AsmPrinter.cpp revision 1a45484151060a9c0190e5d1674709eab72cbd14
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineJumpTableInfo.h" 22#include "llvm/CodeGen/MachineModuleInfo.h" 23#include "llvm/CodeGen/DwarfWriter.h" 24#include "llvm/Analysis/DebugInfo.h" 25#include "llvm/Support/CommandLine.h" 26#include "llvm/Support/Mangler.h" 27#include "llvm/Support/raw_ostream.h" 28#include "llvm/Target/TargetAsmInfo.h" 29#include "llvm/Target/TargetData.h" 30#include "llvm/Target/TargetLowering.h" 31#include "llvm/Target/TargetOptions.h" 32#include "llvm/Target/TargetRegisterInfo.h" 33#include "llvm/ADT/SmallPtrSet.h" 34#include "llvm/ADT/SmallString.h" 35#include "llvm/ADT/StringExtras.h" 36#include <cerrno> 37using namespace llvm; 38 39static cl::opt<cl::boolOrDefault> 40AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 41 cl::init(cl::BOU_UNSET)); 42 43char AsmPrinter::ID = 0; 44AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm, 45 const TargetAsmInfo *T, CodeGenOpt::Level OL, bool VDef) 46 : MachineFunctionPass(&ID), FunctionNumber(0), OptLevel(OL), O(o), 47 TM(tm), TAI(T), TRI(tm.getRegisterInfo()), 48 IsInTextSection(false) 49{ 50 switch (AsmVerbose) { 51 case cl::BOU_UNSET: VerboseAsm = VDef; break; 52 case cl::BOU_TRUE: VerboseAsm = true; break; 53 case cl::BOU_FALSE: VerboseAsm = false; break; 54 } 55} 56 57AsmPrinter::~AsmPrinter() { 58 for (gcp_iterator I = GCMetadataPrinters.begin(), 59 E = GCMetadataPrinters.end(); I != E; ++I) 60 delete I->second; 61} 62 63/// SwitchToTextSection - Switch to the specified text section of the executable 64/// if we are not already in it! 65/// 66void AsmPrinter::SwitchToTextSection(const char *NewSection, 67 const GlobalValue *GV) { 68 std::string NS; 69 if (GV && GV->hasSection()) 70 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 71 else 72 NS = NewSection; 73 74 // If we're already in this section, we're done. 75 if (CurrentSection == NS) return; 76 77 // Close the current section, if applicable. 78 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 79 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 80 81 CurrentSection = NS; 82 83 if (!CurrentSection.empty()) 84 O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n'; 85 86 IsInTextSection = true; 87} 88 89/// SwitchToDataSection - Switch to the specified data section of the executable 90/// if we are not already in it! 91/// 92void AsmPrinter::SwitchToDataSection(const char *NewSection, 93 const GlobalValue *GV) { 94 std::string NS; 95 if (GV && GV->hasSection()) 96 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 97 else 98 NS = NewSection; 99 100 // If we're already in this section, we're done. 101 if (CurrentSection == NS) return; 102 103 // Close the current section, if applicable. 104 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 105 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 106 107 CurrentSection = NS; 108 109 if (!CurrentSection.empty()) 110 O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n'; 111 112 IsInTextSection = false; 113} 114 115/// SwitchToSection - Switch to the specified section of the executable if we 116/// are not already in it! 117void AsmPrinter::SwitchToSection(const Section* NS) { 118 const std::string& NewSection = NS->getName(); 119 120 // If we're already in this section, we're done. 121 if (CurrentSection == NewSection) return; 122 123 // Close the current section, if applicable. 124 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 125 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 126 127 // FIXME: Make CurrentSection a Section* in the future 128 CurrentSection = NewSection; 129 CurrentSection_ = NS; 130 131 if (!CurrentSection.empty()) { 132 // If section is named we need to switch into it via special '.section' 133 // directive and also append funky flags. Otherwise - section name is just 134 // some magic assembler directive. 135 if (NS->isNamed()) 136 O << TAI->getSwitchToSectionDirective() 137 << CurrentSection 138 << TAI->getSectionFlags(NS->getFlags()); 139 else 140 O << CurrentSection; 141 O << TAI->getDataSectionStartSuffix() << '\n'; 142 } 143 144 IsInTextSection = (NS->getFlags() & SectionFlags::Code); 145} 146 147void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 148 MachineFunctionPass::getAnalysisUsage(AU); 149 AU.addRequired<GCModuleInfo>(); 150} 151 152bool AsmPrinter::doInitialization(Module &M) { 153 Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix()); 154 155 if (TAI->doesAllowQuotesInName()) 156 Mang->setUseQuotes(true); 157 158 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 159 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 160 161 if (TAI->hasSingleParameterDotFile()) { 162 /* Very minimal debug info. It is ignored if we emit actual 163 debug info. If we don't, this at helps the user find where 164 a function came from. */ 165 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 166 } 167 168 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 169 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 170 MP->beginAssembly(O, *this, *TAI); 171 172 if (!M.getModuleInlineAsm().empty()) 173 O << TAI->getCommentString() << " Start of file scope inline assembly\n" 174 << M.getModuleInlineAsm() 175 << '\n' << TAI->getCommentString() 176 << " End of file scope inline assembly\n"; 177 178 SwitchToDataSection(""); // Reset back to no section. 179 180 if (TAI->doesSupportDebugInformation() 181 || TAI->doesSupportExceptionHandling()) { 182 MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 183 if (MMI) { 184 MMI->AnalyzeModule(M); 185 DW = getAnalysisIfAvailable<DwarfWriter>(); 186 if (DW) 187 DW->BeginModule(&M, MMI, O, this, TAI); 188 } 189 } 190 191 return false; 192} 193 194bool AsmPrinter::doFinalization(Module &M) { 195 if (TAI->getWeakRefDirective()) { 196 if (!ExtWeakSymbols.empty()) 197 SwitchToDataSection(""); 198 199 for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(), 200 e = ExtWeakSymbols.end(); i != e; ++i) 201 O << TAI->getWeakRefDirective() << Mang->getValueName(*i) << '\n'; 202 } 203 204 if (TAI->getSetDirective()) { 205 if (!M.alias_empty()) 206 SwitchToSection(TAI->getTextSection()); 207 208 O << '\n'; 209 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 210 I!