AsmPrinter.cpp revision 28f7e3506ee1779753939d87c2ce4e1a2f19e9c0
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineFunction.h" 22#include "llvm/CodeGen/MachineJumpTableInfo.h" 23#include "llvm/CodeGen/MachineLoopInfo.h" 24#include "llvm/CodeGen/MachineModuleInfo.h" 25#include "llvm/CodeGen/DwarfWriter.h" 26#include "llvm/Analysis/DebugInfo.h" 27#include "llvm/MC/MCContext.h" 28#include "llvm/MC/MCInst.h" 29#include "llvm/MC/MCSection.h" 30#include "llvm/MC/MCStreamer.h" 31#include "llvm/MC/MCSymbol.h" 32#include "llvm/Support/CommandLine.h" 33#include "llvm/Support/ErrorHandling.h" 34#include "llvm/Support/FormattedStream.h" 35#include "llvm/Support/Mangler.h" 36#include "llvm/MC/MCAsmInfo.h" 37#include "llvm/Target/TargetData.h" 38#include "llvm/Target/TargetLowering.h" 39#include "llvm/Target/TargetLoweringObjectFile.h" 40#include "llvm/Target/TargetOptions.h" 41#include "llvm/Target/TargetRegisterInfo.h" 42#include "llvm/ADT/SmallPtrSet.h" 43#include "llvm/ADT/SmallString.h" 44#include "llvm/ADT/StringExtras.h" 45#include <cerrno> 46using namespace llvm; 47 48static cl::opt<cl::boolOrDefault> 49AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 50 cl::init(cl::BOU_UNSET)); 51 52char AsmPrinter::ID = 0; 53AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm, 54 const MCAsmInfo *T, bool VDef) 55 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 56 TM(tm), MAI(T), TRI(tm.getRegisterInfo()), 57 58 OutContext(*new MCContext()), 59 OutStreamer(*createAsmStreamer(OutContext, O, *T, this)), 60 61 LastMI(0), LastFn(0), Counter(~0U), 62 PrevDLT(0, ~0U, ~0U) { 63 DW = 0; MMI = 0; 64 switch (AsmVerbose) { 65 case cl::BOU_UNSET: VerboseAsm = VDef; break; 66 case cl::BOU_TRUE: VerboseAsm = true; break; 67 case cl::BOU_FALSE: VerboseAsm = false; break; 68 } 69} 70 71AsmPrinter::~AsmPrinter() { 72 for (gcp_iterator I = GCMetadataPrinters.begin(), 73 E = GCMetadataPrinters.end(); I != E; ++I) 74 delete I->second; 75 76 delete &OutStreamer; 77 delete &OutContext; 78} 79 80TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 81 return TM.getTargetLowering()->getObjFileLowering(); 82} 83 84/// getCurrentSection() - Return the current section we are emitting to. 85const MCSection *AsmPrinter::getCurrentSection() const { 86 return OutStreamer.getCurrentSection(); 87} 88 89 90void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 91 AU.setPreservesAll(); 92 MachineFunctionPass::getAnalysisUsage(AU); 93 AU.addRequired<GCModuleInfo>(); 94 if (VerboseAsm) 95 AU.addRequired<MachineLoopInfo>(); 96} 97 98bool AsmPrinter::doInitialization(Module &M) { 99 // Initialize TargetLoweringObjectFile. 100 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 101 .Initialize(OutContext, TM); 102 103 Mang = new Mangler(M, MAI->getGlobalPrefix(), MAI->getPrivateGlobalPrefix(), 104 MAI->getLinkerPrivateGlobalPrefix()); 105 106 if (MAI->doesAllowQuotesInName()) 107 Mang->setUseQuotes(true); 108 109 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 110 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 111 112 if (MAI->hasSingleParameterDotFile()) { 113 /* Very minimal debug info. It is ignored if we emit actual 114 debug info. If we don't, this at helps the user find where 115 a function came from. */ 116 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 117 } 118 119 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 120 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 121 MP->beginAssembly(O, *this, *MAI); 122 123 if (!M.getModuleInlineAsm().empty()) 124 O << MAI->getCommentString() << " Start of file scope inline assembly\n" 125 << M.getModuleInlineAsm() 126 << '\n' << MAI->getCommentString() 127 << " End of file scope inline assembly\n"; 128 129 if (MAI->doesSupportDebugInformation() || 130 MAI->doesSupportExceptionHandling()) { 131 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 132 if (MMI) 133 MMI->AnalyzeModule(M); 134 DW = getAnalysisIfAvailable<DwarfWriter>(); 135 if (DW) 136 DW->BeginModule(&M, MMI, O, this, MAI); 137 } 138 139 return false; 140} 141 142bool AsmPrinter::doFinalization(Module &M) { 143 // Emit global variables. 144 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 145 I != E; ++I) 146 PrintGlobalVariable(I); 147 148 // Emit final debug information. 149 if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling()) 150 DW->EndModule(); 151 152 // If the target wants to know about weak references, print them all. 153 if (MAI->getWeakRefDirective()) { 154 // FIXME: This is not lazy, it would be nice to only print weak references 155 // to stuff that is actually used. Note that doing so would require targets 156 // to notice uses in operands (due to constant exprs etc). This should 157 // happen with the MC stuff eventually. 158 159 // Print out module-level global variables here. 160 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 161 I != E; ++I) { 162 if (I->hasExternalWeakLinkage()) 163 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 164 } 165 166 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 167 if (I->hasExternalWeakLinkage()) 168 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 169 } 170 } 171 172 if (MAI->getSetDirective()) { 173 O << '\n'; 174 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 175 I != E; ++I) { 176 std::string Name = Mang->getMangledName(I); 177 178 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 179 std::string Target = Mang->getMangledName(GV); 180 181 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 182 O << "\t.globl\t" << Name << '\n'; 183 else if (I->hasWeakLinkage()) 184 O << MAI->getWeakRefDirective() << Name << '\n'; 185 else if (!I->hasLocalLinkage()) 186 llvm_unreachable("Invalid alias linkage"); 187 188 printVisibility(Name, I->getVisibility()); 189 190 O << MAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 191 } 192 } 193 194 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 195 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 196 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 197 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 198 MP->finishAssembly(O, *this, *MAI); 199 200 // If we don't have any trampolines, then we don't require stack memory 201 // to be executable. Some targets have a directive to declare this. 202 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 203 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 204 if (MAI->getNonexecutableStackDirective()) 205 O << MAI->getNonexecutableStackDirective() << '\n'; 206 207 delete Mang; Mang = 0; 208 DW = 0; MMI = 0; 209 210 OutStreamer.Finish(); 211 return false; 212} 213 214std::string 215AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const { 216 assert(MF && "No machine function?"); 217 return Mang->getMangledName(MF->getFunction(), ".eh", 218 MAI->is_EHSymbolPrivate()); 219} 220 221void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 222 // What's my mangled name? 223 CurrentFnName = Mang->getMangledName(MF.getFunction()); 224 IncrementFunctionNumber(); 225 226 if (VerboseAsm) { 227 LI = &getAnalysis<MachineLoopInfo>(); 228 } 229} 230 231namespace { 232 // SectionCPs - Keep track the alignment, constpool entries per Section. 233 struct SectionCPs { 234 const MCSection *S; 235 unsigned Alignment; 236 SmallVector<unsigned, 4> CPEs; 237 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}; 238 }; 239} 240 241/// EmitConstantPool - Print to the current output stream assembly 242/// representations of the constants in the constant pool MCP. This is 243/// used to print out constants which have been "spilled to memory" by 244/// the code generator. 245/// 246void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 247 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 248 if (CP.empty()) return; 249 250 // Calculate sections for constant pool entries. We collect entries to go into 251 // the same section together to reduce amount of section switch statements. 