AsmPrinter.cpp revision 33adcfb4d217f5f23d9bde8ba02b8e48f9605fc5
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineFunction.h" 22#include "llvm/CodeGen/MachineJumpTableInfo.h" 23#include "llvm/CodeGen/MachineLoopInfo.h" 24#include "llvm/CodeGen/MachineModuleInfo.h" 25#include "llvm/CodeGen/DwarfWriter.h" 26#include "llvm/Analysis/DebugInfo.h" 27#include "llvm/MC/MCContext.h" 28#include "llvm/MC/MCInst.h" 29#include "llvm/MC/MCSection.h" 30#include "llvm/MC/MCStreamer.h" 31#include "llvm/Support/CommandLine.h" 32#include "llvm/Support/ErrorHandling.h" 33#include "llvm/Support/FormattedStream.h" 34#include "llvm/Support/Mangler.h" 35#include "llvm/MC/MCAsmInfo.h" 36#include "llvm/Target/TargetData.h" 37#include "llvm/Target/TargetLowering.h" 38#include "llvm/Target/TargetLoweringObjectFile.h" 39#include "llvm/Target/TargetOptions.h" 40#include "llvm/Target/TargetRegisterInfo.h" 41#include "llvm/ADT/SmallPtrSet.h" 42#include "llvm/ADT/SmallString.h" 43#include "llvm/ADT/StringExtras.h" 44#include <cerrno> 45using namespace llvm; 46 47static cl::opt<cl::boolOrDefault> 48AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 49 cl::init(cl::BOU_UNSET)); 50 51char AsmPrinter::ID = 0; 52AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm, 53 const MCAsmInfo *T, bool VDef) 54 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 55 TM(tm), MAI(T), TRI(tm.getRegisterInfo()), 56 57 OutContext(*new MCContext()), 58 OutStreamer(*createAsmStreamer(OutContext, O, *T, this)), 59 60 LastMI(0), LastFn(0), Counter(~0U), 61 PrevDLT(0, ~0U, ~0U) { 62 DW = 0; MMI = 0; 63 switch (AsmVerbose) { 64 case cl::BOU_UNSET: VerboseAsm = VDef; break; 65 case cl::BOU_TRUE: VerboseAsm = true; break; 66 case cl::BOU_FALSE: VerboseAsm = false; break; 67 } 68} 69 70AsmPrinter::~AsmPrinter() { 71 for (gcp_iterator I = GCMetadataPrinters.begin(), 72 E = GCMetadataPrinters.end(); I != E; ++I) 73 delete I->second; 74 75 delete &OutStreamer; 76 delete &OutContext; 77} 78 79TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 80 return TM.getTargetLowering()->getObjFileLowering(); 81} 82 83/// getCurrentSection() - Return the current section we are emitting to. 84const MCSection *AsmPrinter::getCurrentSection() const { 85 return OutStreamer.getCurrentSection(); 86} 87 88 89void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 90 AU.setPreservesAll(); 91 MachineFunctionPass::getAnalysisUsage(AU); 92 AU.addRequired<GCModuleInfo>(); 93 if (VerboseAsm) 94 AU.addRequired<MachineLoopInfo>(); 95} 96 97bool AsmPrinter::doInitialization(Module &M) { 98 // Initialize TargetLoweringObjectFile. 99 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 100 .Initialize(OutContext, TM); 101 102 Mang = new Mangler(M, MAI->getGlobalPrefix(), MAI->getPrivateGlobalPrefix(), 103 MAI->getLinkerPrivateGlobalPrefix()); 104 105 if (MAI->doesAllowQuotesInName()) 106 Mang->setUseQuotes(true); 107 108 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 109 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 110 111 if (MAI->hasSingleParameterDotFile()) { 112 /* Very minimal debug info. It is ignored if we emit actual 113 debug info. If we don't, this at helps the user find where 114 a function came from. */ 115 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 116 } 117 118 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 119 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 120 MP->beginAssembly(O, *this, *MAI); 121 122 if (!M.getModuleInlineAsm().empty()) 123 O << MAI->getCommentString() << " Start of file scope inline assembly\n" 124 << M.getModuleInlineAsm() 125 << '\n' << MAI->getCommentString() 126 << " End of file scope inline assembly\n"; 127 128 if (MAI->doesSupportDebugInformation() || 129 MAI->doesSupportExceptionHandling()) { 130 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 131 if (MMI) 132 MMI->AnalyzeModule(M); 133 DW = getAnalysisIfAvailable<DwarfWriter>(); 134 if (DW) 135 DW->BeginModule(&M, MMI, O, this, MAI); 136 } 137 138 return false; 139} 140 141bool AsmPrinter::doFinalization(Module &M) { 142 // Emit global variables. 143 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 144 I != E; ++I) 145 PrintGlobalVariable(I); 146 147 // Emit final debug information. 148 if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling()) 149 DW->EndModule(); 150 151 // If the target wants to know about weak references, print them all. 152 if (MAI->getWeakRefDirective()) { 153 // FIXME: This is not lazy, it would be nice to only print weak references 154 // to stuff that is actually used. Note that doing so would require targets 155 // to notice uses in operands (due to constant exprs etc). This should 156 // happen with the MC stuff eventually. 