AsmPrinter.cpp revision 1efd4fd56b3bc21b85ab921c6f77807afc02ecb5
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/CodeGen/GCMetadataPrinter.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineLoopInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/Analysis/DebugInfo.h"
28#include "llvm/MC/MCContext.h"
29#include "llvm/MC/MCInst.h"
30#include "llvm/MC/MCSection.h"
31#include "llvm/MC/MCStreamer.h"
32#include "llvm/MC/MCSymbol.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/FormattedStream.h"
36#include "llvm/MC/MCAsmInfo.h"
37#include "llvm/Target/Mangler.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetLoweringObjectFile.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Target/TargetRegisterInfo.h"
44#include "llvm/ADT/SmallPtrSet.h"
45#include "llvm/ADT/SmallString.h"
46#include <cerrno>
47using namespace llvm;
48
49static cl::opt<cl::boolOrDefault>
50AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
51           cl::init(cl::BOU_UNSET));
52
53char AsmPrinter::ID = 0;
54AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
55                       const MCAsmInfo *T, bool VDef)
56  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
57    TM(tm), MAI(T), TRI(tm.getRegisterInfo()),
58
59    OutContext(*new MCContext()),
60    // FIXME: Pass instprinter to streamer.
61    OutStreamer(*createAsmStreamer(OutContext, O, *T, 0)),
62
63    LastMI(0), LastFn(0), Counter(~0U), PrevDLT(NULL) {
64  DW = 0; MMI = 0;
65  switch (AsmVerbose) {
66  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
67  case cl::BOU_TRUE:  VerboseAsm = true;  break;
68  case cl::BOU_FALSE: VerboseAsm = false; break;
69  }
70}
71
72AsmPrinter::~AsmPrinter() {
73  for (gcp_iterator I = GCMetadataPrinters.begin(),
74                    E = GCMetadataPrinters.end(); I != E; ++I)
75    delete I->second;
76
77  delete &OutStreamer;
78  delete &OutContext;
79}
80
81TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
82  return TM.getTargetLowering()->getObjFileLowering();
83}
84
85/// getCurrentSection() - Return the current section we are emitting to.
86const MCSection *AsmPrinter::getCurrentSection() const {
87  return OutStreamer.getCurrentSection();
88}
89
90
91void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
92  AU.setPreservesAll();
93  MachineFunctionPass::getAnalysisUsage(AU);
94  AU.addRequired<GCModuleInfo>();
95  if (VerboseAsm)
96    AU.addRequired<MachineLoopInfo>();
97}
98
99bool AsmPrinter::doInitialization(Module &M) {
100  // Initialize TargetLoweringObjectFile.
101  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
102    .Initialize(OutContext, TM);
103
104  Mang = new Mangler(M, MAI->getGlobalPrefix(), MAI->getPrivateGlobalPrefix(),
105                     MAI->getLinkerPrivateGlobalPrefix());
106
107  // Allow the target to emit any magic that it wants at the start of the file.
108  EmitStartOfAsmFile(M);
109
110  if (MAI->hasSingleParameterDotFile()) {
111    /* Very minimal debug info. It is ignored if we emit actual
112       debug info. If we don't, this at least helps the user find where
113       a function came from. */
114    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
115  }
116
117  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
118  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
119  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
120    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
121      MP->beginAssembly(O, *this, *MAI);
122
123  if (!M.getModuleInlineAsm().empty())
124    O << MAI->getCommentString() << " Start of file scope inline assembly\n"
125      << M.getModuleInlineAsm()
126      << '\n' << MAI->getCommentString()
127      << " End of file scope inline assembly\n";
128
129  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
130  if (MMI)
131    MMI->AnalyzeModule(M);
132  DW = getAnalysisIfAvailable<DwarfWriter>();
133  if (DW)
134    DW->BeginModule(&M, MMI, O, this, MAI);
135
136  return false;
137}
138
139bool AsmPrinter::doFinalization(Module &M) {
140  // Emit global variables.
141  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
142       I != E; ++I)
143    PrintGlobalVariable(I);
144
145  // Emit final debug information.
146  if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling())
147    DW->EndModule();
148
149  // If the target wants to know about weak references, print them all.
150  if (MAI->getWeakRefDirective()) {
151    // FIXME: This is not lazy, it would be nice to only print weak references
152    // to stuff that is actually used.  Note that doing so would require targets
153    // to notice uses in operands (due to constant exprs etc).  This should
154    // happen with the MC stuff eventually.
155
156    // Print out module-level global variables here.
157    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
158         I != E; ++I) {
159      if (!I->hasExternalWeakLinkage()) continue;
160      O << MAI->getWeakRefDirective();
161      GetGlobalValueSymbol(I)->print(O, MAI);
162      O << '\n';
163    }
164
165    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
166      if (!I->hasExternalWeakLinkage()) continue;
167      O << MAI->getWeakRefDirective();
168      GetGlobalValueSymbol(I)->print(O, MAI);
169      O << '\n';
170    }
171  }
172
173  if (MAI->getSetDirective()) {
174    O << '\n';
175    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
176         I != E; ++I) {
177      MCSymbol *Name = GetGlobalValueSymbol(I);
178
179      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
180      MCSymbol *Target = GetGlobalValueSymbol(GV);
181
182      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) {
183        O << "\t.globl\t";
184        Name->print(O, MAI);
185        O << '\n';
186      } else if (I->hasWeakLinkage()) {
187        O << MAI->getWeakRefDirective();
188        Name->print(O, MAI);
189        O << '\n';
190      } else {
191        assert(I->hasLocalLinkage() && "Invalid alias linkage");
192      }
193
194      printVisibility(Name, I->getVisibility());
195
196      O << MAI->getSetDirective() << ' ';
197      Name->print(O, MAI);
198      O << ", ";
199      Target->print(O, MAI);
200      O << '\n';
201    }
202  }
203
204  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
205  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
206  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
207    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
208      MP->finishAssembly(O, *this, *MAI);
209
210  // If we don't have any trampolines, then we don't require stack memory
211  // to be executable. Some targets have a directive to declare this.
212  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
213  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
214    if (MAI->getNonexecutableStackDirective())
215      O << MAI->getNonexecutableStackDirective() << '\n';
216
217
218  // Allow the target to emit any magic that it wants at the end of the file,
219  // after everything else has gone out.
220  EmitEndOfAsmFile(M);
221
222  delete Mang; Mang = 0;
223  DW = 0; MMI = 0;
224
225  OutStreamer.Finish();
226  return false;
227}
228
229void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
230  // Get the function symbol.
231  CurrentFnSym = GetGlobalValueSymbol(MF.getFunction());
232  IncrementFunctionNumber();
233
234  if (VerboseAsm)
235    LI = &getAnalysis<MachineLoopInfo>();
236}
237
238namespace {
239  // SectionCPs - Keep track the alignment, constpool entries per Section.
240  struct SectionCPs {
241    const MCSection *S;
242    unsigned Alignment;
243    SmallVector<unsigned, 4> CPEs;
244    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
245  };
246}
247
248/// EmitConstantPool - Print to the current output stream assembly
249/// representations of the constants in the constant pool MCP. This is
250/// used to print out constants which have been "spilled to memory" by
251/// the code generator.
252///
253void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
254  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
255  if (CP.empty()) return;
256
257  // Calculate sections for constant pool entries. We collect entries to go into
258  // the same section together to reduce amount of section switch statements.
259  SmallVector<SectionCPs, 4> CPSections;
260  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
261    const MachineConstantPoolEntry &CPE = CP[i];
262    unsigned Align = CPE.getAlignment();
263
264    SectionKind Kind;
265    switch (CPE.getRelocationInfo()) {
266    default: llvm_unreachable("Unknown section kind");
267    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
268    case 1:
269      Kind = SectionKind::getReadOnlyWithRelLocal();
270      break;
271    case 0:
272    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
273    case 4:  Kind = SectionKind::getMergeableConst4(); break;
274    case 8:  Kind = SectionKind::getMergeableConst8(); break;
275    case 16: Kind = SectionKind::getMergeableConst16();break;
276    default: Kind = SectionKind::getMergeableConst(); break;
277    }
278    }
279
280    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
281
282    // The number of sections are small, just do a linear search from the
283    // last section to the first.