252 SmallVector<SectionCPs, 4> CPSections; 253 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 254 const MachineConstantPoolEntry &CPE = CP[i]; 255 unsigned Align = CPE.getAlignment(); 256 257 SectionKind Kind; 258 switch (CPE.getRelocationInfo()) { 259 default: llvm_unreachable("Unknown section kind"); 260 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 261 case 1: 262 Kind = SectionKind::getReadOnlyWithRelLocal(); 263 break; 264 case 0: 265 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 266 case 4: Kind = SectionKind::getMergeableConst4(); break; 267 case 8: Kind = SectionKind::getMergeableConst8(); break; 268 case 16: Kind = SectionKind::getMergeableConst16();break; 269 default: Kind = SectionKind::getMergeableConst(); break; 270 } 271 } 272 273 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 274 275 // The number of sections are small, just do a linear search from the 276 // last section to the first. 277 bool Found = false; 278 unsigned SecIdx = CPSections.size(); 279 while (SecIdx != 0) { 280 if (CPSections[--SecIdx].S == S) { 281 Found = true; 282 break; 283 } 284 } 285 if (!Found) { 286 SecIdx = CPSections.size(); 287 CPSections.push_back(SectionCPs(S, Align)); 288 } 289 290 if (Align > CPSections[SecIdx].Alignment) 291 CPSections[SecIdx].Alignment = Align; 292 CPSections[SecIdx].CPEs.push_back(i); 293 } 294 295 // Now print stuff into the calculated sections. 296 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 297 OutStreamer.SwitchSection(CPSections[i].S); 298 EmitAlignment(Log2_32(CPSections[i].Alignment)); 299 300 unsigned Offset = 0; 301 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 302 unsigned CPI = CPSections[i].CPEs[j]; 303 MachineConstantPoolEntry CPE = CP[CPI]; 304 305 // Emit inter-object padding for alignment. 306 unsigned AlignMask = CPE.getAlignment() - 1; 307 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 308 EmitZeros(NewOffset - Offset); 309 310 const Type *Ty = CPE.getType(); 311 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 312 313 O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 314 << CPI << ':'; 315 if (VerboseAsm) { 316 O.PadToColumn(MAI->getCommentColumn()); 317 O << MAI->getCommentString() << " constant "; 318 WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent()); 319 } 320 O << '\n'; 321 if (CPE.isMachineConstantPoolEntry()) 322 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 323 else 324 EmitGlobalConstant(CPE.Val.ConstVal); 325 } 326 } 327} 328 329/// EmitJumpTableInfo - Print assembly representations of the jump tables used 330/// by the current function to the current output stream. 331/// 332void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 333 MachineFunction &MF) { 334 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 335 if (JT.empty()) return; 336 337 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 338 339 // Pick the directive to use to print the jump table entries, and switch to 340 // the appropriate section. 341 TargetLowering *LoweringInfo = TM.getTargetLowering(); 342 343 const Function *F = MF.getFunction(); 344 bool JTInDiffSection = false; 345 if (F->isWeakForLinker() || 346 (IsPic && !LoweringInfo->usesGlobalOffsetTable())) { 347 // In PIC mode, we need to emit the jump table to the same section as the 348 // function body itself, otherwise the label differences won't make sense. 349 // We should also do if the section name is NULL or function is declared in 350 // discardable section. 351 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, 352 TM)); 353 } else { 354 // Otherwise, drop it in the readonly section. 355 const MCSection *ReadOnlySection = 356 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 357 OutStreamer.SwitchSection(ReadOnlySection); 358 JTInDiffSection = true; 359 } 360 361 EmitAlignment(Log2_32(MJTI->getAlignment())); 362 363 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 364 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 365 366 // If this jump table was deleted, ignore it. 367 if (JTBBs.empty()) continue; 368 369 // For PIC codegen, if possible we want to use the SetDirective to reduce 370 // the number of relocations the assembler will generate for the jump table. 371 // Set directives are all printed before the jump table itself. 372 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 373 if (MAI->getSetDirective() && IsPic) 374 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 375 if (EmittedSets.insert(JTBBs[ii])) 376 printPICJumpTableSetLabel(i, JTBBs[ii]); 377 378 // On some targets (e.g. Darwin) we want to emit two consequtive labels 379 // before each jump table. The first label is never referenced, but tells 380 // the assembler and linker the extents of the jump table object. The 381 // second label is actually referenced by the code. 382 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) { 383 O << MAI->getLinkerPrivateGlobalPrefix() 384 << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 385 } 386 387 O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 388 << '_' << i << ":\n"; 389 390 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 391 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 392 O << '\n'; 393 } 394 } 395} 396 397void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 398 const MachineBasicBlock *MBB, 399 unsigned uid) const { 400 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 401 402 // Use JumpTableDirective otherwise honor the entry size from the jump table 403 // info. 404 const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC); 405 bool HadJTEntryDirective = JTEntryDirective != NULL; 406 if (!HadJTEntryDirective) { 407 JTEntryDirective = MJTI->getEntrySize() == 4 ? 408 MAI->getData32bitsDirective() : MAI->getData64bitsDirective(); 409 } 410 411 O << JTEntryDirective << ' '; 412 413 // If we have emitted set directives for the jump table entries, print 414 // them rather than the entries themselves. If we're emitting PIC, then 415 // emit the table entries as differences between two text section labels. 416 // If we're emitting non-PIC code, then emit the entries as direct 417 // references to the target basic blocks. 418 if (!isPIC) { 419 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 420 } else if (MAI->getSetDirective()) { 421 O << MAI->getPrivateGlobalPrefix() << getFunctionNumber() 422 << '_' << uid << "_set_" << MBB->getNumber(); 423 } else { 424 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 425 // If the arch uses custom Jump Table directives, don't calc relative to 426 // JT 427 if (!HadJTEntryDirective) 428 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" 429 << getFunctionNumber() << '_' << uid; 430 } 431} 432 433 434/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 435/// special global used by LLVM. If so, emit it and return true, otherwise 436/// do nothing and return false. 437bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 438 if (GV->getName() == "llvm.used") { 439 if (MAI->getUsedDirective() != 0) // No need to emit this at all. 440 EmitLLVMUsedList(GV->getInitializer()); 441 return true; 442 } 443 444 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 445 if (GV->getSection() == "llvm.metadata" || 446 GV->hasAvailableExternallyLinkage()) 447 return true; 448 449 if (!GV->hasAppendingLinkage()) return false; 450 451 assert(GV->hasInitializer() && "Not a special LLVM global!"); 452 453 const TargetData *TD = TM.getTargetData(); 454 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 455 if (GV->getName() == "llvm.global_ctors") { 456 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection()); 457 EmitAlignment(Align, 0); 458 EmitXXStructorList(GV->getInitializer()); 459 return true; 460 } 461 462 if (GV->getName() == "llvm.global_dtors") { 463 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection()); 464 EmitAlignment(Align, 0); 465 EmitXXStructorList(GV->getInitializer()); 466 return true; 467 } 468 469 return false; 470} 471 472/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 473/// global in the specified llvm.used list for which emitUsedDirectiveFor 474/// is true, as being used with this directive. 