157 158 // Print out module-level global variables here. 159 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 160 I != E; ++I) { 161 if (I->hasExternalWeakLinkage()) 162 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 163 } 164 165 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 166 if (I->hasExternalWeakLinkage()) 167 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 168 } 169 } 170 171 if (MAI->getSetDirective()) { 172 O << '\n'; 173 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 174 I != E; ++I) { 175 std::string Name = Mang->getMangledName(I); 176 177 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 178 std::string Target = Mang->getMangledName(GV); 179 180 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 181 O << "\t.globl\t" << Name << '\n'; 182 else if (I->hasWeakLinkage()) 183 O << MAI->getWeakRefDirective() << Name << '\n'; 184 else if (!I->hasLocalLinkage()) 185 llvm_unreachable("Invalid alias linkage"); 186 187 printVisibility(Name, I->getVisibility()); 188 189 O << MAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 190 } 191 } 192 193 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 194 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 195 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 196 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 197 MP->finishAssembly(O, *this, *MAI); 198 199 // If we don't have any trampolines, then we don't require stack memory 200 // to be executable. Some targets have a directive to declare this. 201 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 202 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 203 if (MAI->getNonexecutableStackDirective()) 204 O << MAI->getNonexecutableStackDirective() << '\n'; 205 206 delete Mang; Mang = 0; 207 DW = 0; MMI = 0; 208 209 OutStreamer.Finish(); 210 return false; 211} 212 213std::string 214AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const { 215 assert(MF && "No machine function?"); 216 return Mang->getMangledName(MF->getFunction(), ".eh", 217 MAI->is_EHSymbolPrivate()); 218} 219 220void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 221 // What's my mangled name? 222 CurrentFnName = Mang->getMangledName(MF.getFunction()); 223 IncrementFunctionNumber(); 224 225 if (VerboseAsm) { 226 LI = &getAnalysis<MachineLoopInfo>(); 227 } 228} 229 230namespace { 231 // SectionCPs - Keep track the alignment, constpool entries per Section. 232 struct SectionCPs { 233 const MCSection *S; 234 unsigned Alignment; 235 SmallVector<unsigned, 4> CPEs; 236 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}; 237 }; 238} 239 240/// EmitConstantPool - Print to the current output stream assembly 241/// representations of the constants in the constant pool MCP. This is 242/// used to print out constants which have been "spilled to memory" by 243/// the code generator. 244/// 245void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 246 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 247 if (CP.empty()) return; 248 249 // Calculate sections for constant pool entries. We collect entries to go into 250 // the same section together to reduce amount of section switch statements. 251 SmallVector<SectionCPs, 4> CPSections; 252 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 253 const MachineConstantPoolEntry &CPE = CP[i]; 254 unsigned Align = CPE.getAlignment(); 255 256 SectionKind Kind; 257 switch (CPE.getRelocationInfo()) { 258 default: llvm_unreachable("Unknown section kind"); 259 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 260 case 1: 261 Kind = SectionKind::getReadOnlyWithRelLocal(); 262 break; 263 case 0: 264 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 265 case 4: Kind = SectionKind::getMergeableConst4(); break; 266 case 8: Kind = SectionKind::getMergeableConst8(); break; 267 case 16: Kind = SectionKind::getMergeableConst16();break; 268 default: Kind = SectionKind::getMergeableConst(); break; 269 } 270 } 271 272 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 273 274 // The number of sections are small, just do a linear search from the 275 // last section to the first. 276 bool Found = false; 277 unsigned SecIdx = CPSections.size(); 278 while (SecIdx != 0) { 279 if (CPSections[--SecIdx].S == S) { 280 Found = true; 281 break; 282 } 283 } 284 if (!Found) { 285 SecIdx = CPSections.size(); 286 CPSections.push_back(SectionCPs(S, Align)); 287 } 288 289 if (Align > CPSections[SecIdx].Alignment) 290 CPSections[SecIdx].Alignment = Align; 291 CPSections[SecIdx].CPEs.push_back(i); 292 } 293 294 // Now print stuff into the calculated sections. 295 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 296 OutStreamer.SwitchSection(CPSections[i].S); 297 EmitAlignment(Log2_32(CPSections[i].Alignment)); 298 299 unsigned Offset = 0; 300 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 301 unsigned CPI = CPSections[i].CPEs[j]; 302 MachineConstantPoolEntry CPE = CP[CPI]; 303 304 // Emit inter-object padding for alignment. 