AsmPrinter.cpp revision 21e42d0ea55c31ac4d57578f5116fa606d5c87ee
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "DwarfDebug.h"
17#include "DwarfException.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/CodeGen/MachineLoopInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Analysis/DebugInfo.h"
28#include "llvm/MC/MCAsmInfo.h"
29#include "llvm/MC/MCContext.h"
30#include "llvm/MC/MCExpr.h"
31#include "llvm/MC/MCInst.h"
32#include "llvm/MC/MCSection.h"
33#include "llvm/MC/MCStreamer.h"
34#include "llvm/MC/MCSymbol.h"
35#include "llvm/Target/Mangler.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetLowering.h"
39#include "llvm/Target/TargetLoweringObjectFile.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Assembly/Writer.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/Format.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/Timer.h"
49using namespace llvm;
50
51static const char *DWARFGroupName = "DWARF Emission";
52static const char *DbgTimerName = "DWARF Debug Writer";
53static const char *EHTimerName = "DWARF Exception Writer";
54
55STATISTIC(EmittedInsts, "Number of machine instrs printed");
56
57char AsmPrinter::ID = 0;
58
59typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
60static gcp_map_type &getGCMap(void *&P) {
61  if (P == 0)
62    P = new gcp_map_type();
63  return *(gcp_map_type*)P;
64}
65
66
67/// getGVAlignmentLog2 - Return the alignment to use for the specified global
68/// value in log2 form.  This rounds up to the preferred alignment if possible
69/// and legal.
70static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
71                                   unsigned InBits = 0) {
72  unsigned NumBits = 0;
73  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
74    NumBits = TD.getPreferredAlignmentLog(GVar);
75
76  // If InBits is specified, round it to it.
77  if (InBits > NumBits)
78    NumBits = InBits;
79
80  // If the GV has a specified alignment, take it into account.
81  if (GV->getAlignment() == 0)
82    return NumBits;
83
84  unsigned GVAlign = Log2_32(GV->getAlignment());
85
86  // If the GVAlign is larger than NumBits, or if we are required to obey
87  // NumBits because the GV has an assigned section, obey it.
88  if (GVAlign > NumBits || GV->hasSection())
89    NumBits = GVAlign;
90  return NumBits;
91}
92
93
94
95
96AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
97  : MachineFunctionPass(ID),
98    TM(tm), MAI(tm.getMCAsmInfo()),
99    OutContext(Streamer.getContext()),
100    OutStreamer(Streamer),
101    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
102  DD = 0; DE = 0; MMI = 0; LI = 0;
103  CurrentFnSym = CurrentFnSymForSize = 0;
104  GCMetadataPrinters = 0;
105  VerboseAsm = Streamer.isVerboseAsm();
106}
107
108AsmPrinter::~AsmPrinter() {
109  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
110
111  if (GCMetadataPrinters != 0) {
112    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
113
114    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
115      delete I->second;
116    delete &GCMap;
117    GCMetadataPrinters = 0;
118  }
119
120  delete &OutStreamer;
121}
122
123/// getFunctionNumber - Return a unique ID for the current function.
124///
125unsigned AsmPrinter::getFunctionNumber() const {
126  return MF->getFunctionNumber();
127}
128
129const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
130  return TM.getTargetLowering()->getObjFileLowering();
131}
132
133
134/// getTargetData - Return information about data layout.
135const TargetData &AsmPrinter::getTargetData() const {
136  return *TM.getTargetData();
137}
138
139/// getCurrentSection() - Return the current section we are emitting to.
140const MCSection *AsmPrinter::getCurrentSection() const {
141  return OutStreamer.getCurrentSection();
142}
143
144
145
146void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
147  AU.setPreservesAll();
148  MachineFunctionPass::getAnalysisUsage(AU);
149  AU.addRequired<MachineModuleInfo>();
150  AU.addRequired<GCModuleInfo>();
151  if (isVerbose())
152    AU.addRequired<MachineLoopInfo>();
153}
154
155bool AsmPrinter::doInitialization(Module &M) {
156  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
157  MMI->AnalyzeModule(M);
158
159  // Initialize TargetLoweringObjectFile.
160  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
161    .Initialize(OutContext, TM);
162
163  Mang = new Mangler(OutContext, *TM.getTargetData());
164
165  // Allow the target to emit any magic that it wants at the start of the file.
166  EmitStartOfAsmFile(M);
167
168  // Very minimal debug info. It is ignored if we emit actual debug info. If we
169  // don't, this at least helps the user find where a global came from.
170  if (MAI->hasSingleParameterDotFile()) {
171    // .file "foo.c"
172    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
173  }
174
175  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
176  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
177  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
178    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
179      MP->beginAssembly(*this);
180
181  // Emit module-level inline asm if it exists.
182  if (!M.getModuleInlineAsm().empty()) {
183    OutStreamer.AddComment("Start of file scope inline assembly");
184    OutStreamer.AddBlankLine();
185    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
186    OutStreamer.AddComment("End of file scope inline assembly");
187    OutStreamer.AddBlankLine();
188  }
189
190  if (MAI->doesSupportDebugInformation())
191    DD = new DwarfDebug(this, &M);
192
193  switch (MAI->getExceptionHandlingType()) {
194  case ExceptionHandling::None:
195    return false;
196  case ExceptionHandling::SjLj:
197  case ExceptionHandling::DwarfCFI:
198    DE = new DwarfCFIException(this);
199    return false;
200  case ExceptionHandling::ARM:
201    DE = new ARMException(this);
202    return false;
203  case ExceptionHandling::Win64:
204    DE = new Win64Exception(this);
205    return false;
206  }
207
208  llvm_unreachable("Unknown exception type.");
209}
210
211void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
212  switch ((GlobalValue::LinkageTypes)Linkage) {
213  case GlobalValue::CommonLinkage:
214  case GlobalValue::LinkOnceAnyLinkage:
215  case GlobalValue::LinkOnceODRLinkage:
216  case GlobalValue::WeakAnyLinkage:
217  case GlobalValue::WeakODRLinkage:
218  case GlobalValue::LinkerPrivateWeakLinkage:
219  case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
220    if (MAI->getWeakDefDirective() != 0) {
221      // .globl _foo
222      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
223
224      if ((GlobalValue::LinkageTypes)Linkage !=
225          GlobalValue::LinkerPrivateWeakDefAutoLinkage)
226        // .weak_definition _foo
227        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
228      else
229        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
230    } else if (MAI->getLinkOnceDirective() != 0) {
231      // .globl _foo
232      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
233      //NOTE: linkonce is handled by the section the symbol was assigned to.
234    } else {
235      // .weak _foo
236      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
237    }
238    break;
239  case GlobalValue::DLLExportLinkage:
240  case GlobalValue::AppendingLinkage:
241    // FIXME: appending linkage variables should go into a section of
242    // their name or something.  For now, just emit them as external.
243  case GlobalValue::ExternalLinkage:
244    // If external or appending, declare as a global symbol.
245    // .globl _foo
246    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
247    break;
248  case GlobalValue::PrivateLinkage:
249  case GlobalValue::InternalLinkage:
250  case GlobalValue::LinkerPrivateLinkage:
251    break;
252  default:
253    llvm_unreachable("Unknown linkage type!");
254  }
255}
256
257
258/// EmitGlobalVariable - Emit the specified global variable to the .s file.
259void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
260  if (GV->hasInitializer()) {
261    // Check to see if this is a special global used by LLVM, if so, emit it.
262    if (EmitSpecialLLVMGlobal(GV))
263      return;
264
265    if (isVerbose()) {
266      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
267                     /*PrintType=*/false, GV->getParent());
268      OutStreamer.GetCommentOS() << '\n';
269    }
270  }
271
272  MCSymbol *GVSym = Mang->getSymbol(GV);
273  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
274
275  if (!GV->hasInitializer())   // External globals require no extra code.
276    return;
277
278  if (MAI->hasDotTypeDotSizeDirective())
279    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
280
281  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
282
283  const TargetData *TD = TM.getTargetData();
284  uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
285
286  // If the alignment is specified, we *must* obey it.  Overaligning a global
287  // with a specified alignment is a prompt way to break globals emitted to
288  // sections and expected to be contiguous (e.g. ObjC metadata).
