AsmPrinter.cpp revision 1a9edae76b2e7cf15c5f7c36928b3701ac2ef47b
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/Support/Mangler.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Target/TargetAsmInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34#include <cerrno>
35using namespace llvm;
36
37char AsmPrinter::ID = 0;
38AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
39                       const TargetAsmInfo *T)
40  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
41    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
42    IsInTextSection(false)
43{}
44
45AsmPrinter::~AsmPrinter() {
46  for (gcp_iterator I = GCMetadataPrinters.begin(),
47                    E = GCMetadataPrinters.end(); I != E; ++I)
48    delete I->second;
49}
50
51/// SwitchToTextSection - Switch to the specified text section of the executable
52/// if we are not already in it!
53///
54void AsmPrinter::SwitchToTextSection(const char *NewSection,
55                                     const GlobalValue *GV) {
56  std::string NS;
57  if (GV && GV->hasSection())
58    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
59  else
60    NS = NewSection;
61
62  // If we're already in this section, we're done.
63  if (CurrentSection == NS) return;
64
65  // Close the current section, if applicable.
66  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
67    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
68
69  CurrentSection = NS;
70
71  if (!CurrentSection.empty())
72    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
73
74  IsInTextSection = true;
75}
76
77/// SwitchToDataSection - Switch to the specified data section of the executable
78/// if we are not already in it!
79///
80void AsmPrinter::SwitchToDataSection(const char *NewSection,
81                                     const GlobalValue *GV) {
82  std::string NS;
83  if (GV && GV->hasSection())
84    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
85  else
86    NS = NewSection;
87
88  // If we're already in this section, we're done.
89  if (CurrentSection == NS) return;
90
91  // Close the current section, if applicable.
92  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
93    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
94
95  CurrentSection = NS;
96
97  if (!CurrentSection.empty())
98    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
99
100  IsInTextSection = false;
101}
102
103/// SwitchToSection - Switch to the specified section of the executable if we
104/// are not already in it!
105void AsmPrinter::SwitchToSection(const Section* NS) {
106  const std::string& NewSection = NS->getName();
107
108  // If we're already in this section, we're done.
109  if (CurrentSection == NewSection) return;
110
111  // Close the current section, if applicable.
112  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
113    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
114
115  // FIXME: Make CurrentSection a Section* in the future
116  CurrentSection = NewSection;
117
118  if (!CurrentSection.empty()) {
119    // If section is named we need to switch into it via special '.section'
120    // directive and also append funky flags. Otherwise - section name is just
121    // some magic assembler directive.
122    if (NS->isNamed())
123      O << TAI->getSwitchToSectionDirective()
124        << CurrentSection
125        << TAI->getSectionFlags(NS->getFlags());
126    else
127      O << CurrentSection;
128    O << TAI->getDataSectionStartSuffix() << '\n';
129  }
130
131  IsInTextSection = (NS->getFlags() & SectionFlags::Code);
132}
133
134void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
135  MachineFunctionPass::getAnalysisUsage(AU);
136  AU.addRequired<GCModuleInfo>();
137}
138
139bool AsmPrinter::doInitialization(Module &M) {
140  Mang = new Mangler(M, TAI->getGlobalPrefix());
141
142  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
143  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
144  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
145    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
146      MP->beginAssembly(O, *this, *TAI);
147
148  if (!M.getModuleInlineAsm().empty())
149    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
150      << M.getModuleInlineAsm()
151      << '\n' << TAI->getCommentString()
152      << " End of file scope inline assembly\n";
153
154  SwitchToDataSection("");   // Reset back to no section.
155
156  MMI = getAnalysisToUpdate<MachineModuleInfo>();
157  if (MMI) MMI->AnalyzeModule(M);
158
159  return false;
160}
161
162bool AsmPrinter::doFinalization(Module &M) {
163  if (TAI->getWeakRefDirective()) {
164    if (!ExtWeakSymbols.empty())
165      SwitchToDataSection("");
166
167    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
168         e = ExtWeakSymbols.end(); i != e; ++i) {
169      const GlobalValue *GV = *i;
170      std::string Name = Mang->getValueName(GV);
171      O << TAI->getWeakRefDirective() << Name << '\n';
172    }
173  }
174
175  if (TAI->getSetDirective()) {
176    if (!M.alias_empty())
177      SwitchToTextSection(TAI->getTextSection());
178
179    O << '\n';
180    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
181         I!=E; ++I) {
182      std::string Name = Mang->getValueName(I);
183      std::string Target;
184
185      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
186      Target = Mang->getValueName(GV);
187
188      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
189        O << "\t.globl\t" << Name << '\n';
190      else if (I->hasWeakLinkage())
191        O << TAI->getWeakRefDirective() << Name << '\n';
192      else if (!I->hasInternalLinkage())
193        assert(0 && "Invalid alias linkage");
194
195      if (I->hasHiddenVisibility()) {
196        if (const char *Directive = TAI->getHiddenDirective())
197          O << Directive << Name << '\n';
198      } else if (I->hasProtectedVisibility()) {
199        if (const char *Directive = TAI->getProtectedDirective())
200          O << Directive << Name << '\n';
201      }
202
203      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
204
205      // If the aliasee has external weak linkage it can be referenced only by
206      // alias itself. In this case it can be not in ExtWeakSymbols list. Emit
207      // weak reference in such case.
208      if (GV->hasExternalWeakLinkage()) {
209        if (TAI->getWeakRefDirective())
210          O << TAI->getWeakRefDirective() << Target << '\n';
211        else
212          O << "\t.globl\t" << Target << '\n';
213      }
214    }
215  }
216
217  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
218  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
219  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
220    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
221      MP->finishAssembly(O, *this, *TAI);
222
223  // If we don't have any trampolines, then we don't require stack memory
224  // to be executable. Some targets have a directive to declare this.
225  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
226  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
227    if (TAI->getNonexecutableStackDirective())
228      O << TAI->getNonexecutableStackDirective() << '\n';
229
230  delete Mang; Mang = 0;
231  return false;
232}
233
234std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
235  assert(MF && "No machine function?");
236  std::string Name = MF->getFunction()->getName();
237  if (Name.empty())
238    Name = Mang->getValueName(MF->getFunction());
239  return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix());
240}
241
242void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
243  // What's my mangled name?
