AsmPrinter.cpp revision 25746ddd66651bdad159444d0331b7df4dc22842
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "DwarfDebug.h"
17#include "DwarfException.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CodeGen/GCMetadataPrinter.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineJumpTableInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/DebugInfo.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/MC/MCContext.h"
35#include "llvm/MC/MCExpr.h"
36#include "llvm/MC/MCInst.h"
37#include "llvm/MC/MCSection.h"
38#include "llvm/MC/MCStreamer.h"
39#include "llvm/MC/MCSymbol.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/Format.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/Timer.h"
44#include "llvm/Target/Mangler.h"
45#include "llvm/Target/TargetFrameLowering.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include "llvm/Target/TargetLoweringObjectFile.h"
49#include "llvm/Target/TargetOptions.h"
50#include "llvm/Target/TargetRegisterInfo.h"
51using namespace llvm;
52
53static const char *DWARFGroupName = "DWARF Emission";
54static const char *DbgTimerName = "DWARF Debug Writer";
55static const char *EHTimerName = "DWARF Exception Writer";
56
57STATISTIC(EmittedInsts, "Number of machine instrs printed");
58
59char AsmPrinter::ID = 0;
60
61typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
62static gcp_map_type &getGCMap(void *&P) {
63  if (P == 0)
64    P = new gcp_map_type();
65  return *(gcp_map_type*)P;
66}
67
68
69/// getGVAlignmentLog2 - Return the alignment to use for the specified global
70/// value in log2 form.  This rounds up to the preferred alignment if possible
71/// and legal.
72static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
73                                   unsigned InBits = 0) {
74  unsigned NumBits = 0;
75  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
76    NumBits = TD.getPreferredAlignmentLog(GVar);
77
78  // If InBits is specified, round it to it.
79  if (InBits > NumBits)
80    NumBits = InBits;
81
82  // If the GV has a specified alignment, take it into account.
83  if (GV->getAlignment() == 0)
84    return NumBits;
85
86  unsigned GVAlign = Log2_32(GV->getAlignment());
87
88  // If the GVAlign is larger than NumBits, or if we are required to obey
89  // NumBits because the GV has an assigned section, obey it.
90  if (GVAlign > NumBits || GV->hasSection())
91    NumBits = GVAlign;
92  return NumBits;
93}
94
95AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
96  : MachineFunctionPass(ID),
97    TM(tm), MAI(tm.getMCAsmInfo()),
98    OutContext(Streamer.getContext()),
99    OutStreamer(Streamer),
100    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
101  DD = 0; DE = 0; MMI = 0; LI = 0;
102  CurrentFnSym = CurrentFnSymForSize = 0;
103  GCMetadataPrinters = 0;
104  VerboseAsm = Streamer.isVerboseAsm();
105}
106
107AsmPrinter::~AsmPrinter() {
108  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
109
110  if (GCMetadataPrinters != 0) {
111    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
112
113    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
114      delete I->second;
115    delete &GCMap;
116    GCMetadataPrinters = 0;
117  }
118
119  delete &OutStreamer;
120}
121
122/// getFunctionNumber - Return a unique ID for the current function.
123///
124unsigned AsmPrinter::getFunctionNumber() const {
125  return MF->getFunctionNumber();
126}
127
128const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
129  return TM.getTargetLowering()->getObjFileLowering();
130}
131
132/// getDataLayout - Return information about data layout.
133const DataLayout &AsmPrinter::getDataLayout() const {
134  return *TM.getDataLayout();
135}
136
137StringRef AsmPrinter::getTargetTriple() const {
138  return TM.getTargetTriple();
139}
140
141/// getCurrentSection() - Return the current section we are emitting to.
142const MCSection *AsmPrinter::getCurrentSection() const {
143  return OutStreamer.getCurrentSection().first;
144}
145
146
147
148void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
149  AU.setPreservesAll();
150  MachineFunctionPass::getAnalysisUsage(AU);
151  AU.addRequired<MachineModuleInfo>();
152  AU.addRequired<GCModuleInfo>();
153  if (isVerbose())
154    AU.addRequired<MachineLoopInfo>();
155}
156
157bool AsmPrinter::doInitialization(Module &M) {
158  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
159  MMI->AnalyzeModule(M);
160
161  // Initialize TargetLoweringObjectFile.
162  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
163    .Initialize(OutContext, TM);
164
165  OutStreamer.InitStreamer();
166
167  Mang = new Mangler(OutContext, &TM);
168
169  // Allow the target to emit any magic that it wants at the start of the file.
170  EmitStartOfAsmFile(M);
171
172  // Very minimal debug info. It is ignored if we emit actual debug info. If we
173  // don't, this at least helps the user find where a global came from.
174  if (MAI->hasSingleParameterDotFile()) {
175    // .file "foo.c"
176    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
177  }
178
179  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
180  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
181  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
182    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
183      MP->beginAssembly(*this);
184
185  // Emit module-level inline asm if it exists.
186  if (!M.getModuleInlineAsm().empty()) {
187    OutStreamer.AddComment("Start of file scope inline assembly");
188    OutStreamer.AddBlankLine();
189    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
190    OutStreamer.AddComment("End of file scope inline assembly");
191    OutStreamer.AddBlankLine();
192  }
193
194  if (MAI->doesSupportDebugInformation())
195    DD = new DwarfDebug(this, &M);
196
197  switch (MAI->getExceptionHandlingType()) {
198  case ExceptionHandling::None:
199    return false;
200  case ExceptionHandling::SjLj:
201  case ExceptionHandling::DwarfCFI:
202    DE = new DwarfCFIException(this);
203    return false;
204  case ExceptionHandling::ARM:
205    DE = new ARMException(this);
206    return false;
207  case ExceptionHandling::Win64:
208    DE = new Win64Exception(this);
209    return false;
210  }
211
212  llvm_unreachable("Unknown exception type.");
213}
214
215void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
216  switch ((GlobalValue::LinkageTypes)Linkage) {
217  case GlobalValue::CommonLinkage:
218  case GlobalValue::LinkOnceAnyLinkage:
219  case GlobalValue::LinkOnceODRLinkage:
220  case GlobalValue::LinkOnceODRAutoHideLinkage:
221  case GlobalValue::WeakAnyLinkage:
222  case GlobalValue::WeakODRLinkage:
223  case GlobalValue::LinkerPrivateWeakLinkage:
224    if (MAI->getWeakDefDirective() != 0) {
225      // .globl _foo
226      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
227
228      if ((GlobalValue::LinkageTypes)Linkage !=
229          GlobalValue::LinkOnceODRAutoHideLinkage)
230        // .weak_definition _foo
231        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
232      else
233        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
234    } else if (MAI->getLinkOnceDirective() != 0) {
235      // .globl _foo
236      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
237      //NOTE: linkonce is handled by the section the symbol was assigned to.
238    } else {
239      // .weak _foo
240      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
241    }
242    break;
243  case GlobalValue::DLLExportLinkage:
244  case GlobalValue::AppendingLinkage:
245    // FIXME: appending linkage variables should go into a section of
246    // their name or something.  For now, just emit them as external.
247  case GlobalValue::ExternalLinkage:
248    // If external or appending, declare as a global symbol.
249    // .globl _foo
250    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
251    break;
252  case GlobalValue::PrivateLinkage:
253  case GlobalValue::InternalLinkage:
254  case GlobalValue::LinkerPrivateLinkage:
255    break;
256  default:
257    llvm_unreachable("Unknown linkage type!");
258  }
259}
260
261
262/// EmitGlobalVariable - Emit the specified global variable to the .s file.
263void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
264  if (GV->hasInitializer()) {
265    // Check to see if this is a special global used by LLVM, if so, emit it.
266    if (EmitSpecialLLVMGlobal(GV))
267      return;
268
269    if (isVerbose()) {
270      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
271                     /*PrintType=*/false, GV->getParent());
272      OutStreamer.GetCommentOS() << '\n';
273    }
274  }
275
276  MCSymbol *GVSym = Mang->getSymbol(GV);
277  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
278
279  if (!GV->hasInitializer())   // External globals require no extra code.
280    return;
281
282  if (MAI->hasDotTypeDotSizeDirective())
283    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
284
285  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
286
287  const DataLayout *TD = TM.getDataLayout();
288  uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
289
290  // If the alignment is specified, we *must* obey it.  Overaligning a global
291  // with a specified alignment is a prompt way to break globals emitted to
292  // sections and expected to be contiguous (e.g. ObjC metadata).