289  unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
290
291  // Handle common and BSS local symbols (.lcomm).
292  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
293    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
294    unsigned Align = 1 << AlignLog;
295
296    // Handle common symbols.
297    if (GVKind.isCommon()) {
298      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
299        Align = 0;
300
301      // .comm _foo, 42, 4
302      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
303      return;
304    }
305
306    // Handle local BSS symbols.
307    if (MAI->hasMachoZeroFillDirective()) {
308      const MCSection *TheSection =
309        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
310      // .zerofill __DATA, __bss, _foo, 400, 5
311      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
312      return;
313    }
314
315    if (MAI->getLCOMMDirectiveType() != LCOMM::None &&
316        (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) {
317      // .lcomm _foo, 42
318      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
319      return;
320    }
321
322    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
323      Align = 0;
324
325    // .local _foo
326    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
327    // .comm _foo, 42, 4
328    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
329    return;
330  }
331
332  const MCSection *TheSection =
333    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
334
335  // Handle the zerofill directive on darwin, which is a special form of BSS
336  // emission.
337  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
338    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
339
340    // .globl _foo
341    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
342    // .zerofill __DATA, __common, _foo, 400, 5
343    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
344    return;
345  }
346
347  // Handle thread local data for mach-o which requires us to output an
348  // additional structure of data and mangle the original symbol so that we
349  // can reference it later.
350  //
351  // TODO: This should become an "emit thread local global" method on TLOF.
352  // All of this macho specific stuff should be sunk down into TLOFMachO and
353  // stuff like "TLSExtraDataSection" should no longer be part of the parent
354  // TLOF class.  This will also make it more obvious that stuff like
355  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
356  // specific code.
357  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
358    // Emit the .tbss symbol
359    MCSymbol *MangSym =
360      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
361
362    if (GVKind.isThreadBSS())
363      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
364    else if (GVKind.isThreadData()) {
365      OutStreamer.SwitchSection(TheSection);
366
367      EmitAlignment(AlignLog, GV);
368      OutStreamer.EmitLabel(MangSym);
369
370      EmitGlobalConstant(GV->getInitializer());
371    }
372
373    OutStreamer.AddBlankLine();
374
375    // Emit the variable struct for the runtime.
376    const MCSection *TLVSect
377      = getObjFileLowering().getTLSExtraDataSection();
378
379    OutStreamer.SwitchSection(TLVSect);
380    // Emit the linkage here.
381    EmitLinkage(GV->getLinkage(), GVSym);
382    OutStreamer.EmitLabel(GVSym);
383
384    // Three pointers in size:
385    //   - __tlv_bootstrap - used to make sure support exists
386    //   - spare pointer, used when mapped by the runtime
387    //   - pointer to mangled symbol above with initializer
388    unsigned PtrSize = TD->getPointerSizeInBits()/8;
389    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
390                          PtrSize, 0);
391    OutStreamer.EmitIntValue(0, PtrSize, 0);
392    OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
393
394    OutStreamer.AddBlankLine();
395    return;
396  }
397
398  OutStreamer.SwitchSection(TheSection);
399
400  EmitLinkage(GV->getLinkage(), GVSym);
401  EmitAlignment(AlignLog, GV);
402
403  OutStreamer.EmitLabel(GVSym);
404
405  EmitGlobalConstant(GV->getInitializer());
406
407  if (MAI->hasDotTypeDotSizeDirective())
408    // .size foo, 42
409    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
410
411  OutStreamer.AddBlankLine();
412}
413
414/// EmitFunctionHeader - This method emits the header for the current
415/// function.
416void AsmPrinter::EmitFunctionHeader() {
417  // Print out constants referenced by the function
418  EmitConstantPool();
419
420  // Print the 'header' of function.
421  const Function *F = MF->getFunction();
422
423  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
424  EmitVisibility(CurrentFnSym, F->getVisibility());
425
426  EmitLinkage(F->getLinkage(), CurrentFnSym);
427  EmitAlignment(MF->getAlignment(), F);
428
429  if (MAI->hasDotTypeDotSizeDirective())
430    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
431
432  if (isVerbose()) {
433    WriteAsOperand(OutStreamer.GetCommentOS(), F,
434                   /*PrintType=*/false, F->getParent());
435    OutStreamer.GetCommentOS() << '\n';
436  }
437
438  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
439  // do their wild and crazy things as required.
440  EmitFunctionEntryLabel();
441
442  // If the function had address-taken blocks that got deleted, then we have
443  // references to the dangling symbols.  Emit them at the start of the function
444  // so that we don't get references to undefined symbols.
445  std::vector<MCSymbol*> DeadBlockSyms;
446  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
447  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
448    OutStreamer.AddComment("Address taken block that was later removed");
449    OutStreamer.EmitLabel(DeadBlockSyms[i]);
450  }
451
452  // Add some workaround for linkonce linkage on Cygwin\MinGW.
453  if (MAI->getLinkOnceDirective() != 0 &&
454      (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
455    // FIXME: What is this?
456    MCSymbol *FakeStub =
457      OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
458                                   CurrentFnSym->getName());
459    OutStreamer.EmitLabel(FakeStub);
460  }
461
462  // Emit pre-function debug and/or EH information.
463  if (DE) {
464    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
465    DE->BeginFunction(MF);
466  }
467  if (DD) {
468    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
469    DD->beginFunction(MF);
470  }
471}
472
473/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
474/// function.  This can be overridden by targets as required to do custom stuff.
475void AsmPrinter::EmitFunctionEntryLabel() {
476  // The function label could have already been emitted if two symbols end up
477  // conflicting due to asm renaming.  Detect this and emit an error.
478  if (CurrentFnSym->isUndefined()) {
479    OutStreamer.ForceCodeRegion();
480    return OutStreamer.EmitLabel(CurrentFnSym);
481  }
482
483  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
484                     "' label emitted multiple times to assembly file");
485}
486
487
488/// EmitComments - Pretty-print comments for instructions.
489static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
490  const MachineFunction *MF = MI.getParent()->getParent();
491  const TargetMachine &TM = MF->getTarget();
492
493  // Check for spills and reloads
494  int FI;
495
496  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
497
498  // We assume a single instruction only has a spill or reload, not
499  // both.
500  const MachineMemOperand *MMO;
501  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
502    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
503      MMO = *MI.memoperands_begin();
504      CommentOS << MMO->getSize() << "-byte Reload\n";
505    }
506  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
507    if (FrameInfo->isSpillSlotObjectIndex(FI))
508      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
509  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
510    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
511      MMO = *MI.memoperands_begin();
512      CommentOS << MMO->getSize() << "-byte Spill\n";
513    }
514  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
515    if (FrameInfo->isSpillSlotObjectIndex(FI))
516      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
517  }
518
519  // Check for spill-induced copies
520  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
521    CommentOS << " Reload Reuse\n";
522}
523
524/// EmitImplicitDef - This method emits the specified machine instruction
525/// that is an implicit def.
526static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
527  unsigned RegNo = MI->getOperand(0).getReg();
528  AP.OutStreamer.AddComment(Twine("implicit-def: ") +
529                            AP.TM.getRegisterInfo()->getName(RegNo));
530  AP.OutStreamer.AddBlankLine();
531}
532
533static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) {
534  std::string Str = "kill:";
535  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
536    const MachineOperand &Op = MI->getOperand(i);
537    assert(Op.isReg() && "KILL instruction must have only register operands");
538    Str += ' ';
539    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
540    Str += (Op.isDef() ? "<def>" : "<kill>");
541  }
542  AP.OutStreamer.AddComment(Str);
543  AP.OutStreamer.AddBlankLine();
544}
545
546/// EmitDebugValueComment - This method handles the target-independent form
547/// of DBG_VALUE, returning true if it was able to do so.  A false return
548/// means the target will need to handle MI in EmitInstruction.
549static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
550  // This code handles only the 3-operand target-independent form.
551  if (MI->getNumOperands() != 3)
552    return false;
553
554  SmallString<128> Str;
555  raw_svector_ostream OS(Str);
556  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
557
558  // cast away const; DIetc do not take const operands for some reason.