=E; ++I) { 211 std::string Name = Mang->getValueName(I); 212 std::string Target; 213 214 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 215 Target = Mang->getValueName(GV); 216 217 if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) 218 O << "\t.globl\t" << Name << '\n'; 219 else if (I->hasWeakLinkage()) 220 O << TAI->getWeakRefDirective() << Name << '\n'; 221 else if (!I->hasLocalLinkage()) 222 assert(0 && "Invalid alias linkage"); 223 224 printVisibility(Name, I->getVisibility()); 225 226 O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 227 } 228 } 229 230 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 231 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 232 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 233 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 234 MP->finishAssembly(O, *this, *TAI); 235 236 // If we don't have any trampolines, then we don't require stack memory 237 // to be executable. Some targets have a directive to declare this. 238 Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 239 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 240 if (TAI->getNonexecutableStackDirective()) 241 O << TAI->getNonexecutableStackDirective() << '\n'; 242 243 delete Mang; Mang = 0; 244 return false; 245} 246 247const std::string & 248AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF, 249 std::string &Name) const { 250 assert(MF && "No machine function?"); 251 Name = MF->getFunction()->getName(); 252 if (Name.empty()) 253 Name = Mang->getValueName(MF->getFunction()); 254 Name = Mang->makeNameProper(TAI->getEHGlobalPrefix() + 255 Name + ".eh", TAI->getGlobalPrefix()); 256 return Name; 257} 258 259void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 260 // What's my mangled name? 261 CurrentFnName = Mang->getValueName(MF.getFunction()); 262 IncrementFunctionNumber(); 263} 264 265namespace { 266 // SectionCPs - Keep track the alignment, constpool entries per Section. 267 struct SectionCPs { 268 const Section *S; 269 unsigned Alignment; 270 SmallVector<unsigned, 4> CPEs; 271 SectionCPs(const Section *s, unsigned a) : S(s), Alignment(a) {}; 272 }; 273} 274 275/// EmitConstantPool - Print to the current output stream assembly 276/// representations of the constants in the constant pool MCP. This is 277/// used to print out constants which have been "spilled to memory" by 278/// the code generator. 279/// 280void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 281 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 282 if (CP.empty()) return; 283 284 // Calculate sections for constant pool entries. We collect entries to go into 285 // the same section together to reduce amount of section switch statements. 286 SmallVector<SectionCPs, 4> CPSections; 287 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 288 MachineConstantPoolEntry CPE = CP[i]; 289 unsigned Align = CPE.getAlignment(); 290 const Section* S = TAI->SelectSectionForMachineConst(CPE.getType()); 291 // The number of sections are small, just do a linear search from the 292 // last section to the first. 293 bool Found = false; 294 unsigned SecIdx = CPSections.size(); 295 while (SecIdx != 0) { 296 if (CPSections[--SecIdx].S == S) { 297 Found = true; 298 break; 299 } 300 } 301 if (!Found) { 302 SecIdx = CPSections.size(); 303 CPSections.push_back(SectionCPs(S, Align)); 304 } 305 306 if (Align > CPSections[SecIdx].Alignment) 307 CPSections[SecIdx].Alignment = Align; 308 CPSections[SecIdx].CPEs.push_back(i); 309 } 310 311 // Now print stuff into the calculated sections. 312 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 313 SwitchToSection(CPSections[i].S); 314 EmitAlignment(Log2_32(CPSections[i].Alignment)); 315 316 unsigned Offset = 0; 317 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 318 unsigned CPI = CPSections[i].CPEs[j]; 319 MachineConstantPoolEntry CPE = CP[CPI]; 320 321 // Emit inter-object padding for alignment. 322 unsigned AlignMask = CPE.getAlignment() - 1; 323 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 324 EmitZeros(NewOffset - Offset); 325 326 const Type *Ty = CPE.getType(); 327 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 328 329 O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 330 << CPI << ":\t\t\t\t\t"; 331 if (VerboseAsm) { 332 O << TAI->getCommentString() << ' '; 333 WriteTypeSymbolic(O, CPE.getType(), 0); 334 } 335 O << '\n'; 336 if (CPE.isMachineConstantPoolEntry()) 337 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 338 else 339 EmitGlobalConstant(CPE.Val.ConstVal); 340 } 341 } 342} 343 344/// EmitJumpTableInfo - Print assembly representations of the jump tables used 345/// by the current function to the current output stream. 346/// 347void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 348 MachineFunction &MF) { 349 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 350 if (JT.empty()) return; 351 352 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 353 354 // Pick the directive to use to print the jump table entries, and switch to 355 // the appropriate section. 356 TargetLowering *LoweringInfo = TM.getTargetLowering(); 357 358 const char* JumpTableDataSection = TAI->getJumpTableDataSection(); 359 const Function *F = MF.getFunction(); 360 unsigned SectionFlags = TAI->SectionFlagsForGlobal(F); 361 bool JTInDiffSection = false; 362 if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) || 363 !JumpTableDataSection || 364 SectionFlags & SectionFlags::Linkonce) { 365 // In PIC mode, we need to emit the jump table to the same section as the 366 // function body itself, otherwise the label differences won't make sense. 367 // We should also do if the section name is NULL or function is declared in 368 // discardable section. 369 SwitchToSection(TAI->SectionForGlobal(F)); 370 } else { 371 SwitchToDataSection(JumpTableDataSection); 372 JTInDiffSection = true; 373 } 374 375 EmitAlignment(Log2_32(MJTI->getAlignment())); 376 377 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 378 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 379 380 // If this jump table was deleted, ignore it. 381 if (JTBBs.empty()) continue; 382 383 // For PIC codegen, if possible we want to use the SetDirective to reduce 384 // the number of relocations the assembler will generate for the jump table. 385 // Set directives are all printed before the jump table itself. 386 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 387 if (TAI->getSetDirective() && IsPic) 388 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 389 if (EmittedSets.insert(JTBBs[ii])) 390 printPICJumpTableSetLabel(i, JTBBs[ii]); 391 392 // On some targets (e.g. darwin) we want to emit two consequtive labels 393 // before each jump table. The first label is never referenced, but tells 394 // the assembler and linker the extents of the jump table object. The 395 // second label is actually referenced by the code. 396 if (JTInDiffSection) { 397 if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) 398 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 399 } 400 401 O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 402 << '_' << i << ":\n"; 403 404 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 405 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 406 O << '\n'; 407 } 408 } 409} 410 411void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 412 const MachineBasicBlock *MBB, 413 unsigned uid) const { 414 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 415 416 // Use JumpTableDirective otherwise honor the entry size from the jump table 417 // info. 418 const char *JTEntryDirective = TAI->getJumpTableDirective(); 419 bool HadJTEntryDirective = JTEntryDirective != NULL; 420 if (!HadJTEntryDirective) { 421 JTEntryDirective = MJTI->getEntrySize() == 4 ? 422 TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); 423 } 424 425 O << JTEntryDirective << ' '; 426 427 // If we have emitted set directives for the jump table entries, print 428 // them rather than the entries themselves. If we're emitting PIC, then 429 // emit the table entries as differences between two text section labels. 430 // If we're emitting non-PIC code, then emit the entries as direct 431 // references to the target basic blocks. 