293  unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
294
295  // Handle common and BSS local symbols (.lcomm).
296  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
297    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
298    unsigned Align = 1 << AlignLog;
299
300    // Handle common symbols.
301    if (GVKind.isCommon()) {
302      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
303        Align = 0;
304
305      // .comm _foo, 42, 4
306      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
307      return;
308    }
309
310    // Handle local BSS symbols.
311    if (MAI->hasMachoZeroFillDirective()) {
312      const MCSection *TheSection =
313        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
314      // .zerofill __DATA, __bss, _foo, 400, 5
315      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
316      return;
317    }
318
319    // Use .lcomm only if it supports user-specified alignment.
320    // Otherwise, while it would still be correct to use .lcomm in some
321    // cases (e.g. when Align == 1), the external assembler might enfore
322    // some -unknown- default alignment behavior, which could cause
323    // spurious differences between external and integrated assembler.
324    // Prefer to simply fall back to .local / .comm in this case.
325    if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
326      // .lcomm _foo, 42
327      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
328      return;
329    }
330
331    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
332      Align = 0;
333
334    // .local _foo
335    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
336    // .comm _foo, 42, 4
337    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
338    return;
339  }
340
341  const MCSection *TheSection =
342    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
343
344  // Handle the zerofill directive on darwin, which is a special form of BSS
345  // emission.
346  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
347    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
348
349    // .globl _foo
350    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
351    // .zerofill __DATA, __common, _foo, 400, 5
352    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
353    return;
354  }
355
356  // Handle thread local data for mach-o which requires us to output an
357  // additional structure of data and mangle the original symbol so that we
358  // can reference it later.
359  //
360  // TODO: This should become an "emit thread local global" method on TLOF.
361  // All of this macho specific stuff should be sunk down into TLOFMachO and
362  // stuff like "TLSExtraDataSection" should no longer be part of the parent
363  // TLOF class.  This will also make it more obvious that stuff like
364  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
365  // specific code.
366  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
367    // Emit the .tbss symbol
368    MCSymbol *MangSym =
369      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
370
371    if (GVKind.isThreadBSS())
372      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
373    else if (GVKind.isThreadData()) {
374      OutStreamer.SwitchSection(TheSection);
375
376      EmitAlignment(AlignLog, GV);
377      OutStreamer.EmitLabel(MangSym);
378
379      EmitGlobalConstant(GV->getInitializer());
380    }
381
382    OutStreamer.AddBlankLine();
383
384    // Emit the variable struct for the runtime.
385    const MCSection *TLVSect
386      = getObjFileLowering().getTLSExtraDataSection();
387
388    OutStreamer.SwitchSection(TLVSect);
389    // Emit the linkage here.
390    EmitLinkage(GV->getLinkage(), GVSym);
391    OutStreamer.EmitLabel(GVSym);
392
393    // Three pointers in size:
394    //   - __tlv_bootstrap - used to make sure support exists
395    //   - spare pointer, used when mapped by the runtime
396    //   - pointer to mangled symbol above with initializer
397    unsigned PtrSize = TD->getPointerSizeInBits()/8;
398    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
399                                PtrSize);
400    OutStreamer.EmitIntValue(0, PtrSize);
401    OutStreamer.EmitSymbolValue(MangSym, PtrSize);
402
403    OutStreamer.AddBlankLine();
404    return;
405  }
406
407  OutStreamer.SwitchSection(TheSection);
408
409  EmitLinkage(GV->getLinkage(), GVSym);
410  EmitAlignment(AlignLog, GV);
411
412  OutStreamer.EmitLabel(GVSym);
413
414  EmitGlobalConstant(GV->getInitializer());
415
416  if (MAI->hasDotTypeDotSizeDirective())
417    // .size foo, 42
418    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
419
420  OutStreamer.AddBlankLine();
421}
422
423/// EmitFunctionHeader - This method emits the header for the current
424/// function.
425void AsmPrinter::EmitFunctionHeader() {
426  // Print out constants referenced by the function
427  EmitConstantPool();
428
429  // Print the 'header' of function.
430  const Function *F = MF->getFunction();
431
432  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
433  EmitVisibility(CurrentFnSym, F->getVisibility());
434
435  EmitLinkage(F->getLinkage(), CurrentFnSym);
436  EmitAlignment(MF->getAlignment(), F);
437
438  if (MAI->hasDotTypeDotSizeDirective())
439    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
440
441  if (isVerbose()) {
442    WriteAsOperand(OutStreamer.GetCommentOS(), F,
443                   /*PrintType=*/false, F->getParent());
444    OutStreamer.GetCommentOS() << '\n';
445  }
446
447  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
448  // do their wild and crazy things as required.
449  EmitFunctionEntryLabel();
450
451  // If the function had address-taken blocks that got deleted, then we have
452  // references to the dangling symbols.  Emit them at the start of the function
453  // so that we don't get references to undefined symbols.
454  std::vector<MCSymbol*> DeadBlockSyms;
455  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
456  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
457    OutStreamer.AddComment("Address taken block that was later removed");
458    OutStreamer.EmitLabel(DeadBlockSyms[i]);
459  }
460
461  // Add some workaround for linkonce linkage on Cygwin\MinGW.
462  if (MAI->getLinkOnceDirective() != 0 &&
463      (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
464    // FIXME: What is this?
465    MCSymbol *FakeStub =
466      OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
467                                   CurrentFnSym->getName());
468    OutStreamer.EmitLabel(FakeStub);
469  }
470
471  // Emit pre-function debug and/or EH information.
472  if (DE) {
473    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
474    DE->BeginFunction(MF);
475  }
476  if (DD) {
477    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
478    DD->beginFunction(MF);
479  }
480}
481
482/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
483/// function.  This can be overridden by targets as required to do custom stuff.
484void AsmPrinter::EmitFunctionEntryLabel() {
485  // The function label could have already been emitted if two symbols end up
486  // conflicting due to asm renaming.  Detect this and emit an error.
487  if (CurrentFnSym->isUndefined())
488    return OutStreamer.EmitLabel(CurrentFnSym);
489
490  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
491                     "' label emitted multiple times to assembly file");
492}
493
494/// emitComments - Pretty-print comments for instructions.
495static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
496  const MachineFunction *MF = MI.getParent()->getParent();
497  const TargetMachine &TM = MF->getTarget();
498
499  // Check for spills and reloads
500  int FI;
501
502  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
503
504  // We assume a single instruction only has a spill or reload, not
505  // both.
506  const MachineMemOperand *MMO;
507  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
508    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
509      MMO = *MI.memoperands_begin();
510      CommentOS << MMO->getSize() << "-byte Reload\n";
511    }
512  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
513    if (FrameInfo->isSpillSlotObjectIndex(FI))
514      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
515  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
516    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
517      MMO = *MI.memoperands_begin();
518      CommentOS << MMO->getSize() << "-byte Spill\n";
519    }
520  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
521    if (FrameInfo->isSpillSlotObjectIndex(FI))
522      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
523  }
524
525  // Check for spill-induced copies
526  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
527    CommentOS << " Reload Reuse\n";
528}
529
530/// emitImplicitDef - This method emits the specified machine instruction
531/// that is an implicit def.
532static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
533  unsigned RegNo = MI->getOperand(0).getReg();
534  AP.OutStreamer.AddComment(Twine("implicit-def: ") +
535                            AP.TM.getRegisterInfo()->getName(RegNo));
536  AP.OutStreamer.AddBlankLine();
537}
538
539static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
540  std::string Str = "kill:";
541  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
542    const MachineOperand &Op = MI->getOperand(i);
543    assert(Op.isReg() && "KILL instruction must have only register operands");
544    Str += ' ';
545    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
546    Str += (Op.isDef() ? "<def>" : "<kill>");
547  }
548  AP.OutStreamer.AddComment(Str);
549  AP.OutStreamer.AddBlankLine();
550}
551
552/// emitDebugValueComment - This method handles the target-independent form
553/// of DBG_VALUE, returning true if it was able to do so.  A false return
554/// means the target will need to handle MI in EmitInstruction.
555static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
556  // This code handles only the 3-operand target-independent form.
557  if (MI->getNumOperands() != 3)
558    return false;
559
560  SmallString<128> Str;
561  raw_svector_ostream OS(Str);
562  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
563
564  // cast away const; DIetc do not take const operands for some reason.