244  CurrentFnName = Mang->getValueName(MF.getFunction());
245  IncrementFunctionNumber();
246}
247
248/// EmitConstantPool - Print to the current output stream assembly
249/// representations of the constants in the constant pool MCP. This is
250/// used to print out constants which have been "spilled to memory" by
251/// the code generator.
252///
253void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
254  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
255  if (CP.empty()) return;
256
257  // Some targets require 4-, 8-, and 16- byte constant literals to be placed
258  // in special sections.
259  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > FourByteCPs;
260  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > EightByteCPs;
261  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > SixteenByteCPs;
262  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > OtherCPs;
263  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > TargetCPs;
264  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
265    MachineConstantPoolEntry CPE = CP[i];
266    const Type *Ty = CPE.getType();
267    if (TAI->getFourByteConstantSection() &&
268        TM.getTargetData()->getABITypeSize(Ty) == 4)
269      FourByteCPs.push_back(std::make_pair(CPE, i));
270    else if (TAI->getEightByteConstantSection() &&
271             TM.getTargetData()->getABITypeSize(Ty) == 8)
272      EightByteCPs.push_back(std::make_pair(CPE, i));
273    else if (TAI->getSixteenByteConstantSection() &&
274             TM.getTargetData()->getABITypeSize(Ty) == 16)
275      SixteenByteCPs.push_back(std::make_pair(CPE, i));
276    else
277      OtherCPs.push_back(std::make_pair(CPE, i));
278  }
279
280  unsigned Alignment = MCP->getConstantPoolAlignment();
281  EmitConstantPool(Alignment, TAI->getFourByteConstantSection(), FourByteCPs);
282  EmitConstantPool(Alignment, TAI->getEightByteConstantSection(), EightByteCPs);
283  EmitConstantPool(Alignment, TAI->getSixteenByteConstantSection(),
284                   SixteenByteCPs);
285  EmitConstantPool(Alignment, TAI->getConstantPoolSection(), OtherCPs);
286}
287
288void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section,
289               std::vector<std::pair<MachineConstantPoolEntry,unsigned> > &CP) {
290  if (CP.empty()) return;
291
292  SwitchToDataSection(Section);
293  EmitAlignment(Alignment);
294  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
295    O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
296      << CP[i].second << ":\t\t\t\t\t";
297    // O << TAI->getCommentString() << ' ' <<
298    //      WriteTypeSymbolic(O, CP[i].first.getType(), 0);
299    O << '\n';
300    if (CP[i].first.isMachineConstantPoolEntry())
301      EmitMachineConstantPoolValue(CP[i].first.Val.MachineCPVal);
302     else
303      EmitGlobalConstant(CP[i].first.Val.ConstVal);
304    if (i != e-1) {
305      const Type *Ty = CP[i].first.getType();
306      unsigned EntSize =
307        TM.getTargetData()->getABITypeSize(Ty);
308      unsigned ValEnd = CP[i].first.getOffset() + EntSize;
309      // Emit inter-object padding for alignment.
310      EmitZeros(CP[i+1].first.getOffset()-ValEnd);
311    }
312  }
313}
314
315/// EmitJumpTableInfo - Print assembly representations of the jump tables used
316/// by the current function to the current output stream.
317///
318void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
319                                   MachineFunction &MF) {
320  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
321  if (JT.empty()) return;
322
323  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
324
325  // Pick the directive to use to print the jump table entries, and switch to
326  // the appropriate section.
327  TargetLowering *LoweringInfo = TM.getTargetLowering();
328
329  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
330  const Function *F = MF.getFunction();
331  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
332  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
333     !JumpTableDataSection ||
334      SectionFlags & SectionFlags::Linkonce) {
335    // In PIC mode, we need to emit the jump table to the same section as the
336    // function body itself, otherwise the label differences won't make sense.
337    // We should also do if the section name is NULL or function is declared in
338    // discardable section.
339    SwitchToSection(TAI->SectionForGlobal(F));
340  } else {
341    SwitchToDataSection(JumpTableDataSection);
342  }
343
344  EmitAlignment(Log2_32(MJTI->getAlignment()));
345
346  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
347    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
348
349    // If this jump table was deleted, ignore it.
350    if (JTBBs.empty()) continue;
351
352    // For PIC codegen, if possible we want to use the SetDirective to reduce
353    // the number of relocations the assembler will generate for the jump table.
354    // Set directives are all printed before the jump table itself.
355    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
356    if (TAI->getSetDirective() && IsPic)
357      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
358        if (EmittedSets.insert(JTBBs[ii]))
359          printPICJumpTableSetLabel(i, JTBBs[ii]);
360
361    // On some targets (e.g. darwin) we want to emit two consequtive labels
362    // before each jump table.  The first label is never referenced, but tells
363    // the assembler and linker the extents of the jump table object.  The
364    // second label is actually referenced by the code.
365    if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
366      O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
367
368    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
369      << '_' << i << ":\n";
370
371    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
372      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
373      O << '\n';
374    }
375  }
376}
377
378void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
379                                        const MachineBasicBlock *MBB,
380                                        unsigned uid)  const {
381  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
382
383  // Use JumpTableDirective otherwise honor the entry size from the jump table
384  // info.
385  const char *JTEntryDirective = TAI->getJumpTableDirective();
386  bool HadJTEntryDirective = JTEntryDirective != NULL;
387  if (!HadJTEntryDirective) {
388    JTEntryDirective = MJTI->getEntrySize() == 4 ?
389      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
390  }
391
392  O << JTEntryDirective << ' ';
393
394  // If we have emitted set directives for the jump table entries, print
395  // them rather than the entries themselves.  If we're emitting PIC, then
396  // emit the table entries as differences between two text section labels.
397  // If we're emitting non-PIC code, then emit the entries as direct
398  // references to the target basic blocks.
399  if (IsPic) {
400    if (TAI->getSetDirective()) {
401      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
402        << '_' << uid << "_set_" << MBB->getNumber();
403    } else {
404      printBasicBlockLabel(MBB, false, false, false);
405      // If the arch uses custom Jump Table directives, don't calc relative to
406      // JT
407      if (!HadJTEntryDirective)
408        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
409          << getFunctionNumber() << '_' << uid;
410    }
411  } else {
412    printBasicBlockLabel(MBB, false, false, false);
413  }
414}
415
416
417/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
418/// special global used by LLVM.  If so, emit it and return true, otherwise
419/// do nothing and return false.
420bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
421  if (GV->getName() == "llvm.used") {
422    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
423      EmitLLVMUsedList(GV->getInitializer());
424    return true;
425  }
426
427  // Ignore debug and non-emitted data.
428  if (GV->getSection() == "llvm.metadata") return true;
429
430  if (!GV->hasAppendingLinkage()) return false;
431
432  assert(GV->hasInitializer() && "Not a special LLVM global!");
433
434  const TargetData *TD = TM.getTargetData();
435  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
436  if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
437    SwitchToDataSection(TAI->getStaticCtorsSection());
438    EmitAlignment(Align, 0);
439    EmitXXStructorList(GV->getInitializer());
440    return true;
441  }
442
443  if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
444    SwitchToDataSection(TAI->getStaticDtorsSection());
445    EmitAlignment(Align, 0);
446    EmitXXStructorList(GV->getInitializer());
447    return true;
448  }
449
450  return false;
451}
452
453/// findGlobalValue - if CV is an expression equivalent to a single
454/// global value, return that value.
455const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
456  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
457    return GV;
458  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
459    const TargetData *TD = TM.getTargetData();
460    unsigned Opcode = CE->getOpcode();
461    switch (Opcode) {
462    case Instruction::GetElementPtr: {
463      const Constant *ptrVal = CE->getOperand(0);
464      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
465      if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
466        return 0;
467      return findGlobalValue(ptrVal);
468    }
469    case Instruction::BitCast:
470      return findGlobalValue(CE->getOperand(0));
471    default:
472      return 0;
473    }
474  }
475  return 0;
476}
477
478/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
479/// global in the specified llvm.used list for which emitUsedDirectiveFor
480/// is true, as being used with this directive.
481
482void AsmPrinter::EmitLLVMUsedList(Constant *List) {
483  const char *Directive = TAI->getUsedDirective();
484
485  // Should be an array of 'sbyte*'.
486  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
487  if (InitList == 0) return;
488
489  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
490    const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
491    if (TAI->emitUsedDirectiveFor(GV, Mang)) {
492      O << Directive;
493      EmitConstantValueOnly(InitList->getOperand(i));
494      O << '\n';
495    }
496  }
497}
498
499/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
500/// function pointers, ignoring the init priority.
501void AsmPrinter::EmitXXStructorList(Constant *List) {
502  // Should be an array of '{ int, void ()* }' structs.  The first value is the
503  // init priority, which we ignore.
504  if (!isa<ConstantArray>(List)) return;
505  ConstantArray *InitList = cast<ConstantArray>(List);
506  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
507    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
508      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
509
510      if (CS->getOperand(1)->isNullValue())
511        return;  // Found a null terminator, exit printing.
512      // Emit the function pointer.
513      EmitGlobalConstant(CS->getOperand(1));
514    }
515}
516
517/// getGlobalLinkName - Returns the asm/link name of of the specified
518/// global variable.  Should be overridden by each target asm printer to
519/// generate the appropriate value.
520const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
521  std::string LinkName;
522
523  if (isa<Function>(GV)) {
524    LinkName += TAI->getFunctionAddrPrefix();
525    LinkName += Mang->getValueName(GV);
526    LinkName += TAI->getFunctionAddrSuffix();
527  } else {
528    LinkName += TAI->getGlobalVarAddrPrefix();
529    LinkName += Mang->getValueName(GV);
530    LinkName += TAI->getGlobalVarAddrSuffix();
531  }
532
533  return LinkName;
534}
535
536/// EmitExternalGlobal - Emit the external reference to a global variable.
537/// Should be overridden if an indirect reference should be used.
538void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
539  O << getGlobalLinkName(GV);
540}
541
542
543
544//===----------------------------------------------------------------------===//
545/// LEB 128 number encoding.
546
547/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
548/// representing an unsigned leb128 value.
549void AsmPrinter::PrintULEB128(unsigned Value) const {
550  do {
551    unsigned Byte = Value & 0x7f;
552    Value >>= 7;
553    if (Value) Byte |= 0x80;
554    O << "0x" <<  utohexstr(Byte);
555    if (Value) O << ", ";
556  } while (Value);
557}
558
559/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
560/// representing a signed leb128 value.
561void AsmPrinter::PrintSLEB128(int Value) const {
562  int Sign = Value >> (8 * sizeof(Value) - 1);
563  bool IsMore;
564
565  do {
566    unsigned Byte = Value & 0x7f;
567    Value >>= 7;
568    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
569    if (IsMore) Byte |= 0x80;
570    O << "0x" << utohexstr(Byte);
571    if (IsMore) O << ", ";
572  } while (IsMore);
573}
574
575//===--------------------------------------------------------------------===//
576// Emission and print routines
577//
578
579/// PrintHex - Print a value as a hexidecimal value.
580///
581void AsmPrinter::PrintHex(int Value) const {
582  O << "0x" << utohexstr(static_cast<unsigned>(Value));
583}
584
585/// EOL - Print a newline character to asm stream.  If a comment is present
586/// then it will be printed first.  Comments should not contain '\n'.
587void AsmPrinter::EOL() const {
588  O << '\n';
589}
590
591void AsmPrinter::EOL(const std::string &Comment) const {
592  if (VerboseAsm && !Comment.empty()) {
593    O << '\t'
594      << TAI->getCommentString()
595      << ' '
596      << Comment;
597  }
598  O << '\n';
599}
600
601void AsmPrinter::EOL(const char* Comment) const {
602  if (VerboseAsm && *Comment) {
603    O << '\t'
604      << TAI->getCommentString()
605      << ' '
606      << Comment;
607  }
608  O << '\n';
609}
610
611/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
612/// unsigned leb128 value.
613void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
614  if (TAI->hasLEB128()) {
615    O << "\t.uleb128\t"
616      << Value;
617  } else {
618    O << TAI->getData8bitsDirective();
619    PrintULEB128(Value);
620  }
621}
622
623/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
624/// signed leb128 value.