432 if (IsPic) { 433 if (TAI->getSetDirective()) { 434 O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() 435 << '_' << uid << "_set_" << MBB->getNumber(); 436 } else { 437 printBasicBlockLabel(MBB, false, false, false); 438 // If the arch uses custom Jump Table directives, don't calc relative to 439 // JT 440 if (!HadJTEntryDirective) 441 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" 442 << getFunctionNumber() << '_' << uid; 443 } 444 } else { 445 printBasicBlockLabel(MBB, false, false, false); 446 } 447} 448 449 450/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 451/// special global used by LLVM. If so, emit it and return true, otherwise 452/// do nothing and return false. 453bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 454 if (GV->getName() == "llvm.used") { 455 if (TAI->getUsedDirective() != 0) // No need to emit this at all. 456 EmitLLVMUsedList(GV->getInitializer()); 457 return true; 458 } 459 460 // Ignore debug and non-emitted data. 461 if (GV->getSection() == "llvm.metadata" || 462 GV->hasAvailableExternallyLinkage()) 463 return true; 464 465 if (!GV->hasAppendingLinkage()) return false; 466 467 assert(GV->hasInitializer() && "Not a special LLVM global!"); 468 469 const TargetData *TD = TM.getTargetData(); 470 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 471 if (GV->getName() == "llvm.global_ctors") { 472 SwitchToDataSection(TAI->getStaticCtorsSection()); 473 EmitAlignment(Align, 0); 474 EmitXXStructorList(GV->getInitializer()); 475 return true; 476 } 477 478 if (GV->getName() == "llvm.global_dtors") { 479 SwitchToDataSection(TAI->getStaticDtorsSection()); 480 EmitAlignment(Align, 0); 481 EmitXXStructorList(GV->getInitializer()); 482 return true; 483 } 484 485 return false; 486} 487 488/// findGlobalValue - if CV is an expression equivalent to a single 489/// global value, return that value. 490const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) { 491 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 492 return GV; 493 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 494 const TargetData *TD = TM.getTargetData(); 495 unsigned Opcode = CE->getOpcode(); 496 switch (Opcode) { 497 case Instruction::GetElementPtr: { 498 const Constant *ptrVal = CE->getOperand(0); 499 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 500 if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size())) 501 return 0; 502 return findGlobalValue(ptrVal); 503 } 504 case Instruction::BitCast: 505 return findGlobalValue(CE->getOperand(0)); 506 default: 507 return 0; 508 } 509 } 510 return 0; 511} 512 513/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each 514/// global in the specified llvm.used list for which emitUsedDirectiveFor 515/// is true, as being used with this directive. 516 517void AsmPrinter::EmitLLVMUsedList(Constant *List) { 518 const char *Directive = TAI->getUsedDirective(); 519 520 // Should be an array of 'i8*'. 521 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 522 if (InitList == 0) return; 523 524 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 525 const GlobalValue *GV = findGlobalValue(InitList->getOperand(i)); 526 if (TAI->emitUsedDirectiveFor(GV, Mang)) { 527 O << Directive; 528 EmitConstantValueOnly(InitList->getOperand(i)); 529 O << '\n'; 530 } 531 } 532} 533 534/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 535/// function pointers, ignoring the init priority. 536void AsmPrinter::EmitXXStructorList(Constant *List) { 537 // Should be an array of '{ int, void ()* }' structs. The first value is the 538 // init priority, which we ignore. 539 if (!isa<ConstantArray>(List)) return; 540 ConstantArray *InitList = cast<ConstantArray>(List); 541 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 542 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 543 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 544 545 if (CS->getOperand(1)->isNullValue()) 546 return; // Found a null terminator, exit printing. 547 // Emit the function pointer. 548 EmitGlobalConstant(CS->getOperand(1)); 549 } 550} 551 552/// getGlobalLinkName - Returns the asm/link name of of the specified 553/// global variable. Should be overridden by each target asm printer to 554/// generate the appropriate value. 555const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV, 556 std::string &LinkName) const { 557 if (isa<Function>(GV)) { 558 LinkName += TAI->getFunctionAddrPrefix(); 559 LinkName += Mang->getValueName(GV); 560 LinkName += TAI->getFunctionAddrSuffix(); 561 } else { 562 LinkName += TAI->getGlobalVarAddrPrefix(); 563 LinkName += Mang->getValueName(GV); 564 LinkName += TAI->getGlobalVarAddrSuffix(); 565 } 566 567 return LinkName; 568} 569 570/// EmitExternalGlobal - Emit the external reference to a global variable. 571/// Should be overridden if an indirect reference should be used. 572void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { 573 std::string GLN; 574 O << getGlobalLinkName(GV, GLN); 575} 576 577 578 579//===----------------------------------------------------------------------===// 580/// LEB 128 number encoding. 581 582/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) 583/// representing an unsigned leb128 value. 584void AsmPrinter::PrintULEB128(unsigned Value) const { 585 char Buffer[20]; 586 do { 587 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 588 Value >>= 7; 589 if (Value) Byte |= 0x80; 590 O << "0x" << utohex_buffer(Byte, Buffer+20); 591 if (Value) O << ", "; 592 } while (Value); 593} 594 595/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) 596/// representing a signed leb128 value. 597void AsmPrinter::PrintSLEB128(int Value) const { 598 int Sign = Value >> (8 * sizeof(Value) - 1); 599 bool IsMore; 600 char Buffer[20]; 601 602 do { 603 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 604 Value >>= 7; 605 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 606 if (IsMore) Byte |= 0x80; 607 O << "0x" << utohex_buffer(Byte, Buffer+20); 608 if (IsMore) O << ", "; 609 } while (IsMore); 610} 611 612//===--------------------------------------------------------------------===// 613// Emission and print routines 614// 615 616/// PrintHex - Print a value as a hexidecimal value. 617/// 618void AsmPrinter::PrintHex(int Value) const { 619 char Buffer[20]; 620 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); 621} 622 623/// EOL - Print a newline character to asm stream. If a comment is present 624/// then it will be printed first. Comments should not contain '\n'. 625void AsmPrinter::EOL() const { 626 O << '\n'; 627} 628 629void AsmPrinter::EOL(const std::string &Comment) const { 630 if (VerboseAsm && !Comment.empty()) { 631 O << '\t' 632 << TAI->getCommentString() 633 << ' ' 634 << Comment; 635 } 636 O << '\n'; 637} 638 639void AsmPrinter::EOL(const char* Comment) const { 640 if (VerboseAsm && *Comment) { 641 O << '\t' 642 << TAI->getCommentString() 643 << ' ' 644 << Comment; 645 } 646 O << '\n'; 647} 648 649/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 650/// unsigned leb128 value. 