305 unsigned AlignMask = CPE.getAlignment() - 1; 306 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 307 EmitZeros(NewOffset - Offset); 308 309 const Type *Ty = CPE.getType(); 310 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 311 312 O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 313 << CPI << ':'; 314 if (VerboseAsm) { 315 O.PadToColumn(MAI->getCommentColumn()); 316 O << MAI->getCommentString() << " constant "; 317 WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent()); 318 } 319 O << '\n'; 320 if (CPE.isMachineConstantPoolEntry()) 321 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 322 else 323 EmitGlobalConstant(CPE.Val.ConstVal); 324 } 325 } 326} 327 328/// EmitJumpTableInfo - Print assembly representations of the jump tables used 329/// by the current function to the current output stream. 330/// 331void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 332 MachineFunction &MF) { 333 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 334 if (JT.empty()) return; 335 336 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 337 338 // Pick the directive to use to print the jump table entries, and switch to 339 // the appropriate section. 340 TargetLowering *LoweringInfo = TM.getTargetLowering(); 341 342 const Function *F = MF.getFunction(); 343 bool JTInDiffSection = false; 344 if (F->isWeakForLinker() || 345 (IsPic && !LoweringInfo->usesGlobalOffsetTable())) { 346 // In PIC mode, we need to emit the jump table to the same section as the 347 // function body itself, otherwise the label differences won't make sense. 348 // We should also do if the section name is NULL or function is declared in 349 // discardable section. 350 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, 351 TM)); 352 } else { 353 // Otherwise, drop it in the readonly section. 354 const MCSection *ReadOnlySection = 355 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 356 OutStreamer.SwitchSection(ReadOnlySection); 357 JTInDiffSection = true; 358 } 359 360 EmitAlignment(Log2_32(MJTI->getAlignment())); 361 362 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 363 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 364 365 // If this jump table was deleted, ignore it. 366 if (JTBBs.empty()) continue; 367 368 // For PIC codegen, if possible we want to use the SetDirective to reduce 369 // the number of relocations the assembler will generate for the jump table. 370 // Set directives are all printed before the jump table itself. 371 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 372 if (MAI->getSetDirective() && IsPic) 373 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 374 if (EmittedSets.insert(JTBBs[ii])) 375 printPICJumpTableSetLabel(i, JTBBs[ii]); 376 377 // On some targets (e.g. darwin) we want to emit two consequtive labels 378 // before each jump table. The first label is never referenced, but tells 379 // the assembler and linker the extents of the jump table object. The 380 // second label is actually referenced by the code. 381 if (JTInDiffSection) { 382 if (const char *JTLabelPrefix = MAI->getJumpTableSpecialLabelPrefix()) 383 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 384 } 385 386 O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 387 << '_' << i << ":\n"; 388 389 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 390 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 391 O << '\n'; 392 } 393 } 394} 395 396void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 397 const MachineBasicBlock *MBB, 398 unsigned uid) const { 399 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 400 401 // Use JumpTableDirective otherwise honor the entry size from the jump table 402 // info. 403 const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC); 404 bool HadJTEntryDirective = JTEntryDirective != NULL; 405 if (!HadJTEntryDirective) { 406 JTEntryDirective = MJTI->getEntrySize() == 4 ? 407 MAI->getData32bitsDirective() : MAI->getData64bitsDirective(); 408 } 409 410 O << JTEntryDirective << ' '; 411 412 // If we have emitted set directives for the jump table entries, print 413 // them rather than the entries themselves. If we're emitting PIC, then 414 // emit the table entries as differences between two text section labels. 415 // If we're emitting non-PIC code, then emit the entries as direct 416 // references to the target basic blocks. 