475void AsmPrinter::EmitLLVMUsedList(Constant *List) { 476 const char *Directive = MAI->getUsedDirective(); 477 478 // Should be an array of 'i8*'. 479 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 480 if (InitList == 0) return; 481 482 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 483 const GlobalValue *GV = 484 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 485 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) { 486 O << Directive; 487 EmitConstantValueOnly(InitList->getOperand(i)); 488 O << '\n'; 489 } 490 } 491} 492 493/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 494/// function pointers, ignoring the init priority. 495void AsmPrinter::EmitXXStructorList(Constant *List) { 496 // Should be an array of '{ int, void ()* }' structs. The first value is the 497 // init priority, which we ignore. 498 if (!isa<ConstantArray>(List)) return; 499 ConstantArray *InitList = cast<ConstantArray>(List); 500 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 501 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 502 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 503 504 if (CS->getOperand(1)->isNullValue()) 505 return; // Found a null terminator, exit printing. 506 // Emit the function pointer. 507 EmitGlobalConstant(CS->getOperand(1)); 508 } 509} 510 511/// getGlobalLinkName - Returns the asm/link name of of the specified 512/// global variable. Should be overridden by each target asm printer to 513/// generate the appropriate value. 514const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV, 515 std::string &LinkName) const { 516 if (isa<Function>(GV)) { 517 LinkName += MAI->getFunctionAddrPrefix(); 518 LinkName += Mang->getMangledName(GV); 519 LinkName += MAI->getFunctionAddrSuffix(); 520 } else { 521 LinkName += MAI->getGlobalVarAddrPrefix(); 522 LinkName += Mang->getMangledName(GV); 523 LinkName += MAI->getGlobalVarAddrSuffix(); 524 } 525 526 return LinkName; 527} 528 529/// EmitExternalGlobal - Emit the external reference to a global variable. 530/// Should be overridden if an indirect reference should be used. 531void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { 532 std::string GLN; 533 O << getGlobalLinkName(GV, GLN); 534} 535 536 537 538//===----------------------------------------------------------------------===// 539/// LEB 128 number encoding. 540 541/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) 542/// representing an unsigned leb128 value. 543void AsmPrinter::PrintULEB128(unsigned Value) const { 544 char Buffer[20]; 545 do { 546 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 547 Value >>= 7; 548 if (Value) Byte |= 0x80; 549 O << "0x" << utohex_buffer(Byte, Buffer+20); 550 if (Value) O << ", "; 551 } while (Value); 552} 553 554/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) 555/// representing a signed leb128 value. 556void AsmPrinter::PrintSLEB128(int Value) const { 557 int Sign = Value >> (8 * sizeof(Value) - 1); 558 bool IsMore; 559 char Buffer[20]; 560 561 do { 562 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 563 Value >>= 7; 564 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 565 if (IsMore) Byte |= 0x80; 566 O << "0x" << utohex_buffer(Byte, Buffer+20); 567 if (IsMore) O << ", "; 568 } while (IsMore); 569} 570 571//===--------------------------------------------------------------------===// 572// Emission and print routines 573// 574 575/// PrintHex - Print a value as a hexidecimal value. 576/// 577void AsmPrinter::PrintHex(int Value) const { 578 char Buffer[20]; 579 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); 580} 581 582/// EOL - Print a newline character to asm stream. If a comment is present 583/// then it will be printed first. Comments should not contain '\n'. 584void AsmPrinter::EOL() const { 585 O << '\n'; 586} 587 588void AsmPrinter::EOL(const std::string &Comment) const { 589 if (VerboseAsm && !Comment.empty()) { 590 O.PadToColumn(MAI->getCommentColumn()); 591 O << MAI->getCommentString() 592 << ' ' 593 << Comment; 594 } 595 O << '\n'; 596} 597 598void AsmPrinter::EOL(const char* Comment) const { 599 if (VerboseAsm && *Comment) { 600 O.PadToColumn(MAI->getCommentColumn()); 601 O << MAI->getCommentString() 602 << ' ' 603 << Comment; 604 } 605 O << '\n'; 606} 607 608static const char *DecodeDWARFEncoding(unsigned Encoding) { 609 switch (Encoding) { 610 case dwarf::DW_EH_PE_absptr: 611 return "absptr"; 612 case dwarf::DW_EH_PE_omit: 613 return "omit"; 614 case dwarf::DW_EH_PE_pcrel: 615 return "pcrel"; 616 case dwarf::DW_EH_PE_udata4: 617 return "udata4"; 618 case dwarf::DW_EH_PE_udata8: 619 return "udata8"; 620 case dwarf::DW_EH_PE_sdata4: 621 return "sdata4"; 622 case dwarf::DW_EH_PE_sdata8: 623 return "sdata8"; 624 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4: 625 return "pcrel udata4"; 626 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4: 627 return "pcrel sdata4"; 628 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8: 629 return "pcrel udata8"; 630 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8: 631 return "pcrel sdata8"; 632 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4: 633 return "indirect pcrel udata4"; 634 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4: 635 return "indirect pcrel sdata4"; 636 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8: 637 return "indirect pcrel udata8"; 638 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8: 639 return "indirect pcrel sdata8"; 640 } 641 642 return 0; 643} 644 645void AsmPrinter::EOL(const char *Comment, unsigned Encoding) const { 646 if (VerboseAsm && *Comment) { 647 O.PadToColumn(MAI->getCommentColumn()); 648 O << MAI->getCommentString() 649 << ' ' 650 << Comment; 651 652 if (const char *EncStr = DecodeDWARFEncoding(Encoding)) 653 O << " (" << EncStr << ')'; 654 } 655 O << '\n'; 656} 657 658/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 659/// unsigned leb128 value. 660void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 661 if (MAI->hasLEB128()) { 662 O << "\t.uleb128\t" 663 << Value; 664 } else { 665 O << MAI->getData8bitsDirective(); 666 PrintULEB128(Value); 667 } 668} 669 670/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 671/// signed leb128 value. 672void AsmPrinter::EmitSLEB128Bytes(int Value) const { 673 if (MAI->hasLEB128()) { 674 O << "\t.sleb128\t" 675 << Value; 676 } else { 677 O << MAI->getData8bitsDirective(); 678 PrintSLEB128(Value); 679 } 680} 681 682/// EmitInt8 - Emit a byte directive and value. 683/// 684void AsmPrinter::EmitInt8(int Value) const { 685 O << MAI->getData8bitsDirective(); 686 PrintHex(Value & 0xFF); 687} 688 689/// EmitInt16 - Emit a short directive and value. 690/// 691void AsmPrinter::EmitInt16(int Value) const { 692 O << MAI->getData16bitsDirective(); 693 PrintHex(Value & 0xFFFF); 694} 695 696/// EmitInt32 - Emit a long directive and value. 697/// 698void AsmPrinter::EmitInt32(int Value) const { 699 O << MAI->getData32bitsDirective(); 700 PrintHex(Value); 701} 702 703/// EmitInt64 - Emit a long long directive and value. 