '\n';
1439}
1440
1441/// printDataDirective - This method prints the asm directive for the
1442/// specified type.
1443void AsmPrinter::printDataDirective(const Type *type) {
1444  const TargetData *TD = TM.getTargetData();
1445  switch (type->getTypeID()) {
1446  case Type::IntegerTyID: {
1447    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1448    if (BitWidth <= 8)
1449      O << TAI->getData8bitsDirective();
1450    else if (BitWidth <= 16)
1451      O << TAI->getData16bitsDirective();
1452    else if (BitWidth <= 32)
1453      O << TAI->getData32bitsDirective();
1454    else if (BitWidth <= 64) {
1455      assert(TAI->getData64bitsDirective() &&
1456             "Target cannot handle 64-bit constant exprs!");
1457      O << TAI->getData64bitsDirective();
1458    } else {
1459      assert(0 && "Target cannot handle given data directive width!");
1460    }
1461    break;
1462  }
1463  case Type::PointerTyID:
1464    if (TD->getPointerSize() == 8) {
1465      assert(TAI->getData64bitsDirective() &&
1466             "Target cannot handle 64-bit pointer exprs!");
1467      O << TAI->getData64bitsDirective();
1468    } else {
1469      O << TAI->getData32bitsDirective();
1470    }
1471    break;
1472  case Type::FloatTyID: case Type::DoubleTyID:
1473  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1474    assert (0 && "Should have already output floating point constant.");
1475  default:
1476    assert (0 && "Can't handle printing this type of thing");
1477    break;
1478  }
1479}
1480
1481void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1482                                   const char *Prefix) {
1483  if (Name[0]=='\"')
1484    O << '\"';
1485  O << TAI->getPrivateGlobalPrefix();
1486  if (Prefix) O << Prefix;
1487  if (Name[0]=='\"')
1488    O << '\"';
1489  if (Name[0]=='\"')
1490    O << Name[1];
1491  else
1492    O << Name;
1493  O << Suffix;
1494  if (Name[0]=='\"')
1495    O << '\"';
1496}
1497
1498void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1499  printSuffixedName(Name.c_str(), Suffix);
1500}
1501
1502void AsmPrinter::printVisibility(const std::string& Name,
1503                                 unsigned Visibility) const {
1504  if (Visibility == GlobalValue::HiddenVisibility) {
1505    if (const char *Directive = TAI->getHiddenDirective())
1506      O << Directive << Name << '\n';
1507  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1508    if (const char *Directive = TAI->getProtectedDirective())
1509      O << Directive << Name << '\n';
1510  }
1511}
1512
1513GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1514  if (!S->usesMetadata())
1515    return 0;
1516
1517  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1518  if (GCPI != GCMetadataPrinters.end())
1519    return GCPI->second;
1520
1521  const char *Name = S->getName().c_str();
1522
1523  for (GCMetadataPrinterRegistry::iterator
1524         I = GCMetadataPrinterRegistry::begin(),
1525         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1526    if (strcmp(Name, I->getName()) == 0) {
1527      GCMetadataPrinter *GMP = I->instantiate();
1528      GMP->S = S;
1529      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1530      return GMP;
1531    }
1532
1533  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1534  abort();
1535}
1536