284    bool Found = false;
285    unsigned SecIdx = CPSections.size();
286    while (SecIdx != 0) {
287      if (CPSections[--SecIdx].S == S) {
288        Found = true;
289        break;
290      }
291    }
292    if (!Found) {
293      SecIdx = CPSections.size();
294      CPSections.push_back(SectionCPs(S, Align));
295    }
296
297    if (Align > CPSections[SecIdx].Alignment)
298      CPSections[SecIdx].Alignment = Align;
299    CPSections[SecIdx].CPEs.push_back(i);
300  }
301
302  // Now print stuff into the calculated sections.
303  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
304    OutStreamer.SwitchSection(CPSections[i].S);
305    EmitAlignment(Log2_32(CPSections[i].Alignment));
306
307    unsigned Offset = 0;
308    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
309      unsigned CPI = CPSections[i].CPEs[j];
310      MachineConstantPoolEntry CPE = CP[CPI];
311
312      // Emit inter-object padding for alignment.
313      unsigned AlignMask = CPE.getAlignment() - 1;
314      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
315      EmitZeros(NewOffset - Offset);
316
317      const Type *Ty = CPE.getType();
318      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
319
320      O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
321        << CPI << ':';
322      if (VerboseAsm) {
323        O.PadToColumn(MAI->getCommentColumn());
324        O << MAI->getCommentString() << " constant ";
325        WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent());
326      }
327      O << '\n';
328      if (CPE.isMachineConstantPoolEntry())
329        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
330      else
331        EmitGlobalConstant(CPE.Val.ConstVal);
332    }
333  }
334}
335
336/// EmitJumpTableInfo - Print assembly representations of the jump tables used
337/// by the current function to the current output stream.
338///
339void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
340                                   MachineFunction &MF) {
341  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
342  if (JT.empty()) return;
343
344  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
345
346  // Pick the directive to use to print the jump table entries, and switch to
347  // the appropriate section.
348  TargetLowering *LoweringInfo = TM.getTargetLowering();
349
350  const Function *F = MF.getFunction();
351  bool JTInDiffSection = false;
352  if (F->isWeakForLinker() ||
353      (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
354    // In PIC mode, we need to emit the jump table to the same section as the
355    // function body itself, otherwise the label differences won't make sense.
356    // We should also do if the section name is NULL or function is declared in
357    // discardable section.
358    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang,
359                                                                    TM));
360  } else {
361    // Otherwise, drop it in the readonly section.
362    const MCSection *ReadOnlySection =
363      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
364    OutStreamer.SwitchSection(ReadOnlySection);
365    JTInDiffSection = true;
366  }
367
368  EmitAlignment(Log2_32(MJTI->getAlignment()));
369
370  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
371    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
372
373    // If this jump table was deleted, ignore it.
374    if (JTBBs.empty()) continue;
375
376    // For PIC codegen, if possible we want to use the SetDirective to reduce
377    // the number of relocations the assembler will generate for the jump table.
378    // Set directives are all printed before the jump table itself.
379    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
380    if (MAI->getSetDirective() && IsPic)
381      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
382        if (EmittedSets.insert(JTBBs[ii]))
383          printPICJumpTableSetLabel(i, JTBBs[ii]);
384
385    // On some targets (e.g. Darwin) we want to emit two consequtive labels
386    // before each jump table.  The first label is never referenced, but tells
387    // the assembler and linker the extents of the jump table object.  The
388    // second label is actually referenced by the code.
389    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) {
390      O << MAI->getLinkerPrivateGlobalPrefix()
391        << "JTI" << getFunctionNumber() << '_' << i << ":\n";
392    }
393
394    O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
395      << '_' << i << ":\n";
396
397    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
398      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
399      O << '\n';
400    }
401  }
402}
403
404void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
405                                        const MachineBasicBlock *MBB,
406                                        unsigned uid)  const {
407  bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
408
409  // Use JumpTableDirective otherwise honor the entry size from the jump table
410  // info.
411  const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC);
412  bool HadJTEntryDirective = JTEntryDirective != NULL;
413  if (!HadJTEntryDirective) {
414    JTEntryDirective = MJTI->getEntrySize() == 4 ?
415      MAI->getData32bitsDirective() : MAI->getData64bitsDirective();
416  }
417
418  O << JTEntryDirective << ' ';
419
420  // If we have emitted set directives for the jump table entries, print
421  // them rather than the entries themselves.  If we're emitting PIC, then
422  // emit the table entries as differences between two text section labels.
423  // If we're emitting non-PIC code, then emit the entries as direct
424  // references to the target basic blocks.
425  if (!isPIC) {
426    GetMBBSymbol(MBB->getNumber())->print(O, MAI);
427  } else if (MAI->getSetDirective()) {
428    O << MAI->getPrivateGlobalPrefix() << getFunctionNumber()
429      << '_' << uid << "_set_" << MBB->getNumber();
430  } else {
431    GetMBBSymbol(MBB->getNumber())->print(O, MAI);
432    // If the arch uses custom Jump Table directives, don't calc relative to
433    // JT
434    if (!HadJTEntryDirective)
435      O << '-' << MAI->getPrivateGlobalPrefix() << "JTI"
436        << getFunctionNumber() << '_' << uid;
437  }
438}
439
440
441/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
442/// special global used by LLVM.  If so, emit it and return true, otherwise
443/// do nothing and return false.
444bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
445  if (GV->getName() == "llvm.used") {
446    if (MAI->getUsedDirective() != 0)    // No need to emit this at all.
447      EmitLLVMUsedList(GV->getInitializer());
448    return true;
449  }
450
451  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
452  if (GV->getSection() == "llvm.metadata" ||
453      GV->hasAvailableExternallyLinkage())
454    return true;
455
456  if (!GV->hasAppendingLinkage()) return false;
457
458  assert(GV->hasInitializer() && "Not a special LLVM global!");
459
460  const TargetData *TD = TM.getTargetData();
461  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
462  if (GV->getName() == "llvm.global_ctors") {
463    OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection());
464    EmitAlignment(Align, 0);
465    EmitXXStructorList(GV->getInitializer());
466    return true;
467  }
468
469  if (GV->getName() == "llvm.global_dtors") {
470    OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection());
471    EmitAlignment(Align, 0);
472    EmitXXStructorList(GV->getInitializer());
473    return true;
474  }
475
476  return false;
477}
478
479/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
480/// global in the specified llvm.used list for which emitUsedDirectiveFor
481/// is true, as being used with this directive.
482void AsmPrinter::EmitLLVMUsedList(Constant *List) {
483  const char *Directive = MAI->getUsedDirective();
484
485  // Should be an array of 'i8*'.
486  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
487  if (InitList == 0) return;
488
489  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
490    const GlobalValue *GV =
491      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
492    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
493      O << Directive;
494      EmitConstantValueOnly(InitList->getOperand(i));
495      O << '\n';
496    }
497  }
498}
499
500/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
501/// function pointers, ignoring the init priority.
502void AsmPrinter::EmitXXStructorList(Constant *List) {
503  // Should be an array of '{ int, void ()* }' structs.  The first value is the
504  // init priority, which we ignore.
505  if (!isa<ConstantArray>(List)) return;
506  ConstantArray *InitList = cast<ConstantArray>(List);
507  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
508    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
509      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
510
511      if (CS->getOperand(1)->isNullValue())
512        return;  // Found a null terminator, exit printing.
513      // Emit the function pointer.
514      EmitGlobalConstant(CS->getOperand(1));
515    }
516}
517
518
519//===----------------------------------------------------------------------===//
520/// LEB 128 number encoding.
521
522/// PrintULEB128 - Print a series of hexadecimal values (separated by commas)
523/// representing an unsigned leb128 value.
524void AsmPrinter::PrintULEB128(unsigned Value) const {
525  do {
526    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
527    Value >>= 7;
528    if (Value) Byte |= 0x80;
529    PrintHex(Byte);
530    if (Value) O << ", ";
531  } while (Value);
532}
533
534/// PrintSLEB128 - Print a series of hexadecimal values (separated by commas)
535/// representing a signed leb128 value.
536void AsmPrinter::PrintSLEB128(int Value) const {
537  int Sign = Value >> (8 * sizeof(Value) - 1);
538  bool IsMore;
539
540  do {
541    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
542    Value >>= 7;
543    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
544    if (IsMore) Byte |= 0x80;
545    PrintHex(Byte);
546    if (IsMore) O << ", ";
547  } while (IsMore);
548}
549
550//===--------------------------------------------------------------------===//
551// Emission and print routines
552//
553
554/// PrintHex - Print a value as a hexadecimal value.