625void AsmPrinter::EmitSLEB128Bytes(int Value) const {
626  if (TAI->hasLEB128()) {
627    O << "\t.sleb128\t"
628      << Value;
629  } else {
630    O << TAI->getData8bitsDirective();
631    PrintSLEB128(Value);
632  }
633}
634
635/// EmitInt8 - Emit a byte directive and value.
636///
637void AsmPrinter::EmitInt8(int Value) const {
638  O << TAI->getData8bitsDirective();
639  PrintHex(Value & 0xFF);
640}
641
642/// EmitInt16 - Emit a short directive and value.
643///
644void AsmPrinter::EmitInt16(int Value) const {
645  O << TAI->getData16bitsDirective();
646  PrintHex(Value & 0xFFFF);
647}
648
649/// EmitInt32 - Emit a long directive and value.
650///
651void AsmPrinter::EmitInt32(int Value) const {
652  O << TAI->getData32bitsDirective();
653  PrintHex(Value);
654}
655
656/// EmitInt64 - Emit a long long directive and value.
657///
658void AsmPrinter::EmitInt64(uint64_t Value) const {
659  if (TAI->getData64bitsDirective()) {
660    O << TAI->getData64bitsDirective();
661    PrintHex(Value);
662  } else {
663    if (TM.getTargetData()->isBigEndian()) {
664      EmitInt32(unsigned(Value >> 32)); O << '\n';
665      EmitInt32(unsigned(Value));
666    } else {
667      EmitInt32(unsigned(Value)); O << '\n';
668      EmitInt32(unsigned(Value >> 32));
669    }
670  }
671}
672
673/// toOctal - Convert the low order bits of X into an octal digit.
674///
675static inline char toOctal(int X) {
676  return (X&7)+'0';
677}
678
679/// printStringChar - Print a char, escaped if necessary.
680///
681static void printStringChar(raw_ostream &O, char C) {
682  if (C == '"') {
683    O << "\\\"";
684  } else if (C == '\\') {
685    O << "\\\\";
686  } else if (isprint(C)) {
687    O << C;
688  } else {
689    switch(C) {
690    case '\b': O << "\\b"; break;
691    case '\f': O << "\\f"; break;
692    case '\n': O << "\\n"; break;
693    case '\r': O << "\\r"; break;
694    case '\t': O << "\\t"; break;
695    default:
696      O << '\\';
697      O << toOctal(C >> 6);
698      O << toOctal(C >> 3);
699      O << toOctal(C >> 0);
700      break;
701    }
702  }
703}
704
705/// EmitString - Emit a string with quotes and a null terminator.
706/// Special characters are emitted properly.
707/// \literal (Eg. '\t') \endliteral
708void AsmPrinter::EmitString(const std::string &String) const {
709  const char* AscizDirective = TAI->getAscizDirective();
710  if (AscizDirective)
711    O << AscizDirective;
712  else
713    O << TAI->getAsciiDirective();
714  O << '\"';
715  for (unsigned i = 0, N = String.size(); i < N; ++i) {
716    unsigned char C = String[i];
717    printStringChar(O, C);
718  }
719  if (AscizDirective)
720    O << '\"';
721  else
722    O << "\\0\"";
723}
724
725
726/// EmitFile - Emit a .file directive.
727void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
728  O << "\t.file\t" << Number << " \"";
729  for (unsigned i = 0, N = Name.size(); i < N; ++i) {
730    unsigned char C = Name[i];
731    printStringChar(O, C);
732  }
733  O << '\"';
734}
735
736
737//===----------------------------------------------------------------------===//
738
739// EmitAlignment - Emit an alignment directive to the specified power of
740// two boundary.  For example, if you pass in 3 here, you will get an 8
741// byte alignment.  If a global value is specified, and if that global has
742// an explicit alignment requested, it will unconditionally override the
743// alignment request.  However, if ForcedAlignBits is specified, this value
744// has final say: the ultimate alignment will be the max of ForcedAlignBits
745// and the alignment computed with NumBits and the global.
746//
747// The algorithm is:
748//     Align = NumBits;
749//     if (GV && GV->hasalignment) Align = GV->getalignment();
750//     Align = std::max(Align, ForcedAlignBits);
751//
752void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
753                               unsigned ForcedAlignBits,
754                               bool UseFillExpr) const {
755  if (GV && GV->getAlignment())
756    NumBits = Log2_32(GV->getAlignment());
757  NumBits = std::max(NumBits, ForcedAlignBits);
758
759  if (NumBits == 0) return;   // No need to emit alignment.
760  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
761  O << TAI->getAlignDirective() << NumBits;
762
763  unsigned FillValue = TAI->getTextAlignFillValue();
764  UseFillExpr &= IsInTextSection && FillValue;
765  if (UseFillExpr) O << ",0x" << utohexstr(FillValue);
766  O << '\n';
767}
768
769
770/// EmitZeros - Emit a block of zeros.
771///
772void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
773  if (NumZeros) {
774    if (TAI->getZeroDirective()) {
775      O << TAI->getZeroDirective() << NumZeros;
776      if (TAI->getZeroDirectiveSuffix())
777        O << TAI->getZeroDirectiveSuffix();
778      O << '\n';
779    } else {
780      for (; NumZeros; --NumZeros)
781        O << TAI->getData8bitsDirective() << "0\n";
782    }
783  }
784}
785
786// Print out the specified constant, without a storage class.  Only the
787// constants valid in constant expressions can occur here.