565  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
566  if (V.getContext().isSubprogram()) {
567    StringRef Name = DISubprogram(V.getContext()).getDisplayName();
568    if (!Name.empty())
569      OS << Name << ":";
570  }
571  OS << V.getName() << " <- ";
572
573  int64_t Offset = MI->getOperand(1).getImm();
574  bool Deref = false;
575  // Register or immediate value. Register 0 means undef.
576  if (MI->getOperand(0).isFPImm()) {
577    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
578    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
579      OS << (double)APF.convertToFloat();
580    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
581      OS << APF.convertToDouble();
582    } else {
583      // There is no good way to print long double.  Convert a copy to
584      // double.  Ah well, it's only a comment.
585      bool ignored;
586      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
587                  &ignored);
588      OS << "(long double) " << APF.convertToDouble();
589    }
590  } else if (MI->getOperand(0).isImm()) {
591    OS << MI->getOperand(0).getImm();
592  } else if (MI->getOperand(0).isCImm()) {
593    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
594  } else {
595    unsigned Reg;
596    if (MI->getOperand(0).isReg()) {
597      Reg = MI->getOperand(0).getReg();
598      Deref = Offset != 0; // FIXME: use a better sentinel value so that deref
599                           // of a reg with a zero offset is valid
600    } else {
601      assert(MI->getOperand(0).isFI() && "Unknown operand type");
602      const TargetFrameLowering *TFI = AP.TM.getFrameLowering();
603      Offset += TFI->getFrameIndexReference(*AP.MF,
604                                            MI->getOperand(0).getIndex(), Reg);
605      Deref = true;
606    }
607    if (Reg == 0) {
608      // Suppress offset, it is not meaningful here.
609      OS << "undef";
610      // NOTE: Want this comment at start of line, don't emit with AddComment.
611      AP.OutStreamer.EmitRawText(OS.str());
612      return true;
613    }
614    if (Deref)
615      OS << '[';
616    OS << AP.TM.getRegisterInfo()->getName(Reg);
617  }
618
619  if (Offset)
620    OS << '+' << Offset;
621  if (Deref)
622    OS << ']';
623  // NOTE: Want this comment at start of line, don't emit with AddComment.
624  AP.OutStreamer.EmitRawText(OS.str());
625  return true;
626}
627
628AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
629  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
630      MF->getFunction()->needsUnwindTableEntry())
631    return CFI_M_EH;
632
633  if (MMI->hasDebugInfo())
634    return CFI_M_Debug;
635
636  return CFI_M_None;
637}
638
639bool AsmPrinter::needsSEHMoves() {
640  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
641    MF->getFunction()->needsUnwindTableEntry();
642}
643
644bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
645  return MAI->doesDwarfUseRelocationsAcrossSections();
646}
647
648void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
649  MCSymbol *Label = MI.getOperand(0).getMCSymbol();
650
651  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
652    return;
653
654  if (needsCFIMoves() == CFI_M_None)
655    return;
656
657  if (MMI->getCompactUnwindEncoding() != 0)
658    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
659
660  MachineModuleInfo &MMI = MF->getMMI();
661  std::vector<MCCFIInstruction> Instructions = MMI.getFrameInstructions();
662  bool FoundOne = false;
663  (void)FoundOne;
664  for (std::vector<MCCFIInstruction>::iterator I = Instructions.begin(),
665         E = Instructions.end(); I != E; ++I) {
666    if (I->getLabel() == Label) {
667      emitCFIInstruction(*I);
668      FoundOne = true;
669    }
670  }
671  assert(FoundOne);
672}
673
674/// EmitFunctionBody - This method emits the body and trailer for a
675/// function.
676void AsmPrinter::EmitFunctionBody() {
677  // Emit target-specific gunk before the function body.
678  EmitFunctionBodyStart();
679
680  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
681
682  // Print out code for the function.
683  bool HasAnyRealCode = false;
684  const MachineInstr *LastMI = 0;
685  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
686       I != E; ++I) {
687    // Print a label for the basic block.
688    EmitBasicBlockStart(I);
689    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
690         II != IE; ++II) {
691      LastMI = II;
692
693      // Print the assembly for the instruction.
694      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
695          !II->isDebugValue()) {
696        HasAnyRealCode = true;
697        ++EmittedInsts;
698      }
699
700      if (ShouldPrintDebugScopes) {
701        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
702        DD->beginInstruction(II);
703      }
704
705      if (isVerbose())
706        emitComments(*II, OutStreamer.GetCommentOS());
707
708      switch (II->getOpcode()) {
709      case TargetOpcode::PROLOG_LABEL:
710        emitPrologLabel(*II);
711        break;
712
713      case TargetOpcode::EH_LABEL:
714      case TargetOpcode::GC_LABEL:
715        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
716        break;
717      case TargetOpcode::INLINEASM:
718        EmitInlineAsm(II);
719        break;
720      case TargetOpcode::DBG_VALUE:
721        if (isVerbose()) {
722          if (!emitDebugValueComment(II, *this))
723            EmitInstruction(II);
724        }
725        break;
726      case TargetOpcode::IMPLICIT_DEF:
727        if (isVerbose()) emitImplicitDef(II, *this);
728        break;
729      case TargetOpcode::KILL:
730        if (isVerbose()) emitKill(II, *this);
731        break;
732      default:
733        if (!TM.hasMCUseLoc())
734          MCLineEntry::Make(&OutStreamer, getCurrentSection());
735
736        EmitInstruction(II);
737        break;
738      }
739
740      if (ShouldPrintDebugScopes) {
741        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
742        DD->endInstruction(II);
743      }
744    }
745  }
746
747  // If the last instruction was a prolog label, then we have a situation where
748  // we emitted a prolog but no function body. This results in the ending prolog
749  // label equaling the end of function label and an invalid "row" in the
750  // FDE. We need to emit a noop in this situation so that the FDE's rows are
751  // valid.
752  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
753
754  // If the function is empty and the object file uses .subsections_via_symbols,
755  // then we need to emit *something* to the function body to prevent the
756  // labels from collapsing together.  Just emit a noop.
757  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
758    MCInst Noop;
759    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
760    if (Noop.getOpcode()) {
761      OutStreamer.AddComment("avoids zero-length function");
762      OutStreamer.EmitInstruction(Noop);
763    } else  // Target not mc-ized yet.
764      OutStreamer.EmitRawText(StringRef("\tnop\n"));
765  }
766
767  const Function *F = MF->getFunction();
768  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
769    const BasicBlock *BB = i;
770    if (!BB->hasAddressTaken())
771      continue;
772    MCSymbol *Sym = GetBlockAddressSymbol(BB);
773    if (Sym->isDefined())
774      continue;
775    OutStreamer.AddComment("Address of block that was removed by CodeGen");
776    OutStreamer.EmitLabel(Sym);
777  }
778
779  // Emit target-specific gunk after the function body.
780  EmitFunctionBodyEnd();
781
782  // If the target wants a .size directive for the size of the function, emit
783  // it.
784  if (MAI->hasDotTypeDotSizeDirective()) {
785    // Create a symbol for the end of function, so we can get the size as
786    // difference between the function label and the temp label.
787    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
788    OutStreamer.EmitLabel(FnEndLabel);
789
790    const MCExpr *SizeExp =
791      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
792                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
793                                                      OutContext),
794                              OutContext);
795    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
796  }
797
798  // Emit post-function debug information.
799  if (DD) {
800    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
801    DD->endFunction(MF);
802  }
803  if (DE) {
804    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
805    DE->EndFunction();
806  }
807  MMI->EndFunction();
808
809  // Print out jump tables referenced by the function.
810  EmitJumpTableInfo();
811
812  OutStreamer.AddBlankLine();
813}
814
815/// EmitDwarfRegOp - Emit dwarf register operation.
816void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc,
817                                bool Indirect) const {
818  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
819  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
820
821  for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
822       ++SR) {
823    Reg = TRI->getDwarfRegNum(*SR, false);
824    // FIXME: Get the bit range this register uses of the superregister
825    // so that we can produce a DW_OP_bit_piece
826  }
827
828  // FIXME: Handle cases like a super register being encoded as
829  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
830
831  // FIXME: We have no reasonable way of handling errors in here. The
832  // caller might be in the middle of an dwarf expression. We should
833  // probably assert that Reg >= 0 once debug info generation is more mature.