555///
556void AsmPrinter::PrintHex(uint64_t Value) const {
557  O << "0x";
558  O.write_hex(Value);
559}
560
561/// EOL - Print a newline character to asm stream.  If a comment is present
562/// then it will be printed first.  Comments should not contain '\n'.
563void AsmPrinter::EOL() const {
564  O << '\n';
565}
566
567void AsmPrinter::EOL(const Twine &Comment) const {
568  if (VerboseAsm && !Comment.isTriviallyEmpty()) {
569    O.PadToColumn(MAI->getCommentColumn());
570    O << MAI->getCommentString()
571      << ' '
572      << Comment;
573  }
574  O << '\n';
575}
576
577static const char *DecodeDWARFEncoding(unsigned Encoding) {
578  switch (Encoding) {
579  case dwarf::DW_EH_PE_absptr:
580    return "absptr";
581  case dwarf::DW_EH_PE_omit:
582    return "omit";
583  case dwarf::DW_EH_PE_pcrel:
584    return "pcrel";
585  case dwarf::DW_EH_PE_udata4:
586    return "udata4";
587  case dwarf::DW_EH_PE_udata8:
588    return "udata8";
589  case dwarf::DW_EH_PE_sdata4:
590    return "sdata4";
591  case dwarf::DW_EH_PE_sdata8:
592    return "sdata8";
593  case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4:
594    return "pcrel udata4";
595  case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4:
596    return "pcrel sdata4";
597  case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8:
598    return "pcrel udata8";
599  case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8:
600    return "pcrel sdata8";
601  case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4:
602    return "indirect pcrel udata4";
603  case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4:
604    return "indirect pcrel sdata4";
605  case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8:
606    return "indirect pcrel udata8";
607  case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8:
608    return "indirect pcrel sdata8";
609  }
610
611  return 0;
612}
613
614void AsmPrinter::EOL(const Twine &Comment, unsigned Encoding) const {
615  if (VerboseAsm && !Comment.isTriviallyEmpty()) {
616    O.PadToColumn(MAI->getCommentColumn());
617    O << MAI->getCommentString()
618      << ' '
619      << Comment;
620
621    if (const char *EncStr = DecodeDWARFEncoding(Encoding))
622      O << " (" << EncStr << ')';
623  }
624  O << '\n';
625}
626
627/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
628/// unsigned leb128 value.
629void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
630  if (MAI->hasLEB128()) {
631    O << "\t.uleb128\t"
632      << Value;
633  } else {
634    O << MAI->getData8bitsDirective();
635    PrintULEB128(Value);
636  }
637}
638
639/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
640/// signed leb128 value.
641void AsmPrinter::EmitSLEB128Bytes(int Value) const {
642  if (MAI->hasLEB128()) {
643    O << "\t.sleb128\t"
644      << Value;
645  } else {
646    O << MAI->getData8bitsDirective();
647    PrintSLEB128(Value);
648  }
649}
650
651/// EmitInt8 - Emit a byte directive and value.
652///
653void AsmPrinter::EmitInt8(int Value) const {
654  O << MAI->getData8bitsDirective();
655  PrintHex(Value & 0xFF);
656}
657
658/// EmitInt16 - Emit a short directive and value.
659///
660void AsmPrinter::EmitInt16(int Value) const {
661  O << MAI->getData16bitsDirective();
662  PrintHex(Value & 0xFFFF);
663}
664
665/// EmitInt32 - Emit a long directive and value.
666///
667void AsmPrinter::EmitInt32(int Value) const {
668  O << MAI->getData32bitsDirective();
669  PrintHex(Value);
670}
671
672/// EmitInt64 - Emit a long long directive and value.
673///
674void AsmPrinter::EmitInt64(uint64_t Value) const {
675  if (MAI->getData64bitsDirective()) {
676    O << MAI->getData64bitsDirective();
677    PrintHex(Value);
678  } else {
679    if (TM.getTargetData()->isBigEndian()) {
680      EmitInt32(unsigned(Value >> 32)); O << '\n';
681      EmitInt32(unsigned(Value));
682    } else {
683      EmitInt32(unsigned(Value)); O << '\n';
684      EmitInt32(unsigned(Value >> 32));
685    }
686  }
687}
688
689/// toOctal - Convert the low order bits of X into an octal digit.
690///
691static inline char toOctal(int X) {
692  return (X&7)+'0';
693}
694
695/// printStringChar - Print a char, escaped if necessary.
696///
697static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
698  if (C == '"') {
699    O << "\\\"";
700  } else if (C == '\\') {
701    O << "\\\\";
702  } else if (isprint((unsigned char)C)) {
703    O << C;
704  } else {
705    switch(C) {
706    case '\b': O << "\\b"; break;
707    case '\f': O << "\\f"; break;
708    case '\n': O << "\\n"; break;
709    case '\r': O << "\\r"; break;
710    case '\t': O << "\\t"; break;
711    default:
712      O << '\\';
713      O << toOctal(C >> 6);
714      O << toOctal(C >> 3);
715      O << toOctal(C >> 0);
716      break;
717    }
718  }
719}
720
721/// EmitString - Emit a string with quotes and a null terminator.
722/// Special characters are emitted properly.
723/// \literal (Eg. '\t') \endliteral
724void AsmPrinter::EmitString(const StringRef String) const {
725  EmitString(String.data(), String.size());
726}
727
728void AsmPrinter::EmitString(const char *String, unsigned Size) const {
729  const char* AscizDirective = MAI->getAscizDirective();
730  if (AscizDirective)
731    O << AscizDirective;
732  else
733    O << MAI->getAsciiDirective();
734  O << '\"';
735  for (unsigned i = 0; i < Size; ++i)
736    printStringChar(O, String[i]);
737  if (AscizDirective)
738    O << '\"';
739  else
740    O << "\\0\"";
741}
742
743
744/// EmitFile - Emit a .file directive.
745void AsmPrinter::EmitFile(unsigned Number, StringRef Name) const {
746  O << "\t.file\t" << Number << " \"";
747  for (unsigned i = 0, N = Name.size(); i < N; ++i)
748    printStringChar(O, Name[i]);
749  O << '\"';
750}
751
752
753//===----------------------------------------------------------------------===//
754
755// EmitAlignment - Emit an alignment directive to the specified power of
756// two boundary.  For example, if you pass in 3 here, you will get an 8
757// byte alignment.  If a global value is specified, and if that global has
758// an explicit alignment requested, it will unconditionally override the
759// alignment request.  However, if ForcedAlignBits is specified, this value
760// has final say: the ultimate alignment will be the max of ForcedAlignBits
761// and the alignment computed with NumBits and the global.
762//
763// The algorithm is:
764//     Align = NumBits;
765//     if (GV && GV->hasalignment) Align = GV->getalignment();
766//     Align = std::max(Align, ForcedAlignBits);
767//
768void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
769                               unsigned ForcedAlignBits,
770                               bool UseFillExpr) const {
771  if (GV && GV->getAlignment())
772    NumBits = Log2_32(GV->getAlignment());
773  NumBits = std::max(NumBits, ForcedAlignBits);
774
775  if (NumBits == 0) return;   // No need to emit alignment.
776
777  unsigned FillValue = 0;
778  if (getCurrentSection()->getKind().isText())
779    FillValue = MAI->getTextAlignFillValue();
780
781  OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0);
782}
783
784/// EmitZeros - Emit a block of zeros.
785///
786void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
787  if (NumZeros) {
788    if (MAI->getZeroDirective()) {
789      O << MAI->getZeroDirective() << NumZeros;
790      if (MAI->getZeroDirectiveSuffix())
791        O << MAI->getZeroDirectiveSuffix();
792      O << '\n';
793    } else {
794      for (; NumZeros; --NumZeros)
795        O << MAI->getData8bitsDirective(AddrSpace) << "0\n";
796    }
797  }
798}
799
800// Print out the specified constant, without a storage class.  Only the
801// constants valid in constant expressions can occur here.
802void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
803  if (CV->isNullValue() || isa<UndefValue>(CV)) {
804    O << '0';
805    return;
806  }
807
808  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
809    O << CI->getZExtValue();
810    return;
811  }
812
813  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
814    // This is a constant address for a global variable or function. Use the
815    // name of the variable or function as the address value.