788void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
789  if (CV->isNullValue() || isa<UndefValue>(CV))
790    O << '0';
791  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
792    O << CI->getZExtValue();
793  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
794    // This is a constant address for a global variable or function. Use the
795    // name of the variable or function as the address value, possibly
796    // decorating it with GlobalVarAddrPrefix/Suffix or
797    // FunctionAddrPrefix/Suffix (these all default to "" )
798    if (isa<Function>(GV)) {
799      O << TAI->getFunctionAddrPrefix()
800        << Mang->getValueName(GV)
801        << TAI->getFunctionAddrSuffix();
802    } else {
803      O << TAI->getGlobalVarAddrPrefix()
804        << Mang->getValueName(GV)
805        << TAI->getGlobalVarAddrSuffix();
806    }
807  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
808    const TargetData *TD = TM.getTargetData();
809    unsigned Opcode = CE->getOpcode();
810    switch (Opcode) {
811    case Instruction::GetElementPtr: {
812      // generate a symbolic expression for the byte address
813      const Constant *ptrVal = CE->getOperand(0);
814      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
815      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
816                                                idxVec.size())) {
817        if (Offset)
818          O << '(';
819        EmitConstantValueOnly(ptrVal);
820        if (Offset > 0)
821          O << ") + " << Offset;
822        else if (Offset < 0)
823          O << ") - " << -Offset;
824      } else {
825        EmitConstantValueOnly(ptrVal);
826      }
827      break;
828    }
829    case Instruction::Trunc:
830    case Instruction::ZExt:
831    case Instruction::SExt:
832    case Instruction::FPTrunc:
833    case Instruction::FPExt:
834    case Instruction::UIToFP:
835    case Instruction::SIToFP:
836    case Instruction::FPToUI:
837    case Instruction::FPToSI:
838      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
839      break;
840    case Instruction::BitCast:
841      return EmitConstantValueOnly(CE->getOperand(0));
842
843    case Instruction::IntToPtr: {
844      // Handle casts to pointers by changing them into casts to the appropriate
845      // integer type.  This promotes constant folding and simplifies this code.
846      Constant *Op = CE->getOperand(0);
847      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
848      return EmitConstantValueOnly(Op);
849    }
850
851
852    case Instruction::PtrToInt: {
853      // Support only foldable casts to/from pointers that can be eliminated by
854      // changing the pointer to the appropriately sized integer type.
855      Constant *Op = CE->getOperand(0);
856      const Type *Ty = CE->getType();
857
858      // We can emit the pointer value into this slot if the slot is an
859      // integer slot greater or equal to the size of the pointer.
860      if (TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType()))
861        return EmitConstantValueOnly(Op);
862
863      O << "((";
864      EmitConstantValueOnly(Op);
865      APInt ptrMask = APInt::getAllOnesValue(TD->getABITypeSizeInBits(Ty));
866
867      SmallString<40> S;
868      ptrMask.toStringUnsigned(S);
869      O << ") & " << S.c_str() << ')';
870      break;
871    }
872    case Instruction::Add:
873    case Instruction::Sub:
874    case Instruction::And:
875    case Instruction::Or:
876    case Instruction::Xor:
877      O << '(';
878      EmitConstantValueOnly(CE->getOperand(0));
879      O << ')';
880      switch (Opcode) {
881      case Instruction::Add:
882       O << " + ";
883       break;
884      case Instruction::Sub:
885       O << " - ";
886       break;
887      case Instruction::And:
888       O << " & ";
889       break;
890      case Instruction::Or:
891       O << " | ";
892       break;
893      case Instruction::Xor:
894       O << " ^ ";
895       break;
896      default:
897       break;
898      }
899      O << '(';
900      EmitConstantValueOnly(CE->getOperand(1));
901      O << ')';
902      break;
903    default:
904      assert(0 && "Unsupported operator!");
905    }
906  } else {
907    assert(0 && "Unknown constant value!");
908  }
909}
910
911/// printAsCString - Print the specified array as a C compatible string, only if
912/// the predicate isString is true.
913///
914static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
915                           unsigned LastElt) {
916  assert(CVA->isString() && "Array is not string compatible!");
917
918  O << '\"';
919  for (unsigned i = 0; i != LastElt; ++i) {
920    unsigned char C =
921        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
922    printStringChar(O, C);
923  }
924  O << '\"';
925}
926
927/// EmitString - Emit a zero-byte-terminated string constant.
928///
929void AsmPrinter::EmitString(const ConstantArray *CVA) const {
930  unsigned NumElts = CVA->getNumOperands();
931  if (TAI->getAscizDirective() && NumElts &&
932      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
933    O << TAI->getAscizDirective();
934    printAsCString(O, CVA, NumElts-1);
935  } else {
936    O << TAI->getAsciiDirective();
937    printAsCString(O, CVA, NumElts);
938  }
939  O << '\n';
940}
941
942/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
943void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
944  const TargetData *TD = TM.getTargetData();
945  unsigned Size = TD->getABITypeSize(CV->getType());
946
947  if (CV->isNullValue() || isa<UndefValue>(CV)) {
948    EmitZeros(Size);
949    return;
950  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
951    if (CVA->isString()) {
952      EmitString(CVA);
953    } else { // Not a string.  Print the values in successive locations
954      for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
955        EmitGlobalConstant(CVA->getOperand(i));
956    }
957    return;
958  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
959    // Print the fields in successive locations. Pad to align if needed!
960    const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
961    uint64_t sizeSoFar = 0;
962    for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
963      const Constant* field = CVS->getOperand(i);
964
965      // Check if padding is needed and insert one or more 0s.
966      uint64_t fieldSize = TD->getABITypeSize(field->getType());
967      uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
968                          - cvsLayout->getElementOffset(i)) - fieldSize;
969      sizeSoFar += fieldSize + padSize;
970
971      // Now print the actual field value.
972      EmitGlobalConstant(field);
973
974      // Insert padding - this may include padding to increase the size of the
975      // current field up to the ABI size (if the struct is not packed) as well
976      // as padding to ensure that the next field starts at the right offset.
977      EmitZeros(padSize);
978    }
979    assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
980           "Layout of constant struct may be incorrect!");
981    return;
982  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
983    // FP Constants are printed as integer constants to avoid losing
984    // precision...