834
835  if (MLoc.isIndirect() || Indirect) {
836    if (Reg < 32) {
837      OutStreamer.AddComment(
838        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
839      EmitInt8(dwarf::DW_OP_breg0 + Reg);
840    } else {
841      OutStreamer.AddComment("DW_OP_bregx");
842      EmitInt8(dwarf::DW_OP_bregx);
843      OutStreamer.AddComment(Twine(Reg));
844      EmitULEB128(Reg);
845    }
846    EmitSLEB128(!MLoc.isIndirect() ? 0 : MLoc.getOffset());
847    if (MLoc.isIndirect() && Indirect)
848      EmitInt8(dwarf::DW_OP_deref);
849  } else {
850    if (Reg < 32) {
851      OutStreamer.AddComment(
852        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
853      EmitInt8(dwarf::DW_OP_reg0 + Reg);
854    } else {
855      OutStreamer.AddComment("DW_OP_regx");
856      EmitInt8(dwarf::DW_OP_regx);
857      OutStreamer.AddComment(Twine(Reg));
858      EmitULEB128(Reg);
859    }
860  }
861
862  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
863}
864
865bool AsmPrinter::doFinalization(Module &M) {
866  // Emit global variables.
867  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
868       I != E; ++I)
869    EmitGlobalVariable(I);
870
871  // Emit visibility info for declarations
872  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
873    const Function &F = *I;
874    if (!F.isDeclaration())
875      continue;
876    GlobalValue::VisibilityTypes V = F.getVisibility();
877    if (V == GlobalValue::DefaultVisibility)
878      continue;
879
880    MCSymbol *Name = Mang->getSymbol(&F);
881    EmitVisibility(Name, V, false);
882  }
883
884  // Emit module flags.
885  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
886  M.getModuleFlagsMetadata(ModuleFlags);
887  if (!ModuleFlags.empty())
888    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
889
890  // Finalize debug and EH information.
891  if (DE) {
892    {
893      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
894      DE->EndModule();
895    }
896    delete DE; DE = 0;
897  }
898  if (DD) {
899    {
900      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
901      DD->endModule();
902    }
903    delete DD; DD = 0;
904  }
905
906  // If the target wants to know about weak references, print them all.
907  if (MAI->getWeakRefDirective()) {
908    // FIXME: This is not lazy, it would be nice to only print weak references
909    // to stuff that is actually used.  Note that doing so would require targets
910    // to notice uses in operands (due to constant exprs etc).  This should
911    // happen with the MC stuff eventually.
912
913    // Print out module-level global variables here.
914    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
915         I != E; ++I) {
916      if (!I->hasExternalWeakLinkage()) continue;
917      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
918    }
919
920    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
921      if (!I->hasExternalWeakLinkage()) continue;
922      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
923    }
924  }
925
926  if (MAI->hasSetDirective()) {
927    OutStreamer.AddBlankLine();
928    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
929         I != E; ++I) {
930      MCSymbol *Name = Mang->getSymbol(I);
931
932      const GlobalValue *GV = I->getAliasedGlobal();
933      MCSymbol *Target = Mang->getSymbol(GV);
934
935      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
936        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
937      else if (I->hasWeakLinkage())
938        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
939      else
940        assert(I->hasLocalLinkage() && "Invalid alias linkage");
941
942      EmitVisibility(Name, I->getVisibility());
943
944      // Emit the directives as assignments aka .set:
945      OutStreamer.EmitAssignment(Name,
946                                 MCSymbolRefExpr::Create(Target, OutContext));
947    }
948  }
949
950  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
951  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
952  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
953    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
954      MP->finishAssembly(*this);
955
956  // If we don't have any trampolines, then we don't require stack memory
957  // to be executable. Some targets have a directive to declare this.
958  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
959  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
960    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
961      OutStreamer.SwitchSection(S);
962
963  // Allow the target to emit any magic that it wants at the end of the file,
964  // after everything else has gone out.
965  EmitEndOfAsmFile(M);
966
967  delete Mang; Mang = 0;
968  MMI = 0;
969
970  OutStreamer.Finish();
971  OutStreamer.reset();
972
973  return false;
974}
975
976void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
977  this->MF = &MF;
978  // Get the function symbol.
979  CurrentFnSym = Mang->getSymbol(MF.getFunction());
980  CurrentFnSymForSize = CurrentFnSym;
981
982  if (isVerbose())
983    LI = &getAnalysis<MachineLoopInfo>();
984}
985
986namespace {
987  // SectionCPs - Keep track the alignment, constpool entries per Section.
988  struct SectionCPs {
989    const MCSection *S;
990    unsigned Alignment;
991    SmallVector<unsigned, 4> CPEs;
992    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
993  };
994}
995
996/// EmitConstantPool - Print to the current output stream assembly
997/// representations of the constants in the constant pool MCP. This is
998/// used to print out constants which have been "spilled to memory" by
999/// the code generator.
1000///
1001void AsmPrinter::EmitConstantPool() {
1002  const MachineConstantPool *MCP = MF->getConstantPool();
1003  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1004  if (CP.empty()) return;
1005
1006  // Calculate sections for constant pool entries. We collect entries to go into
1007  // the same section together to reduce amount of section switch statements.
1008  SmallVector<SectionCPs, 4> CPSections;
1009  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1010    const MachineConstantPoolEntry &CPE = CP[i];
1011    unsigned Align = CPE.getAlignment();
1012
1013    SectionKind Kind;
1014    switch (CPE.getRelocationInfo()) {
1015    default: llvm_unreachable("Unknown section kind");
1016    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
1017    case 1:
1018      Kind = SectionKind::getReadOnlyWithRelLocal();
1019      break;
1020    case 0:
1021    switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
1022    case 4:  Kind = SectionKind::getMergeableConst4(); break;
1023    case 8:  Kind = SectionKind::getMergeableConst8(); break;
1024    case 16: Kind = SectionKind::getMergeableConst16();break;
1025    default: Kind = SectionKind::getMergeableConst(); break;
1026    }
1027    }
1028
1029    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1030
1031    // The number of sections are small, just do a linear search from the
1032    // last section to the first.
1033    bool Found = false;
1034    unsigned SecIdx = CPSections.size();
1035    while (SecIdx != 0) {
1036      if (CPSections[--SecIdx].S == S) {
1037        Found = true;
1038        break;
1039      }
1040    }
1041    if (!Found) {
1042      SecIdx = CPSections.size();
1043      CPSections.push_back(SectionCPs(S, Align));
1044    }
1045
1046    if (Align > CPSections[SecIdx].Alignment)
1047      CPSections[SecIdx].Alignment = Align;
1048    CPSections[SecIdx].CPEs.push_back(i);
1049  }
1050
1051  // Now print stuff into the calculated sections.
1052  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1053    OutStreamer.SwitchSection(CPSections[i].S);
1054    EmitAlignment(Log2_32(CPSections[i].Alignment));
1055
1056    unsigned Offset = 0;
1057    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1058      unsigned CPI = CPSections[i].CPEs[j];
1059      MachineConstantPoolEntry CPE = CP[CPI];
1060
1061      // Emit inter-object padding for alignment.
1062      unsigned AlignMask = CPE.getAlignment() - 1;
1063      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1064      OutStreamer.EmitZeros(NewOffset - Offset);
1065
1066      Type *Ty = CPE.getType();
1067      Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
1068      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1069
1070      if (CPE.isMachineConstantPoolEntry())
1071        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1072      else
1073        EmitGlobalConstant(CPE.Val.ConstVal);
1074    }
1075  }
1076}
1077
1078/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1079/// by the current function to the current output stream.
1080///
1081void AsmPrinter::EmitJumpTableInfo() {
1082  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1083  if (MJTI == 0) return;
1084  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1085  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1086  if (JT.empty()) return;
1087
1088  // Pick the directive to use to print the jump table entries, and switch to
1089  // the appropriate section.
1090  const Function *F = MF->getFunction();
1091  bool JTInDiffSection = false;
1092  if (// In PIC mode, we need to emit the jump table to the same section as the
1093      // function body itself, otherwise the label differences won't make sense.
1094      // FIXME: Need a better predicate for this: what about custom entries?
1095      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1096      // We should also do if the section name is NULL or function is declared
1097      // in discardable section
1098      // FIXME: this isn't the right predicate, should be based on the MCSection
1099      // for the function.
1100      F->isWeakForLinker()) {
1101    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1102  } else {
1103    // Otherwise, drop it in the readonly section.
1104    const MCSection *ReadOnlySection =
1105      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1106    OutStreamer.SwitchSection(ReadOnlySection);
1107    JTInDiffSection = true;
1108  }
1109
1110  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
1111
1112  // Jump tables in code sections are marked with a data_region directive
1113  // where that's supported.
1114  if (!JTInDiffSection)
1115    OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1116
1117  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1118    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1119
1120    // If this jump table was deleted, ignore it.