651void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 652 if (TAI->hasLEB128()) { 653 O << "\t.uleb128\t" 654 << Value; 655 } else { 656 O << TAI->getData8bitsDirective(); 657 PrintULEB128(Value); 658 } 659} 660 661/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 662/// signed leb128 value. 663void AsmPrinter::EmitSLEB128Bytes(int Value) const { 664 if (TAI->hasLEB128()) { 665 O << "\t.sleb128\t" 666 << Value; 667 } else { 668 O << TAI->getData8bitsDirective(); 669 PrintSLEB128(Value); 670 } 671} 672 673/// EmitInt8 - Emit a byte directive and value. 674/// 675void AsmPrinter::EmitInt8(int Value) const { 676 O << TAI->getData8bitsDirective(); 677 PrintHex(Value & 0xFF); 678} 679 680/// EmitInt16 - Emit a short directive and value. 681/// 682void AsmPrinter::EmitInt16(int Value) const { 683 O << TAI->getData16bitsDirective(); 684 PrintHex(Value & 0xFFFF); 685} 686 687/// EmitInt32 - Emit a long directive and value. 688/// 689void AsmPrinter::EmitInt32(int Value) const { 690 O << TAI->getData32bitsDirective(); 691 PrintHex(Value); 692} 693 694/// EmitInt64 - Emit a long long directive and value. 695/// 696void AsmPrinter::EmitInt64(uint64_t Value) const { 697 if (TAI->getData64bitsDirective()) { 698 O << TAI->getData64bitsDirective(); 699 PrintHex(Value); 700 } else { 701 if (TM.getTargetData()->isBigEndian()) { 702 EmitInt32(unsigned(Value >> 32)); O << '\n'; 703 EmitInt32(unsigned(Value)); 704 } else { 705 EmitInt32(unsigned(Value)); O << '\n'; 706 EmitInt32(unsigned(Value >> 32)); 707 } 708 } 709} 710 711/// toOctal - Convert the low order bits of X into an octal digit. 712/// 713static inline char toOctal(int X) { 714 return (X&7)+'0'; 715} 716 717/// printStringChar - Print a char, escaped if necessary. 718/// 719static void printStringChar(raw_ostream &O, unsigned char C) { 720 if (C == '"') { 721 O << "\\\""; 722 } else if (C == '\\') { 723 O << "\\\\"; 724 } else if (isprint((unsigned char)C)) { 725 O << C; 726 } else { 727 switch(C) { 728 case '\b': O << "\\b"; break; 729 case '\f': O << "\\f"; break; 730 case '\n': O << "\\n"; break; 731 case '\r': O << "\\r"; break; 732 case '\t': O << "\\t"; break; 733 default: 734 O << '\\'; 735 O << toOctal(C >> 6); 736 O << toOctal(C >> 3); 737 O << toOctal(C >> 0); 738 break; 739 } 740 } 741} 742 743/// EmitString - Emit a string with quotes and a null terminator. 744/// Special characters are emitted properly. 745/// \literal (Eg. '\t') \endliteral 746void AsmPrinter::EmitString(const std::string &String) const { 747 EmitString(String.c_str(), String.size()); 748} 749 750void AsmPrinter::EmitString(const char *String, unsigned Size) const { 751 const char* AscizDirective = TAI->getAscizDirective(); 752 if (AscizDirective) 753 O << AscizDirective; 754 else 755 O << TAI->getAsciiDirective(); 756 O << '\"'; 757 for (unsigned i = 0; i < Size; ++i) 758 printStringChar(O, String[i]); 759 if (AscizDirective) 760 O << '\"'; 761 else 762 O << "\\0\""; 763} 764 765 766/// EmitFile - Emit a .file directive. 767void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 768 O << "\t.file\t" << Number << " \""; 769 for (unsigned i = 0, N = Name.size(); i < N; ++i) 770 printStringChar(O, Name[i]); 771 O << '\"'; 772} 773 774 775//===----------------------------------------------------------------------===// 776 777// EmitAlignment - Emit an alignment directive to the specified power of 778// two boundary. For example, if you pass in 3 here, you will get an 8 779// byte alignment. If a global value is specified, and if that global has 780// an explicit alignment requested, it will unconditionally override the 781// alignment request. However, if ForcedAlignBits is specified, this value 782// has final say: the ultimate alignment will be the max of ForcedAlignBits 783// and the alignment computed with NumBits and the global. 784// 785// The algorithm is: 786// Align = NumBits; 787// if (GV && GV->hasalignment) Align = GV->getalignment(); 788// Align = std::max(Align, ForcedAlignBits); 789// 790void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 791 unsigned ForcedAlignBits, 792 bool UseFillExpr) const { 793 if (GV && GV->getAlignment()) 794 NumBits = Log2_32(GV->getAlignment()); 795 NumBits = std::max(NumBits, ForcedAlignBits); 796 797 if (NumBits == 0) return; // No need to emit alignment. 798 if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; 799 O << TAI->getAlignDirective() << NumBits; 800 801 unsigned FillValue = TAI->getTextAlignFillValue(); 802 UseFillExpr &= IsInTextSection && FillValue; 803 if (UseFillExpr) { 804 O << ','; 805 PrintHex(FillValue); 806 } 807 O << '\n'; 808} 809 810 811/// EmitZeros - Emit a block of zeros. 812/// 813void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const { 814 if (NumZeros) { 815 if (TAI->getZeroDirective()) { 816 O << TAI->getZeroDirective() << NumZeros; 817 if (TAI->getZeroDirectiveSuffix()) 818 O << TAI->getZeroDirectiveSuffix(); 819 O << '\n'; 820 } else { 821 for (; NumZeros; --NumZeros) 822 O << TAI->getData8bitsDirective(AddrSpace) << "0\n"; 823 } 824 } 825} 826 827// Print out the specified constant, without a storage class. Only the 828// constants valid in constant expressions can occur here. 829void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 830 if (CV->isNullValue() || isa<UndefValue>(CV)) 831 O << '0'; 832 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 833 O << CI->getZExtValue(); 834 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 835 // This is a constant address for a global variable or function. Use the 836 // name of the variable or function as the address value, possibly 837 // decorating it with GlobalVarAddrPrefix/Suffix or 838 // FunctionAddrPrefix/Suffix (these all default to "" ) 839 if (isa<Function>(GV)) { 840 O << TAI->getFunctionAddrPrefix() 841 << Mang->getValueName(GV) 842 << TAI->getFunctionAddrSuffix(); 843 } else { 844 O << TAI->getGlobalVarAddrPrefix() 845 << Mang->getValueName(GV) 846 << TAI->getGlobalVarAddrSuffix(); 847 } 848 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 849 const TargetData *TD = TM.getTargetData(); 850 unsigned Opcode = CE->getOpcode(); 851 switch (Opcode) { 852 case Instruction::GetElementPtr: { 853 // generate a symbolic expression for the byte address 854 const Constant *ptrVal = CE->getOperand(0); 855 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 856 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 857 idxVec.size())) { 858 // Truncate/sext the offset to the pointer size. 859 if (TD->getPointerSizeInBits() != 64) { 860 int SExtAmount = 64-TD->getPointerSizeInBits(); 861 Offset = (Offset << SExtAmount) >> SExtAmount; 862 } 863 864 if (Offset) 865 O << '('; 866 EmitConstantValueOnly(ptrVal); 867 if (Offset > 0) 868 O << ") + " << Offset; 869 else if (Offset < 0) 870 O << ") - " << -Offset; 871 } else { 872 EmitConstantValueOnly(ptrVal); 873 } 874 break; 875 } 876 case Instruction::Trunc: 877 case Instruction::ZExt: 878 case Instruction::SExt: 879 case Instruction::FPTrunc: 880 case Instruction::FPExt: 881 case Instruction::UIToFP: 882 case Instruction::SIToFP: 883 case Instruction::FPToUI: 884 case Instruction::FPToSI: 885 assert(0 && "FIXME: Don't yet support this kind of constant cast expr"); 886 break; 887 case Instruction::BitCast: 888 return EmitConstantValueOnly(CE->getOperand(0)); 889 890 case Instruction::IntToPtr: { 891 // Handle casts to pointers by changing them into casts to the appropriate 892 // integer type. This promotes constant folding and simplifies this code. 893 Constant *Op = CE->getOperand(0); 894 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/); 895 return EmitConstantValueOnly(Op); 896 } 897 898 899 case Instruction::PtrToInt: { 900 // Support only foldable casts to/from pointers that can be eliminated by 901 // changing the pointer to the appropriately sized integer type. 902 Constant *Op = CE->getOperand(0); 903 const Type *Ty = CE->getType(); 904 905 // We can emit the pointer value into this slot if the slot is an 906 // integer slot greater or equal to the size of the pointer. 