417 if (!isPIC) { 418 printBasicBlockLabel(MBB, false, false, false); 419 } else if (MAI->getSetDirective()) { 420 O << MAI->getPrivateGlobalPrefix() << getFunctionNumber() 421 << '_' << uid << "_set_" << MBB->getNumber(); 422 } else { 423 printBasicBlockLabel(MBB, false, false, false); 424 // If the arch uses custom Jump Table directives, don't calc relative to 425 // JT 426 if (!HadJTEntryDirective) 427 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" 428 << getFunctionNumber() << '_' << uid; 429 } 430} 431 432 433/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 434/// special global used by LLVM. If so, emit it and return true, otherwise 435/// do nothing and return false. 436bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 437 if (GV->getName() == "llvm.used") { 438 if (MAI->getUsedDirective() != 0) // No need to emit this at all. 439 EmitLLVMUsedList(GV->getInitializer()); 440 return true; 441 } 442 443 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 444 if (GV->getSection() == "llvm.metadata" || 445 GV->hasAvailableExternallyLinkage()) 446 return true; 447 448 if (!GV->hasAppendingLinkage()) return false; 449 450 assert(GV->hasInitializer() && "Not a special LLVM global!"); 451 452 const TargetData *TD = TM.getTargetData(); 453 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 454 if (GV->getName() == "llvm.global_ctors") { 455 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection()); 456 EmitAlignment(Align, 0); 457 EmitXXStructorList(GV->getInitializer()); 458 return true; 459 } 460 461 if (GV->getName() == "llvm.global_dtors") { 462 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection()); 463 EmitAlignment(Align, 0); 464 EmitXXStructorList(GV->getInitializer()); 465 return true; 466 } 467 468 return false; 469} 470 471/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 472/// global in the specified llvm.used list for which emitUsedDirectiveFor 473/// is true, as being used with this directive. 474void AsmPrinter::EmitLLVMUsedList(Constant *List) { 475 const char *Directive = MAI->getUsedDirective(); 476 477 // Should be an array of 'i8*'. 478 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 479 if (InitList == 0) return; 480 481 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 482 const GlobalValue *GV = 483 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 484 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) { 485 O << Directive; 486 EmitConstantValueOnly(InitList->getOperand(i)); 487 O << '\n'; 488 } 489 } 490} 491 492/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 493/// function pointers, ignoring the init priority. 494void AsmPrinter::EmitXXStructorList(Constant *List) { 495 // Should be an array of '{ int, void ()* }' structs. The first value is the 496 // init priority, which we ignore. 497 if (!isa<ConstantArray>(List)) return; 498 ConstantArray *InitList = cast<ConstantArray>(List); 499 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 500 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 501 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 502 503 if (CS->getOperand(1)->isNullValue()) 504 return; // Found a null terminator, exit printing. 505 // Emit the function pointer. 506 EmitGlobalConstant(CS->getOperand(1)); 507 } 508} 509 510/// getGlobalLinkName - Returns the asm/link name of of the specified 511/// global variable. Should be overridden by each target asm printer to 512/// generate the appropriate value. 513const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV, 514 std::string &LinkName) const { 515 if (isa<Function>(GV)) { 516 LinkName += MAI->getFunctionAddrPrefix(); 517 LinkName += Mang->getMangledName(GV); 518 LinkName += MAI->getFunctionAddrSuffix(); 519 } else { 520 LinkName += MAI->getGlobalVarAddrPrefix(); 521 LinkName += Mang->getMangledName(GV); 522 LinkName += MAI->getGlobalVarAddrSuffix(); 523 } 524 525 return LinkName; 526} 527 528/// EmitExternalGlobal - Emit the external reference to a global variable. 529/// Should be overridden if an indirect reference should be used. 530void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { 531 std::string GLN; 532 O << getGlobalLinkName(GV, GLN); 533} 534 535 536 537//===----------------------------------------------------------------------===// 538/// LEB 128 number encoding. 539 540/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) 541/// representing an unsigned leb128 value. 542void AsmPrinter::PrintULEB128(unsigned Value) const { 543 char Buffer[20]; 544 do { 545 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 546 Value >>= 7; 547 if (Value) Byte |= 0x80; 548 O << "0x" << utohex_buffer(Byte, Buffer+20); 549 if (Value) O << ", "; 550 } while (Value); 551} 552 553/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) 554/// representing a signed leb128 value. 