704/// 705void AsmPrinter::EmitInt64(uint64_t Value) const { 706 if (MAI->getData64bitsDirective()) { 707 O << MAI->getData64bitsDirective(); 708 PrintHex(Value); 709 } else { 710 if (TM.getTargetData()->isBigEndian()) { 711 EmitInt32(unsigned(Value >> 32)); O << '\n'; 712 EmitInt32(unsigned(Value)); 713 } else { 714 EmitInt32(unsigned(Value)); O << '\n'; 715 EmitInt32(unsigned(Value >> 32)); 716 } 717 } 718} 719 720/// toOctal - Convert the low order bits of X into an octal digit. 721/// 722static inline char toOctal(int X) { 723 return (X&7)+'0'; 724} 725 726/// printStringChar - Print a char, escaped if necessary. 727/// 728static void printStringChar(formatted_raw_ostream &O, unsigned char C) { 729 if (C == '"') { 730 O << "\\\""; 731 } else if (C == '\\') { 732 O << "\\\\"; 733 } else if (isprint((unsigned char)C)) { 734 O << C; 735 } else { 736 switch(C) { 737 case '\b': O << "\\b"; break; 738 case '\f': O << "\\f"; break; 739 case '\n': O << "\\n"; break; 740 case '\r': O << "\\r"; break; 741 case '\t': O << "\\t"; break; 742 default: 743 O << '\\'; 744 O << toOctal(C >> 6); 745 O << toOctal(C >> 3); 746 O << toOctal(C >> 0); 747 break; 748 } 749 } 750} 751 752/// EmitString - Emit a string with quotes and a null terminator. 753/// Special characters are emitted properly. 754/// \literal (Eg. '\t') \endliteral 755void AsmPrinter::EmitString(const std::string &String) const { 756 EmitString(String.c_str(), String.size()); 757} 758 759void AsmPrinter::EmitString(const char *String, unsigned Size) const { 760 const char* AscizDirective = MAI->getAscizDirective(); 761 if (AscizDirective) 762 O << AscizDirective; 763 else 764 O << MAI->getAsciiDirective(); 765 O << '\"'; 766 for (unsigned i = 0; i < Size; ++i) 767 printStringChar(O, String[i]); 768 if (AscizDirective) 769 O << '\"'; 770 else 771 O << "\\0\""; 772} 773 774 775/// EmitFile - Emit a .file directive. 776void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 777 O << "\t.file\t" << Number << " \""; 778 for (unsigned i = 0, N = Name.size(); i < N; ++i) 779 printStringChar(O, Name[i]); 780 O << '\"'; 781} 782 783 784//===----------------------------------------------------------------------===// 785 786// EmitAlignment - Emit an alignment directive to the specified power of 787// two boundary. For example, if you pass in 3 here, you will get an 8 788// byte alignment. If a global value is specified, and if that global has 789// an explicit alignment requested, it will unconditionally override the 790// alignment request. However, if ForcedAlignBits is specified, this value 791// has final say: the ultimate alignment will be the max of ForcedAlignBits 792// and the alignment computed with NumBits and the global. 793// 794// The algorithm is: 795// Align = NumBits; 796// if (GV && GV->hasalignment) Align = GV->getalignment(); 797// Align = std::max(Align, ForcedAlignBits); 798// 799void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 800 unsigned ForcedAlignBits, 801 bool UseFillExpr) const { 802 if (GV && GV->getAlignment()) 803 NumBits = Log2_32(GV->getAlignment()); 804 NumBits = std::max(NumBits, ForcedAlignBits); 805 806 if (NumBits == 0) return; // No need to emit alignment. 807 808 unsigned FillValue = 0; 809 if (getCurrentSection()->getKind().isText()) 810 FillValue = MAI->getTextAlignFillValue(); 811 812 OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0); 813} 814 815/// EmitZeros - Emit a block of zeros. 816/// 817void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const { 818 if (NumZeros) { 819 if (MAI->getZeroDirective()) { 820 O << MAI->getZeroDirective() << NumZeros; 821 if (MAI->getZeroDirectiveSuffix()) 822 O << MAI->getZeroDirectiveSuffix(); 823 O << '\n'; 824 } else { 825 for (; NumZeros; --NumZeros) 826 O << MAI->getData8bitsDirective(AddrSpace) << "0\n"; 827 } 828 } 829} 830 831// Print out the specified constant, without a storage class. Only the 832// constants valid in constant expressions can occur here. 833void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 834 if (CV->isNullValue() || isa<UndefValue>(CV)) 835 O << '0'; 836 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 837 O << CI->getZExtValue(); 838 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 839 // This is a constant address for a global variable or function. Use the 840 // name of the variable or function as the address value, possibly 841 // decorating it with GlobalVarAddrPrefix/Suffix or 842 // FunctionAddrPrefix/Suffix (these all default to "" ) 843 if (isa<Function>(GV)) { 844 O << MAI->getFunctionAddrPrefix() 845 << Mang->getMangledName(GV) 846 << MAI->getFunctionAddrSuffix(); 847 } else { 848 O << MAI->getGlobalVarAddrPrefix() 849 << Mang->getMangledName(GV) 850 << MAI->getGlobalVarAddrSuffix(); 851 } 852 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 853 const TargetData *TD = TM.getTargetData(); 854 unsigned Opcode = CE->getOpcode(); 855 switch (Opcode) { 856 case Instruction::Trunc: 857 case Instruction::ZExt: 858 case Instruction::SExt: 859 case Instruction::FPTrunc: 860 case Instruction::FPExt: 861 case Instruction::UIToFP: 862 case Instruction::SIToFP: 863 case Instruction::FPToUI: 864 case Instruction::FPToSI: 865 llvm_unreachable("FIXME: Don't support this constant cast expr"); 866 case Instruction::GetElementPtr: { 867 // generate a symbolic expression for the byte address 868 const Constant *ptrVal = CE->getOperand(0); 869 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 870 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 871 idxVec.size())) { 872 // Truncate/sext the offset to the pointer size. 873 if (TD->getPointerSizeInBits() != 64) { 874 int SExtAmount = 64-TD->getPointerSizeInBits(); 875 Offset = (Offset << SExtAmount) >> SExtAmount; 876 } 877 878 if (Offset) 879 O << '('; 880 EmitConstantValueOnly(ptrVal); 881 if (Offset > 0) 882 O << ") + " << Offset; 883 else if (Offset < 0) 884 O << ") - " << -Offset; 885 } else { 886 EmitConstantValueOnly(ptrVal); 887 } 888 break; 889 } 890 case Instruction::BitCast: 891 return EmitConstantValueOnly(CE->getOperand(0)); 892 893 case Instruction::IntToPtr: { 894 // Handle casts to pointers by changing them into casts to the appropriate 895 // integer type. This promotes constant folding and simplifies this code. 896 Constant *Op = CE->getOperand(0); 897 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()), 898 false/*ZExt*/); 899 return EmitConstantValueOnly(Op); 900 } 901 902 903 case Instruction::PtrToInt: { 904 // Support only foldable casts to/from pointers that can be eliminated by 905 // changing the pointer to the appropriately sized integer type. 906 Constant *Op = CE->getOperand(0); 907 const Type *Ty = CE->getType(); 908 909 // We can emit the pointer value into this slot if the slot is an 910 // integer slot greater or equal to the size of the pointer. 911 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType())) 912 return EmitConstantValueOnly(Op); 913 914 O << "(("; 915 EmitConstantValueOnly(Op); 916 APInt ptrMask = 917 APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType())); 918 919 SmallString<40> S; 920 ptrMask.toStringUnsigned(S); 921 O << ") & " << S.str() << ')'; 922 break; 923 } 924 case Instruction::Add: 925 case Instruction::Sub: 926 case Instruction::And: 927 case Instruction::Or: 928 case Instruction::Xor: 929 O << '('; 930 EmitConstantValueOnly(CE->getOperand(0)); 931 O << ')'; 932 switch (Opcode) { 933 case Instruction::Add: 934 O << " + "; 935 break; 936 case Instruction::Sub: 937 O << " - "; 938 break; 939 case Instruction::And: 940 O << " & "; 941 break; 942 case Instruction::Or: 943 O << " | "; 944 break; 945 case Instruction::Xor: 946 O << " ^ "; 947 break; 948 default: 949 break; 950 } 951 O << '('; 952 EmitConstantValueOnly(CE->getOperand(1)); 953 O << ')'; 954 break; 955 default: 956 llvm_unreachable("Unsupported operator!"); 957 } 958 } else { 959 llvm_unreachable("Unknown constant value!"); 960 } 961} 962 963/// printAsCString - Print the specified array as a C compatible string, only if 964/// the predicate isString is true. 965/// 966static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA, 967 unsigned LastElt) { 968 assert(CVA->isString() && "Array is not string compatible!"); 969 970 O << '\"'; 971 for (unsigned i = 0; i != LastElt; ++i) { 972 unsigned char C = 973 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 974 printStringChar(O, C); 975 } 976 O << '\"'; 977} 978 979/// EmitString - Emit a zero-byte-terminated string constant. 