559  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
560  if (V.getContext().isSubprogram())
561    OS << DISubprogram(V.getContext()).getDisplayName() << ":";
562  OS << V.getName() << " <- ";
563
564  // Register or immediate value. Register 0 means undef.
565  if (MI->getOperand(0).isFPImm()) {
566    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
567    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
568      OS << (double)APF.convertToFloat();
569    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
570      OS << APF.convertToDouble();
571    } else {
572      // There is no good way to print long double.  Convert a copy to
573      // double.  Ah well, it's only a comment.
574      bool ignored;
575      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
576                  &ignored);
577      OS << "(long double) " << APF.convertToDouble();
578    }
579  } else if (MI->getOperand(0).isImm()) {
580    OS << MI->getOperand(0).getImm();
581  } else if (MI->getOperand(0).isCImm()) {
582    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
583  } else {
584    assert(MI->getOperand(0).isReg() && "Unknown operand type");
585    if (MI->getOperand(0).getReg() == 0) {
586      // Suppress offset, it is not meaningful here.
587      OS << "undef";
588      // NOTE: Want this comment at start of line, don't emit with AddComment.
589      AP.OutStreamer.EmitRawText(OS.str());
590      return true;
591    }
592    OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
593  }
594
595  OS << '+' << MI->getOperand(1).getImm();
596  // NOTE: Want this comment at start of line, don't emit with AddComment.
597  AP.OutStreamer.EmitRawText(OS.str());
598  return true;
599}
600
601AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
602  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
603      MF->getFunction()->needsUnwindTableEntry())
604    return CFI_M_EH;
605
606  if (MMI->hasDebugInfo())
607    return CFI_M_Debug;
608
609  return CFI_M_None;
610}
611
612bool AsmPrinter::needsSEHMoves() {
613  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
614    MF->getFunction()->needsUnwindTableEntry();
615}
616
617bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
618  return MAI->doesDwarfUseRelocationsForStringPool();
619}
620
621void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
622  MCSymbol *Label = MI.getOperand(0).getMCSymbol();
623
624  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
625    return;
626
627  if (needsCFIMoves() == CFI_M_None)
628    return;
629
630  if (MMI->getCompactUnwindEncoding() != 0)
631    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
632
633  MachineModuleInfo &MMI = MF->getMMI();
634  std::vector<MachineMove> &Moves = MMI.getFrameMoves();
635  bool FoundOne = false;
636  (void)FoundOne;
637  for (std::vector<MachineMove>::iterator I = Moves.begin(),
638         E = Moves.end(); I != E; ++I) {
639    if (I->getLabel() == Label) {
640      EmitCFIFrameMove(*I);
641      FoundOne = true;
642    }
643  }
644  assert(FoundOne);
645}
646
647/// EmitFunctionBody - This method emits the body and trailer for a
648/// function.
649void AsmPrinter::EmitFunctionBody() {
650  // Emit target-specific gunk before the function body.
651  EmitFunctionBodyStart();
652
653  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
654
655  // Print out code for the function.
656  bool HasAnyRealCode = false;
657  const MachineInstr *LastMI = 0;
658  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
659       I != E; ++I) {
660    // Print a label for the basic block.
661    EmitBasicBlockStart(I);
662    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
663         II != IE; ++II) {
664      LastMI = II;
665
666      // Print the assembly for the instruction.
667      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
668          !II->isDebugValue()) {
669        HasAnyRealCode = true;
670        ++EmittedInsts;
671      }
672
673      if (ShouldPrintDebugScopes) {
674        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
675        DD->beginInstruction(II);
676      }
677
678      if (isVerbose())
679        EmitComments(*II, OutStreamer.GetCommentOS());
680
681      switch (II->getOpcode()) {
682      case TargetOpcode::PROLOG_LABEL:
683        emitPrologLabel(*II);
684        break;
685
686      case TargetOpcode::EH_LABEL:
687      case TargetOpcode::GC_LABEL:
688        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
689        break;
690      case TargetOpcode::INLINEASM:
691        EmitInlineAsm(II);
692        break;
693      case TargetOpcode::DBG_VALUE:
694        if (isVerbose()) {
695          if (!EmitDebugValueComment(II, *this))
696            EmitInstruction(II);
697        }
698        break;
699      case TargetOpcode::IMPLICIT_DEF:
700        if (isVerbose()) EmitImplicitDef(II, *this);
701        break;
702      case TargetOpcode::KILL:
703        if (isVerbose()) EmitKill(II, *this);
704        break;
705      default:
706        if (!TM.hasMCUseLoc())
707          MCLineEntry::Make(&OutStreamer, getCurrentSection());
708
709        EmitInstruction(II);
710        break;
711      }
712
713      if (ShouldPrintDebugScopes) {
714        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
715        DD->endInstruction(II);
716      }
717    }
718  }
719
720  // If the last instruction was a prolog label, then we have a situation where
721  // we emitted a prolog but no function body. This results in the ending prolog
722  // label equaling the end of function label and an invalid "row" in the
723  // FDE. We need to emit a noop in this situation so that the FDE's rows are
724  // valid.
725  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
726
727  // If the function is empty and the object file uses .subsections_via_symbols,
728  // then we need to emit *something* to the function body to prevent the
729  // labels from collapsing together.  Just emit a noop.
730  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
731    MCInst Noop;
732    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
733    if (Noop.getOpcode()) {
734      OutStreamer.AddComment("avoids zero-length function");
735      OutStreamer.EmitInstruction(Noop);
736    } else  // Target not mc-ized yet.
737      OutStreamer.EmitRawText(StringRef("\tnop\n"));
738  }
739
740  const Function *F = MF->getFunction();
741  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
742    const BasicBlock *BB = i;
743    if (!BB->hasAddressTaken())
744      continue;
745    MCSymbol *Sym = GetBlockAddressSymbol(BB);
746    if (Sym->isDefined())
747      continue;
748    OutStreamer.AddComment("Address of block that was removed by CodeGen");
749    OutStreamer.EmitLabel(Sym);
750  }
751
752  // Emit target-specific gunk after the function body.
753  EmitFunctionBodyEnd();
754
755  // If the target wants a .size directive for the size of the function, emit
756  // it.
757  if (MAI->hasDotTypeDotSizeDirective()) {
758    // Create a symbol for the end of function, so we can get the size as
759    // difference between the function label and the temp label.
760    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
761    OutStreamer.EmitLabel(FnEndLabel);
762
763    const MCExpr *SizeExp =
764      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
765                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
766                                                      OutContext),
767                              OutContext);
768    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
769  }
770
771  // Emit post-function debug information.
772  if (DD) {
773    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
774    DD->endFunction(MF);
775  }
776  if (DE) {
777    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
778    DE->EndFunction();
779  }
780  MMI->EndFunction();
781
782  // Print out jump tables referenced by the function.
783  EmitJumpTableInfo();
784
785  OutStreamer.AddBlankLine();
786}
787
788/// getDebugValueLocation - Get location information encoded by DBG_VALUE
789/// operands.
790MachineLocation AsmPrinter::
791getDebugValueLocation(const MachineInstr *MI) const {
792  // Target specific DBG_VALUE instructions are handled by each target.
793  return MachineLocation();
794}
795
796/// EmitDwarfRegOp - Emit dwarf register operation.
797void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
798  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
799  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
800
801  for (const uint16_t *SR = TRI->getSuperRegisters(MLoc.getReg());
802       *SR && Reg < 0; ++SR) {
803    Reg = TRI->getDwarfRegNum(*SR, false);
804    // FIXME: Get the bit range this register uses of the superregister
805    // so that we can produce a DW_OP_bit_piece
806  }
807
808  // FIXME: Handle cases like a super register being encoded as
809  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
810
811  // FIXME: We have no reasonable way of handling errors in here. The
812  // caller might be in the middle of an dwarf expression. We should
813  // probably assert that Reg >= 0 once debug info generation is more mature.