1121    if (JTBBs.empty()) continue;
1122
1123    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1124    // .set directive for each unique entry.  This reduces the number of
1125    // relocations the assembler will generate for the jump table.
1126    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1127        MAI->hasSetDirective()) {
1128      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1129      const TargetLowering *TLI = TM.getTargetLowering();
1130      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1131      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1132        const MachineBasicBlock *MBB = JTBBs[ii];
1133        if (!EmittedSets.insert(MBB)) continue;
1134
1135        // .set LJTSet, LBB32-base
1136        const MCExpr *LHS =
1137          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1138        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1139                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1140      }
1141    }
1142
1143    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1144    // before each jump table.  The first label is never referenced, but tells
1145    // the assembler and linker the extents of the jump table object.  The
1146    // second label is actually referenced by the code.
1147    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1148      // FIXME: This doesn't have to have any specific name, just any randomly
1149      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1150      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1151
1152    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1153
1154    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1155      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1156  }
1157  if (!JTInDiffSection)
1158    OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1159}
1160
1161/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1162/// current stream.
1163void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1164                                    const MachineBasicBlock *MBB,
1165                                    unsigned UID) const {
1166  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1167  const MCExpr *Value = 0;
1168  switch (MJTI->getEntryKind()) {
1169  case MachineJumpTableInfo::EK_Inline:
1170    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1171  case MachineJumpTableInfo::EK_Custom32:
1172    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1173                                                              OutContext);
1174    break;
1175  case MachineJumpTableInfo::EK_BlockAddress:
1176    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1177    //     .word LBB123
1178    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1179    break;
1180  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1181    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1182    // with a relocation as gp-relative, e.g.:
1183    //     .gprel32 LBB123
1184    MCSymbol *MBBSym = MBB->getSymbol();
1185    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1186    return;
1187  }
1188
1189  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1190    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1191    // with a relocation as gp-relative, e.g.:
1192    //     .gpdword LBB123
1193    MCSymbol *MBBSym = MBB->getSymbol();
1194    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1195    return;
1196  }
1197
1198  case MachineJumpTableInfo::EK_LabelDifference32: {
1199    // EK_LabelDifference32 - Each entry is the address of the block minus
1200    // the address of the jump table.  This is used for PIC jump tables where
1201    // gprel32 is not supported.  e.g.:
1202    //      .word LBB123 - LJTI1_2
1203    // If the .set directive is supported, this is emitted as:
1204    //      .set L4_5_set_123, LBB123 - LJTI1_2
1205    //      .word L4_5_set_123
1206
1207    // If we have emitted set directives for the jump table entries, print
1208    // them rather than the entries themselves.  If we're emitting PIC, then
1209    // emit the table entries as differences between two text section labels.
1210    if (MAI->hasSetDirective()) {
1211      // If we used .set, reference the .set's symbol.
1212      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1213                                      OutContext);
1214      break;
1215    }
1216    // Otherwise, use the difference as the jump table entry.
1217    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1218    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1219    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1220    break;
1221  }
1222  }
1223
1224  assert(Value && "Unknown entry kind!");
1225
1226  unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
1227  OutStreamer.EmitValue(Value, EntrySize);
1228}
1229
1230
1231/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1232/// special global used by LLVM.  If so, emit it and return true, otherwise
1233/// do nothing and return false.
1234bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1235  if (GV->getName() == "llvm.used") {
1236    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1237      EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1238    return true;
1239  }
1240
1241  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1242  if (GV->getSection() == "llvm.metadata" ||
1243      GV->hasAvailableExternallyLinkage())
1244    return true;
1245
1246  if (!GV->hasAppendingLinkage()) return false;
1247
1248  assert(GV->hasInitializer() && "Not a special LLVM global!");
1249
1250  if (GV->getName() == "llvm.global_ctors") {
1251    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1252
1253    if (TM.getRelocationModel() == Reloc::Static &&
1254        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1255      StringRef Sym(".constructors_used");
1256      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1257                                      MCSA_Reference);
1258    }
1259    return true;
1260  }
1261
1262  if (GV->getName() == "llvm.global_dtors") {
1263    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1264
1265    if (TM.getRelocationModel() == Reloc::Static &&
1266        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1267      StringRef Sym(".destructors_used");
1268      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1269                                      MCSA_Reference);
1270    }
1271    return true;
1272  }
1273
1274  return false;
1275}
1276
1277/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1278/// global in the specified llvm.used list for which emitUsedDirectiveFor
1279/// is true, as being used with this directive.
1280void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1281  // Should be an array of 'i8*'.
1282  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1283    const GlobalValue *GV =
1284      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1285    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1286      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1287  }
1288}
1289
1290typedef std::pair<unsigned, Constant*> Structor;
1291
1292static bool priority_order(const Structor& lhs, const Structor& rhs) {
1293  return lhs.first < rhs.first;
1294}
1295
1296/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1297/// priority.
1298void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1299  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1300  // init priority.
1301  if (!isa<ConstantArray>(List)) return;
1302
1303  // Sanity check the structors list.
1304  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1305  if (!InitList) return; // Not an array!
1306  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1307  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1308  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1309      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1310
1311  // Gather the structors in a form that's convenient for sorting by priority.
1312  SmallVector<Structor, 8> Structors;
1313  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1314    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1315    if (!CS) continue; // Malformed.
1316    if (CS->getOperand(1)->isNullValue())
1317      break;  // Found a null terminator, skip the rest.
1318    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1319    if (!Priority) continue; // Malformed.
1320    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1321                                       CS->getOperand(1)));
1322  }
1323
1324  // Emit the function pointers in the target-specific order
1325  const DataLayout *TD = TM.getDataLayout();
1326  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1327  std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1328  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1329    const MCSection *OutputSection =
1330      (isCtor ?
1331       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1332       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1333    OutStreamer.SwitchSection(OutputSection);
1334    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1335      EmitAlignment(Align);
1336    EmitXXStructor(Structors[i].second);
1337  }
1338}
1339
1340//===--------------------------------------------------------------------===//
1341// Emission and print routines
1342//
1343
1344/// EmitInt8 - Emit a byte directive and value.
1345///
1346void AsmPrinter::EmitInt8(int Value) const {
1347  OutStreamer.EmitIntValue(Value, 1);
1348}
1349
1350/// EmitInt16 - Emit a short directive and value.
1351///
1352void AsmPrinter::EmitInt16(int Value) const {
1353  OutStreamer.EmitIntValue(Value, 2);
1354}
1355
1356/// EmitInt32 - Emit a long directive and value.
1357///
1358void AsmPrinter::EmitInt32(int Value) const {
1359  OutStreamer.EmitIntValue(Value, 4);
1360}
1361
1362/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1363/// in bytes of the directive is specified by Size and Hi/Lo specify the
1364/// labels.  This implicitly uses .set if it is available.
1365void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1366                                     unsigned Size) const {
1367  // Get the Hi-Lo expression.
1368  const MCExpr *Diff =
1369    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1370                            MCSymbolRefExpr::Create(Lo, OutContext),
1371                            OutContext);
1372
1373  if (!MAI->hasSetDirective()) {
1374    OutStreamer.EmitValue(Diff, Size);
1375    return;
1376  }
1377
1378  // Otherwise, emit with .set (aka assignment).
1379  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1380  OutStreamer.EmitAssignment(SetLabel, Diff);
1381  OutStreamer.EmitSymbolValue(SetLabel, Size);
1382}
1383
1384/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1385/// where the size in bytes of the directive is specified by Size and Hi/Lo
1386/// specify the labels.  This implicitly uses .set if it is available.
1387void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1388                                           const MCSymbol *Lo, unsigned Size)
1389  const {
1390
1391  // Emit Hi+Offset - Lo
1392  // Get the Hi+Offset expression.
1393  const MCExpr *Plus =
1394    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1395                            MCConstantExpr::Create(Offset, OutContext),
1396                            OutContext);
1397
1398  // Get the Hi+Offset-Lo expression.
1399  const MCExpr *Diff =
1400    MCBinaryExpr::CreateSub(Plus,
1401                            MCSymbolRefExpr::Create(Lo, OutContext),
1402                            OutContext);
1403
1404  if (!MAI->hasSetDirective())
1405    OutStreamer.EmitValue(Diff, 4);
1406  else {
1407    // Otherwise, emit with .set (aka assignment).