907 if (TD->getTypeAllocSize(Ty) >= TD->getTypeAllocSize(Op->getType())) 908 return EmitConstantValueOnly(Op); 909 910 O << "(("; 911 EmitConstantValueOnly(Op); 912 APInt ptrMask = APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Ty)); 913 914 SmallString<40> S; 915 ptrMask.toStringUnsigned(S); 916 O << ") & " << S.c_str() << ')'; 917 break; 918 } 919 case Instruction::Add: 920 case Instruction::Sub: 921 case Instruction::And: 922 case Instruction::Or: 923 case Instruction::Xor: 924 O << '('; 925 EmitConstantValueOnly(CE->getOperand(0)); 926 O << ')'; 927 switch (Opcode) { 928 case Instruction::Add: 929 O << " + "; 930 break; 931 case Instruction::Sub: 932 O << " - "; 933 break; 934 case Instruction::And: 935 O << " & "; 936 break; 937 case Instruction::Or: 938 O << " | "; 939 break; 940 case Instruction::Xor: 941 O << " ^ "; 942 break; 943 default: 944 break; 945 } 946 O << '('; 947 EmitConstantValueOnly(CE->getOperand(1)); 948 O << ')'; 949 break; 950 default: 951 assert(0 && "Unsupported operator!"); 952 } 953 } else { 954 assert(0 && "Unknown constant value!"); 955 } 956} 957 958/// printAsCString - Print the specified array as a C compatible string, only if 959/// the predicate isString is true. 960/// 961static void printAsCString(raw_ostream &O, const ConstantArray *CVA, 962 unsigned LastElt) { 963 assert(CVA->isString() && "Array is not string compatible!"); 964 965 O << '\"'; 966 for (unsigned i = 0; i != LastElt; ++i) { 967 unsigned char C = 968 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 969 printStringChar(O, C); 970 } 971 O << '\"'; 972} 973 974/// EmitString - Emit a zero-byte-terminated string constant. 975/// 976void AsmPrinter::EmitString(const ConstantArray *CVA) const { 977 unsigned NumElts = CVA->getNumOperands(); 978 if (TAI->getAscizDirective() && NumElts && 979 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 980 O << TAI->getAscizDirective(); 981 printAsCString(O, CVA, NumElts-1); 982 } else { 983 O << TAI->getAsciiDirective(); 984 printAsCString(O, CVA, NumElts); 985 } 986 O << '\n'; 987} 988 989void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA, 990 unsigned AddrSpace) { 991 if (CVA->isString()) { 992 EmitString(CVA); 993 } else { // Not a string. Print the values in successive locations 994 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 995 EmitGlobalConstant(CVA->getOperand(i), AddrSpace); 996 } 997} 998 999void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) { 1000 const VectorType *PTy = CP->getType(); 1001 1002 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 1003 EmitGlobalConstant(CP->getOperand(I)); 1004} 1005 1006void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS, 1007 unsigned AddrSpace) { 1008 // Print the fields in successive locations. Pad to align if needed! 1009 const TargetData *TD = TM.getTargetData(); 1010 unsigned Size = TD->getTypeAllocSize(CVS->getType()); 1011 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 1012 uint64_t sizeSoFar = 0; 1013 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 1014 const Constant* field = CVS->getOperand(i); 1015 1016 // Check if padding is needed and insert one or more 0s. 1017 uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); 1018 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 1019 - cvsLayout->getElementOffset(i)) - fieldSize; 1020 sizeSoFar += fieldSize + padSize; 1021 1022 // Now print the actual field value. 1023 EmitGlobalConstant(field, AddrSpace); 1024 1025 // Insert padding - this may include padding to increase the size of the 1026 // current field up to the ABI size (if the struct is not packed) as well 1027 // as padding to ensure that the next field starts at the right offset. 1028 EmitZeros(padSize, AddrSpace); 1029 } 1030 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 1031 "Layout of constant struct may be incorrect!"); 1032} 1033 1034void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP, 1035 unsigned AddrSpace) { 1036 // FP Constants are printed as integer constants to avoid losing 1037 // precision... 1038 const TargetData *TD = TM.getTargetData(); 1039 if (CFP->getType() == Type::DoubleTy) { 1040 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 1041 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1042 if (TAI->getData64bitsDirective(AddrSpace)) { 1043 O << TAI->getData64bitsDirective(AddrSpace) << i; 1044 if (VerboseAsm) 1045 O << '\t' << TAI->getCommentString() << " double value: " << Val; 1046 O << '\n'; 1047 } else if (TD->isBigEndian()) { 1048 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1049 if (VerboseAsm) 1050 O << '\t' << TAI->getCommentString() 1051 << " double most significant word " << Val; 1052 O << '\n'; 1053 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1054 if (VerboseAsm) 1055 O << '\t' << TAI->getCommentString() 1056 << " double least significant word " << Val; 1057 O << '\n'; 1058 } else { 1059 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1060 if (VerboseAsm) 1061 O << '\t' << TAI->getCommentString() 1062 << " double least significant word " << Val; 1063 O << '\n'; 1064 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1065 if (VerboseAsm) 1066 O << '\t' << TAI->getCommentString() 1067 << " double most significant word " << Val; 1068 O << '\n'; 1069 } 1070 return; 1071 } else if (CFP->getType() == Type::FloatTy) { 1072 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1073 O << TAI->getData32bitsDirective(AddrSpace) 1074 << CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1075 if (VerboseAsm) 1076 O << '\t' << TAI->getCommentString() << " float " << Val; 1077 O << '\n'; 1078 return; 1079 } else if (CFP->getType() == Type::X86_FP80Ty) { 1080 // all long double variants are printed as hex 1081 // api needed to prevent premature destruction 1082 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1083 const uint64_t *p = api.getRawData(); 1084 // Convert to double so we can print the approximate val as a comment. 