814
815  if (int Offset =  MLoc.getOffset()) {
816    if (Reg < 32) {
817      OutStreamer.AddComment(
818        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
819      EmitInt8(dwarf::DW_OP_breg0 + Reg);
820    } else {
821      OutStreamer.AddComment("DW_OP_bregx");
822      EmitInt8(dwarf::DW_OP_bregx);
823      OutStreamer.AddComment(Twine(Reg));
824      EmitULEB128(Reg);
825    }
826    EmitSLEB128(Offset);
827  } else {
828    if (Reg < 32) {
829      OutStreamer.AddComment(
830        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
831      EmitInt8(dwarf::DW_OP_reg0 + Reg);
832    } else {
833      OutStreamer.AddComment("DW_OP_regx");
834      EmitInt8(dwarf::DW_OP_regx);
835      OutStreamer.AddComment(Twine(Reg));
836      EmitULEB128(Reg);
837    }
838  }
839
840  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
841}
842
843bool AsmPrinter::doFinalization(Module &M) {
844  // Emit global variables.
845  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
846       I != E; ++I)
847    EmitGlobalVariable(I);
848
849  // Emit visibility info for declarations
850  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
851    const Function &F = *I;
852    if (!F.isDeclaration())
853      continue;
854    GlobalValue::VisibilityTypes V = F.getVisibility();
855    if (V == GlobalValue::DefaultVisibility)
856      continue;
857
858    MCSymbol *Name = Mang->getSymbol(&F);
859    EmitVisibility(Name, V, false);
860  }
861
862  // Emit module flags.
863  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
864  M.getModuleFlagsMetadata(ModuleFlags);
865  if (!ModuleFlags.empty())
866    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
867
868  // Finalize debug and EH information.
869  if (DE) {
870    {
871      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
872      DE->EndModule();
873    }
874    delete DE; DE = 0;
875  }
876  if (DD) {
877    {
878      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
879      DD->endModule();
880    }
881    delete DD; DD = 0;
882  }
883
884  // If the target wants to know about weak references, print them all.
885  if (MAI->getWeakRefDirective()) {
886    // FIXME: This is not lazy, it would be nice to only print weak references
887    // to stuff that is actually used.  Note that doing so would require targets
888    // to notice uses in operands (due to constant exprs etc).  This should
889    // happen with the MC stuff eventually.
890
891    // Print out module-level global variables here.
892    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
893         I != E; ++I) {
894      if (!I->hasExternalWeakLinkage()) continue;
895      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
896    }
897
898    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
899      if (!I->hasExternalWeakLinkage()) continue;
900      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
901    }
902  }
903
904  if (MAI->hasSetDirective()) {
905    OutStreamer.AddBlankLine();
906    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
907         I != E; ++I) {
908      MCSymbol *Name = Mang->getSymbol(I);
909
910      const GlobalValue *GV = I->getAliasedGlobal();
911      MCSymbol *Target = Mang->getSymbol(GV);
912
913      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
914        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
915      else if (I->hasWeakLinkage())
916        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
917      else
918        assert(I->hasLocalLinkage() && "Invalid alias linkage");
919
920      EmitVisibility(Name, I->getVisibility());
921
922      // Emit the directives as assignments aka .set:
923      OutStreamer.EmitAssignment(Name,
924                                 MCSymbolRefExpr::Create(Target, OutContext));
925    }
926  }
927
928  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
929  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
930  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
931    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
932      MP->finishAssembly(*this);
933
934  // If we don't have any trampolines, then we don't require stack memory
935  // to be executable. Some targets have a directive to declare this.
936  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
937  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
938    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
939      OutStreamer.SwitchSection(S);
940
941  // Allow the target to emit any magic that it wants at the end of the file,
942  // after everything else has gone out.
943  EmitEndOfAsmFile(M);
944
945  delete Mang; Mang = 0;
946  MMI = 0;
947
948  OutStreamer.Finish();
949  return false;
950}
951
952void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
953  this->MF = &MF;
954  // Get the function symbol.
955  CurrentFnSym = Mang->getSymbol(MF.getFunction());
956  CurrentFnSymForSize = CurrentFnSym;
957
958  if (isVerbose())
959    LI = &getAnalysis<MachineLoopInfo>();
960}
961
962namespace {
963  // SectionCPs - Keep track the alignment, constpool entries per Section.
964  struct SectionCPs {
965    const MCSection *S;
966    unsigned Alignment;
967    SmallVector<unsigned, 4> CPEs;
968    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
969  };
970}
971
972/// EmitConstantPool - Print to the current output stream assembly
973/// representations of the constants in the constant pool MCP. This is
974/// used to print out constants which have been "spilled to memory" by
975/// the code generator.
976///
977void AsmPrinter::EmitConstantPool() {
978  const MachineConstantPool *MCP = MF->getConstantPool();
979  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
980  if (CP.empty()) return;
981
982  // Calculate sections for constant pool entries. We collect entries to go into
983  // the same section together to reduce amount of section switch statements.
984  SmallVector<SectionCPs, 4> CPSections;
985  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
986    const MachineConstantPoolEntry &CPE = CP[i];
987    unsigned Align = CPE.getAlignment();
988
989    SectionKind Kind;
990    switch (CPE.getRelocationInfo()) {
991    default: llvm_unreachable("Unknown section kind");
992    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
993    case 1:
994      Kind = SectionKind::getReadOnlyWithRelLocal();
995      break;
996    case 0:
997    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
998    case 4:  Kind = SectionKind::getMergeableConst4(); break;
999    case 8:  Kind = SectionKind::getMergeableConst8(); break;
1000    case 16: Kind = SectionKind::getMergeableConst16();break;
1001    default: Kind = SectionKind::getMergeableConst(); break;
1002    }
1003    }
1004
1005    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1006
1007    // The number of sections are small, just do a linear search from the
1008    // last section to the first.
1009    bool Found = false;
1010    unsigned SecIdx = CPSections.size();
1011    while (SecIdx != 0) {
1012      if (CPSections[--SecIdx].S == S) {
1013        Found = true;
1014        break;
1015      }
1016    }
1017    if (!Found) {
1018      SecIdx = CPSections.size();
1019      CPSections.push_back(SectionCPs(S, Align));
1020    }
1021
1022    if (Align > CPSections[SecIdx].Alignment)
1023      CPSections[SecIdx].Alignment = Align;
1024    CPSections[SecIdx].CPEs.push_back(i);
1025  }
1026
1027  // Now print stuff into the calculated sections.
1028  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1029    OutStreamer.SwitchSection(CPSections[i].S);
1030    EmitAlignment(Log2_32(CPSections[i].Alignment));
1031
1032    unsigned Offset = 0;
1033    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1034      unsigned CPI = CPSections[i].CPEs[j];
1035      MachineConstantPoolEntry CPE = CP[CPI];
1036
1037      // Emit inter-object padding for alignment.
1038      unsigned AlignMask = CPE.getAlignment() - 1;
1039      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1040      OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
1041
1042      Type *Ty = CPE.getType();
1043      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
1044      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1045
1046      if (CPE.isMachineConstantPoolEntry())
1047        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1048      else
1049        EmitGlobalConstant(CPE.Val.ConstVal);
1050    }
1051  }
1052}
1053
1054/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1055/// by the current function to the current output stream.
1056///
1057void AsmPrinter::EmitJumpTableInfo() {
1058  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1059  if (MJTI == 0) return;
1060  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1061  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1062  if (JT.empty()) return;
1063
1064  // Pick the directive to use to print the jump table entries, and switch to
1065  // the appropriate section.
1066  const Function *F = MF->getFunction();
1067  bool JTInDiffSection = false;
1068  if (// In PIC mode, we need to emit the jump table to the same section as the
1069      // function body itself, otherwise the label differences won't make sense.
1070      // FIXME: Need a better predicate for this: what about custom entries?
1071      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1072      // We should also do if the section name is NULL or function is declared
1073      // in discardable section
1074      // FIXME: this isn't the right predicate, should be based on the MCSection
1075      // for the function.
1076      F->isWeakForLinker()) {
1077    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1078  } else {
1079    // Otherwise, drop it in the readonly section.
1080    const MCSection *ReadOnlySection =
1081      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1082    OutStreamer.SwitchSection(ReadOnlySection);
1083    JTInDiffSection = true;
1084  }
1085
1086  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
1087
1088  // If we know the form of the jump table, go ahead and tag it as such.
1089  if (!JTInDiffSection) {
1090    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32) {
1091      OutStreamer.EmitJumpTable32Region();
1092    } else {
1093      OutStreamer.EmitDataRegion();
1094    }
1095  }
1096
1097  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1098    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1099
1100    // If this jump table was deleted, ignore it.