816    GetGlobalValueSymbol(GV)->print(O, MAI);
817    return;
818  }
819
820  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
821    GetBlockAddressSymbol(BA)->print(O, MAI);
822    return;
823  }
824
825  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
826  if (CE == 0) {
827    llvm_unreachable("Unknown constant value!");
828    O << '0';
829    return;
830  }
831
832  switch (CE->getOpcode()) {
833  case Instruction::ZExt:
834  case Instruction::SExt:
835  case Instruction::FPTrunc:
836  case Instruction::FPExt:
837  case Instruction::UIToFP:
838  case Instruction::SIToFP:
839  case Instruction::FPToUI:
840  case Instruction::FPToSI:
841  default:
842    llvm_unreachable("FIXME: Don't support this constant cast expr");
843  case Instruction::GetElementPtr: {
844    // generate a symbolic expression for the byte address
845    const TargetData *TD = TM.getTargetData();
846    const Constant *ptrVal = CE->getOperand(0);
847    SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
848    int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
849                                          idxVec.size());
850    if (Offset == 0)
851      return EmitConstantValueOnly(ptrVal);
852
853    // Truncate/sext the offset to the pointer size.
854    if (TD->getPointerSizeInBits() != 64) {
855      int SExtAmount = 64-TD->getPointerSizeInBits();
856      Offset = (Offset << SExtAmount) >> SExtAmount;
857    }
858
859    if (Offset)
860      O << '(';
861    EmitConstantValueOnly(ptrVal);
862    if (Offset > 0)
863      O << ") + " << Offset;
864    else
865      O << ") - " << -Offset;
866    return;
867  }
868  case Instruction::BitCast:
869    return EmitConstantValueOnly(CE->getOperand(0));
870
871  case Instruction::IntToPtr: {
872    // Handle casts to pointers by changing them into casts to the appropriate
873    // integer type.  This promotes constant folding and simplifies this code.
874    const TargetData *TD = TM.getTargetData();
875    Constant *Op = CE->getOperand(0);
876    Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
877                                      false/*ZExt*/);
878    return EmitConstantValueOnly(Op);
879  }
880
881  case Instruction::PtrToInt: {
882    // Support only foldable casts to/from pointers that can be eliminated by
883    // changing the pointer to the appropriately sized integer type.
884    Constant *Op = CE->getOperand(0);
885    const Type *Ty = CE->getType();
886    const TargetData *TD = TM.getTargetData();
887
888    // We can emit the pointer value into this slot if the slot is an
889    // integer slot greater or equal to the size of the pointer.
890    if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
891      return EmitConstantValueOnly(Op);
892
893    O << "((";
894    EmitConstantValueOnly(Op);
895    APInt ptrMask =
896      APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
897
898    SmallString<40> S;
899    ptrMask.toStringUnsigned(S);
900    O << ") & " << S.str() << ')';
901    return;
902  }
903
904  case Instruction::Trunc:
905    // We emit the value and depend on the assembler to truncate the generated
906    // expression properly.  This is important for differences between
907    // blockaddress labels.  Since the two labels are in the same function, it
908    // is reasonable to treat their delta as a 32-bit value.
909    return EmitConstantValueOnly(CE->getOperand(0));
910
911  case Instruction::Add:
912  case Instruction::Sub:
913  case Instruction::And:
914  case Instruction::Or:
915  case Instruction::Xor:
916    O << '(';
917    EmitConstantValueOnly(CE->getOperand(0));
918    O << ')';
919    switch (CE->getOpcode()) {
920    case Instruction::Add:
921     O << " + ";
922     break;
923    case Instruction::Sub:
924     O << " - ";
925     break;
926    case Instruction::And:
927     O << " & ";
928     break;
929    case Instruction::Or:
930     O << " | ";
931     break;
932    case Instruction::Xor:
933     O << " ^ ";
934     break;
935    default:
936     break;
937    }
938    O << '(';
939    EmitConstantValueOnly(CE->getOperand(1));
940    O << ')';
941    break;
942  }
943}
944
945/// printAsCString - Print the specified array as a C compatible string, only if
946/// the predicate isString is true.
947///
948static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
949                           unsigned LastElt) {
950  assert(CVA->isString() && "Array is not string compatible!");
951
952  O << '\"';
953  for (unsigned i = 0; i != LastElt; ++i) {
954    unsigned char C =
955        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
956    printStringChar(O, C);
957  }
958  O << '\"';
959}
960
961/// EmitString - Emit a zero-byte-terminated string constant.
962///
963void AsmPrinter::EmitString(const ConstantArray *CVA) const {
964  unsigned NumElts = CVA->getNumOperands();
965  if (MAI->getAscizDirective() && NumElts &&
966      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
967    O << MAI->getAscizDirective();
968    printAsCString(O, CVA, NumElts-1);
969  } else {
970    O << MAI->getAsciiDirective();
971    printAsCString(O, CVA, NumElts);
972  }
973  O << '\n';
974}
975
976void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
977                                         unsigned AddrSpace) {
978  if (CVA->isString()) {
979    EmitString(CVA);
980  } else { // Not a string.  Print the values in successive locations
981    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
982      EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
983  }
984}
985
986void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
987  const VectorType *PTy = CP->getType();
988
989  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
990    EmitGlobalConstant(CP->getOperand(I));
991}
992
993void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
994                                          unsigned AddrSpace) {
995  // Print the fields in successive locations. Pad to align if needed!
996  const TargetData *TD = TM.getTargetData();
997  unsigned Size = TD->getTypeAllocSize(CVS->getType());
998  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
999  uint64_t sizeSoFar = 0;
1000  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
1001    const Constant* field = CVS->getOperand(i);
1002
1003    // Check if padding is needed and insert one or more 0s.
1004    uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
1005    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1006                        - cvsLayout->getElementOffset(i)) - fieldSize;
1007    sizeSoFar += fieldSize + padSize;
1008
1009    // Now print the actual field value.
1010    EmitGlobalConstant(field, AddrSpace);
1011
1012    // Insert padding - this may include padding to increase the size of the
1013    // current field up to the ABI size (if the struct is not packed) as well
1014    // as padding to ensure that the next field starts at the right offset.
1015    EmitZeros(padSize, AddrSpace);
1016  }
1017  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1018         "Layout of constant struct may be incorrect!");
1019}
1020
1021void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1022                                      unsigned AddrSpace) {
1023  // FP Constants are printed as integer constants to avoid losing
1024  // precision...
1025  LLVMContext &Context = CFP->getContext();
1026  const TargetData *TD = TM.getTargetData();
1027  if (CFP->getType()->isDoubleTy()) {
1028    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1029    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1030    if (MAI->getData64bitsDirective(AddrSpace)) {
1031      O << MAI->getData64bitsDirective(AddrSpace) << i;
1032      if (VerboseAsm) {
1033        O.PadToColumn(MAI->getCommentColumn());
1034        O << MAI->getCommentString() << " double " << Val;
1035      }
1036      O << '\n';
1037    } else if (TD->isBigEndian()) {
1038      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1039      if (VerboseAsm) {
1040        O.PadToColumn(MAI->getCommentColumn());
1041        O << MAI->getCommentString()
1042          << " most significant word of double " << Val;
1043      }
1044      O << '\n';
1045      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1046      if (VerboseAsm) {
1047        O.PadToColumn(MAI->getCommentColumn());
1048        O << MAI->getCommentString()
1049          << " least significant word of double " << Val;
1050      }
1051      O << '\n';
1052    } else {
1053      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1054      if (VerboseAsm) {
1055        O.PadToColumn(MAI->getCommentColumn());
1056        O << MAI->getCommentString()
1057          << " least significant word of double " << Val;
1058      }
1059      O << '\n';
1060      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1061      if (VerboseAsm) {
1062        O.PadToColumn(MAI->getCommentColumn());
1063        O << MAI->getCommentString()
1064          << " most significant word of double " << Val;
1065      }
1066      O << '\n';
1067    }
1068    return;
1069  }
1070
1071  if (CFP->getType()->isFloatTy()) {
1072    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1073    O << MAI->getData32bitsDirective(AddrSpace)
1074      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1075    if (VerboseAsm) {
1076      O.PadToColumn(MAI->getCommentColumn());
1077      O << MAI->getCommentString() << " float " << Val;
1078    }
1079    O << '\n';
1080    return;
1081  }
1082
1083  if (CFP->getType()->isX86_FP80Ty()) {
1084    // all long double variants are printed as hex
1085    // api needed to prevent premature destruction
1086    APInt api = CFP->getValueAPF().bitcastToAPInt();
1087    const uint64_t *p = api.getRawData();
1088    // Convert to double so we can print the approximate val as a comment.