1408    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1409    OutStreamer.EmitAssignment(SetLabel, Diff);
1410    OutStreamer.EmitSymbolValue(SetLabel, 4);
1411  }
1412}
1413
1414/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1415/// where the size in bytes of the directive is specified by Size and Label
1416/// specifies the label.  This implicitly uses .set if it is available.
1417void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1418                                      unsigned Size)
1419  const {
1420
1421  // Emit Label+Offset (or just Label if Offset is zero)
1422  const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1423  if (Offset)
1424    Expr = MCBinaryExpr::CreateAdd(Expr,
1425                                   MCConstantExpr::Create(Offset, OutContext),
1426                                   OutContext);
1427
1428  OutStreamer.EmitValue(Expr, Size);
1429}
1430
1431
1432//===----------------------------------------------------------------------===//
1433
1434// EmitAlignment - Emit an alignment directive to the specified power of
1435// two boundary.  For example, if you pass in 3 here, you will get an 8
1436// byte alignment.  If a global value is specified, and if that global has
1437// an explicit alignment requested, it will override the alignment request
1438// if required for correctness.
1439//
1440void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1441  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
1442
1443  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1444
1445  if (getCurrentSection()->getKind().isText())
1446    OutStreamer.EmitCodeAlignment(1 << NumBits);
1447  else
1448    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1449}
1450
1451//===----------------------------------------------------------------------===//
1452// Constant emission.
1453//===----------------------------------------------------------------------===//
1454
1455/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1456///
1457static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1458  MCContext &Ctx = AP.OutContext;
1459
1460  if (CV->isNullValue() || isa<UndefValue>(CV))
1461    return MCConstantExpr::Create(0, Ctx);
1462
1463  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1464    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1465
1466  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1467    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1468
1469  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1470    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1471
1472  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1473  if (CE == 0) {
1474    llvm_unreachable("Unknown constant value to lower!");
1475  }
1476
1477  switch (CE->getOpcode()) {
1478  default:
1479    // If the code isn't optimized, there may be outstanding folding
1480    // opportunities. Attempt to fold the expression using DataLayout as a
1481    // last resort before giving up.
1482    if (Constant *C =
1483          ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
1484      if (C != CE)
1485        return lowerConstant(C, AP);
1486
1487    // Otherwise report the problem to the user.
1488    {
1489      std::string S;
1490      raw_string_ostream OS(S);
1491      OS << "Unsupported expression in static initializer: ";
1492      WriteAsOperand(OS, CE, /*PrintType=*/false,
1493                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1494      report_fatal_error(OS.str());
1495    }
1496  case Instruction::GetElementPtr: {
1497    const DataLayout &TD = *AP.TM.getDataLayout();
1498    // Generate a symbolic expression for the byte address
1499    APInt OffsetAI(TD.getPointerSizeInBits(), 0);
1500    cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
1501
1502    const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1503    if (!OffsetAI)
1504      return Base;
1505
1506    int64_t Offset = OffsetAI.getSExtValue();
1507    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1508                                   Ctx);
1509  }
1510
1511  case Instruction::Trunc:
1512    // We emit the value and depend on the assembler to truncate the generated
1513    // expression properly.  This is important for differences between
1514    // blockaddress labels.  Since the two labels are in the same function, it
1515    // is reasonable to treat their delta as a 32-bit value.
1516    // FALL THROUGH.
1517  case Instruction::BitCast:
1518    return lowerConstant(CE->getOperand(0), AP);
1519
1520  case Instruction::IntToPtr: {
1521    const DataLayout &TD = *AP.TM.getDataLayout();
1522    // Handle casts to pointers by changing them into casts to the appropriate
1523    // integer type.  This promotes constant folding and simplifies this code.
1524    Constant *Op = CE->getOperand(0);
1525    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1526                                      false/*ZExt*/);
1527    return lowerConstant(Op, AP);
1528  }
1529
1530  case Instruction::PtrToInt: {
1531    const DataLayout &TD = *AP.TM.getDataLayout();
1532    // Support only foldable casts to/from pointers that can be eliminated by
1533    // changing the pointer to the appropriately sized integer type.
1534    Constant *Op = CE->getOperand(0);
1535    Type *Ty = CE->getType();
1536
1537    const MCExpr *OpExpr = lowerConstant(Op, AP);
1538
1539    // We can emit the pointer value into this slot if the slot is an
1540    // integer slot equal to the size of the pointer.
1541    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1542      return OpExpr;
1543
1544    // Otherwise the pointer is smaller than the resultant integer, mask off
1545    // the high bits so we are sure to get a proper truncation if the input is
1546    // a constant expr.
1547    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1548    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1549    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1550  }
1551
1552  // The MC library also has a right-shift operator, but it isn't consistently
1553  // signed or unsigned between different targets.
1554  case Instruction::Add:
1555  case Instruction::Sub:
1556  case Instruction::Mul:
1557  case Instruction::SDiv:
1558  case Instruction::SRem:
1559  case Instruction::Shl:
1560  case Instruction::And:
1561  case Instruction::Or:
1562  case Instruction::Xor: {
1563    const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1564    const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1565    switch (CE->getOpcode()) {
1566    default: llvm_unreachable("Unknown binary operator constant cast expr");
1567    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1568    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1569    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1570    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1571    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1572    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1573    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1574    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1575    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1576    }
1577  }
1578  }
1579}
1580
1581static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP);
1582
1583/// isRepeatedByteSequence - Determine whether the given value is
1584/// composed of a repeated sequence of identical bytes and return the
1585/// byte value.  If it is not a repeated sequence, return -1.
1586static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1587  StringRef Data = V->getRawDataValues();
1588  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1589  char C = Data[0];
1590  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1591    if (Data[i] != C) return -1;
1592  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1593}
1594
1595
1596/// isRepeatedByteSequence - Determine whether the given value is
1597/// composed of a repeated sequence of identical bytes and return the
1598/// byte value.  If it is not a repeated sequence, return -1.
1599static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1600
1601  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1602    if (CI->getBitWidth() > 64) return -1;
1603
1604    uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
1605    uint64_t Value = CI->getZExtValue();
1606
1607    // Make sure the constant is at least 8 bits long and has a power
1608    // of 2 bit width.  This guarantees the constant bit width is
1609    // always a multiple of 8 bits, avoiding issues with padding out
1610    // to Size and other such corner cases.
1611    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1612
1613    uint8_t Byte = static_cast<uint8_t>(Value);
1614
1615    for (unsigned i = 1; i < Size; ++i) {
1616      Value >>= 8;
1617      if (static_cast<uint8_t>(Value) != Byte) return -1;
1618    }
1619    return Byte;
1620  }
1621  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1622    // Make sure all array elements are sequences of the same repeated
1623    // byte.
1624    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1625    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1626    if (Byte == -1) return -1;
1627
1628    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1629      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1630      if (ThisByte == -1) return -1;
1631      if (Byte != ThisByte) return -1;
1632    }
1633    return Byte;
1634  }
1635
1636  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1637    return isRepeatedByteSequence(CDS);
1638
1639  return -1;
1640}
1641
1642static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1643                                             AsmPrinter &AP){
1644
1645  // See if we can aggregate this into a .fill, if so, emit it as such.
1646  int Value = isRepeatedByteSequence(CDS, AP.TM);
1647  if (Value != -1) {
1648    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
1649    // Don't emit a 1-byte object as a .fill.
1650    if (Bytes > 1)
1651      return AP.OutStreamer.EmitFill(Bytes, Value);
1652  }
1653
1654  // If this can be emitted with .ascii/.asciz, emit it as such.
1655  if (CDS->isString())
1656    return AP.OutStreamer.EmitBytes(CDS->getAsString());
1657
1658  // Otherwise, emit the values in successive locations.
1659  unsigned ElementByteSize = CDS->getElementByteSize();
1660  if (isa<IntegerType>(CDS->getElementType())) {
1661    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1662      if (AP.isVerbose())
1663        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1664                                                CDS->getElementAsInteger(i));
1665      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1666                                  ElementByteSize);
1667    }
1668  } else if (ElementByteSize == 4) {
1669    // FP Constants are printed as integer constants to avoid losing
1670    // precision.