1101    if (JTBBs.empty()) continue;
1102
1103    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1104    // .set directive for each unique entry.  This reduces the number of
1105    // relocations the assembler will generate for the jump table.
1106    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1107        MAI->hasSetDirective()) {
1108      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1109      const TargetLowering *TLI = TM.getTargetLowering();
1110      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1111      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1112        const MachineBasicBlock *MBB = JTBBs[ii];
1113        if (!EmittedSets.insert(MBB)) continue;
1114
1115        // .set LJTSet, LBB32-base
1116        const MCExpr *LHS =
1117          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1118        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1119                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1120      }
1121    }
1122
1123    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1124    // before each jump table.  The first label is never referenced, but tells
1125    // the assembler and linker the extents of the jump table object.  The
1126    // second label is actually referenced by the code.
1127    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1128      // FIXME: This doesn't have to have any specific name, just any randomly
1129      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1130      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1131
1132    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1133
1134    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1135      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1136  }
1137}
1138
1139/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1140/// current stream.
1141void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1142                                    const MachineBasicBlock *MBB,
1143                                    unsigned UID) const {
1144  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1145  const MCExpr *Value = 0;
1146  switch (MJTI->getEntryKind()) {
1147  case MachineJumpTableInfo::EK_Inline:
1148    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1149  case MachineJumpTableInfo::EK_Custom32:
1150    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1151                                                              OutContext);
1152    break;
1153  case MachineJumpTableInfo::EK_BlockAddress:
1154    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1155    //     .word LBB123
1156    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1157    break;
1158  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1159    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1160    // with a relocation as gp-relative, e.g.:
1161    //     .gprel32 LBB123
1162    MCSymbol *MBBSym = MBB->getSymbol();
1163    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1164    return;
1165  }
1166
1167  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1168    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1169    // with a relocation as gp-relative, e.g.:
1170    //     .gpdword LBB123
1171    MCSymbol *MBBSym = MBB->getSymbol();
1172    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1173    return;
1174  }
1175
1176  case MachineJumpTableInfo::EK_LabelDifference32: {
1177    // EK_LabelDifference32 - Each entry is the address of the block minus
1178    // the address of the jump table.  This is used for PIC jump tables where
1179    // gprel32 is not supported.  e.g.:
1180    //      .word LBB123 - LJTI1_2
1181    // If the .set directive is supported, this is emitted as:
1182    //      .set L4_5_set_123, LBB123 - LJTI1_2
1183    //      .word L4_5_set_123
1184
1185    // If we have emitted set directives for the jump table entries, print
1186    // them rather than the entries themselves.  If we're emitting PIC, then
1187    // emit the table entries as differences between two text section labels.
1188    if (MAI->hasSetDirective()) {
1189      // If we used .set, reference the .set's symbol.
1190      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1191                                      OutContext);
1192      break;
1193    }
1194    // Otherwise, use the difference as the jump table entry.
1195    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1196    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1197    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1198    break;
1199  }
1200  }
1201
1202  assert(Value && "Unknown entry kind!");
1203
1204  unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
1205  OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
1206}
1207
1208
1209/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1210/// special global used by LLVM.  If so, emit it and return true, otherwise
1211/// do nothing and return false.
1212bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1213  if (GV->getName() == "llvm.used") {
1214    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1215      EmitLLVMUsedList(GV->getInitializer());
1216    return true;
1217  }
1218
1219  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1220  if (GV->getSection() == "llvm.metadata" ||
1221      GV->hasAvailableExternallyLinkage())
1222    return true;
1223
1224  if (!GV->hasAppendingLinkage()) return false;
1225
1226  assert(GV->hasInitializer() && "Not a special LLVM global!");
1227
1228  if (GV->getName() == "llvm.global_ctors") {
1229    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1230
1231    if (TM.getRelocationModel() == Reloc::Static &&
1232        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1233      StringRef Sym(".constructors_used");
1234      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1235                                      MCSA_Reference);
1236    }
1237    return true;
1238  }
1239
1240  if (GV->getName() == "llvm.global_dtors") {
1241    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1242
1243    if (TM.getRelocationModel() == Reloc::Static &&
1244        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1245      StringRef Sym(".destructors_used");
1246      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1247                                      MCSA_Reference);
1248    }
1249    return true;
1250  }
1251
1252  return false;
1253}
1254
1255/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1256/// global in the specified llvm.used list for which emitUsedDirectiveFor
1257/// is true, as being used with this directive.
1258void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1259  // Should be an array of 'i8*'.
1260  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1261  if (InitList == 0) return;
1262
1263  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1264    const GlobalValue *GV =
1265      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1266    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1267      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1268  }
1269}
1270
1271typedef std::pair<unsigned, Constant*> Structor;
1272
1273static bool priority_order(const Structor& lhs, const Structor& rhs) {
1274  return lhs.first < rhs.first;
1275}
1276
1277/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1278/// priority.
1279void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1280  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1281  // init priority.
1282  if (!isa<ConstantArray>(List)) return;
1283
1284  // Sanity check the structors list.
1285  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1286  if (!InitList) return; // Not an array!
1287  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1288  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1289  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1290      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1291
1292  // Gather the structors in a form that's convenient for sorting by priority.
1293  SmallVector<Structor, 8> Structors;
1294  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1295    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1296    if (!CS) continue; // Malformed.
1297    if (CS->getOperand(1)->isNullValue())
1298      break;  // Found a null terminator, skip the rest.
1299    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1300    if (!Priority) continue; // Malformed.
1301    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1302                                       CS->getOperand(1)));
1303  }
1304
1305  // Emit the function pointers in the target-specific order
1306  const TargetData *TD = TM.getTargetData();
1307  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1308  std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1309  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1310    const MCSection *OutputSection =
1311      (isCtor ?
1312       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1313       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1314    OutStreamer.SwitchSection(OutputSection);
1315    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1316      EmitAlignment(Align);
1317    EmitXXStructor(Structors[i].second);
1318  }
1319}
1320
1321//===--------------------------------------------------------------------===//
1322// Emission and print routines
1323//
1324
1325/// EmitInt8 - Emit a byte directive and value.
1326///
1327void AsmPrinter::EmitInt8(int Value) const {
1328  OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
1329}
1330
1331/// EmitInt16 - Emit a short directive and value.
1332///
1333void AsmPrinter::EmitInt16(int Value) const {
1334  OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
1335}
1336
1337/// EmitInt32 - Emit a long directive and value.
1338///
1339void AsmPrinter::EmitInt32(int Value) const {
1340  OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
1341}
1342
1343/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1344/// in bytes of the directive is specified by Size and Hi/Lo specify the
1345/// labels.  This implicitly uses .set if it is available.
1346void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1347                                     unsigned Size) const {
1348  // Get the Hi-Lo expression.
1349  const MCExpr *Diff =
1350    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1351                            MCSymbolRefExpr::Create(Lo, OutContext),
1352                            OutContext);
1353
1354  if (!MAI->hasSetDirective()) {
1355    OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
1356    return;
1357  }
1358
1359  // Otherwise, emit with .set (aka assignment).
1360  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1361  OutStreamer.EmitAssignment(SetLabel, Diff);
1362  OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
1363}
1364
1365/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1366/// where the size in bytes of the directive is specified by Size and Hi/Lo
1367/// specify the labels.  This implicitly uses .set if it is available.
1368void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1369                                           const MCSymbol *Lo, unsigned Size)
1370  const {
1371
1372  // Emit Hi+Offset - Lo
1373  // Get the Hi+Offset expression.
1374  const MCExpr *Plus =
1375    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1376                            MCConstantExpr::Create(Offset, OutContext),
1377                            OutContext);
1378
1379  // Get the Hi+Offset-Lo expression.
1380  const MCExpr *Diff =
1381    MCBinaryExpr::CreateSub(Plus,
1382                            MCSymbolRefExpr::Create(Lo, OutContext),
1383                            OutContext);
1384
1385  if (!MAI->hasSetDirective())
1386    OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
1387  else {
1388    // Otherwise, emit with .set (aka assignment).