1085 APFloat DoubleVal = CFP->getValueAPF(); 1086 bool ignored; 1087 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1088 &ignored); 1089 if (TD->isBigEndian()) { 1090 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1091 if (VerboseAsm) 1092 O << '\t' << TAI->getCommentString() 1093 << " long double most significant halfword of ~" 1094 << DoubleVal.convertToDouble(); 1095 O << '\n'; 1096 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1097 if (VerboseAsm) 1098 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1099 O << '\n'; 1100 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1101 if (VerboseAsm) 1102 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1103 O << '\n'; 1104 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1105 if (VerboseAsm) 1106 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1107 O << '\n'; 1108 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1109 if (VerboseAsm) 1110 O << '\t' << TAI->getCommentString() 1111 << " long double least significant halfword"; 1112 O << '\n'; 1113 } else { 1114 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1115 if (VerboseAsm) 1116 O << '\t' << TAI->getCommentString() 1117 << " long double least significant halfword of ~" 1118 << DoubleVal.convertToDouble(); 1119 O << '\n'; 1120 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1121 if (VerboseAsm) 1122 O << '\t' << TAI->getCommentString() 1123 << " long double next halfword"; 1124 O << '\n'; 1125 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1126 if (VerboseAsm) 1127 O << '\t' << TAI->getCommentString() 1128 << " long double next halfword"; 1129 O << '\n'; 1130 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1131 if (VerboseAsm) 1132 O << '\t' << TAI->getCommentString() 1133 << " long double next halfword"; 1134 O << '\n'; 1135 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1136 if (VerboseAsm) 1137 O << '\t' << TAI->getCommentString() 1138 << " long double most significant halfword"; 1139 O << '\n'; 1140 } 1141 EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) - 1142 TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace); 1143 return; 1144 } else if (CFP->getType() == Type::PPC_FP128Ty) { 1145 // all long double variants are printed as hex 1146 // api needed to prevent premature destruction 1147 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1148 const uint64_t *p = api.getRawData(); 1149 if (TD->isBigEndian()) { 1150 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1151 if (VerboseAsm) 1152 O << '\t' << TAI->getCommentString() 1153 << " long double most significant word"; 1154 O << '\n'; 1155 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1156 if (VerboseAsm) 1157 O << '\t' << TAI->getCommentString() 1158 << " long double next word"; 1159 O << '\n'; 1160 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1161 if (VerboseAsm) 1162 O << '\t' << TAI->getCommentString() 1163 << " long double next word"; 1164 O << '\n'; 1165 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1166 if (VerboseAsm) 1167 O << '\t' << TAI->getCommentString() 1168 << " long double least significant word"; 1169 O << '\n'; 1170 } else { 1171 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1172 if (VerboseAsm) 1173 O << '\t' << TAI->getCommentString() 1174 << " long double least significant word"; 1175 O << '\n'; 1176 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1177 if (VerboseAsm) 1178 O << '\t' << TAI->getCommentString() 1179 << " long double next word"; 1180 O << '\n'; 1181 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1182 if (VerboseAsm) 1183 O << '\t' << TAI->getCommentString() 1184 << " long double next word"; 1185 O << '\n'; 1186 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1187 if (VerboseAsm) 1188 O << '\t' << TAI->getCommentString() 1189 << " long double most significant word"; 1190 O << '\n'; 1191 } 1192 return; 1193 } else assert(0 && "Floating point constant type not handled"); 1194} 1195 1196void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 1197 unsigned AddrSpace) { 1198 const TargetData *TD = TM.getTargetData(); 1199 unsigned BitWidth = CI->getBitWidth(); 1200 assert(isPowerOf2_32(BitWidth) && 1201 "Non-power-of-2-sized integers not handled!"); 1202 1203 // We don't expect assemblers to support integer data directives 1204 // for more than 64 bits, so we emit the data in at most 64-bit 1205 // quantities at a time. 1206 const uint64_t *RawData = CI->getValue().getRawData(); 1207 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1208 uint64_t Val; 1209 if (TD->isBigEndian()) 1210 Val = RawData[e - i - 1]; 1211 else 1212 Val = RawData[i]; 1213 1214 if (TAI->getData64bitsDirective(AddrSpace)) 1215 O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n'; 1216 else if (TD->isBigEndian()) { 1217 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1218 if (VerboseAsm) 1219 O << '\t' << TAI->getCommentString() 1220 << " Double-word most significant word " << Val; 1221 O << '\n'; 1222 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1223 if (VerboseAsm) 1224 O << '\t' << TAI->getCommentString() 1225 << " Double-word least significant word " << Val; 1226 O << '\n'; 1227 } else { 1228 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1229 if (VerboseAsm) 1230 O << '\t' << TAI->getCommentString() 1231 << " Double-word least significant word " << Val; 1232 O << '\n'; 1233 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1234 if (VerboseAsm) 1235 O << '\t' << TAI->getCommentString() 1236 << " Double-word most significant word " << Val; 1237 O << '\n'; 1238 } 1239 } 1240} 1241 1242/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1243void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1244 const TargetData *TD = TM.getTargetData(); 1245 const Type *type = CV->getType(); 1246 unsigned Size = TD->getTypeAllocSize(type); 1247 1248 if (CV->isNullValue() || isa<UndefValue>(CV)) { 1249 EmitZeros(Size, AddrSpace); 1250 return; 1251 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 1252 EmitGlobalConstantArray(CVA , AddrSpace); 1253 return; 1254 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 1255 EmitGlobalConstantStruct(CVS, AddrSpace); 1256 return; 1257 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1258 EmitGlobalConstantFP(CFP, AddrSpace); 1259 return; 1260 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1261 // Small integers are handled below; large integers are handled here. 1262 if (Size > 4) { 1263 EmitGlobalConstantLargeInt(CI, AddrSpace); 1264 return; 1265 } 1266 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1267 EmitGlobalConstantVector(CP); 1268 return; 1269 } 1270 1271 printDataDirective(type, AddrSpace); 1272 EmitConstantValueOnly(CV); 1273 if (VerboseAsm) { 1274 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1275 SmallString<40> S; 1276 CI->getValue().toStringUnsigned(S, 16); 1277 O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str(); 1278 } 1279 } 1280 O << '\n'; 1281} 1282 1283void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1284 // Target doesn't support this yet! 1285 abort(); 1286} 1287 1288/// PrintSpecial - Print information related to the specified machine instr 1289/// that is independent of the operand, and may be independent of the instr 1290/// itself. This can be useful for portably encoding the comment character 1291/// or other bits of target-specific knowledge into the asmstrings. The 1292/// syntax used is ${:comment}. Targets can override this to add support 1293/// for their own strange codes. 1294void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1295 if (!strcmp(Code, "private")) { 1296 O << TAI->getPrivateGlobalPrefix(); 1297 } else if (!strcmp(Code, "comment")) { 1298 if (VerboseAsm) 1299 O << TAI->getCommentString(); 1300 } else if (!strcmp(Code, "uid")) { 1301 // Assign a unique ID to this machine instruction. 