1671    assert(CDS->getElementType()->isFloatTy());
1672    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1673      union {
1674        float F;
1675        uint32_t I;
1676      };
1677
1678      F = CDS->getElementAsFloat(i);
1679      if (AP.isVerbose())
1680        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1681      AP.OutStreamer.EmitIntValue(I, 4);
1682    }
1683  } else {
1684    assert(CDS->getElementType()->isDoubleTy());
1685    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1686      union {
1687        double F;
1688        uint64_t I;
1689      };
1690
1691      F = CDS->getElementAsDouble(i);
1692      if (AP.isVerbose())
1693        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1694      AP.OutStreamer.EmitIntValue(I, 8);
1695    }
1696  }
1697
1698  const DataLayout &TD = *AP.TM.getDataLayout();
1699  unsigned Size = TD.getTypeAllocSize(CDS->getType());
1700  unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1701                        CDS->getNumElements();
1702  if (unsigned Padding = Size - EmittedSize)
1703    AP.OutStreamer.EmitZeros(Padding);
1704
1705}
1706
1707static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) {
1708  // See if we can aggregate some values.  Make sure it can be
1709  // represented as a series of bytes of the constant value.
1710  int Value = isRepeatedByteSequence(CA, AP.TM);
1711
1712  if (Value != -1) {
1713    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
1714    AP.OutStreamer.EmitFill(Bytes, Value);
1715  }
1716  else {
1717    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1718      emitGlobalConstantImpl(CA->getOperand(i), AP);
1719  }
1720}
1721
1722static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
1723  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1724    emitGlobalConstantImpl(CV->getOperand(i), AP);
1725
1726  const DataLayout &TD = *AP.TM.getDataLayout();
1727  unsigned Size = TD.getTypeAllocSize(CV->getType());
1728  unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1729                         CV->getType()->getNumElements();
1730  if (unsigned Padding = Size - EmittedSize)
1731    AP.OutStreamer.EmitZeros(Padding);
1732}
1733
1734static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) {
1735  // Print the fields in successive locations. Pad to align if needed!
1736  const DataLayout *TD = AP.TM.getDataLayout();
1737  unsigned Size = TD->getTypeAllocSize(CS->getType());
1738  const StructLayout *Layout = TD->getStructLayout(CS->getType());
1739  uint64_t SizeSoFar = 0;
1740  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1741    const Constant *Field = CS->getOperand(i);
1742
1743    // Check if padding is needed and insert one or more 0s.
1744    uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1745    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1746                        - Layout->getElementOffset(i)) - FieldSize;
1747    SizeSoFar += FieldSize + PadSize;
1748
1749    // Now print the actual field value.
1750    emitGlobalConstantImpl(Field, AP);
1751
1752    // Insert padding - this may include padding to increase the size of the
1753    // current field up to the ABI size (if the struct is not packed) as well
1754    // as padding to ensure that the next field starts at the right offset.
1755    AP.OutStreamer.EmitZeros(PadSize);
1756  }
1757  assert(SizeSoFar == Layout->getSizeInBytes() &&
1758         "Layout of constant struct may be incorrect!");
1759}
1760
1761static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
1762  APInt API = CFP->getValueAPF().bitcastToAPInt();
1763
1764  // First print a comment with what we think the original floating-point value
1765  // should have been.
1766  if (AP.isVerbose()) {
1767    SmallString<8> StrVal;
1768    CFP->getValueAPF().toString(StrVal);
1769
1770    CFP->getType()->print(AP.OutStreamer.GetCommentOS());
1771    AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
1772  }
1773
1774  // Now iterate through the APInt chunks, emitting them in endian-correct
1775  // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
1776  // floats).
1777  unsigned NumBytes = API.getBitWidth() / 8;
1778  unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
1779  const uint64_t *p = API.getRawData();
1780
1781  // PPC's long double has odd notions of endianness compared to how LLVM
1782  // handles it: p[0] goes first for *big* endian on PPC.
1783  if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) {
1784    int Chunk = API.getNumWords() - 1;
1785
1786    if (TrailingBytes)
1787      AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes);
1788
1789    for (; Chunk >= 0; --Chunk)
1790      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1791  } else {
1792    unsigned Chunk;
1793    for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
1794      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1795
1796    if (TrailingBytes)
1797      AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes);
1798  }
1799
1800  // Emit the tail padding for the long double.
1801  const DataLayout &TD = *AP.TM.getDataLayout();
1802  AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1803                           TD.getTypeStoreSize(CFP->getType()));
1804}
1805
1806static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
1807  const DataLayout *TD = AP.TM.getDataLayout();
1808  unsigned BitWidth = CI->getBitWidth();
1809
1810  // Copy the value as we may massage the layout for constants whose bit width
1811  // is not a multiple of 64-bits.
1812  APInt Realigned(CI->getValue());
1813  uint64_t ExtraBits = 0;
1814  unsigned ExtraBitsSize = BitWidth & 63;
1815
1816  if (ExtraBitsSize) {
1817    // The bit width of the data is not a multiple of 64-bits.
1818    // The extra bits are expected to be at the end of the chunk of the memory.
1819    // Little endian:
1820    // * Nothing to be done, just record the extra bits to emit.
1821    // Big endian:
1822    // * Record the extra bits to emit.
1823    // * Realign the raw data to emit the chunks of 64-bits.
1824    if (TD->isBigEndian()) {
1825      // Basically the structure of the raw data is a chunk of 64-bits cells:
1826      //    0        1         BitWidth / 64
1827      // [chunk1][chunk2] ... [chunkN].
1828      // The most significant chunk is chunkN and it should be emitted first.
1829      // However, due to the alignment issue chunkN contains useless bits.
1830      // Realign the chunks so that they contain only useless information:
1831      // ExtraBits     0       1       (BitWidth / 64) - 1
1832      //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
1833      ExtraBits = Realigned.getRawData()[0] &
1834        (((uint64_t)-1) >> (64 - ExtraBitsSize));
1835      Realigned = Realigned.lshr(ExtraBitsSize);
1836    } else
1837      ExtraBits = Realigned.getRawData()[BitWidth / 64];
1838  }
1839
1840  // We don't expect assemblers to support integer data directives
1841  // for more than 64 bits, so we emit the data in at most 64-bit
1842  // quantities at a time.
1843  const uint64_t *RawData = Realigned.getRawData();
1844  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1845    uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1846    AP.OutStreamer.EmitIntValue(Val, 8);
1847  }
1848
1849  if (ExtraBitsSize) {
1850    // Emit the extra bits after the 64-bits chunks.
1851
1852    // Emit a directive that fills the expected size.
1853    uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType());
1854    Size -= (BitWidth / 64) * 8;
1855    assert(Size && Size * 8 >= ExtraBitsSize &&
1856           (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
1857           == ExtraBits && "Directive too small for extra bits.");
1858    AP.OutStreamer.EmitIntValue(ExtraBits, Size);
1859  }
1860}
1861
1862static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
1863  const DataLayout *TD = AP.TM.getDataLayout();
1864  uint64_t Size = TD->getTypeAllocSize(CV->getType());
1865  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1866    return AP.OutStreamer.EmitZeros(Size);
1867
1868  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1869    switch (Size) {
1870    case 1:
1871    case 2:
1872    case 4:
1873    case 8:
1874      if (AP.isVerbose())
1875        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1876                                                CI->getZExtValue());
1877      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size);
1878      return;
1879    default:
1880      emitGlobalConstantLargeInt(CI, AP);
1881      return;
1882    }
1883  }
1884
1885  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1886    return emitGlobalConstantFP(CFP, AP);
1887
1888  if (isa<ConstantPointerNull>(CV)) {
1889    AP.OutStreamer.EmitIntValue(0, Size);
1890    return;
1891  }
1892
1893  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1894    return emitGlobalConstantDataSequential(CDS, AP);
1895
1896  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1897    return emitGlobalConstantArray(CVA, AP);
1898
1899  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1900    return emitGlobalConstantStruct(CVS, AP);
1901
1902  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1903    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1904    // vectors).
1905    if (CE->getOpcode() == Instruction::BitCast)
1906      return emitGlobalConstantImpl(CE->getOperand(0), AP);
1907
1908    if (Size > 8) {
1909      // If the constant expression's size is greater than 64-bits, then we have
1910      // to emit the value in chunks. Try to constant fold the value and emit it
1911      // that way.
1912      Constant *New = ConstantFoldConstantExpression(CE, TD);
1913      if (New && New != CE)
1914        return emitGlobalConstantImpl(New, AP);
1915    }
1916  }
1917
1918  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1919    return emitGlobalConstantVector(V, AP);
1920
1921  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1922  // thread the streamer with EmitValue.
1923  AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size);
1924}
1925
1926/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1927void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
1928  uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
1929  if (Size)
1930    emitGlobalConstantImpl(CV, *this);
1931  else if (MAI->hasSubsectionsViaSymbols()) {
1932    // If the global has zero size, emit a single byte so that two labels don't
1933    // look like they are at the same location.