980/// 981void AsmPrinter::EmitString(const ConstantArray *CVA) const { 982 unsigned NumElts = CVA->getNumOperands(); 983 if (MAI->getAscizDirective() && NumElts && 984 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 985 O << MAI->getAscizDirective(); 986 printAsCString(O, CVA, NumElts-1); 987 } else { 988 O << MAI->getAsciiDirective(); 989 printAsCString(O, CVA, NumElts); 990 } 991 O << '\n'; 992} 993 994void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA, 995 unsigned AddrSpace) { 996 if (CVA->isString()) { 997 EmitString(CVA); 998 } else { // Not a string. Print the values in successive locations 999 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 1000 EmitGlobalConstant(CVA->getOperand(i), AddrSpace); 1001 } 1002} 1003 1004void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) { 1005 const VectorType *PTy = CP->getType(); 1006 1007 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 1008 EmitGlobalConstant(CP->getOperand(I)); 1009} 1010 1011void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS, 1012 unsigned AddrSpace) { 1013 // Print the fields in successive locations. Pad to align if needed! 1014 const TargetData *TD = TM.getTargetData(); 1015 unsigned Size = TD->getTypeAllocSize(CVS->getType()); 1016 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 1017 uint64_t sizeSoFar = 0; 1018 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 1019 const Constant* field = CVS->getOperand(i); 1020 1021 // Check if padding is needed and insert one or more 0s. 1022 uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); 1023 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 1024 - cvsLayout->getElementOffset(i)) - fieldSize; 1025 sizeSoFar += fieldSize + padSize; 1026 1027 // Now print the actual field value. 1028 EmitGlobalConstant(field, AddrSpace); 1029 1030 // Insert padding - this may include padding to increase the size of the 1031 // current field up to the ABI size (if the struct is not packed) as well 1032 // as padding to ensure that the next field starts at the right offset. 1033 EmitZeros(padSize, AddrSpace); 1034 } 1035 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 1036 "Layout of constant struct may be incorrect!"); 1037} 1038 1039void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP, 1040 unsigned AddrSpace) { 1041 // FP Constants are printed as integer constants to avoid losing 1042 // precision... 1043 LLVMContext &Context = CFP->getContext(); 1044 const TargetData *TD = TM.getTargetData(); 1045 if (CFP->getType() == Type::getDoubleTy(Context)) { 1046 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 1047 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1048 if (MAI->getData64bitsDirective(AddrSpace)) { 1049 O << MAI->getData64bitsDirective(AddrSpace) << i; 1050 if (VerboseAsm) { 1051 O.PadToColumn(MAI->getCommentColumn()); 1052 O << MAI->getCommentString() << " double " << Val; 1053 } 1054 O << '\n'; 1055 } else if (TD->isBigEndian()) { 1056 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1057 if (VerboseAsm) { 1058 O.PadToColumn(MAI->getCommentColumn()); 1059 O << MAI->getCommentString() 1060 << " most significant word of double " << Val; 1061 } 1062 O << '\n'; 1063 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1064 if (VerboseAsm) { 1065 O.PadToColumn(MAI->getCommentColumn()); 1066 O << MAI->getCommentString() 1067 << " least significant word of double " << Val; 1068 } 1069 O << '\n'; 1070 } else { 1071 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1072 if (VerboseAsm) { 1073 O.PadToColumn(MAI->getCommentColumn()); 1074 O << MAI->getCommentString() 1075 << " least significant word of double " << Val; 1076 } 1077 O << '\n'; 1078 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1079 if (VerboseAsm) { 1080 O.PadToColumn(MAI->getCommentColumn()); 1081 O << MAI->getCommentString() 1082 << " most significant word of double " << Val; 1083 } 1084 O << '\n'; 1085 } 1086 return; 1087 } else if (CFP->getType() == Type::getFloatTy(Context)) { 1088 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1089 O << MAI->getData32bitsDirective(AddrSpace) 1090 << CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1091 if (VerboseAsm) { 1092 O.PadToColumn(MAI->getCommentColumn()); 1093 O << MAI->getCommentString() << " float " << Val; 1094 } 1095 O << '\n'; 1096 return; 1097 } else if (CFP->getType() == Type::getX86_FP80Ty(Context)) { 1098 // all long double variants are printed as hex 1099 // api needed to prevent premature destruction 1100 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1101 const uint64_t *p = api.getRawData(); 1102 // Convert to double so we can print the approximate val as a comment. 1103 APFloat DoubleVal = CFP->getValueAPF(); 1104 bool ignored; 1105 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1106 &ignored); 1107 if (TD->isBigEndian()) { 1108 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1109 if (VerboseAsm) { 1110 O.PadToColumn(MAI->getCommentColumn()); 1111 O << MAI->getCommentString() 1112 << " most significant halfword of x86_fp80 ~" 1113 << DoubleVal.convertToDouble(); 1114 } 1115 O << '\n'; 1116 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1117 if (VerboseAsm) { 1118 O.PadToColumn(MAI->getCommentColumn()); 1119 O << MAI->getCommentString() << " next halfword"; 1120 } 1121 O << '\n'; 1122 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1123 if (VerboseAsm) { 1124 O.PadToColumn(MAI->getCommentColumn()); 1125 O << MAI->getCommentString() << " next halfword"; 1126 } 1127 O << '\n'; 1128 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1129 if (VerboseAsm) { 1130 O.PadToColumn(MAI->getCommentColumn()); 1131 O << MAI->getCommentString() << " next halfword"; 1132 } 1133 O << '\n'; 1134 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1135 if (VerboseAsm) { 1136 O.PadToColumn(MAI->getCommentColumn()); 1137 O << MAI->getCommentString() 1138 << " least significant halfword"; 1139 } 1140 O << '\n'; 1141 } else { 1142 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1143 if (VerboseAsm) { 1144 O.PadToColumn(MAI->getCommentColumn()); 1145 O << MAI->getCommentString() 1146 << " least significant halfword of x86_fp80 ~" 1147 << DoubleVal.convertToDouble(); 1148 } 1149 O << '\n'; 1150 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1151 if (VerboseAsm) { 1152 O.PadToColumn(MAI->getCommentColumn()); 1153 O << MAI->getCommentString() 1154 << " next halfword"; 1155 } 1156 O << '\n'; 1157 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1158 if (VerboseAsm) { 1159 O.PadToColumn(MAI->getCommentColumn()); 1160 O << MAI->getCommentString() 1161 << " next halfword"; 1162 } 1163 O << '\n'; 1164 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1165 if (VerboseAsm) { 1166 O.PadToColumn(MAI->getCommentColumn()); 1167 O << MAI->getCommentString() 1168 << " next halfword"; 1169 } 1170 O << '\n'; 1171 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1172 if (VerboseAsm) { 1173 O.PadToColumn(MAI->getCommentColumn()); 1174 O << MAI->getCommentString() 1175 << " most significant halfword"; 1176 } 1177 O << '\n'; 1178 } 1179 EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) - 1180 TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace); 1181 return; 1182 } else if (CFP->getType() == Type::getPPC_FP128Ty(Context)) { 1183 // all long double variants are printed as hex 1184 // api needed to prevent premature destruction 1185 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1186 const uint64_t *p = api.getRawData(); 1187 if (TD->isBigEndian()) { 1188 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1189 if (VerboseAsm) { 1190 O.PadToColumn(MAI->getCommentColumn()); 1191 O << MAI->getCommentString() 1192 << " most significant word of ppc_fp128"; 1193 } 1194 O << '\n'; 1195 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1196 if (VerboseAsm) { 1197 O.PadToColumn(MAI->getCommentColumn()); 1198 O << MAI->getCommentString() 1199 << " next word"; 1200 } 1201 O << '\n'; 1202 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1203 if (VerboseAsm) { 1204 O.PadToColumn(MAI->getCommentColumn()); 1205 O << MAI->getCommentString() 1206 << " next word"; 1207 } 1208 O << '\n'; 1209 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1210 if (VerboseAsm) { 1211 O.PadToColumn(MAI->getCommentColumn()); 1212 O << MAI->getCommentString() 1213 << " least significant word"; 1214 } 1215 O << '\n'; 1216 } else { 1217 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1218 if (VerboseAsm) { 1219 O.PadToColumn(MAI->getCommentColumn()); 1220 O << MAI->getCommentString() 1221 << " least significant word of ppc_fp128"; 1222 } 1223 O << '\n'; 1224 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1225 if (VerboseAsm) { 1226 O.PadToColumn(MAI->getCommentColumn()); 1227 O << MAI->getCommentString() 1228 << " next word"; 1229 } 1230 O << '\n'; 1231 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1232 if (VerboseAsm) { 1233 O.PadToColumn(MAI->getCommentColumn()); 1234 O << MAI->getCommentString() 1235 << " next word"; 1236 } 1237 O << '\n'; 1238 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1239 if (VerboseAsm) { 1240 O.PadToColumn(MAI->getCommentColumn()); 1241 O << MAI->getCommentString() 1242 << " most significant word"; 1243 } 1244 O << '\n'; 1245 } 1246 return; 1247 } else llvm_unreachable("Floating point constant type not handled"); 1248} 1249 1250void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 1251 unsigned AddrSpace) { 1252 const TargetData *TD = TM.getTargetData(); 1253 unsigned BitWidth = CI->getBitWidth(); 1254 assert(isPowerOf2_32(BitWidth) && 1255 "Non-power-of-2-sized integers not handled!"); 1256 1257 // We don't expect assemblers to support integer data directives 1258 // for more than 64 bits, so we emit the data in at most 64-bit 1259 // quantities at a time. 1260 const uint64_t *RawData = CI->getValue().getRawData(); 1261 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1262 uint64_t Val; 1263 if (TD->isBigEndian()) 1264 Val = RawData[e - i - 1]; 1265 else 1266 Val = RawData[i]; 1267 1268 if (MAI->getData64bitsDirective(AddrSpace)) 1269 O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n'; 1270 else if (TD->isBigEndian()) { 1271 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1272 if (VerboseAsm) { 1273 O.PadToColumn(MAI->getCommentColumn()); 1274 O << MAI->getCommentString() 1275 << " most significant half of i64 " << Val; 1276 } 1277 O << '\n'; 1278 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1279 if (VerboseAsm) { 1280 O.PadToColumn(MAI->getCommentColumn()); 1281 O << MAI->getCommentString() 1282 << " least significant half of i64 " << Val; 1283 } 1284 O << '\n'; 1285 } else { 1286 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1287 if (VerboseAsm) { 1288 O.PadToColumn(MAI->getCommentColumn()); 1289 O << MAI->getCommentString() 1290 << " least significant half of i64 " << Val; 1291 } 1292 O << '\n'; 1293 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1294 if (VerboseAsm) { 1295 O.PadToColumn(MAI->getCommentColumn()); 1296 O << MAI->getCommentString() 1297 << " most significant half of i64 " << Val; 1298 } 1299 O << '\n'; 1300 } 1301 } 1302} 1303 1304/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1305void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1306 const TargetData *TD = TM.getTargetData(); 1307 const Type *type = CV->getType(); 1308 unsigned Size = TD->getTypeAllocSize(type); 1309 1310 if (CV->isNullValue() || isa<UndefValue>(CV)) { 1311 EmitZeros(Size, AddrSpace); 1312 return; 1313 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 1314 EmitGlobalConstantArray(CVA , AddrSpace); 1315 return; 1316 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 1317 EmitGlobalConstantStruct(CVS, AddrSpace); 1318 return; 1319 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1320 EmitGlobalConstantFP(CFP, AddrSpace); 1321 return; 1322 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1323 // Small integers are handled below; large integers are handled here. 1324 if (Size > 4) { 1325 EmitGlobalConstantLargeInt(CI, AddrSpace); 1326 return; 1327 } 1328 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1329 EmitGlobalConstantVector(CP); 1330 return; 1331 } 1332 1333 printDataDirective(type, AddrSpace); 1334 EmitConstantValueOnly(CV); 1335 if (VerboseAsm) { 1336 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1337 SmallString<40> S; 1338 CI->getValue().toStringUnsigned(S, 16); 1339 O.PadToColumn(MAI->getCommentColumn()); 1340 O << MAI->getCommentString() << " 0x" << S.str(); 1341 } 1342 } 1343 O << '\n'; 1344} 1345 1346void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1347 // Target doesn't support this yet! 1348 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1349} 1350 1351/// PrintSpecial - Print information related to the specified machine instr 1352/// that is independent of the operand, and may be independent of the instr 1353/// itself. This can be useful for portably encoding the comment character 1354/// or other bits of target-specific knowledge into the asmstrings. The 1355/// syntax used is ${:comment}. Targets can override this to add support 1356/// for their own strange codes. 1357void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1358 if (!strcmp(Code, "private")) { 1359 O << MAI->getPrivateGlobalPrefix(); 1360 } else if (!strcmp(Code, "comment")) { 1361 if (VerboseAsm) 1362 O << MAI->getCommentString(); 1363 } else if (!strcmp(Code, "uid")) { 1364 // Comparing the address of MI isn't sufficient, because machineinstrs may 1365 // be allocated to the same address across functions. 1366 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1367 1368 // If this is a new LastFn instruction, bump the counter. 1369 if (LastMI != MI || LastFn != ThisF) { 1370 ++Counter; 1371 LastMI = MI; 1372 LastFn = ThisF; 1373 } 1374 O << Counter; 1375 } else { 1376 std::string msg; 1377 raw_string_ostream Msg(msg); 1378 Msg << "Unknown special formatter '" << Code 1379 << "' for machine instr: " << *MI; 1380 llvm_report_error(Msg.str()); 1381 } 1382} 1383 1384/// processDebugLoc - Processes the debug information of each machine 1385/// instruction's DebugLoc. 1386void AsmPrinter::processDebugLoc(DebugLoc DL) { 1387 if (!MAI || !DW) 1388 return; 1389 1390 if (MAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) { 1391 if (!DL.isUnknown()) { 1392 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL); 1393 1394 if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT) { 1395 printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col, 1396 DICompileUnit(CurDLT.CompileUnit))); 1397 O << '\n'; 1398 } 1399 1400 PrevDLT = CurDLT; 1401 } 1402 } 1403} 1404 1405/// printInlineAsm - This method formats and prints the specified machine 1406/// instruction that is an inline asm. 1407void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1408 unsigned NumOperands = MI->getNumOperands(); 1409 1410 // Count the number of register definitions. 