555void AsmPrinter::PrintSLEB128(int Value) const { 556 int Sign = Value >> (8 * sizeof(Value) - 1); 557 bool IsMore; 558 char Buffer[20]; 559 560 do { 561 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 562 Value >>= 7; 563 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 564 if (IsMore) Byte |= 0x80; 565 O << "0x" << utohex_buffer(Byte, Buffer+20); 566 if (IsMore) O << ", "; 567 } while (IsMore); 568} 569 570//===--------------------------------------------------------------------===// 571// Emission and print routines 572// 573 574/// PrintHex - Print a value as a hexidecimal value. 575/// 576void AsmPrinter::PrintHex(int Value) const { 577 char Buffer[20]; 578 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); 579} 580 581/// EOL - Print a newline character to asm stream. If a comment is present 582/// then it will be printed first. Comments should not contain '\n'. 583void AsmPrinter::EOL() const { 584 O << '\n'; 585} 586 587void AsmPrinter::EOL(const std::string &Comment) const { 588 if (VerboseAsm && !Comment.empty()) { 589 O.PadToColumn(MAI->getCommentColumn()); 590 O << MAI->getCommentString() 591 << ' ' 592 << Comment; 593 } 594 O << '\n'; 595} 596 597void AsmPrinter::EOL(const char* Comment) const { 598 if (VerboseAsm && *Comment) { 599 O.PadToColumn(MAI->getCommentColumn()); 600 O << MAI->getCommentString() 601 << ' ' 602 << Comment; 603 } 604 O << '\n'; 605} 606 607/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 608/// unsigned leb128 value. 609void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 610 if (MAI->hasLEB128()) { 611 O << "\t.uleb128\t" 612 << Value; 613 } else { 614 O << MAI->getData8bitsDirective(); 615 PrintULEB128(Value); 616 } 617} 618 619/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 620/// signed leb128 value. 621void AsmPrinter::EmitSLEB128Bytes(int Value) const { 622 if (MAI->hasLEB128()) { 623 O << "\t.sleb128\t" 624 << Value; 625 } else { 626 O << MAI->getData8bitsDirective(); 627 PrintSLEB128(Value); 628 } 629} 630 631/// EmitInt8 - Emit a byte directive and value. 632/// 633void AsmPrinter::EmitInt8(int Value) const { 634 O << MAI->getData8bitsDirective(); 635 PrintHex(Value & 0xFF); 636} 637 638/// EmitInt16 - Emit a short directive and value. 639/// 640void AsmPrinter::EmitInt16(int Value) const { 641 O << MAI->getData16bitsDirective(); 642 PrintHex(Value & 0xFFFF); 643} 644 645/// EmitInt32 - Emit a long directive and value. 646/// 647void AsmPrinter::EmitInt32(int Value) const { 648 O << MAI->getData32bitsDirective(); 649 PrintHex(Value); 650} 651 652/// EmitInt64 - Emit a long long directive and value. 653/// 654void AsmPrinter::EmitInt64(uint64_t Value) const { 655 if (MAI->getData64bitsDirective()) { 656 O << MAI->getData64bitsDirective(); 657 PrintHex(Value); 658 } else { 659 if (TM.getTargetData()->isBigEndian()) { 660 EmitInt32(unsigned(Value >> 32)); O << '\n'; 661 EmitInt32(unsigned(Value)); 662 } else { 663 EmitInt32(unsigned(Value)); O << '\n'; 664 EmitInt32(unsigned(Value >> 32)); 665 } 666 } 667} 668 669/// toOctal - Convert the low order bits of X into an octal digit. 670/// 671static inline char toOctal(int X) { 672 return (X&7)+'0'; 673} 674 675/// printStringChar - Print a char, escaped if necessary. 676/// 677static void printStringChar(formatted_raw_ostream &O, unsigned char C) { 678 if (C == '"') { 679 O << "\\\""; 680 } else if (C == '\\') { 681 O << "\\\\"; 682 } else if (isprint((unsigned char)C)) { 683 O << C; 684 } else { 685 switch(C) { 686 case '\b': O << "\\b"; break; 687 case '\f': O << "\\f"; break; 688 case '\n': O << "\\n"; break; 689 case '\r': O << "\\r"; break; 690 case '\t': O << "\\t"; break; 691 default: 692 O << '\\'; 693 O << toOctal(C >> 6); 694 O << toOctal(C >> 3); 695 O << toOctal(C >> 0); 696 break; 697 } 698 } 699} 700 701/// EmitString - Emit a string with quotes and a null terminator. 702/// Special characters are emitted properly. 703/// \literal (Eg. '\t') \endliteral 704void AsmPrinter::EmitString(const std::string &String) const { 705 EmitString(String.c_str(), String.size()); 706} 707 708void AsmPrinter::EmitString(const char *String, unsigned Size) const { 709 const char* AscizDirective = MAI->getAscizDirective(); 710 if (AscizDirective) 711 O << AscizDirective; 712 else 713 O << MAI->getAsciiDirective(); 714 O << '\"'; 715 for (unsigned i = 0; i < Size; ++i) 716 printStringChar(O, String[i]); 717 if (AscizDirective) 718 O << '\"'; 719 else 720 O << "\\0\""; 721} 722 723 724/// EmitFile - Emit a .file directive. 