985    if (CFP->getType() == Type::DoubleTy) {
986      double Val = CFP->getValueAPF().convertToDouble();  // for comment only
987      uint64_t i = CFP->getValueAPF().convertToAPInt().getZExtValue();
988      if (TAI->getData64bitsDirective())
989        O << TAI->getData64bitsDirective() << i << '\t'
990          << TAI->getCommentString() << " double value: " << Val << '\n';
991      else if (TD->isBigEndian()) {
992        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
993          << '\t' << TAI->getCommentString()
994          << " double most significant word " << Val << '\n';
995        O << TAI->getData32bitsDirective() << unsigned(i)
996          << '\t' << TAI->getCommentString()
997          << " double least significant word " << Val << '\n';
998      } else {
999        O << TAI->getData32bitsDirective() << unsigned(i)
1000          << '\t' << TAI->getCommentString()
1001          << " double least significant word " << Val << '\n';
1002        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
1003          << '\t' << TAI->getCommentString()
1004          << " double most significant word " << Val << '\n';
1005      }
1006      return;
1007    } else if (CFP->getType() == Type::FloatTy) {
1008      float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1009      O << TAI->getData32bitsDirective()
1010        << CFP->getValueAPF().convertToAPInt().getZExtValue()
1011        << '\t' << TAI->getCommentString() << " float " << Val << '\n';
1012      return;
1013    } else if (CFP->getType() == Type::X86_FP80Ty) {
1014      // all long double variants are printed as hex
1015      // api needed to prevent premature destruction
1016      APInt api = CFP->getValueAPF().convertToAPInt();
1017      const uint64_t *p = api.getRawData();
1018      APFloat DoubleVal = CFP->getValueAPF();
1019      DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
1020      if (TD->isBigEndian()) {
1021        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1022          << '\t' << TAI->getCommentString()
1023          << " long double most significant halfword of ~"
1024          << DoubleVal.convertToDouble() << '\n';
1025        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1026          << '\t' << TAI->getCommentString()
1027          << " long double next halfword\n";
1028        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1029          << '\t' << TAI->getCommentString()
1030          << " long double next halfword\n";
1031        O << TAI->getData16bitsDirective() << uint16_t(p[0])
1032          << '\t' << TAI->getCommentString()
1033          << " long double next halfword\n";
1034        O << TAI->getData16bitsDirective() << uint16_t(p[1])
1035          << '\t' << TAI->getCommentString()
1036          << " long double least significant halfword\n";
1037       } else {
1038        O << TAI->getData16bitsDirective() << uint16_t(p[1])
1039          << '\t' << TAI->getCommentString()
1040          << " long double least significant halfword of ~"
1041          << DoubleVal.convertToDouble() << '\n';
1042        O << TAI->getData16bitsDirective() << uint16_t(p[0])
1043          << '\t' << TAI->getCommentString()
1044          << " long double next halfword\n";
1045        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1046          << '\t' << TAI->getCommentString()
1047          << " long double next halfword\n";
1048        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1049          << '\t' << TAI->getCommentString()
1050          << " long double next halfword\n";
1051        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1052          << '\t' << TAI->getCommentString()
1053          << " long double most significant halfword\n";
1054      }
1055      EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty));
1056      return;
1057    } else if (CFP->getType() == Type::PPC_FP128Ty) {
1058      // all long double variants are printed as hex
1059      // api needed to prevent premature destruction
1060      APInt api = CFP->getValueAPF().convertToAPInt();
1061      const uint64_t *p = api.getRawData();
1062      if (TD->isBigEndian()) {
1063        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1064          << '\t' << TAI->getCommentString()
1065          << " long double most significant word\n";
1066        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1067          << '\t' << TAI->getCommentString()
1068          << " long double next word\n";
1069        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1070          << '\t' << TAI->getCommentString()
1071          << " long double next word\n";
1072        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1073          << '\t' << TAI->getCommentString()
1074          << " long double least significant word\n";
1075       } else {
1076        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1077          << '\t' << TAI->getCommentString()
1078          << " long double least significant word\n";
1079        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1080          << '\t' << TAI->getCommentString()
1081          << " long double next word\n";
1082        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1083          << '\t' << TAI->getCommentString()
1084          << " long double next word\n";
1085        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1086          << '\t' << TAI->getCommentString()
1087          << " long double most significant word\n";
1088      }
1089      return;
1090    } else assert(0 && "Floating point constant type not handled");
1091  } else if (CV->getType()->isInteger() &&
1092             cast<IntegerType>(CV->getType())->getBitWidth() >= 64) {
1093    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1094      unsigned BitWidth = CI->getBitWidth();
1095      assert(isPowerOf2_32(BitWidth) &&
1096             "Non-power-of-2-sized integers not handled!");
1097
1098      // We don't expect assemblers to support integer data directives
1099      // for more than 64 bits, so we emit the data in at most 64-bit
1100      // quantities at a time.
1101      const uint64_t *RawData = CI->getValue().getRawData();
1102      for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1103        uint64_t Val;
1104        if (TD->isBigEndian())
1105          Val = RawData[e - i - 1];
1106        else
1107          Val = RawData[i];
1108
1109        if (TAI->getData64bitsDirective())
1110          O << TAI->getData64bitsDirective() << Val << '\n';
1111        else if (TD->isBigEndian()) {
1112          O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1113            << '\t' << TAI->getCommentString()
1114            << " Double-word most significant word " << Val << '\n';
1115          O << TAI->getData32bitsDirective() << unsigned(Val)
1116            << '\t' << TAI->getCommentString()
1117            << " Double-word least significant word " << Val << '\n';
1118        } else {
1119          O << TAI->getData32bitsDirective() << unsigned(Val)
1120            << '\t' << TAI->getCommentString()
1121            << " Double-word least significant word " << Val << '\n';
1122          O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1123            << '\t' << TAI->getCommentString()
1124            << " Double-word most significant word " << Val << '\n';
1125        }
1126      }
1127      return;
1128    }
1129  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1130    const VectorType *PTy = CP->getType();
1131
1132    for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
1133      EmitGlobalConstant(CP->getOperand(I));
1134
1135    return;
1136  }
1137
1138  const Type *type = CV->getType();
1139  printDataDirective(type);
1140  EmitConstantValueOnly(CV);
1141  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1142    SmallString<40> S;
1143    CI->getValue().toStringUnsigned(S, 16);
1144    O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1145  }
1146  O << '\n';
1147}
1148
1149void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1150  // Target doesn't support this yet!
1151  abort();
1152}
1153
1154/// PrintSpecial - Print information related to the specified machine instr
1155/// that is independent of the operand, and may be independent of the instr
1156/// itself.  This can be useful for portably encoding the comment character
1157/// or other bits of target-specific knowledge into the asmstrings.  The
1158/// syntax used is ${:comment}.  Targets can override this to add support
1159/// for their own strange codes.
1160void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
1161  if (!strcmp(Code, "private")) {
1162    O << TAI->getPrivateGlobalPrefix();
1163  } else if (!strcmp(Code, "comment")) {
1164    O << TAI->getCommentString();
1165  } else if (!strcmp(Code, "uid")) {
1166    // Assign a unique ID to this machine instruction.