1389    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1390    OutStreamer.EmitAssignment(SetLabel, Diff);
1391    OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
1392  }
1393}
1394
1395/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1396/// where the size in bytes of the directive is specified by Size and Label
1397/// specifies the label.  This implicitly uses .set if it is available.
1398void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1399                                      unsigned Size)
1400  const {
1401
1402  // Emit Label+Offset
1403  const MCExpr *Plus =
1404    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext),
1405                            MCConstantExpr::Create(Offset, OutContext),
1406                            OutContext);
1407
1408  OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/);
1409}
1410
1411
1412//===----------------------------------------------------------------------===//
1413
1414// EmitAlignment - Emit an alignment directive to the specified power of
1415// two boundary.  For example, if you pass in 3 here, you will get an 8
1416// byte alignment.  If a global value is specified, and if that global has
1417// an explicit alignment requested, it will override the alignment request
1418// if required for correctness.
1419//
1420void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1421  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
1422
1423  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1424
1425  if (getCurrentSection()->getKind().isText())
1426    OutStreamer.EmitCodeAlignment(1 << NumBits);
1427  else
1428    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1429}
1430
1431//===----------------------------------------------------------------------===//
1432// Constant emission.
1433//===----------------------------------------------------------------------===//
1434
1435/// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
1436///
1437static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) {
1438  MCContext &Ctx = AP.OutContext;
1439
1440  if (CV->isNullValue() || isa<UndefValue>(CV))
1441    return MCConstantExpr::Create(0, Ctx);
1442
1443  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1444    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1445
1446  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1447    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1448
1449  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1450    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1451
1452  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1453  if (CE == 0) {
1454    llvm_unreachable("Unknown constant value to lower!");
1455  }
1456
1457  switch (CE->getOpcode()) {
1458  default:
1459    // If the code isn't optimized, there may be outstanding folding
1460    // opportunities. Attempt to fold the expression using TargetData as a
1461    // last resort before giving up.
1462    if (Constant *C =
1463          ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
1464      if (C != CE)
1465        return LowerConstant(C, AP);
1466
1467    // Otherwise report the problem to the user.
1468    {
1469      std::string S;
1470      raw_string_ostream OS(S);
1471      OS << "Unsupported expression in static initializer: ";
1472      WriteAsOperand(OS, CE, /*PrintType=*/false,
1473                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1474      report_fatal_error(OS.str());
1475    }
1476  case Instruction::GetElementPtr: {
1477    const TargetData &TD = *AP.TM.getTargetData();
1478    // Generate a symbolic expression for the byte address
1479    const Constant *PtrVal = CE->getOperand(0);
1480    SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
1481    int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
1482
1483    const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
1484    if (Offset == 0)
1485      return Base;
1486
1487    // Truncate/sext the offset to the pointer size.
1488    if (TD.getPointerSizeInBits() != 64) {
1489      int SExtAmount = 64-TD.getPointerSizeInBits();
1490      Offset = (Offset << SExtAmount) >> SExtAmount;
1491    }
1492
1493    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1494                                   Ctx);
1495  }
1496
1497  case Instruction::Trunc:
1498    // We emit the value and depend on the assembler to truncate the generated
1499    // expression properly.  This is important for differences between
1500    // blockaddress labels.  Since the two labels are in the same function, it
1501    // is reasonable to treat their delta as a 32-bit value.
1502    // FALL THROUGH.
1503  case Instruction::BitCast:
1504    return LowerConstant(CE->getOperand(0), AP);
1505
1506  case Instruction::IntToPtr: {
1507    const TargetData &TD = *AP.TM.getTargetData();
1508    // Handle casts to pointers by changing them into casts to the appropriate
1509    // integer type.  This promotes constant folding and simplifies this code.
1510    Constant *Op = CE->getOperand(0);
1511    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1512                                      false/*ZExt*/);
1513    return LowerConstant(Op, AP);
1514  }
1515
1516  case Instruction::PtrToInt: {
1517    const TargetData &TD = *AP.TM.getTargetData();
1518    // Support only foldable casts to/from pointers that can be eliminated by
1519    // changing the pointer to the appropriately sized integer type.
1520    Constant *Op = CE->getOperand(0);
1521    Type *Ty = CE->getType();
1522
1523    const MCExpr *OpExpr = LowerConstant(Op, AP);
1524
1525    // We can emit the pointer value into this slot if the slot is an
1526    // integer slot equal to the size of the pointer.
1527    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1528      return OpExpr;
1529
1530    // Otherwise the pointer is smaller than the resultant integer, mask off
1531    // the high bits so we are sure to get a proper truncation if the input is
1532    // a constant expr.
1533    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1534    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1535    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1536  }
1537
1538  // The MC library also has a right-shift operator, but it isn't consistently
1539  // signed or unsigned between different targets.
1540  case Instruction::Add:
1541  case Instruction::Sub:
1542  case Instruction::Mul:
1543  case Instruction::SDiv:
1544  case Instruction::SRem:
1545  case Instruction::Shl:
1546  case Instruction::And:
1547  case Instruction::Or:
1548  case Instruction::Xor: {
1549    const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
1550    const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
1551    switch (CE->getOpcode()) {
1552    default: llvm_unreachable("Unknown binary operator constant cast expr");
1553    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1554    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1555    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1556    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1557    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1558    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1559    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1560    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1561    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1562    }
1563  }
1564  }
1565}
1566
1567static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1568                                   AsmPrinter &AP);
1569
1570/// isRepeatedByteSequence - Determine whether the given value is
1571/// composed of a repeated sequence of identical bytes and return the
1572/// byte value.  If it is not a repeated sequence, return -1.
1573static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1574  StringRef Data = V->getRawDataValues();
1575  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1576  char C = Data[0];
1577  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1578    if (Data[i] != C) return -1;
1579  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1580}
1581
1582
1583/// isRepeatedByteSequence - Determine whether the given value is
1584/// composed of a repeated sequence of identical bytes and return the
1585/// byte value.  If it is not a repeated sequence, return -1.
1586static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1587
1588  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1589    if (CI->getBitWidth() > 64) return -1;
1590
1591    uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
1592    uint64_t Value = CI->getZExtValue();
1593
1594    // Make sure the constant is at least 8 bits long and has a power
1595    // of 2 bit width.  This guarantees the constant bit width is
1596    // always a multiple of 8 bits, avoiding issues with padding out
1597    // to Size and other such corner cases.
1598    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1599
1600    uint8_t Byte = static_cast<uint8_t>(Value);
1601
1602    for (unsigned i = 1; i < Size; ++i) {
1603      Value >>= 8;
1604      if (static_cast<uint8_t>(Value) != Byte) return -1;
1605    }
1606    return Byte;
1607  }
1608  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1609    // Make sure all array elements are sequences of the same repeated
1610    // byte.
1611    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1612    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1613    if (Byte == -1) return -1;
1614
1615    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1616      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1617      if (ThisByte == -1) return -1;
1618      if (Byte != ThisByte) return -1;
1619    }
1620    return Byte;
1621  }
1622
1623  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1624    return isRepeatedByteSequence(CDS);
1625
1626  return -1;
1627}
1628
1629static void EmitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1630                                             unsigned AddrSpace,AsmPrinter &AP){
1631
1632  // See if we can aggregate this into a .fill, if so, emit it as such.
1633  int Value = isRepeatedByteSequence(CDS, AP.TM);
1634  if (Value != -1) {
1635    uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType());
1636    // Don't emit a 1-byte object as a .fill.
1637    if (Bytes > 1)
1638      return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1639  }
1640
1641  // If this can be emitted with .ascii/.asciz, emit it as such.
1642  if (CDS->isString())
1643    return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1644
1645  // Otherwise, emit the values in successive locations.
1646  unsigned ElementByteSize = CDS->getElementByteSize();
1647  if (isa<IntegerType>(CDS->getElementType())) {
1648    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1649      if (AP.isVerbose())
1650        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1651                                                CDS->getElementAsInteger(i));
1652      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1653                                  ElementByteSize, AddrSpace);
1654    }
1655  } else if (ElementByteSize == 4) {
1656    // FP Constants are printed as integer constants to avoid losing
1657    // precision.