725void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 726 O << "\t.file\t" << Number << " \""; 727 for (unsigned i = 0, N = Name.size(); i < N; ++i) 728 printStringChar(O, Name[i]); 729 O << '\"'; 730} 731 732 733//===----------------------------------------------------------------------===// 734 735// EmitAlignment - Emit an alignment directive to the specified power of 736// two boundary. For example, if you pass in 3 here, you will get an 8 737// byte alignment. If a global value is specified, and if that global has 738// an explicit alignment requested, it will unconditionally override the 739// alignment request. However, if ForcedAlignBits is specified, this value 740// has final say: the ultimate alignment will be the max of ForcedAlignBits 741// and the alignment computed with NumBits and the global. 742// 743// The algorithm is: 744// Align = NumBits; 745// if (GV && GV->hasalignment) Align = GV->getalignment(); 746// Align = std::max(Align, ForcedAlignBits); 747// 748void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 749 unsigned ForcedAlignBits, 750 bool UseFillExpr) const { 751 if (GV && GV->getAlignment()) 752 NumBits = Log2_32(GV->getAlignment()); 753 NumBits = std::max(NumBits, ForcedAlignBits); 754 755 if (NumBits == 0) return; // No need to emit alignment. 756 757 unsigned FillValue = 0; 758 if (getCurrentSection()->getKind().isText()) 759 FillValue = MAI->getTextAlignFillValue(); 760 761 OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0); 762} 763 764/// EmitZeros - Emit a block of zeros. 765/// 766void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const { 767 if (NumZeros) { 768 if (MAI->getZeroDirective()) { 769 O << MAI->getZeroDirective() << NumZeros; 770 if (MAI->getZeroDirectiveSuffix()) 771 O << MAI->getZeroDirectiveSuffix(); 772 O << '\n'; 773 } else { 774 for (; NumZeros; --NumZeros) 775 O << MAI->getData8bitsDirective(AddrSpace) << "0\n"; 776 } 777 } 778} 779 780// Print out the specified constant, without a storage class. Only the 781// constants valid in constant expressions can occur here. 782void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 783 if (CV->isNullValue() || isa<UndefValue>(CV)) 784 O << '0'; 785 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 786 O << CI->getZExtValue(); 787 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 788 // This is a constant address for a global variable or function. Use the 789 // name of the variable or function as the address value, possibly 790 // decorating it with GlobalVarAddrPrefix/Suffix or 791 // FunctionAddrPrefix/Suffix (these all default to "" ) 792 if (isa<Function>(GV)) { 793 O << MAI->getFunctionAddrPrefix() 794 << Mang->getMangledName(GV) 795 << MAI->getFunctionAddrSuffix(); 796 } else { 797 O << MAI->getGlobalVarAddrPrefix() 798 << Mang->getMangledName(GV) 799 << MAI->getGlobalVarAddrSuffix(); 800 } 801 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 802 const TargetData *TD = TM.getTargetData(); 803 unsigned Opcode = CE->getOpcode(); 804 switch (Opcode) { 805 case Instruction::Trunc: 806 case Instruction::ZExt: 807 case Instruction::SExt: 808 case Instruction::FPTrunc: 809 case Instruction::FPExt: 810 case Instruction::UIToFP: 811 case Instruction::SIToFP: 812 case Instruction::FPToUI: 813 case Instruction::FPToSI: 814 llvm_unreachable("FIXME: Don't support this constant cast expr"); 815 case Instruction::GetElementPtr: { 816 // generate a symbolic expression for the byte address 817 const Constant *ptrVal = CE->getOperand(0); 818 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 819 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 820 idxVec.size())) { 821 // Truncate/sext the offset to the pointer size. 822 if (TD->getPointerSizeInBits() != 64) { 823 int SExtAmount = 64-TD->getPointerSizeInBits(); 824 Offset = (Offset << SExtAmount) >> SExtAmount; 825 } 826 827 if (Offset) 828 O << '('; 829 EmitConstantValueOnly(ptrVal); 830 if (Offset > 0) 831 O << ") + " << Offset; 832 else if (Offset < 0) 833 O << ") - " << -Offset; 834 } else { 835 EmitConstantValueOnly(ptrVal); 836 } 837 break; 838 } 839 case Instruction::BitCast: 840 return EmitConstantValueOnly(CE->getOperand(0)); 841 842 case Instruction::IntToPtr: { 843 // Handle casts to pointers by changing them into casts to the appropriate 844 // integer type. This promotes constant folding and simplifies this code. 845 Constant *Op = CE->getOperand(0); 846 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()), 847 false/*ZExt*/); 848 return EmitConstantValueOnly(Op); 849 } 850 851 852 case Instruction::PtrToInt: { 853 // Support only foldable casts to/from pointers that can be eliminated by 854 // changing the pointer to the appropriately sized integer type. 855 Constant *Op = CE->getOperand(0); 856 const Type *Ty = CE->getType(); 857 858 // We can emit the pointer value into this slot if the slot is an 859 // integer slot greater or equal to the size of the pointer. 