1167    static const MachineInstr *LastMI = 0;
1168    static const Function *F = 0;
1169    static unsigned Counter = 0U-1;
1170
1171    // Comparing the address of MI isn't sufficient, because machineinstrs may
1172    // be allocated to the same address across functions.
1173    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1174
1175    // If this is a new machine instruction, bump the counter.
1176    if (LastMI != MI || F != ThisF) {
1177      ++Counter;
1178      LastMI = MI;
1179      F = ThisF;
1180    }
1181    O << Counter;
1182  } else {
1183    cerr << "Unknown special formatter '" << Code
1184         << "' for machine instr: " << *MI;
1185    exit(1);
1186  }
1187}
1188
1189
1190/// printInlineAsm - This method formats and prints the specified machine
1191/// instruction that is an inline asm.
1192void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1193  unsigned NumOperands = MI->getNumOperands();
1194
1195  // Count the number of register definitions.
1196  unsigned NumDefs = 0;
1197  for (; MI->getOperand(NumDefs).isRegister() && MI->getOperand(NumDefs).isDef();
1198       ++NumDefs)
1199    assert(NumDefs != NumOperands-1 && "No asm string?");
1200
1201  assert(MI->getOperand(NumDefs).isExternalSymbol() && "No asm string?");
1202
1203  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1204  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1205
1206  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1207  // These are useful to see where empty asm's wound up.
1208  if (AsmStr[0] == 0) {
1209    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1210    return;
1211  }
1212
1213  O << TAI->getInlineAsmStart() << "\n\t";
1214
1215  // The variant of the current asmprinter.
1216  int AsmPrinterVariant = TAI->getAssemblerDialect();
1217
1218  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1219  const char *LastEmitted = AsmStr; // One past the last character emitted.
1220
1221  while (*LastEmitted) {
1222    switch (*LastEmitted) {
1223    default: {
1224      // Not a special case, emit the string section literally.
1225      const char *LiteralEnd = LastEmitted+1;
1226      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1227             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1228        ++LiteralEnd;
1229      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1230        O.write(LastEmitted, LiteralEnd-LastEmitted);
1231      LastEmitted = LiteralEnd;
1232      break;
1233    }
1234    case '\n':
1235      ++LastEmitted;   // Consume newline character.
1236      O << '\n';       // Indent code with newline.
1237      break;
1238    case '$': {
1239      ++LastEmitted;   // Consume '$' character.
1240      bool Done = true;
1241
1242      // Handle escapes.
1243      switch (*LastEmitted) {
1244      default: Done = false; break;
1245      case '$':     // $$ -> $
1246        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1247          O << '$';
1248        ++LastEmitted;  // Consume second '$' character.
1249        break;
1250      case '(':             // $( -> same as GCC's { character.
1251        ++LastEmitted;      // Consume '(' character.
1252        if (CurVariant != -1) {
1253          cerr << "Nested variants found in inline asm string: '"
1254               << AsmStr << "'\n";
1255          exit(1);
1256        }
1257        CurVariant = 0;     // We're in the first variant now.
1258        break;
1259      case '|':
1260        ++LastEmitted;  // consume '|' character.
1261        if (CurVariant == -1) {
1262          cerr << "Found '|' character outside of variant in inline asm "
1263               << "string: '" << AsmStr << "'\n";
1264          exit(1);
1265        }
1266        ++CurVariant;   // We're in the next variant.
1267        break;
1268      case ')':         // $) -> same as GCC's } char.
1269        ++LastEmitted;  // consume ')' character.
1270        if (CurVariant == -1) {
1271          cerr << "Found '}' character outside of variant in inline asm "
1272               << "string: '" << AsmStr << "'\n";
1273          exit(1);
1274        }
1275        CurVariant = -1;
1276        break;
1277      }
1278      if (Done) break;
1279
1280      bool HasCurlyBraces = false;
1281      if (*LastEmitted == '{') {     // ${variable}
1282        ++LastEmitted;               // Consume '{' character.
1283        HasCurlyBraces = true;
1284      }
1285
1286      const char *IDStart = LastEmitted;
1287      char *IDEnd;
1288      errno = 0;
1289      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1290      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1291        cerr << "Bad $ operand number in inline asm string: '"
1292             << AsmStr << "'\n";
1293        exit(1);
1294      }
1295      LastEmitted = IDEnd;
1296
1297      char Modifier[2] = { 0, 0 };
1298
1299      if (HasCurlyBraces) {
1300        // If we have curly braces, check for a modifier character.  This
1301        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1302        if (*LastEmitted == ':') {
1303          ++LastEmitted;    // Consume ':' character.
1304          if (*LastEmitted == 0) {
1305            cerr << "Bad ${:} expression in inline asm string: '"
1306                 << AsmStr << "'\n";
1307            exit(1);
1308          }
1309
1310          Modifier[0] = *LastEmitted;
1311          ++LastEmitted;    // Consume modifier character.
1312        }
1313
1314        if (*LastEmitted != '}') {
1315          cerr << "Bad ${} expression in inline asm string: '"
1316               << AsmStr << "'\n";
1317          exit(1);
1318        }
1319        ++LastEmitted;    // Consume '}' character.
1320      }
1321
1322      if ((unsigned)Val >= NumOperands-1) {
1323        cerr << "Invalid $ operand number in inline asm string: '"
1324             << AsmStr << "'\n";
1325        exit(1);
1326      }
1327
1328      // Okay, we finally have a value number.  Ask the target to print this
1329      // operand!
1330      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1331        unsigned OpNo = 1;
1332
1333        bool Error = false;
1334
1335        // Scan to find the machine operand number for the operand.
1336        for (; Val; --Val) {
1337          if (OpNo >= MI->getNumOperands()) break;
1338          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1339          OpNo += (OpFlags >> 3) + 1;
1340        }
1341
1342        if (OpNo >= MI->getNumOperands()) {
1343          Error = true;
1344        } else {
1345          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1346          ++OpNo;  // Skip over the ID number.