1411 unsigned NumDefs = 0; 1412 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1413 ++NumDefs) 1414 assert(NumDefs != NumOperands-1 && "No asm string?"); 1415 1416 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1417 1418 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1419 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1420 1421 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1422 // These are useful to see where empty asm's wound up. 1423 if (AsmStr[0] == 0) { 1424 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1425 O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n'; 1426 return; 1427 } 1428 1429 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1430 1431 // The variant of the current asmprinter. 1432 int AsmPrinterVariant = MAI->getAssemblerDialect(); 1433 1434 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1435 const char *LastEmitted = AsmStr; // One past the last character emitted. 1436 1437 while (*LastEmitted) { 1438 switch (*LastEmitted) { 1439 default: { 1440 // Not a special case, emit the string section literally. 1441 const char *LiteralEnd = LastEmitted+1; 1442 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1443 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1444 ++LiteralEnd; 1445 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1446 O.write(LastEmitted, LiteralEnd-LastEmitted); 1447 LastEmitted = LiteralEnd; 1448 break; 1449 } 1450 case '\n': 1451 ++LastEmitted; // Consume newline character. 1452 O << '\n'; // Indent code with newline. 1453 break; 1454 case '$': { 1455 ++LastEmitted; // Consume '$' character. 1456 bool Done = true; 1457 1458 // Handle escapes. 1459 switch (*LastEmitted) { 1460 default: Done = false; break; 1461 case '$': // $$ -> $ 1462 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1463 O << '$'; 1464 ++LastEmitted; // Consume second '$' character. 1465 break; 1466 case '(': // $( -> same as GCC's { character. 1467 ++LastEmitted; // Consume '(' character. 1468 if (CurVariant != -1) { 1469 llvm_report_error("Nested variants found in inline asm string: '" 1470 + std::string(AsmStr) + "'"); 1471 } 1472 CurVariant = 0; // We're in the first variant now. 1473 break; 1474 case '|': 1475 ++LastEmitted; // consume '|' character. 1476 if (CurVariant == -1) 1477 O << '|'; // this is gcc's behavior for | outside a variant 1478 else 1479 ++CurVariant; // We're in the next variant. 1480 break; 1481 case ')': // $) -> same as GCC's } char. 1482 ++LastEmitted; // consume ')' character. 1483 if (CurVariant == -1) 1484 O << '}'; // this is gcc's behavior for } outside a variant 1485 else 1486 CurVariant = -1; 1487 break; 1488 } 1489 if (Done) break; 1490 1491 bool HasCurlyBraces = false; 1492 if (*LastEmitted == '{') { // ${variable} 1493 ++LastEmitted; // Consume '{' character. 1494 HasCurlyBraces = true; 1495 } 1496 1497 // If we have ${:foo}, then this is not a real operand reference, it is a 1498 // "magic" string reference, just like in .td files. Arrange to call 1499 // PrintSpecial. 1500 if (HasCurlyBraces && *LastEmitted == ':') { 1501 ++LastEmitted; 1502 const char *StrStart = LastEmitted; 1503 const char *StrEnd = strchr(StrStart, '}'); 1504 if (StrEnd == 0) { 1505 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '" 1506 + std::string(AsmStr) + "'"); 1507 } 1508 1509 std::string Val(StrStart, StrEnd); 1510 PrintSpecial(MI, Val.c_str()); 1511 LastEmitted = StrEnd+1; 1512 break; 1513 } 1514 1515 const char *IDStart = LastEmitted; 1516 char *IDEnd; 1517 errno = 0; 1518 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1519 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1520 llvm_report_error("Bad $ operand number in inline asm string: '" 1521 + std::string(AsmStr) + "'"); 1522 } 1523 LastEmitted = IDEnd; 1524 1525 char Modifier[2] = { 0, 0 }; 1526 1527 if (HasCurlyBraces) { 1528 // If we have curly braces, check for a modifier character. This 1529 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1530 if (*LastEmitted == ':') { 1531 ++LastEmitted; // Consume ':' character. 1532 if (*LastEmitted == 0) { 1533 llvm_report_error("Bad ${:} expression in inline asm string: '" 1534 + std::string(AsmStr) + "'"); 1535 } 1536 1537 Modifier[0] = *LastEmitted; 1538 ++LastEmitted; // Consume modifier character. 1539 } 1540 1541 if (*LastEmitted != '}') { 1542 llvm_report_error("Bad ${} expression in inline asm string: '" 1543 + std::string(AsmStr) + "'"); 1544 } 1545 ++LastEmitted; // Consume '}' character. 1546 } 1547 1548 if ((unsigned)Val >= NumOperands-1) { 1549 llvm_report_error("Invalid $ operand number in inline asm string: '" 1550 + std::string(AsmStr) + "'"); 1551 } 1552 1553 // Okay, we finally have a value number. Ask the target to print this 1554 // operand! 1555 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1556 unsigned OpNo = 1; 1557 1558 bool Error = false; 1559 1560 // Scan to find the machine operand number for the operand. 1561 for (; Val; --Val) { 1562 if (OpNo >= MI->getNumOperands()) break; 1563 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1564 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1565 } 1566 1567 if (OpNo >= MI->getNumOperands()) { 1568 Error = true; 1569 } else { 1570 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1571 ++OpNo; // Skip over the ID number. 1572 1573 if (Modifier[0]=='l') // labels are target independent 1574 GetMBBSymbol(MI->getOperand(OpNo).getMBB() 1575 ->getNumber())->print(O, MAI); 1576 else { 1577 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1578 if ((OpFlags & 7) == 4) { 1579 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1580 Modifier[0] ? Modifier : 0); 1581 } else { 1582 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1583 Modifier[0] ? Modifier : 0); 1584 } 1585 } 1586 } 1587 if (Error) { 1588 std::string msg; 1589 raw_string_ostream Msg(msg); 1590 Msg << "Invalid operand found in inline asm: '" 1591 << AsmStr << "'\n"; 1592 MI->print(Msg); 1593 llvm_report_error(Msg.str()); 1594 } 1595 } 1596 break; 1597 } 1598 } 1599 } 1600 O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd(); 1601} 1602 1603/// printImplicitDef - This method prints the specified machine instruction 1604/// that is an implicit def. 1605void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1606 if (!VerboseAsm) return; 1607 O.PadToColumn(MAI->getCommentColumn()); 1608 O << MAI->getCommentString() << " implicit-def: " 1609 << TRI->getName(MI->getOperand(0).getReg()); 1610} 1611 1612/// printLabel - This method prints a local label used by debug and 1613/// exception handling tables. 1614void AsmPrinter::printLabel(const MachineInstr *MI) const { 1615 printLabel(MI->getOperand(0).getImm()); 1616} 1617 1618void AsmPrinter::printLabel(unsigned Id) const { 1619 O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':'; 1620} 1621 1622/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1623/// instruction, using the specified assembler variant. Targets should 1624/// overried this to format as appropriate. 1625bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1626 unsigned AsmVariant, const char *ExtraCode) { 1627 // Target doesn't support this yet! 1628 return true; 1629} 1630 1631bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1632 unsigned AsmVariant, 1633 const char *ExtraCode) { 1634 // Target doesn't support this yet! 1635 return true; 1636} 1637 1638MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const { 1639 SmallString<60> Name; 1640 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB" 1641 << getFunctionNumber() << '_' << MBBID; 1642 1643 return OutContext.GetOrCreateSymbol(Name.str()); 1644} 1645 1646 1647/// EmitBasicBlockStart - This method prints the label for the specified 1648/// MachineBasicBlock, an alignment (if present) and a comment describing 1649/// it if appropriate. 