1089    APFloat DoubleVal = CFP->getValueAPF();
1090    bool ignored;
1091    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1092                      &ignored);
1093    if (TD->isBigEndian()) {
1094      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1095      if (VerboseAsm) {
1096        O.PadToColumn(MAI->getCommentColumn());
1097        O << MAI->getCommentString()
1098          << " most significant halfword of x86_fp80 ~"
1099          << DoubleVal.convertToDouble();
1100      }
1101      O << '\n';
1102      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1103      if (VerboseAsm) {
1104        O.PadToColumn(MAI->getCommentColumn());
1105        O << MAI->getCommentString() << " next halfword";
1106      }
1107      O << '\n';
1108      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1109      if (VerboseAsm) {
1110        O.PadToColumn(MAI->getCommentColumn());
1111        O << MAI->getCommentString() << " next halfword";
1112      }
1113      O << '\n';
1114      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1115      if (VerboseAsm) {
1116        O.PadToColumn(MAI->getCommentColumn());
1117        O << MAI->getCommentString() << " next halfword";
1118      }
1119      O << '\n';
1120      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1121      if (VerboseAsm) {
1122        O.PadToColumn(MAI->getCommentColumn());
1123        O << MAI->getCommentString()
1124          << " least significant halfword";
1125      }
1126      O << '\n';
1127     } else {
1128      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1129      if (VerboseAsm) {
1130        O.PadToColumn(MAI->getCommentColumn());
1131        O << MAI->getCommentString()
1132          << " least significant halfword of x86_fp80 ~"
1133          << DoubleVal.convertToDouble();
1134      }
1135      O << '\n';
1136      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1137      if (VerboseAsm) {
1138        O.PadToColumn(MAI->getCommentColumn());
1139        O << MAI->getCommentString()
1140          << " next halfword";
1141      }
1142      O << '\n';
1143      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1144      if (VerboseAsm) {
1145        O.PadToColumn(MAI->getCommentColumn());
1146        O << MAI->getCommentString()
1147          << " next halfword";
1148      }
1149      O << '\n';
1150      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1151      if (VerboseAsm) {
1152        O.PadToColumn(MAI->getCommentColumn());
1153        O << MAI->getCommentString()
1154          << " next halfword";
1155      }
1156      O << '\n';
1157      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1158      if (VerboseAsm) {
1159        O.PadToColumn(MAI->getCommentColumn());
1160        O << MAI->getCommentString()
1161          << " most significant halfword";
1162      }
1163      O << '\n';
1164    }
1165    EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) -
1166              TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace);
1167    return;
1168  }
1169
1170  if (CFP->getType()->isPPC_FP128Ty()) {
1171    // all long double variants are printed as hex
1172    // api needed to prevent premature destruction
1173    APInt api = CFP->getValueAPF().bitcastToAPInt();
1174    const uint64_t *p = api.getRawData();
1175    if (TD->isBigEndian()) {
1176      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1177      if (VerboseAsm) {
1178        O.PadToColumn(MAI->getCommentColumn());
1179        O << MAI->getCommentString()
1180          << " most significant word of ppc_fp128";
1181      }
1182      O << '\n';
1183      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1184      if (VerboseAsm) {
1185        O.PadToColumn(MAI->getCommentColumn());
1186        O << MAI->getCommentString()
1187        << " next word";
1188      }
1189      O << '\n';
1190      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1191      if (VerboseAsm) {
1192        O.PadToColumn(MAI->getCommentColumn());
1193        O << MAI->getCommentString()
1194          << " next word";
1195      }
1196      O << '\n';
1197      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1198      if (VerboseAsm) {
1199        O.PadToColumn(MAI->getCommentColumn());
1200        O << MAI->getCommentString()
1201          << " least significant word";
1202      }
1203      O << '\n';
1204     } else {
1205      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1206      if (VerboseAsm) {
1207        O.PadToColumn(MAI->getCommentColumn());
1208        O << MAI->getCommentString()
1209          << " least significant word of ppc_fp128";
1210      }
1211      O << '\n';
1212      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1213      if (VerboseAsm) {
1214        O.PadToColumn(MAI->getCommentColumn());
1215        O << MAI->getCommentString()
1216          << " next word";
1217      }
1218      O << '\n';
1219      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1220      if (VerboseAsm) {
1221        O.PadToColumn(MAI->getCommentColumn());
1222        O << MAI->getCommentString()
1223          << " next word";
1224      }
1225      O << '\n';
1226      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1227      if (VerboseAsm) {
1228        O.PadToColumn(MAI->getCommentColumn());
1229        O << MAI->getCommentString()
1230          << " most significant word";
1231      }
1232      O << '\n';
1233    }
1234    return;
1235  } else llvm_unreachable("Floating point constant type not handled");
1236}
1237
1238void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1239                                            unsigned AddrSpace) {
1240  const TargetData *TD = TM.getTargetData();
1241  unsigned BitWidth = CI->getBitWidth();
1242  assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1243
1244  // We don't expect assemblers to support integer data directives
1245  // for more than 64 bits, so we emit the data in at most 64-bit
1246  // quantities at a time.
1247  const uint64_t *RawData = CI->getValue().getRawData();
1248  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1249    uint64_t Val;
1250    if (TD->isBigEndian())
1251      Val = RawData[e - i - 1];
1252    else
1253      Val = RawData[i];
1254
1255    if (MAI->getData64bitsDirective(AddrSpace)) {
1256      O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1257      continue;
1258    }
1259
1260    // Emit two 32-bit chunks, order depends on endianness.
1261    unsigned FirstChunk = unsigned(Val), SecondChunk = unsigned(Val >> 32);
1262    const char *FirstName = " least", *SecondName = " most";
1263    if (TD->isBigEndian()) {
1264      std::swap(FirstChunk, SecondChunk);
1265      std::swap(FirstName, SecondName);
1266    }
1267
1268    O << MAI->getData32bitsDirective(AddrSpace) << FirstChunk;
1269    if (VerboseAsm) {
1270      O.PadToColumn(MAI->getCommentColumn());
1271      O << MAI->getCommentString()
1272        << FirstName << " significant half of i64 " << Val;
1273    }
1274    O << '\n';
1275
1276    O << MAI->getData32bitsDirective(AddrSpace) << SecondChunk;
1277    if (VerboseAsm) {
1278      O.PadToColumn(MAI->getCommentColumn());
1279      O << MAI->getCommentString()
1280        << SecondName << " significant half of i64 " << Val;
1281    }
1282    O << '\n';
1283  }
1284}
1285
1286/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1287void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1288  const TargetData *TD = TM.getTargetData();
1289  const Type *type = CV->getType();
1290  unsigned Size = TD->getTypeAllocSize(type);
1291
1292  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1293    EmitZeros(Size, AddrSpace);
1294    return;
1295  }
1296
1297  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1298    EmitGlobalConstantArray(CVA , AddrSpace);
1299    return;
1300  }
1301
1302  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1303    EmitGlobalConstantStruct(CVS, AddrSpace);
1304    return;
1305  }
1306
1307  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1308    EmitGlobalConstantFP(CFP, AddrSpace);
1309    return;
1310  }
1311
1312  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1313    // If we can directly emit an 8-byte constant, do it.
1314    if (Size == 8)
1315      if (const char *Data64Dir = MAI->getData64bitsDirective(AddrSpace)) {
1316        O << Data64Dir << CI->getZExtValue() << '\n';
1317        return;
1318      }
1319
1320    // Small integers are handled below; large integers are handled here.
1321    if (Size > 4) {
1322      EmitGlobalConstantLargeInt(CI, AddrSpace);
1323      return;
1324    }
1325  }
1326
1327  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1328    EmitGlobalConstantVector(CP);
1329    return;
1330  }
1331
1332  printDataDirective(type, AddrSpace);
1333  EmitConstantValueOnly(CV);
1334  if (VerboseAsm) {
1335    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1336      SmallString<40> S;
1337      CI->getValue().toStringUnsigned(S, 16);
1338      O.PadToColumn(MAI->getCommentColumn());
1339      O << MAI->getCommentString() << " 0x" << S.str();
1340    }
1341  }
1342  O << '\n';
1343}
1344
1345void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1346  // Target doesn't support this yet!