1347
1348          if (Modifier[0]=='l')  // labels are target independent
1349            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1350                                 false, false, false);
1351          else {
1352            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1353            if ((OpFlags & 7) == 4) {
1354              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1355                                                Modifier[0] ? Modifier : 0);
1356            } else {
1357              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1358                                          Modifier[0] ? Modifier : 0);
1359            }
1360          }
1361        }
1362        if (Error) {
1363          cerr << "Invalid operand found in inline asm: '"
1364               << AsmStr << "'\n";
1365          MI->dump();
1366          exit(1);
1367        }
1368      }
1369      break;
1370    }
1371    }
1372  }
1373  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1374}
1375
1376/// printImplicitDef - This method prints the specified machine instruction
1377/// that is an implicit def.
1378void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1379  O << '\t' << TAI->getCommentString() << " implicit-def: "
1380    << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1381}
1382
1383/// printLabel - This method prints a local label used by debug and
1384/// exception handling tables.
1385void AsmPrinter::printLabel(const MachineInstr *MI) const {
1386  printLabel(MI->getOperand(0).getImm());
1387}
1388
1389void AsmPrinter::printLabel(unsigned Id) const {
1390  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1391}
1392
1393/// printDeclare - This method prints a local variable declaration used by
1394/// debug tables.
1395/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1396/// entry into dwarf table.
1397void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1398  int FI = MI->getOperand(0).getIndex();
1399  GlobalValue *GV = MI->getOperand(1).getGlobal();
1400  MMI->RecordVariable(GV, FI);
1401}
1402
1403/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1404/// instruction, using the specified assembler variant.  Targets should
1405/// overried this to format as appropriate.
1406bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1407                                 unsigned AsmVariant, const char *ExtraCode) {
1408  // Target doesn't support this yet!
1409  return true;
1410}
1411
1412bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1413                                       unsigned AsmVariant,
1414                                       const char *ExtraCode) {
1415  // Target doesn't support this yet!
1416  return true;
1417}
1418
1419/// printBasicBlockLabel - This method prints the label for the specified
1420/// MachineBasicBlock
1421void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1422                                      bool printAlign,
1423                                      bool printColon,
1424                                      bool printComment) const {
1425  if (printAlign) {
1426    unsigned Align = MBB->getAlignment();
1427    if (Align)
1428      EmitAlignment(Log2_32(Align));
1429  }
1430
1431  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1432    << MBB->getNumber();
1433  if (printColon)
1434    O << ':';
1435  if (printComment && MBB->getBasicBlock())
1436    O << '\t' << TAI->getCommentString() << ' '
1437      << MBB->getBasicBlock()->getNameStart();
1438}
1439
1440/// printPICJumpTableSetLabel - This method prints a set label for the
1441/// specified MachineBasicBlock for a jumptable entry.
1442void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1443                                           const MachineBasicBlock *MBB) const {
1444  if (!TAI->getSetDirective())
1445    return;
1446
1447  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1448    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1449  printBasicBlockLabel(MBB, false, false, false);
1450  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1451    << '_' << uid << '\n';
1452}
1453
1454void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1455                                           const MachineBasicBlock *MBB) const {
1456  if (!TAI->getSetDirective())
1457    return;
1458
1459  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1460    << getFunctionNumber() << '_' << uid << '_' << uid2
1461    << "_set_" << MBB->getNumber() << ',';
1462  printBasicBlockLabel(MBB, false, false, false);
1463  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1464    << '_' << uid << '_' << uid2 << '\n';
1465}
1466
1467/// printDataDirective - This method prints the asm directive for the
1468/// specified type.
1469void AsmPrinter::printDataDirective(const Type *type) {
1470  const TargetData *TD = TM.getTargetData();
1471  switch (type->getTypeID()) {
1472  case Type::IntegerTyID: {
1473    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1474    if (BitWidth <= 8)
1475      O << TAI->getData8bitsDirective();
1476    else if (BitWidth <= 16)
1477      O << TAI->getData16bitsDirective();
1478    else if (BitWidth <= 32)
1479      O << TAI->getData32bitsDirective();
1480    else if (BitWidth <= 64) {
1481      assert(TAI->getData64bitsDirective() &&
1482             "Target cannot handle 64-bit constant exprs!");
1483      O << TAI->getData64bitsDirective();
1484    } else {
1485      assert(0 && "Target cannot handle given data directive width!");
1486    }
1487    break;
1488  }
1489  case Type::PointerTyID:
1490    if (TD->getPointerSize() == 8) {
1491      assert(TAI->getData64bitsDirective() &&
1492             "Target cannot handle 64-bit pointer exprs!");
1493      O << TAI->getData64bitsDirective();
1494    } else {
1495      O << TAI->getData32bitsDirective();
1496    }
1497    break;
1498  case Type::FloatTyID: case Type::DoubleTyID:
1499  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1500    assert (0 && "Should have already output floating point constant.");
1501  default:
1502    assert (0 && "Can't handle printing this type of thing");
1503    break;
1504  }
1505}
1506
1507void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1508                                   const char *Prefix) {
1509  if (Name[0]=='\"')
1510    O << '\"';
1511  O << TAI->getPrivateGlobalPrefix();
1512  if (Prefix) O << Prefix;
1513  if (Name[0]=='\"')
1514    O << '\"';
1515  if (Name[0]=='\"')
1516    O << Name[1];
1517  else
1518    O << Name;
1519  O << Suffix;
1520  if (Name[0]=='\"')
1521    O << '\"';
1522}
1523
1524void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1525  printSuffixedName(Name.c_str(), Suffix);
1526}
1527
1528void AsmPrinter::printVisibility(const std::string& Name,
1529                                 unsigned Visibility) const {
1530  if (Visibility == GlobalValue::HiddenVisibility) {
1531    if (const char *Directive = TAI->getHiddenDirective())
1532      O << Directive << Name << '\n';
1533  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1534    if (const char *Directive = TAI->getProtectedDirective())
1535      O << Directive << Name << '\n';
1536  }
1537}
1538
1539GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1540  if (!S->usesMetadata())
1541    return 0;
1542
1543  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1544  if (GCPI != GCMetadataPrinters.end())
1545    return GCPI->second;
1546
1547  const char *Name = S->getName().c_str();
1548
1549  for (GCMetadataPrinterRegistry::iterator
1550         I = GCMetadataPrinterRegistry::begin(),
1551         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1552    if (strcmp(Name, I->getName()) == 0) {
1553      GCMetadataPrinter *GMP = I->instantiate();
1554      GMP->S = S;
1555      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1556      return GMP;
1557    }
1558
1559  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1560  abort();
1561}
1562