1302 static const MachineInstr *LastMI = 0; 1303 static const Function *F = 0; 1304 static unsigned Counter = 0U-1; 1305 1306 // Comparing the address of MI isn't sufficient, because machineinstrs may 1307 // be allocated to the same address across functions. 1308 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1309 1310 // If this is a new machine instruction, bump the counter. 1311 if (LastMI != MI || F != ThisF) { 1312 ++Counter; 1313 LastMI = MI; 1314 F = ThisF; 1315 } 1316 O << Counter; 1317 } else { 1318 cerr << "Unknown special formatter '" << Code 1319 << "' for machine instr: " << *MI; 1320 exit(1); 1321 } 1322} 1323 1324/// processDebugLoc - Processes the debug information of each machine 1325/// instruction's DebugLoc. 1326void AsmPrinter::processDebugLoc(DebugLoc DL) { 1327 if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) { 1328 if (!DL.isUnknown()) { 1329 static DebugLocTuple PrevDLT(0, ~0U, ~0U); 1330 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL); 1331 1332 if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT) 1333 printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col, 1334 DICompileUnit(CurDLT.CompileUnit))); 1335 1336 PrevDLT = CurDLT; 1337 } 1338 } 1339} 1340 1341/// printInlineAsm - This method formats and prints the specified machine 1342/// instruction that is an inline asm. 1343void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1344 unsigned NumOperands = MI->getNumOperands(); 1345 1346 // Count the number of register definitions. 1347 unsigned NumDefs = 0; 1348 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1349 ++NumDefs) 1350 assert(NumDefs != NumOperands-1 && "No asm string?"); 1351 1352 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1353 1354 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1355 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1356 1357 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1358 // These are useful to see where empty asm's wound up. 1359 if (AsmStr[0] == 0) { 1360 O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1361 return; 1362 } 1363 1364 O << TAI->getInlineAsmStart() << "\n\t"; 1365 1366 // The variant of the current asmprinter. 1367 int AsmPrinterVariant = TAI->getAssemblerDialect(); 1368 1369 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1370 const char *LastEmitted = AsmStr; // One past the last character emitted. 1371 1372 while (*LastEmitted) { 1373 switch (*LastEmitted) { 1374 default: { 1375 // Not a special case, emit the string section literally. 1376 const char *LiteralEnd = LastEmitted+1; 1377 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1378 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1379 ++LiteralEnd; 1380 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1381 O.write(LastEmitted, LiteralEnd-LastEmitted); 1382 LastEmitted = LiteralEnd; 1383 break; 1384 } 1385 case '\n': 1386 ++LastEmitted; // Consume newline character. 1387 O << '\n'; // Indent code with newline. 1388 break; 1389 case '$': { 1390 ++LastEmitted; // Consume '$' character. 1391 bool Done = true; 1392 1393 // Handle escapes. 1394 switch (*LastEmitted) { 1395 default: Done = false; break; 1396 case '$': // $$ -> $ 1397 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1398 O << '$'; 1399 ++LastEmitted; // Consume second '$' character. 1400 break; 1401 case '(': // $( -> same as GCC's { character. 1402 ++LastEmitted; // Consume '(' character. 1403 if (CurVariant != -1) { 1404 cerr << "Nested variants found in inline asm string: '" 1405 << AsmStr << "'\n"; 1406 exit(1); 1407 } 1408 CurVariant = 0; // We're in the first variant now. 1409 break; 1410 case '|': 1411 ++LastEmitted; // consume '|' character. 1412 if (CurVariant == -1) 1413 O << '|'; // this is gcc's behavior for | outside a variant 1414 else 1415 ++CurVariant; // We're in the next variant. 1416 break; 1417 case ')': // $) -> same as GCC's } char. 1418 ++LastEmitted; // consume ')' character. 1419 if (CurVariant == -1) 1420 O << '}'; // this is gcc's behavior for } outside a variant 1421 else 1422 CurVariant = -1; 1423 break; 1424 } 1425 if (Done) break; 1426 1427 bool HasCurlyBraces = false; 1428 if (*LastEmitted == '{') { // ${variable} 1429 ++LastEmitted; // Consume '{' character. 1430 HasCurlyBraces = true; 1431 } 1432 1433 // If we have ${:foo}, then this is not a real operand reference, it is a 1434 // "magic" string reference, just like in .td files. Arrange to call 1435 // PrintSpecial. 1436 if (HasCurlyBraces && *LastEmitted == ':') { 1437 ++LastEmitted; 1438 const char *StrStart = LastEmitted; 1439 const char *StrEnd = strchr(StrStart, '}'); 1440 if (StrEnd == 0) { 1441 cerr << "Unterminated ${:foo} operand in inline asm string: '" 1442 << AsmStr << "'\n"; 1443 exit(1); 1444 } 1445 1446 std::string Val(StrStart, StrEnd); 1447 PrintSpecial(MI, Val.c_str()); 1448 LastEmitted = StrEnd+1; 1449 break; 1450 } 1451 1452 const char *IDStart = LastEmitted; 1453 char *IDEnd; 1454 errno = 0; 1455 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1456 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1457 cerr << "Bad $ operand number in inline asm string: '" 1458 << AsmStr << "'\n"; 1459 exit(1); 1460 } 1461 LastEmitted = IDEnd; 1462 1463 char Modifier[2] = { 0, 0 }; 1464 1465 if (HasCurlyBraces) { 1466 // If we have curly braces, check for a modifier character. This 1467 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1468 if (*LastEmitted == ':') { 1469 ++LastEmitted; // Consume ':' character. 1470 if (*LastEmitted == 0) { 1471 cerr << "Bad ${:} expression in inline asm string: '" 1472 << AsmStr << "'\n"; 1473 exit(1); 1474 } 1475 1476 Modifier[0] = *LastEmitted; 1477 ++LastEmitted; // Consume modifier character. 1478 } 1479 1480 if (*LastEmitted != '}') { 1481 cerr << "Bad ${} expression in inline asm string: '" 1482 << AsmStr << "'\n"; 1483 exit(1); 1484 } 1485 ++LastEmitted; // Consume '}' character. 1486 } 1487 1488 if ((unsigned)Val >= NumOperands-1) { 1489 cerr << "Invalid $ operand number in inline asm string: '" 1490 << AsmStr << "'\n"; 1491 exit(1); 1492 } 1493 1494 // Okay, we finally have a value number. Ask the target to print this 1495 // operand! 1496 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1497 unsigned OpNo = 1; 1498 1499 bool Error = false; 1500 1501 // Scan to find the machine operand number for the operand. 1502 for (; Val; --Val) { 1503 if (OpNo >= MI->getNumOperands()) break; 1504 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1505 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1506 } 1507 1508 if (OpNo >= MI->getNumOperands()) { 1509 Error = true; 1510 } else { 1511 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1512 ++OpNo; // Skip over the ID number. 