1347  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1348}
1349
1350/// PrintSpecial - Print information related to the specified machine instr
1351/// that is independent of the operand, and may be independent of the instr
1352/// itself.  This can be useful for portably encoding the comment character
1353/// or other bits of target-specific knowledge into the asmstrings.  The
1354/// syntax used is ${:comment}.  Targets can override this to add support
1355/// for their own strange codes.
1356void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1357  if (!strcmp(Code, "private")) {
1358    O << MAI->getPrivateGlobalPrefix();
1359  } else if (!strcmp(Code, "comment")) {
1360    if (VerboseAsm)
1361      O << MAI->getCommentString();
1362  } else if (!strcmp(Code, "uid")) {
1363    // Comparing the address of MI isn't sufficient, because machineinstrs may
1364    // be allocated to the same address across functions.
1365    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1366
1367    // If this is a new LastFn instruction, bump the counter.
1368    if (LastMI != MI || LastFn != ThisF) {
1369      ++Counter;
1370      LastMI = MI;
1371      LastFn = ThisF;
1372    }
1373    O << Counter;
1374  } else {
1375    std::string msg;
1376    raw_string_ostream Msg(msg);
1377    Msg << "Unknown special formatter '" << Code
1378         << "' for machine instr: " << *MI;
1379    llvm_report_error(Msg.str());
1380  }
1381}
1382
1383/// processDebugLoc - Processes the debug information of each machine
1384/// instruction's DebugLoc.
1385void AsmPrinter::processDebugLoc(const MachineInstr *MI,
1386                                 bool BeforePrintingInsn) {
1387  if (!MAI || !DW || !MAI->doesSupportDebugInformation()
1388      || !DW->ShouldEmitDwarfDebug())
1389    return;
1390  DebugLoc DL = MI->getDebugLoc();
1391  if (DL.isUnknown())
1392    return;
1393  DILocation CurDLT = MF->getDILocation(DL);
1394  if (CurDLT.getScope().isNull())
1395    return;
1396
1397  if (BeforePrintingInsn) {
1398    if (CurDLT.getNode() != PrevDLT.getNode()) {
1399      unsigned L = DW->RecordSourceLine(CurDLT.getLineNumber(),
1400                                        CurDLT.getColumnNumber(),
1401                                        CurDLT.getScope().getNode());
1402      printLabel(L);
1403      O << '\n';
1404      DW->BeginScope(MI, L);
1405      PrevDLT = CurDLT;
1406    }
1407  } else {
1408    // After printing instruction
1409    DW->EndScope(MI);
1410  }
1411}
1412
1413
1414/// printInlineAsm - This method formats and prints the specified machine
1415/// instruction that is an inline asm.
1416void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1417  unsigned NumOperands = MI->getNumOperands();
1418
1419  // Count the number of register definitions.
1420  unsigned NumDefs = 0;
1421  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1422       ++NumDefs)
1423    assert(NumDefs != NumOperands-1 && "No asm string?");
1424
1425  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1426
1427  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1428  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1429
1430  O << '\t';
1431
1432  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1433  // These are useful to see where empty asm's wound up.
1434  if (AsmStr[0] == 0) {
1435    O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
1436    O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n';
1437    return;
1438  }
1439
1440  O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
1441
1442  // The variant of the current asmprinter.
1443  int AsmPrinterVariant = MAI->getAssemblerDialect();
1444
1445  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1446  const char *LastEmitted = AsmStr; // One past the last character emitted.
1447
1448  while (*LastEmitted) {
1449    switch (*LastEmitted) {
1450    default: {
1451      // Not a special case, emit the string section literally.
1452      const char *LiteralEnd = LastEmitted+1;
1453      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1454             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1455        ++LiteralEnd;
1456      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1457        O.write(LastEmitted, LiteralEnd-LastEmitted);
1458      LastEmitted = LiteralEnd;
1459      break;
1460    }
1461    case '\n':
1462      ++LastEmitted;   // Consume newline character.
1463      O << '\n';       // Indent code with newline.
1464      break;
1465    case '$': {
1466      ++LastEmitted;   // Consume '$' character.
1467      bool Done = true;
1468
1469      // Handle escapes.
1470      switch (*LastEmitted) {
1471      default: Done = false; break;
1472      case '$':     // $$ -> $
1473        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1474          O << '$';
1475        ++LastEmitted;  // Consume second '$' character.
1476        break;
1477      case '(':             // $( -> same as GCC's { character.
1478        ++LastEmitted;      // Consume '(' character.
1479        if (CurVariant != -1) {
1480          llvm_report_error("Nested variants found in inline asm string: '"
1481                            + std::string(AsmStr) + "'");
1482        }
1483        CurVariant = 0;     // We're in the first variant now.
1484        break;
1485      case '|':
1486        ++LastEmitted;  // consume '|' character.
1487        if (CurVariant == -1)
1488          O << '|';       // this is gcc's behavior for | outside a variant
1489        else
1490          ++CurVariant;   // We're in the next variant.
1491        break;
1492      case ')':         // $) -> same as GCC's } char.
1493        ++LastEmitted;  // consume ')' character.
1494        if (CurVariant == -1)
1495          O << '}';     // this is gcc's behavior for } outside a variant
1496        else
1497          CurVariant = -1;
1498        break;
1499      }
1500      if (Done) break;
1501
1502      bool HasCurlyBraces = false;
1503      if (*LastEmitted == '{') {     // ${variable}
1504        ++LastEmitted;               // Consume '{' character.
1505        HasCurlyBraces = true;
1506      }
1507
1508      // If we have ${:foo}, then this is not a real operand reference, it is a
1509      // "magic" string reference, just like in .td files.  Arrange to call
1510      // PrintSpecial.
1511      if (HasCurlyBraces && *LastEmitted == ':') {
1512        ++LastEmitted;
1513        const char *StrStart = LastEmitted;
1514        const char *StrEnd = strchr(StrStart, '}');
1515        if (StrEnd == 0) {
1516          llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1517                            + std::string(AsmStr) + "'");
1518        }
1519
1520        std::string Val(StrStart, StrEnd);
1521        PrintSpecial(MI, Val.c_str());
1522        LastEmitted = StrEnd+1;
1523        break;
1524      }
1525
1526      const char *IDStart = LastEmitted;
1527      char *IDEnd;
1528      errno = 0;
1529      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1530      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1531        llvm_report_error("Bad $ operand number in inline asm string: '"
1532                          + std::string(AsmStr) + "'");
1533      }
1534      LastEmitted = IDEnd;
1535
1536      char Modifier[2] = { 0, 0 };
1537
1538      if (HasCurlyBraces) {
1539        // If we have curly braces, check for a modifier character.  This
1540        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1541        if (*LastEmitted == ':') {
1542          ++LastEmitted;    // Consume ':' character.
1543          if (*LastEmitted == 0) {
1544            llvm_report_error("Bad ${:} expression in inline asm string: '"
1545                              + std::string(AsmStr) + "'");
1546          }
1547
1548          Modifier[0] = *LastEmitted;
1549          ++LastEmitted;    // Consume modifier character.
1550        }
1551
1552        if (*LastEmitted != '}') {
1553          llvm_report_error("Bad ${} expression in inline asm string: '"
1554                            + std::string(AsmStr) + "'");
1555        }
1556        ++LastEmitted;    // Consume '}' character.
1557      }
1558
1559      if ((unsigned)Val >= NumOperands-1) {
1560        llvm_report_error("Invalid $ operand number in inline asm string: '"
1561                          + std::string(AsmStr) + "'");
1562      }
1563
1564      // Okay, we finally have a value number.  Ask the target to print this
1565      // operand!
1566      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1567        unsigned OpNo = 1;
1568
1569        bool Error = false;
1570
1571        // Scan to find the machine operand number for the operand.
1572        for (; Val; --Val) {
1573          if (OpNo >= MI->getNumOperands()) break;
1574          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1575          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1576        }
1577
1578        if (OpNo >= MI->getNumOperands()) {
1579          Error = true;
1580        } else {
1581          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1582          ++OpNo;  // Skip over the ID number.