1650void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB, 1651 bool PrintColon) const { 1652 if (unsigned Align = MBB->getAlignment()) 1653 EmitAlignment(Log2_32(Align)); 1654 1655 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 1656 1657 if (PrintColon) 1658 O << ':'; 1659 1660 if (VerboseAsm) { 1661 if (const BasicBlock *BB = MBB->getBasicBlock()) 1662 if (BB->hasName()) { 1663 O.PadToColumn(MAI->getCommentColumn()); 1664 O << MAI->getCommentString() << ' '; 1665 WriteAsOperand(O, BB, /*PrintType=*/false); 1666 } 1667 1668 EmitComments(*MBB); 1669 } 1670} 1671 1672/// printPICJumpTableSetLabel - This method prints a set label for the 1673/// specified MachineBasicBlock for a jumptable entry. 1674void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1675 const MachineBasicBlock *MBB) const { 1676 if (!MAI->getSetDirective()) 1677 return; 1678 1679 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1680 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1681 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 1682 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1683 << '_' << uid << '\n'; 1684} 1685 1686void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1687 const MachineBasicBlock *MBB) const { 1688 if (!MAI->getSetDirective()) 1689 return; 1690 1691 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1692 << getFunctionNumber() << '_' << uid << '_' << uid2 1693 << "_set_" << MBB->getNumber() << ','; 1694 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 1695 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1696 << '_' << uid << '_' << uid2 << '\n'; 1697} 1698 1699/// printDataDirective - This method prints the asm directive for the 1700/// specified type. 1701void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { 1702 const TargetData *TD = TM.getTargetData(); 1703 switch (type->getTypeID()) { 1704 case Type::FloatTyID: case Type::DoubleTyID: 1705 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1706 assert(0 && "Should have already output floating point constant."); 1707 default: 1708 assert(0 && "Can't handle printing this type of thing"); 1709 case Type::IntegerTyID: { 1710 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1711 if (BitWidth <= 8) 1712 O << MAI->getData8bitsDirective(AddrSpace); 1713 else if (BitWidth <= 16) 1714 O << MAI->getData16bitsDirective(AddrSpace); 1715 else if (BitWidth <= 32) 1716 O << MAI->getData32bitsDirective(AddrSpace); 1717 else if (BitWidth <= 64) { 1718 assert(MAI->getData64bitsDirective(AddrSpace) && 1719 "Target cannot handle 64-bit constant exprs!"); 1720 O << MAI->getData64bitsDirective(AddrSpace); 1721 } else { 1722 llvm_unreachable("Target cannot handle given data directive width!"); 1723 } 1724 break; 1725 } 1726 case Type::PointerTyID: 1727 if (TD->getPointerSize() == 8) { 1728 assert(MAI->getData64bitsDirective(AddrSpace) && 1729 "Target cannot handle 64-bit pointer exprs!"); 1730 O << MAI->getData64bitsDirective(AddrSpace); 1731 } else if (TD->getPointerSize() == 2) { 1732 O << MAI->getData16bitsDirective(AddrSpace); 1733 } else if (TD->getPointerSize() == 1) { 1734 O << MAI->getData8bitsDirective(AddrSpace); 1735 } else { 1736 O << MAI->getData32bitsDirective(AddrSpace); 1737 } 1738 break; 1739 } 1740} 1741 1742void AsmPrinter::printVisibility(const std::string& Name, 1743 unsigned Visibility) const { 1744 if (Visibility == GlobalValue::HiddenVisibility) { 1745 if (const char *Directive = MAI->getHiddenDirective()) 1746 O << Directive << Name << '\n'; 1747 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1748 if (const char *Directive = MAI->getProtectedDirective()) 1749 O << Directive << Name << '\n'; 1750 } 1751} 1752 1753void AsmPrinter::printOffset(int64_t Offset) const { 1754 if (Offset > 0) 1755 O << '+' << Offset; 1756 else if (Offset < 0) 1757 O << Offset; 1758} 1759 1760void AsmPrinter::printMCInst(const MCInst *MI) { 1761 llvm_unreachable("MCInst printing unavailable on this target!"); 1762} 1763 1764GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1765 if (!S->usesMetadata()) 1766 return 0; 1767 1768 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1769 if (GCPI != GCMetadataPrinters.end()) 1770 return GCPI->second; 1771 1772 const char *Name = S->getName().c_str(); 1773 1774 for (GCMetadataPrinterRegistry::iterator 1775 I = GCMetadataPrinterRegistry::begin(), 1776 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1777 if (strcmp(Name, I->getName()) == 0) { 1778 GCMetadataPrinter *GMP = I->instantiate(); 1779 GMP->S = S; 1780 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1781 return GMP; 1782 } 1783 1784 errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1785 llvm_unreachable(0); 1786} 1787 1788/// EmitComments - Pretty-print comments for instructions 1789void AsmPrinter::EmitComments(const MachineInstr &MI) const { 1790 assert(VerboseAsm && !MI.getDebugLoc().isUnknown()); 1791 1792 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); 1793 1794 // Print source line info. 1795 O.PadToColumn(MAI->getCommentColumn()); 1796 O << MAI->getCommentString() << " SrcLine "; 1797 if (DLT.CompileUnit) { 1798 std::string Str; 1799 DICompileUnit CU(DLT.CompileUnit); 1800 O << CU.getFilename(Str) << " "; 1801 } 1802 O << DLT.Line; 1803 if (DLT.Col != 0) 1804 O << ":" << DLT.Col; 1805} 1806 1807/// PrintChildLoopComment - Print comments about child loops within 1808/// the loop for this basic block, with nesting. 1809/// 1810static void PrintChildLoopComment(formatted_raw_ostream &O, 1811 const MachineLoop *loop, 1812 const MCAsmInfo *MAI, 1813 int FunctionNumber) { 1814 // Add child loop information 1815 for(MachineLoop::iterator cl = loop->begin(), 1816 clend = loop->end(); 1817 cl != clend; 1818 ++cl) { 1819 MachineBasicBlock *Header = (*cl)->getHeader(); 1820 assert(Header && "No header for loop"); 1821 1822 O << '\n'; 1823 O.PadToColumn(MAI->getCommentColumn()); 1824 1825 O << MAI->getCommentString(); 1826 O.indent(((*cl)->getLoopDepth()-1)*2) 1827 << " Child Loop BB" << FunctionNumber << "_" 1828 << Header->getNumber() << " Depth " << (*cl)->getLoopDepth(); 1829 1830 PrintChildLoopComment(O, *cl, MAI, FunctionNumber); 1831 } 1832} 1833 1834/// EmitComments - Pretty-print comments for basic blocks 1835void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const 1836{ 1837 if (VerboseAsm) { 1838 // Add loop depth information 1839 const MachineLoop *loop = LI->getLoopFor(&MBB); 1840 1841 if (loop) { 1842 // Print a newline after bb# annotation. 1843 O << "\n"; 1844 O.PadToColumn(MAI->getCommentColumn()); 1845 O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth() 1846 << '\n'; 1847 1848 O.PadToColumn(MAI->getCommentColumn()); 1849 1850 MachineBasicBlock *Header = loop->getHeader(); 1851 assert(Header && "No header for loop"); 1852 1853 if (Header == &MBB) { 1854 O << MAI->getCommentString() << " Loop Header"; 1855 PrintChildLoopComment(O, loop, MAI, getFunctionNumber()); 1856 } 1857 else { 1858 O << MAI->getCommentString() << " Loop Header is BB" 1859 << getFunctionNumber() << "_" << loop->getHeader()->getNumber(); 1860 } 1861 1862 if (loop->empty()) { 1863 O << '\n'; 1864 O.PadToColumn(MAI->getCommentColumn()); 1865 O << MAI->getCommentString() << " Inner Loop"; 1866 } 1867 1868 // Add parent loop information 1869 for (const MachineLoop *CurLoop = loop->getParentLoop(); 1870 CurLoop; 1871 CurLoop = CurLoop->getParentLoop()) { 1872 MachineBasicBlock *Header = CurLoop->getHeader(); 1873 assert(Header && "No header for loop"); 1874 1875 O << '\n'; 1876 O.PadToColumn(MAI->getCommentColumn()); 1877 O << MAI->getCommentString(); 1878 O.indent((CurLoop->getLoopDepth()-1)*2) 1879 << " Inside Loop BB" << getFunctionNumber() << "_" 1880 << Header->getNumber() << " Depth " << CurLoop->getLoopDepth(); 1881 } 1882 } 1883 } 1884} 1885