1658    assert(CDS->getElementType()->isFloatTy());
1659    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1660      union {
1661        float F;
1662        uint32_t I;
1663      };
1664
1665      F = CDS->getElementAsFloat(i);
1666      if (AP.isVerbose())
1667        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1668      AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1669    }
1670  } else {
1671    assert(CDS->getElementType()->isDoubleTy());
1672    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1673      union {
1674        double F;
1675        uint64_t I;
1676      };
1677
1678      F = CDS->getElementAsDouble(i);
1679      if (AP.isVerbose())
1680        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1681      AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1682    }
1683  }
1684
1685  const TargetData &TD = *AP.TM.getTargetData();
1686  unsigned Size = TD.getTypeAllocSize(CDS->getType());
1687  unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1688                        CDS->getNumElements();
1689  if (unsigned Padding = Size - EmittedSize)
1690    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1691
1692}
1693
1694static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1695                                    AsmPrinter &AP) {
1696  // See if we can aggregate some values.  Make sure it can be
1697  // represented as a series of bytes of the constant value.
1698  int Value = isRepeatedByteSequence(CA, AP.TM);
1699
1700  if (Value != -1) {
1701    uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
1702    AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1703  }
1704  else {
1705    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1706      EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1707  }
1708}
1709
1710static void EmitGlobalConstantVector(const ConstantVector *CV,
1711                                     unsigned AddrSpace, AsmPrinter &AP) {
1712  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1713    EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1714
1715  const TargetData &TD = *AP.TM.getTargetData();
1716  unsigned Size = TD.getTypeAllocSize(CV->getType());
1717  unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1718                         CV->getType()->getNumElements();
1719  if (unsigned Padding = Size - EmittedSize)
1720    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1721}
1722
1723static void EmitGlobalConstantStruct(const ConstantStruct *CS,
1724                                     unsigned AddrSpace, AsmPrinter &AP) {
1725  // Print the fields in successive locations. Pad to align if needed!
1726  const TargetData *TD = AP.TM.getTargetData();
1727  unsigned Size = TD->getTypeAllocSize(CS->getType());
1728  const StructLayout *Layout = TD->getStructLayout(CS->getType());
1729  uint64_t SizeSoFar = 0;
1730  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1731    const Constant *Field = CS->getOperand(i);
1732
1733    // Check if padding is needed and insert one or more 0s.
1734    uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1735    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1736                        - Layout->getElementOffset(i)) - FieldSize;
1737    SizeSoFar += FieldSize + PadSize;
1738
1739    // Now print the actual field value.
1740    EmitGlobalConstantImpl(Field, AddrSpace, AP);
1741
1742    // Insert padding - this may include padding to increase the size of the
1743    // current field up to the ABI size (if the struct is not packed) as well
1744    // as padding to ensure that the next field starts at the right offset.
1745    AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1746  }
1747  assert(SizeSoFar == Layout->getSizeInBytes() &&
1748         "Layout of constant struct may be incorrect!");
1749}
1750
1751static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1752                                 AsmPrinter &AP) {
1753  if (CFP->getType()->isHalfTy()) {
1754    if (AP.isVerbose()) {
1755      SmallString<10> Str;
1756      CFP->getValueAPF().toString(Str);
1757      AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
1758    }
1759    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1760    AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
1761    return;
1762  }
1763
1764  if (CFP->getType()->isFloatTy()) {
1765    if (AP.isVerbose()) {
1766      float Val = CFP->getValueAPF().convertToFloat();
1767      AP.OutStreamer.GetCommentOS() << "float " << Val << '\n';
1768    }
1769    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1770    AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
1771    return;
1772  }
1773
1774  // FP Constants are printed as integer constants to avoid losing
1775  // precision.
1776  if (CFP->getType()->isDoubleTy()) {
1777    if (AP.isVerbose()) {
1778      double Val = CFP->getValueAPF().convertToDouble();
1779      AP.OutStreamer.GetCommentOS() << "double " << Val << '\n';
1780    }
1781
1782    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1783    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1784    return;
1785  }
1786
1787  if (CFP->getType()->isX86_FP80Ty()) {
1788    // all long double variants are printed as hex
1789    // API needed to prevent premature destruction
1790    APInt API = CFP->getValueAPF().bitcastToAPInt();
1791    const uint64_t *p = API.getRawData();
1792    if (AP.isVerbose()) {
1793      // Convert to double so we can print the approximate val as a comment.
1794      APFloat DoubleVal = CFP->getValueAPF();
1795      bool ignored;
1796      DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1797                        &ignored);
1798      AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
1799        << DoubleVal.convertToDouble() << '\n';
1800    }
1801
1802    if (AP.TM.getTargetData()->isBigEndian()) {
1803      AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1804      AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1805    } else {
1806      AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1807      AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1808    }
1809
1810    // Emit the tail padding for the long double.
1811    const TargetData &TD = *AP.TM.getTargetData();
1812    AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1813                             TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1814    return;
1815  }
1816
1817  assert(CFP->getType()->isPPC_FP128Ty() &&
1818         "Floating point constant type not handled");
1819  // All long double variants are printed as hex
1820  // API needed to prevent premature destruction.
1821  APInt API = CFP->getValueAPF().bitcastToAPInt();
1822  const uint64_t *p = API.getRawData();
1823  if (AP.TM.getTargetData()->isBigEndian()) {
1824    AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1825    AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1826  } else {
1827    AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1828    AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1829  }
1830}
1831
1832static void EmitGlobalConstantLargeInt(const ConstantInt *CI,
1833                                       unsigned AddrSpace, AsmPrinter &AP) {
1834  const TargetData *TD = AP.TM.getTargetData();
1835  unsigned BitWidth = CI->getBitWidth();
1836  assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1837
1838  // We don't expect assemblers to support integer data directives
1839  // for more than 64 bits, so we emit the data in at most 64-bit
1840  // quantities at a time.
1841  const uint64_t *RawData = CI->getValue().getRawData();
1842  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1843    uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1844    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1845  }
1846}
1847
1848static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1849                                   AsmPrinter &AP) {
1850  const TargetData *TD = AP.TM.getTargetData();
1851  uint64_t Size = TD->getTypeAllocSize(CV->getType());
1852  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1853    return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1854
1855  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1856    switch (Size) {
1857    case 1:
1858    case 2:
1859    case 4:
1860    case 8:
1861      if (AP.isVerbose())
1862        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1863                                                CI->getZExtValue());
1864      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1865      return;
1866    default:
1867      EmitGlobalConstantLargeInt(CI, AddrSpace, AP);
1868      return;
1869    }
1870  }
1871
1872  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1873    return EmitGlobalConstantFP(CFP, AddrSpace, AP);
1874
1875  if (isa<ConstantPointerNull>(CV)) {
1876    AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1877    return;
1878  }
1879
1880  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1881    return EmitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1882
1883  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1884    return EmitGlobalConstantArray(CVA, AddrSpace, AP);
1885
1886  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1887    return EmitGlobalConstantStruct(CVS, AddrSpace, AP);
1888
1889  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1890    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1891    // vectors).
1892    if (CE->getOpcode() == Instruction::BitCast)
1893      return EmitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1894
1895    if (Size > 8) {
1896      // If the constant expression's size is greater than 64-bits, then we have
1897      // to emit the value in chunks. Try to constant fold the value and emit it
1898      // that way.
1899      Constant *New = ConstantFoldConstantExpression(CE, TD);
1900      if (New && New != CE)
1901        return EmitGlobalConstantImpl(New, AddrSpace, AP);
1902    }
1903  }
1904
1905  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1906    return EmitGlobalConstantVector(V, AddrSpace, AP);
1907
1908  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1909  // thread the streamer with EmitValue.
1910  AP.OutStreamer.EmitValue(LowerConstant(CV, AP), Size, AddrSpace);
1911}
1912
1913/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1914void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1915  uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
1916  if (Size)
1917    EmitGlobalConstantImpl(CV, AddrSpace, *this);
1918  else if (MAI->hasSubsectionsViaSymbols()) {
1919    // If the global has zero size, emit a single byte so that two labels don't
1920    // look like they are at the same location.
1921    OutStreamer.EmitIntValue(0, 1, AddrSpace);
1922  }
1923}
1924
1925void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1926  // Target doesn't support this yet!