1583
1584          if (Modifier[0]=='l')  // labels are target independent
1585            GetMBBSymbol(MI->getOperand(OpNo).getMBB()
1586                           ->getNumber())->print(O, MAI);
1587          else {
1588            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1589            if ((OpFlags & 7) == 4) {
1590              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1591                                                Modifier[0] ? Modifier : 0);
1592            } else {
1593              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1594                                          Modifier[0] ? Modifier : 0);
1595            }
1596          }
1597        }
1598        if (Error) {
1599          std::string msg;
1600          raw_string_ostream Msg(msg);
1601          Msg << "Invalid operand found in inline asm: '"
1602               << AsmStr << "'\n";
1603          MI->print(Msg);
1604          llvm_report_error(Msg.str());
1605        }
1606      }
1607      break;
1608    }
1609    }
1610  }
1611  O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd();
1612}
1613
1614/// printImplicitDef - This method prints the specified machine instruction
1615/// that is an implicit def.
1616void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1617  if (!VerboseAsm) return;
1618  O.PadToColumn(MAI->getCommentColumn());
1619  O << MAI->getCommentString() << " implicit-def: "
1620    << TRI->getName(MI->getOperand(0).getReg());
1621}
1622
1623void AsmPrinter::printKill(const MachineInstr *MI) const {
1624  if (!VerboseAsm) return;
1625  O.PadToColumn(MAI->getCommentColumn());
1626  O << MAI->getCommentString() << " kill:";
1627  for (unsigned n = 0, e = MI->getNumOperands(); n != e; ++n) {
1628    const MachineOperand &op = MI->getOperand(n);
1629    assert(op.isReg() && "KILL instruction must have only register operands");
1630    O << ' ' << TRI->getName(op.getReg()) << (op.isDef() ? "<def>" : "<kill>");
1631  }
1632}
1633
1634/// printLabel - This method prints a local label used by debug and
1635/// exception handling tables.
1636void AsmPrinter::printLabel(const MachineInstr *MI) const {
1637  printLabel(MI->getOperand(0).getImm());
1638}
1639
1640void AsmPrinter::printLabel(unsigned Id) const {
1641  O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':';
1642}
1643
1644/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1645/// instruction, using the specified assembler variant.  Targets should
1646/// override this to format as appropriate.
1647bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1648                                 unsigned AsmVariant, const char *ExtraCode) {
1649  // Target doesn't support this yet!
1650  return true;
1651}
1652
1653bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1654                                       unsigned AsmVariant,
1655                                       const char *ExtraCode) {
1656  // Target doesn't support this yet!
1657  return true;
1658}
1659
1660MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA,
1661                                            const char *Suffix) const {
1662  return GetBlockAddressSymbol(BA->getFunction(), BA->getBasicBlock(), Suffix);
1663}
1664
1665MCSymbol *AsmPrinter::GetBlockAddressSymbol(const Function *F,
1666                                            const BasicBlock *BB,
1667                                            const char *Suffix) const {
1668  assert(BB->hasName() &&
1669         "Address of anonymous basic block not supported yet!");
1670
1671  // This code must use the function name itself, and not the function number,
1672  // since it must be possible to generate the label name from within other
1673  // functions.
1674  SmallString<60> FnName;
1675  Mang->getNameWithPrefix(FnName, F, false);
1676
1677  // FIXME: THIS IS BROKEN IF THE LLVM BASIC BLOCK DOESN'T HAVE A NAME!
1678  SmallString<60> NameResult;
1679  Mang->getNameWithPrefix(NameResult,
1680                          StringRef("BA") + Twine((unsigned)FnName.size()) +
1681                          "_" + FnName.str() + "_" + BB->getName() + Suffix,
1682                          Mangler::Private);
1683
1684  return OutContext.GetOrCreateSymbol(NameResult.str());
1685}
1686
1687MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const {
1688  SmallString<60> Name;
1689  raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB"
1690    << getFunctionNumber() << '_' << MBBID;
1691
1692  return OutContext.GetOrCreateSymbol(Name.str());
1693}
1694
1695/// GetGlobalValueSymbol - Return the MCSymbol for the specified global
1696/// value.
1697MCSymbol *AsmPrinter::GetGlobalValueSymbol(const GlobalValue *GV) const {
1698  SmallString<60> NameStr;
1699  Mang->getNameWithPrefix(NameStr, GV, false);
1700  return OutContext.GetOrCreateSymbol(NameStr.str());
1701}
1702
1703/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1704/// global value name as its base, with the specified suffix, and where the
1705/// symbol is forced to have private linkage if ForcePrivate is true.
1706MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1707                                                   StringRef Suffix,
1708                                                   bool ForcePrivate) const {
1709  SmallString<60> NameStr;
1710  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1711  NameStr.append(Suffix.begin(), Suffix.end());
1712  return OutContext.GetOrCreateSymbol(NameStr.str());
1713}
1714
1715/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1716/// ExternalSymbol.
1717MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
1718  SmallString<60> NameStr;
1719  Mang->getNameWithPrefix(NameStr, Sym);
1720  return OutContext.GetOrCreateSymbol(NameStr.str());
1721}
1722
1723
1724/// EmitBasicBlockStart - This method prints the label for the specified
1725/// MachineBasicBlock, an alignment (if present) and a comment describing
1726/// it if appropriate.
1727void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
1728  // Emit an alignment directive for this block, if needed.
1729  if (unsigned Align = MBB->getAlignment())
1730    EmitAlignment(Log2_32(Align));
1731
1732  // If the block has its address taken, emit a special label to satisfy
1733  // references to the block. This is done so that we don't need to
1734  // remember the number of this label, and so that we can make
1735  // forward references to labels without knowing what their numbers
1736  // will be.
1737  if (MBB->hasAddressTaken()) {
1738    GetBlockAddressSymbol(MBB->getBasicBlock()->getParent(),
1739                          MBB->getBasicBlock())->print(O, MAI);
1740    O << ':';
1741    if (VerboseAsm) {
1742      O.PadToColumn(MAI->getCommentColumn());
1743      O << MAI->getCommentString() << " Address Taken";
1744    }
1745    O << '\n';
1746  }
1747
1748  // Print the main label for the block.
1749  if (MBB->pred_empty() || MBB->isOnlyReachableByFallthrough()) {
1750    if (VerboseAsm)
1751      O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':';
1752  } else {
1753    GetMBBSymbol(MBB->getNumber())->print(O, MAI);
1754    O << ':';
1755    if (!VerboseAsm)
1756      O << '\n';
1757  }
1758
1759  // Print some comments to accompany the label.
1760  if (VerboseAsm) {
1761    if (const BasicBlock *BB = MBB->getBasicBlock())
1762      if (BB->hasName()) {
1763        O.PadToColumn(MAI->getCommentColumn());
1764        O << MAI->getCommentString() << ' ';
1765        WriteAsOperand(O, BB, /*PrintType=*/false);
1766      }
1767
1768    EmitComments(*MBB);
1769    O << '\n';
1770  }
1771}
1772
1773/// printPICJumpTableSetLabel - This method prints a set label for the
1774/// specified MachineBasicBlock for a jumptable entry.
1775void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1776                                           const MachineBasicBlock *MBB) const {
1777  if (!MAI->getSetDirective())
1778    return;
1779
1780  O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
1781    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1782  GetMBBSymbol(MBB->getNumber())->print(O, MAI);
1783  O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1784    << '_' << uid << '\n';
1785}
1786
1787void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1788                                           const MachineBasicBlock *MBB) const {
1789  if (!MAI->getSetDirective())
1790    return;
1791
1792  O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
1793    << getFunctionNumber() << '_' << uid << '_' << uid2
1794    << "_set_" << MBB->getNumber() << ',';
1795  GetMBBSymbol(MBB->getNumber())->print(O, MAI);
1796  O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1797    << '_' << uid << '_' << uid2 << '\n';
1798}
1799
1800/// printDataDirective - This method prints the asm directive for the
1801/// specified type.