1513 1514 if (Modifier[0]=='l') // labels are target independent 1515 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), 1516 false, false, false); 1517 else { 1518 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1519 if ((OpFlags & 7) == 4) { 1520 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1521 Modifier[0] ? Modifier : 0); 1522 } else { 1523 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1524 Modifier[0] ? Modifier : 0); 1525 } 1526 } 1527 } 1528 if (Error) { 1529 cerr << "Invalid operand found in inline asm: '" 1530 << AsmStr << "'\n"; 1531 MI->dump(); 1532 exit(1); 1533 } 1534 } 1535 break; 1536 } 1537 } 1538 } 1539 O << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1540} 1541 1542/// printImplicitDef - This method prints the specified machine instruction 1543/// that is an implicit def. 1544void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1545 if (VerboseAsm) 1546 O << '\t' << TAI->getCommentString() << " implicit-def: " 1547 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; 1548} 1549 1550/// printLabel - This method prints a local label used by debug and 1551/// exception handling tables. 1552void AsmPrinter::printLabel(const MachineInstr *MI) const { 1553 printLabel(MI->getOperand(0).getImm()); 1554} 1555 1556void AsmPrinter::printLabel(unsigned Id) const { 1557 O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; 1558} 1559 1560/// printDeclare - This method prints a local variable declaration used by 1561/// debug tables. 1562/// FIXME: It doesn't really print anything rather it inserts a DebugVariable 1563/// entry into dwarf table. 1564void AsmPrinter::printDeclare(const MachineInstr *MI) const { 1565 unsigned FI = MI->getOperand(0).getIndex(); 1566 GlobalValue *GV = MI->getOperand(1).getGlobal(); 1567 DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI); 1568} 1569 1570/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1571/// instruction, using the specified assembler variant. Targets should 1572/// overried this to format as appropriate. 1573bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1574 unsigned AsmVariant, const char *ExtraCode) { 1575 // Target doesn't support this yet! 1576 return true; 1577} 1578 1579bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1580 unsigned AsmVariant, 1581 const char *ExtraCode) { 1582 // Target doesn't support this yet! 1583 return true; 1584} 1585 1586/// printBasicBlockLabel - This method prints the label for the specified 1587/// MachineBasicBlock 1588void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, 1589 bool printAlign, 1590 bool printColon, 1591 bool printComment) const { 1592 if (printAlign) { 1593 unsigned Align = MBB->getAlignment(); 1594 if (Align) 1595 EmitAlignment(Log2_32(Align)); 1596 } 1597 1598 O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' 1599 << MBB->getNumber(); 1600 if (printColon) 1601 O << ':'; 1602 if (printComment && MBB->getBasicBlock()) 1603 O << '\t' << TAI->getCommentString() << ' ' 1604 << MBB->getBasicBlock()->getNameStart(); 1605} 1606 1607/// printPICJumpTableSetLabel - This method prints a set label for the 1608/// specified MachineBasicBlock for a jumptable entry. 1609void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1610 const MachineBasicBlock *MBB) const { 1611 if (!TAI->getSetDirective()) 1612 return; 1613 1614 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1615 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1616 printBasicBlockLabel(MBB, false, false, false); 1617 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1618 << '_' << uid << '\n'; 1619} 1620 1621void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1622 const MachineBasicBlock *MBB) const { 1623 if (!TAI->getSetDirective()) 1624 return; 1625 1626 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1627 << getFunctionNumber() << '_' << uid << '_' << uid2 1628 << "_set_" << MBB->getNumber() << ','; 1629 printBasicBlockLabel(MBB, false, false, false); 1630 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1631 << '_' << uid << '_' << uid2 << '\n'; 1632} 1633 1634/// printDataDirective - This method prints the asm directive for the 1635/// specified type. 1636void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { 1637 const TargetData *TD = TM.getTargetData(); 1638 switch (type->getTypeID()) { 1639 case Type::IntegerTyID: { 1640 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1641 if (BitWidth <= 8) 1642 O << TAI->getData8bitsDirective(AddrSpace); 1643 else if (BitWidth <= 16) 1644 O << TAI->getData16bitsDirective(AddrSpace); 1645 else if (BitWidth <= 32) 1646 O << TAI->getData32bitsDirective(AddrSpace); 1647 else if (BitWidth <= 64) { 1648 assert(TAI->getData64bitsDirective(AddrSpace) && 1649 "Target cannot handle 64-bit constant exprs!"); 1650 O << TAI->getData64bitsDirective(AddrSpace); 1651 } else { 1652 assert(0 && "Target cannot handle given data directive width!"); 1653 } 1654 break; 1655 } 1656 case Type::PointerTyID: 1657 if (TD->getPointerSize() == 8) { 1658 assert(TAI->getData64bitsDirective(AddrSpace) && 1659 "Target cannot handle 64-bit pointer exprs!"); 1660 O << TAI->getData64bitsDirective(AddrSpace); 1661 } else if (TD->getPointerSize() == 2) { 1662 O << TAI->getData16bitsDirective(AddrSpace); 1663 } else if (TD->getPointerSize() == 1) { 1664 O << TAI->getData8bitsDirective(AddrSpace); 1665 } else { 1666 O << TAI->getData32bitsDirective(AddrSpace); 1667 } 1668 break; 1669 case Type::FloatTyID: case Type::DoubleTyID: 1670 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1671 assert (0 && "Should have already output floating point constant."); 1672 default: 1673 assert (0 && "Can't handle printing this type of thing"); 1674 break; 1675 } 1676} 1677 1678void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix, 1679 const char *Prefix) { 1680 if (Name[0]=='\"') 1681 O << '\"'; 1682 O << TAI->getPrivateGlobalPrefix(); 1683 if (Prefix) O << Prefix; 1684 if (Name[0]=='\"') 1685 O << '\"'; 1686 if (Name[0]=='\"') 1687 O << Name[1]; 1688 else 1689 O << Name; 1690 O << Suffix; 1691 if (Name[0]=='\"') 1692 O << '\"'; 1693} 1694 1695void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) { 1696 printSuffixedName(Name.c_str(), Suffix); 1697} 1698 1699void AsmPrinter::printVisibility(const std::string& Name, 1700 unsigned Visibility) const { 1701 if (Visibility == GlobalValue::HiddenVisibility) { 1702 if (const char *Directive = TAI->getHiddenDirective()) 1703 O << Directive << Name << '\n'; 1704 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1705 if (const char *Directive = TAI->getProtectedDirective()) 1706 O << Directive << Name << '\n'; 1707 } 1708} 1709 1710void AsmPrinter::printOffset(int64_t Offset) const { 1711 if (Offset > 0) 1712 O << '+' << Offset; 1713 else if (Offset < 0) 1714 O << Offset; 1715} 1716 1717GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1718 if (!S->usesMetadata()) 1719 return 0; 1720 1721 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1722 if (GCPI != GCMetadataPrinters.end()) 1723 return GCPI->second; 1724 1725 const char *Name = S->getName().c_str(); 1726 1727 for (GCMetadataPrinterRegistry::iterator 1728 I = GCMetadataPrinterRegistry::begin(), 1729 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1730 if (strcmp(Name, I->getName()) == 0) { 1731 GCMetadataPrinter *GMP = I->instantiate(); 1732 GMP->S = S; 1733 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1734 return GMP; 1735 } 1736 1737 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1738 abort(); 1739} 1740