860 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType())) 861 return EmitConstantValueOnly(Op); 862 863 O << "(("; 864 EmitConstantValueOnly(Op); 865 APInt ptrMask = 866 APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType())); 867 868 SmallString<40> S; 869 ptrMask.toStringUnsigned(S); 870 O << ") & " << S.str() << ')'; 871 break; 872 } 873 case Instruction::Add: 874 case Instruction::Sub: 875 case Instruction::And: 876 case Instruction::Or: 877 case Instruction::Xor: 878 O << '('; 879 EmitConstantValueOnly(CE->getOperand(0)); 880 O << ')'; 881 switch (Opcode) { 882 case Instruction::Add: 883 O << " + "; 884 break; 885 case Instruction::Sub: 886 O << " - "; 887 break; 888 case Instruction::And: 889 O << " & "; 890 break; 891 case Instruction::Or: 892 O << " | "; 893 break; 894 case Instruction::Xor: 895 O << " ^ "; 896 break; 897 default: 898 break; 899 } 900 O << '('; 901 EmitConstantValueOnly(CE->getOperand(1)); 902 O << ')'; 903 break; 904 default: 905 llvm_unreachable("Unsupported operator!"); 906 } 907 } else { 908 llvm_unreachable("Unknown constant value!"); 909 } 910} 911 912/// printAsCString - Print the specified array as a C compatible string, only if 913/// the predicate isString is true. 914/// 915static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA, 916 unsigned LastElt) { 917 assert(CVA->isString() && "Array is not string compatible!"); 918 919 O << '\"'; 920 for (unsigned i = 0; i != LastElt; ++i) { 921 unsigned char C = 922 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 923 printStringChar(O, C); 924 } 925 O << '\"'; 926} 927 928/// EmitString - Emit a zero-byte-terminated string constant. 929/// 930void AsmPrinter::EmitString(const ConstantArray *CVA) const { 931 unsigned NumElts = CVA->getNumOperands(); 932 if (MAI->getAscizDirective() && NumElts && 933 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 934 O << MAI->getAscizDirective(); 935 printAsCString(O, CVA, NumElts-1); 936 } else { 937 O << MAI->getAsciiDirective(); 938 printAsCString(O, CVA, NumElts); 939 } 940 O << '\n'; 941} 942 943void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA, 944 unsigned AddrSpace) { 945 if (CVA->isString()) { 946 EmitString(CVA); 947 } else { // Not a string. Print the values in successive locations 948 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 949 EmitGlobalConstant(CVA->getOperand(i), AddrSpace); 950 } 951} 952 953void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) { 954 const VectorType *PTy = CP->getType(); 955 956 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 957 EmitGlobalConstant(CP->getOperand(I)); 958} 959 960void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS, 961 unsigned AddrSpace) { 962 // Print the fields in successive locations. Pad to align if needed! 963 const TargetData *TD = TM.getTargetData(); 964 unsigned Size = TD->getTypeAllocSize(CVS->getType()); 965 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 966 uint64_t sizeSoFar = 0; 967 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 968 const Constant* field = CVS->getOperand(i); 969 970 // Check if padding is needed and insert one or more 0s. 971 uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); 972 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 973 - cvsLayout->getElementOffset(i)) - fieldSize; 974 sizeSoFar += fieldSize + padSize; 975 976 // Now print the actual field value. 977 EmitGlobalConstant(field, AddrSpace); 978 979 // Insert padding - this may include padding to increase the size of the 980 // current field up to the ABI size (if the struct is not packed) as well 981 // as padding to ensure that the next field starts at the right offset. 982 EmitZeros(padSize, AddrSpace); 983 } 984 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 985 "Layout of constant struct may be incorrect!"); 986} 987 988void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP, 989 unsigned AddrSpace) { 990 // FP Constants are printed as integer constants to avoid losing 991 // precision... 992 LLVMContext &Context = CFP->getContext(); 993 const TargetData *TD = TM.getTargetData(); 994 if (CFP->getType() == Type::getDoubleTy(Context)) { 995 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 996 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 997 if (MAI->getData64bitsDirective(AddrSpace)) { 998 O << MAI->getData64bitsDirective(AddrSpace) << i; 999 if (VerboseAsm) { 1000 O.PadToColumn(MAI->getCommentColumn()); 1001 O << MAI->getCommentString() << " double " << Val; 1002 } 1003 O << '\n'; 1004 } else if (TD->isBigEndian()) { 1005 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1006 if (VerboseAsm) { 1007 O.PadToColumn(MAI->getCommentColumn()); 1008 O << MAI->getCommentString() 1009 << " most significant word of double " << Val; 1010 } 1011 O << '\n'; 1012 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1013 if (VerboseAsm) { 1014 O.PadToColumn(MAI->getCommentColumn()); 