1934    OutStreamer.EmitIntValue(0, 1);
1935  }
1936}
1937
1938void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1939  // Target doesn't support this yet!
1940  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1941}
1942
1943void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1944  if (Offset > 0)
1945    OS << '+' << Offset;
1946  else if (Offset < 0)
1947    OS << Offset;
1948}
1949
1950//===----------------------------------------------------------------------===//
1951// Symbol Lowering Routines.
1952//===----------------------------------------------------------------------===//
1953
1954/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1955/// temporary label with the specified stem and unique ID.
1956MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1957  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1958                                      Name + Twine(ID));
1959}
1960
1961/// GetTempSymbol - Return an assembler temporary label with the specified
1962/// stem.
1963MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1964  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1965                                      Name);
1966}
1967
1968
1969MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1970  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1971}
1972
1973MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1974  return MMI->getAddrLabelSymbol(BB);
1975}
1976
1977/// GetCPISymbol - Return the symbol for the specified constant pool entry.
1978MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1979  return OutContext.GetOrCreateSymbol
1980    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1981     + "_" + Twine(CPID));
1982}
1983
1984/// GetJTISymbol - Return the symbol for the specified jump table entry.
1985MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1986  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1987}
1988
1989/// GetJTSetSymbol - Return the symbol for the specified jump table .set
1990/// FIXME: privatize to AsmPrinter.
1991MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1992  return OutContext.GetOrCreateSymbol
1993  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1994   Twine(UID) + "_set_" + Twine(MBBID));
1995}
1996
1997/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1998/// global value name as its base, with the specified suffix, and where the
1999/// symbol is forced to have private linkage if ForcePrivate is true.
2000MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
2001                                                   StringRef Suffix,
2002                                                   bool ForcePrivate) const {
2003  SmallString<60> NameStr;
2004  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
2005  NameStr.append(Suffix.begin(), Suffix.end());
2006  return OutContext.GetOrCreateSymbol(NameStr.str());
2007}
2008
2009/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2010/// ExternalSymbol.
2011MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2012  SmallString<60> NameStr;
2013  Mang->getNameWithPrefix(NameStr, Sym);
2014  return OutContext.GetOrCreateSymbol(NameStr.str());
2015}
2016
2017
2018
2019/// PrintParentLoopComment - Print comments about parent loops of this one.
2020static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2021                                   unsigned FunctionNumber) {
2022  if (Loop == 0) return;
2023  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2024  OS.indent(Loop->getLoopDepth()*2)
2025    << "Parent Loop BB" << FunctionNumber << "_"
2026    << Loop->getHeader()->getNumber()
2027    << " Depth=" << Loop->getLoopDepth() << '\n';
2028}
2029
2030
2031/// PrintChildLoopComment - Print comments about child loops within
2032/// the loop for this basic block, with nesting.
2033static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2034                                  unsigned FunctionNumber) {
2035  // Add child loop information
2036  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2037    OS.indent((*CL)->getLoopDepth()*2)
2038      << "Child Loop BB" << FunctionNumber << "_"
2039      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2040      << '\n';
2041    PrintChildLoopComment(OS, *CL, FunctionNumber);
2042  }
2043}
2044
2045/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2046static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2047                                       const MachineLoopInfo *LI,
2048                                       const AsmPrinter &AP) {
2049  // Add loop depth information
2050  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2051  if (Loop == 0) return;
2052
2053  MachineBasicBlock *Header = Loop->getHeader();
2054  assert(Header && "No header for loop");
2055
2056  // If this block is not a loop header, just print out what is the loop header
2057  // and return.
2058  if (Header != &MBB) {
2059    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2060                              Twine(AP.getFunctionNumber())+"_" +
2061                              Twine(Loop->getHeader()->getNumber())+
2062                              " Depth="+Twine(Loop->getLoopDepth()));
2063    return;
2064  }
2065
2066  // Otherwise, it is a loop header.  Print out information about child and
2067  // parent loops.
2068  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2069
2070  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2071
2072  OS << "=>";
2073  OS.indent(Loop->getLoopDepth()*2-2);
2074
2075  OS << "This ";
2076  if (Loop->empty())
2077    OS << "Inner ";
2078  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2079
2080  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2081}
2082
2083
2084/// EmitBasicBlockStart - This method prints the label for the specified
2085/// MachineBasicBlock, an alignment (if present) and a comment describing
2086/// it if appropriate.
2087void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2088  // Emit an alignment directive for this block, if needed.
2089  if (unsigned Align = MBB->getAlignment())
2090    EmitAlignment(Align);
2091
2092  // If the block has its address taken, emit any labels that were used to
2093  // reference the block.  It is possible that there is more than one label
2094  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2095  // the references were generated.
2096  if (MBB->hasAddressTaken()) {
2097    const BasicBlock *BB = MBB->getBasicBlock();
2098    if (isVerbose())
2099      OutStreamer.AddComment("Block address taken");
2100
2101    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2102
2103    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2104      OutStreamer.EmitLabel(Syms[i]);
2105  }
2106
2107  // Print some verbose block comments.
2108  if (isVerbose()) {
2109    if (const BasicBlock *BB = MBB->getBasicBlock())
2110      if (BB->hasName())
2111        OutStreamer.AddComment("%" + BB->getName());
2112    emitBasicBlockLoopComments(*MBB, LI, *this);
2113  }
2114
2115  // Print the main label for the block.
2116  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2117    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2118      // NOTE: Want this comment at start of line, don't emit with AddComment.
2119      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2120                              Twine(MBB->getNumber()) + ":");
2121    }
2122  } else {
2123    OutStreamer.EmitLabel(MBB->getSymbol());
2124  }
2125}
2126
2127void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2128                                bool IsDefinition) const {
2129  MCSymbolAttr Attr = MCSA_Invalid;
2130
2131  switch (Visibility) {
2132  default: break;
2133  case GlobalValue::HiddenVisibility:
2134    if (IsDefinition)
2135      Attr = MAI->getHiddenVisibilityAttr();
2136    else
2137      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2138    break;
2139  case GlobalValue::ProtectedVisibility:
2140    Attr = MAI->getProtectedVisibilityAttr();
2141    break;
2142  }
2143
2144  if (Attr != MCSA_Invalid)
2145    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2146}
2147
2148/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2149/// exactly one predecessor and the control transfer mechanism between
2150/// the predecessor and this block is a fall-through.
2151bool AsmPrinter::
2152isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2153  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2154  // then nothing falls through to it.
2155  if (MBB->isLandingPad() || MBB->pred_empty())
2156    return false;
2157
2158  // If there isn't exactly one predecessor, it can't be a fall through.
2159  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2160  ++PI2;
2161  if (PI2 != MBB->pred_end())
2162    return false;
2163
2164  // The predecessor has to be immediately before this block.
2165  MachineBasicBlock *Pred = *PI;
2166
2167  if (!Pred->isLayoutSuccessor(MBB))
2168    return false;
2169
2170  // If the block is completely empty, then it definitely does fall through.
2171  if (Pred->empty())
2172    return true;
2173
2174  // Check the terminators in the previous blocks
2175  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2176         IE = Pred->end(); II != IE; ++II) {
2177    MachineInstr &MI = *II;
2178
2179    // If it is not a simple branch, we are in a table somewhere.
2180    if (!MI.isBranch() || MI.isIndirectBranch())
2181      return false;
2182
2183    // If we are the operands of one of the branches, this is not
2184    // a fall through.
2185    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2186           OE = MI.operands_end(); OI != OE; ++OI) {
2187      const MachineOperand& OP = *OI;
2188      if (OP.isJTI())
2189        return false;
2190      if (OP.isMBB() && OP.getMBB() == MBB)
2191        return false;
2192    }
2193  }
2194
2195  return true;
2196}
2197
2198
2199
2200GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2201  if (!S->usesMetadata())
2202    return 0;
2203
2204  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2205  gcp_map_type::iterator GCPI = GCMap.find(S);
2206  if (GCPI != GCMap.end())
2207    return GCPI->second;
2208
2209  const char *Name = S->getName().c_str();
2210
2211  for (GCMetadataPrinterRegistry::iterator
2212         I = GCMetadataPrinterRegistry::begin(),
2213         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2214    if (strcmp(Name, I->getName()) == 0) {
2215      GCMetadataPrinter *GMP = I->instantiate();
2216      GMP->S = S;
2217      GCMap.insert(std::make_pair(S, GMP));
2218      return GMP;
2219    }
2220
2221  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2222}
2223