1802void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1803  const TargetData *TD = TM.getTargetData();
1804  switch (type->getTypeID()) {
1805  case Type::FloatTyID: case Type::DoubleTyID:
1806  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1807    assert(0 && "Should have already output floating point constant.");
1808  default:
1809    assert(0 && "Can't handle printing this type of thing");
1810  case Type::IntegerTyID: {
1811    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1812    if (BitWidth <= 8)
1813      O << MAI->getData8bitsDirective(AddrSpace);
1814    else if (BitWidth <= 16)
1815      O << MAI->getData16bitsDirective(AddrSpace);
1816    else if (BitWidth <= 32)
1817      O << MAI->getData32bitsDirective(AddrSpace);
1818    else if (BitWidth <= 64) {
1819      assert(MAI->getData64bitsDirective(AddrSpace) &&
1820             "Target cannot handle 64-bit constant exprs!");
1821      O << MAI->getData64bitsDirective(AddrSpace);
1822    } else {
1823      llvm_unreachable("Target cannot handle given data directive width!");
1824    }
1825    break;
1826  }
1827  case Type::PointerTyID:
1828    if (TD->getPointerSize() == 8) {
1829      assert(MAI->getData64bitsDirective(AddrSpace) &&
1830             "Target cannot handle 64-bit pointer exprs!");
1831      O << MAI->getData64bitsDirective(AddrSpace);
1832    } else if (TD->getPointerSize() == 2) {
1833      O << MAI->getData16bitsDirective(AddrSpace);
1834    } else if (TD->getPointerSize() == 1) {
1835      O << MAI->getData8bitsDirective(AddrSpace);
1836    } else {
1837      O << MAI->getData32bitsDirective(AddrSpace);
1838    }
1839    break;
1840  }
1841}
1842
1843void AsmPrinter::printVisibility(const MCSymbol *Sym,
1844                                 unsigned Visibility) const {
1845  if (Visibility == GlobalValue::HiddenVisibility) {
1846    if (const char *Directive = MAI->getHiddenDirective()) {
1847      O << Directive;
1848      Sym->print(O, MAI);
1849      O << '\n';
1850    }
1851  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1852    if (const char *Directive = MAI->getProtectedDirective()) {
1853      O << Directive;
1854      Sym->print(O, MAI);
1855      O << '\n';
1856    }
1857  }
1858}
1859
1860void AsmPrinter::printOffset(int64_t Offset) const {
1861  if (Offset > 0)
1862    O << '+' << Offset;
1863  else if (Offset < 0)
1864    O << Offset;
1865}
1866
1867GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1868  if (!S->usesMetadata())
1869    return 0;
1870
1871  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1872  if (GCPI != GCMetadataPrinters.end())
1873    return GCPI->second;
1874
1875  const char *Name = S->getName().c_str();
1876
1877  for (GCMetadataPrinterRegistry::iterator
1878         I = GCMetadataPrinterRegistry::begin(),
1879         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1880    if (strcmp(Name, I->getName()) == 0) {
1881      GCMetadataPrinter *GMP = I->instantiate();
1882      GMP->S = S;
1883      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1884      return GMP;
1885    }
1886
1887  errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1888  llvm_unreachable(0);
1889}
1890
1891/// EmitComments - Pretty-print comments for instructions
1892void AsmPrinter::EmitComments(const MachineInstr &MI) const {
1893  if (!VerboseAsm)
1894    return;
1895
1896  bool Newline = false;
1897
1898  if (!MI.getDebugLoc().isUnknown()) {
1899    DILocation DLT = MF->getDILocation(MI.getDebugLoc());
1900
1901    // Print source line info.
1902    O.PadToColumn(MAI->getCommentColumn());
1903    O << MAI->getCommentString() << ' ';
1904    DIScope Scope = DLT.getScope();
1905    // Omit the directory, because it's likely to be long and uninteresting.
1906    if (!Scope.isNull())
1907      O << Scope.getFilename();
1908    else
1909      O << "<unknown>";
1910    O << ':' << DLT.getLineNumber();
1911    if (DLT.getColumnNumber() != 0)
1912      O << ':' << DLT.getColumnNumber();
1913    Newline = true;
1914  }
1915
1916  // Check for spills and reloads
1917  int FI;
1918
1919  const MachineFrameInfo *FrameInfo =
1920    MI.getParent()->getParent()->getFrameInfo();
1921
1922  // We assume a single instruction only has a spill or reload, not
1923  // both.
1924  const MachineMemOperand *MMO;
1925  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
1926    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1927      MMO = *MI.memoperands_begin();
1928      if (Newline) O << '\n';
1929      O.PadToColumn(MAI->getCommentColumn());
1930      O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Reload";
1931      Newline = true;
1932    }
1933  }
1934  else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
1935    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1936      if (Newline) O << '\n';
1937      O.PadToColumn(MAI->getCommentColumn());
1938      O << MAI->getCommentString() << ' '
1939        << MMO->getSize() << "-byte Folded Reload";
1940      Newline = true;
1941    }
1942  }
1943  else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
1944    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1945      MMO = *MI.memoperands_begin();
1946      if (Newline) O << '\n';
1947      O.PadToColumn(MAI->getCommentColumn());
1948      O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Spill";
1949      Newline = true;
1950    }
1951  }
1952  else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
1953    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1954      if (Newline) O << '\n';
1955      O.PadToColumn(MAI->getCommentColumn());
1956      O << MAI->getCommentString() << ' '
1957        << MMO->getSize() << "-byte Folded Spill";
1958      Newline = true;
1959    }
1960  }
1961
1962  // Check for spill-induced copies
1963  unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1964  if (TM.getInstrInfo()->isMoveInstr(MI, SrcReg, DstReg,
1965                                      SrcSubIdx, DstSubIdx)) {
1966    if (MI.getAsmPrinterFlag(ReloadReuse)) {
1967      if (Newline) O << '\n';
1968      O.PadToColumn(MAI->getCommentColumn());
1969      O << MAI->getCommentString() << " Reload Reuse";
1970    }
1971  }
1972}
1973
1974/// PrintChildLoopComment - Print comments about child loops within
1975/// the loop for this basic block, with nesting.
1976///
1977static void PrintChildLoopComment(formatted_raw_ostream &O,
1978                                  const MachineLoop *loop,
1979                                  const MCAsmInfo *MAI,
1980                                  int FunctionNumber) {
1981  // Add child loop information
1982  for(MachineLoop::iterator cl = loop->begin(),
1983        clend = loop->end();
1984      cl != clend;
1985      ++cl) {
1986    MachineBasicBlock *Header = (*cl)->getHeader();
1987    assert(Header && "No header for loop");
1988
1989    O << '\n';
1990    O.PadToColumn(MAI->getCommentColumn());
1991
1992    O << MAI->getCommentString();
1993    O.indent(((*cl)->getLoopDepth()-1)*2)
1994      << " Child Loop BB" << FunctionNumber << "_"
1995      << Header->getNumber() << " Depth " << (*cl)->getLoopDepth();
1996
1997    PrintChildLoopComment(O, *cl, MAI, FunctionNumber);
1998  }
1999}
2000
2001/// EmitComments - Pretty-print comments for basic blocks
2002void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const {
2003  if (VerboseAsm) {
2004    // Add loop depth information
2005    const MachineLoop *loop = LI->getLoopFor(&MBB);
2006
2007    if (loop) {
2008      // Print a newline after bb# annotation.
2009      O << "\n";
2010      O.PadToColumn(MAI->getCommentColumn());
2011      O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth()
2012        << '\n';
2013
2014      O.PadToColumn(MAI->getCommentColumn());
2015
2016      MachineBasicBlock *Header = loop->getHeader();
2017      assert(Header && "No header for loop");
2018
2019      if (Header == &MBB) {
2020        O << MAI->getCommentString() << " Loop Header";
2021        PrintChildLoopComment(O, loop, MAI, getFunctionNumber());
2022      }
2023      else {
2024        O << MAI->getCommentString() << " Loop Header is BB"
2025          << getFunctionNumber() << "_" << loop->getHeader()->getNumber();
2026      }
2027
2028      if (loop->empty()) {
2029        O << '\n';
2030        O.PadToColumn(MAI->getCommentColumn());
2031        O << MAI->getCommentString() << " Inner Loop";
2032      }
2033
2034      // Add parent loop information
2035      for (const MachineLoop *CurLoop = loop->getParentLoop();
2036           CurLoop;
2037           CurLoop = CurLoop->getParentLoop()) {
2038        MachineBasicBlock *Header = CurLoop->getHeader();
2039        assert(Header && "No header for loop");
2040
2041        O << '\n';
2042        O.PadToColumn(MAI->getCommentColumn());
2043        O << MAI->getCommentString();
2044        O.indent((CurLoop->getLoopDepth()-1)*2)
2045          << " Inside Loop BB" << getFunctionNumber() << "_"
2046          << Header->getNumber() << " Depth " << CurLoop->getLoopDepth();
2047      }
2048    }
2049  }
2050}
2051