1927  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1928}
1929
1930void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1931  if (Offset > 0)
1932    OS << '+' << Offset;
1933  else if (Offset < 0)
1934    OS << Offset;
1935}
1936
1937//===----------------------------------------------------------------------===//
1938// Symbol Lowering Routines.
1939//===----------------------------------------------------------------------===//
1940
1941/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1942/// temporary label with the specified stem and unique ID.
1943MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1944  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1945                                      Name + Twine(ID));
1946}
1947
1948/// GetTempSymbol - Return an assembler temporary label with the specified
1949/// stem.
1950MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1951  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1952                                      Name);
1953}
1954
1955
1956MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1957  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1958}
1959
1960MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1961  return MMI->getAddrLabelSymbol(BB);
1962}
1963
1964/// GetCPISymbol - Return the symbol for the specified constant pool entry.
1965MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1966  return OutContext.GetOrCreateSymbol
1967    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1968     + "_" + Twine(CPID));
1969}
1970
1971/// GetJTISymbol - Return the symbol for the specified jump table entry.
1972MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1973  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1974}
1975
1976/// GetJTSetSymbol - Return the symbol for the specified jump table .set
1977/// FIXME: privatize to AsmPrinter.
1978MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1979  return OutContext.GetOrCreateSymbol
1980  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1981   Twine(UID) + "_set_" + Twine(MBBID));
1982}
1983
1984/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1985/// global value name as its base, with the specified suffix, and where the
1986/// symbol is forced to have private linkage if ForcePrivate is true.
1987MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1988                                                   StringRef Suffix,
1989                                                   bool ForcePrivate) const {
1990  SmallString<60> NameStr;
1991  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1992  NameStr.append(Suffix.begin(), Suffix.end());
1993  return OutContext.GetOrCreateSymbol(NameStr.str());
1994}
1995
1996/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1997/// ExternalSymbol.
1998MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
1999  SmallString<60> NameStr;
2000  Mang->getNameWithPrefix(NameStr, Sym);
2001  return OutContext.GetOrCreateSymbol(NameStr.str());
2002}
2003
2004
2005
2006/// PrintParentLoopComment - Print comments about parent loops of this one.
2007static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2008                                   unsigned FunctionNumber) {
2009  if (Loop == 0) return;
2010  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2011  OS.indent(Loop->getLoopDepth()*2)
2012    << "Parent Loop BB" << FunctionNumber << "_"
2013    << Loop->getHeader()->getNumber()
2014    << " Depth=" << Loop->getLoopDepth() << '\n';
2015}
2016
2017
2018/// PrintChildLoopComment - Print comments about child loops within
2019/// the loop for this basic block, with nesting.
2020static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2021                                  unsigned FunctionNumber) {
2022  // Add child loop information
2023  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2024    OS.indent((*CL)->getLoopDepth()*2)
2025      << "Child Loop BB" << FunctionNumber << "_"
2026      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2027      << '\n';
2028    PrintChildLoopComment(OS, *CL, FunctionNumber);
2029  }
2030}
2031
2032/// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2033static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2034                                       const MachineLoopInfo *LI,
2035                                       const AsmPrinter &AP) {
2036  // Add loop depth information
2037  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2038  if (Loop == 0) return;
2039
2040  MachineBasicBlock *Header = Loop->getHeader();
2041  assert(Header && "No header for loop");
2042
2043  // If this block is not a loop header, just print out what is the loop header
2044  // and return.
2045  if (Header != &MBB) {
2046    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2047                              Twine(AP.getFunctionNumber())+"_" +
2048                              Twine(Loop->getHeader()->getNumber())+
2049                              " Depth="+Twine(Loop->getLoopDepth()));
2050    return;
2051  }
2052
2053  // Otherwise, it is a loop header.  Print out information about child and
2054  // parent loops.
2055  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2056
2057  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2058
2059  OS << "=>";
2060  OS.indent(Loop->getLoopDepth()*2-2);
2061
2062  OS << "This ";
2063  if (Loop->empty())
2064    OS << "Inner ";
2065  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2066
2067  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2068}
2069
2070
2071/// EmitBasicBlockStart - This method prints the label for the specified
2072/// MachineBasicBlock, an alignment (if present) and a comment describing
2073/// it if appropriate.
2074void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2075  // Emit an alignment directive for this block, if needed.
2076  if (unsigned Align = MBB->getAlignment())
2077    EmitAlignment(Align);
2078
2079  // If the block has its address taken, emit any labels that were used to
2080  // reference the block.  It is possible that there is more than one label
2081  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2082  // the references were generated.
2083  if (MBB->hasAddressTaken()) {
2084    const BasicBlock *BB = MBB->getBasicBlock();
2085    if (isVerbose())
2086      OutStreamer.AddComment("Block address taken");
2087
2088    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2089
2090    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2091      OutStreamer.EmitLabel(Syms[i]);
2092  }
2093
2094  // Print some verbose block comments.
2095  if (isVerbose()) {
2096    if (const BasicBlock *BB = MBB->getBasicBlock())
2097      if (BB->hasName())
2098        OutStreamer.AddComment("%" + BB->getName());
2099    EmitBasicBlockLoopComments(*MBB, LI, *this);
2100  }
2101
2102  // Print the main label for the block.
2103  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2104    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2105      // NOTE: Want this comment at start of line, don't emit with AddComment.
2106      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2107                              Twine(MBB->getNumber()) + ":");
2108    }
2109  } else {
2110    OutStreamer.EmitLabel(MBB->getSymbol());
2111  }
2112}
2113
2114void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2115                                bool IsDefinition) const {
2116  MCSymbolAttr Attr = MCSA_Invalid;
2117
2118  switch (Visibility) {
2119  default: break;
2120  case GlobalValue::HiddenVisibility:
2121    if (IsDefinition)
2122      Attr = MAI->getHiddenVisibilityAttr();
2123    else
2124      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2125    break;
2126  case GlobalValue::ProtectedVisibility:
2127    Attr = MAI->getProtectedVisibilityAttr();
2128    break;
2129  }
2130
2131  if (Attr != MCSA_Invalid)
2132    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2133}
2134
2135/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2136/// exactly one predecessor and the control transfer mechanism between
2137/// the predecessor and this block is a fall-through.
2138bool AsmPrinter::
2139isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2140  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2141  // then nothing falls through to it.
2142  if (MBB->isLandingPad() || MBB->pred_empty())
2143    return false;
2144
2145  // If there isn't exactly one predecessor, it can't be a fall through.
2146  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2147  ++PI2;
2148  if (PI2 != MBB->pred_end())
2149    return false;
2150
2151  // The predecessor has to be immediately before this block.
2152  MachineBasicBlock *Pred = *PI;
2153
2154  if (!Pred->isLayoutSuccessor(MBB))
2155    return false;
2156
2157  // If the block is completely empty, then it definitely does fall through.
2158  if (Pred->empty())
2159    return true;
2160
2161  // Check the terminators in the previous blocks
2162  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2163         IE = Pred->end(); II != IE; ++II) {
2164    MachineInstr &MI = *II;
2165
2166    // If it is not a simple branch, we are in a table somewhere.
2167    if (!MI.isBranch() || MI.isIndirectBranch())
2168      return false;
2169
2170    // If we are the operands of one of the branches, this is not
2171    // a fall through.
2172    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2173           OE = MI.operands_end(); OI != OE; ++OI) {
2174      const MachineOperand& OP = *OI;
2175      if (OP.isJTI())
2176        return false;
2177      if (OP.isMBB() && OP.getMBB() == MBB)
2178        return false;
2179    }
2180  }
2181
2182  return true;
2183}
2184
2185
2186
2187GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2188  if (!S->usesMetadata())
2189    return 0;
2190
2191  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2192  gcp_map_type::iterator GCPI = GCMap.find(S);
2193  if (GCPI != GCMap.end())
2194    return GCPI->second;
2195
2196  const char *Name = S->getName().c_str();
2197
2198  for (GCMetadataPrinterRegistry::iterator
2199         I = GCMetadataPrinterRegistry::begin(),
2200         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2201    if (strcmp(Name, I->getName()) == 0) {
2202      GCMetadataPrinter *GMP = I->instantiate();
2203      GMP->S = S;
2204      GCMap.insert(std::make_pair(S, GMP));
2205      return GMP;
2206    }
2207
2208  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2209}
2210