1015 O << MAI->getCommentString() 1016 << " least significant word of double " << Val; 1017 } 1018 O << '\n'; 1019 } else { 1020 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1021 if (VerboseAsm) { 1022 O.PadToColumn(MAI->getCommentColumn()); 1023 O << MAI->getCommentString() 1024 << " least significant word of double " << Val; 1025 } 1026 O << '\n'; 1027 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1028 if (VerboseAsm) { 1029 O.PadToColumn(MAI->getCommentColumn()); 1030 O << MAI->getCommentString() 1031 << " most significant word of double " << Val; 1032 } 1033 O << '\n'; 1034 } 1035 return; 1036 } else if (CFP->getType() == Type::getFloatTy(Context)) { 1037 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1038 O << MAI->getData32bitsDirective(AddrSpace) 1039 << CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1040 if (VerboseAsm) { 1041 O.PadToColumn(MAI->getCommentColumn()); 1042 O << MAI->getCommentString() << " float " << Val; 1043 } 1044 O << '\n'; 1045 return; 1046 } else if (CFP->getType() == Type::getX86_FP80Ty(Context)) { 1047 // all long double variants are printed as hex 1048 // api needed to prevent premature destruction 1049 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1050 const uint64_t *p = api.getRawData(); 1051 // Convert to double so we can print the approximate val as a comment. 1052 APFloat DoubleVal = CFP->getValueAPF(); 1053 bool ignored; 1054 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1055 &ignored); 1056 if (TD->isBigEndian()) { 1057 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1058 if (VerboseAsm) { 1059 O.PadToColumn(MAI->getCommentColumn()); 1060 O << MAI->getCommentString() 1061 << " most significant halfword of x86_fp80 ~" 1062 << DoubleVal.convertToDouble(); 1063 } 1064 O << '\n'; 1065 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1066 if (VerboseAsm) { 1067 O.PadToColumn(MAI->getCommentColumn()); 1068 O << MAI->getCommentString() << " next halfword"; 1069 } 1070 O << '\n'; 1071 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1072 if (VerboseAsm) { 1073 O.PadToColumn(MAI->getCommentColumn()); 1074 O << MAI->getCommentString() << " next halfword"; 1075 } 1076 O << '\n'; 1077 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1078 if (VerboseAsm) { 1079 O.PadToColumn(MAI->getCommentColumn()); 1080 O << MAI->getCommentString() << " next halfword"; 1081 } 1082 O << '\n'; 1083 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1084 if (VerboseAsm) { 1085 O.PadToColumn(MAI->getCommentColumn()); 1086 O << MAI->getCommentString() 1087 << " least significant halfword"; 1088 } 1089 O << '\n'; 1090 } else { 1091 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1092 if (VerboseAsm) { 1093 O.PadToColumn(MAI->getCommentColumn()); 1094 O << MAI->getCommentString() 1095 << " least significant halfword of x86_fp80 ~" 1096 << DoubleVal.convertToDouble(); 1097 } 1098 O << '\n'; 1099 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1100 if (VerboseAsm) { 1101 O.PadToColumn(MAI->getCommentColumn()); 1102 O << MAI->getCommentString() 1103 << " next halfword"; 1104 } 1105 O << '\n'; 1106 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1107 if (VerboseAsm) { 1108 O.PadToColumn(MAI->getCommentColumn()); 1109 O << MAI->getCommentString() 1110 << " next halfword"; 1111 } 1112 O << '\n'; 1113 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1114 if (VerboseAsm) { 1115 O.PadToColumn(MAI->getCommentColumn()); 1116 O << MAI->getCommentString() 1117 << " next halfword"; 1118 } 1119 O << '\n'; 1120 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1121 if (VerboseAsm) { 1122 O.PadToColumn(MAI->getCommentColumn()); 1123 O << MAI->getCommentString() 1124 << " most significant halfword"; 1125 } 1126 O << '\n'; 1127 } 1128 EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) - 1129 TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace); 1130 return; 1131 } else if (CFP->getType() == Type::getPPC_FP128Ty(Context)) { 1132 // all long double variants are printed as hex 1133 // api needed to prevent premature destruction 1134 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1135 const uint64_t *p = api.getRawData(); 1136 if (TD->isBigEndian()) { 1137 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1138 if (VerboseAsm) { 1139 O.PadToColumn(MAI->getCommentColumn()); 1140 O << MAI->getCommentString() 1141 << " most significant word of ppc_fp128"; 1142 } 1143 O << '\n'; 1144 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1145 if (VerboseAsm) { 1146 O.PadToColumn(MAI->getCommentColumn()); 1147 O << MAI->getCommentString() 1148 << " next word"; 1149 } 1150 O << '\n'; 1151 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1152 if (VerboseAsm) { 1153 O.PadToColumn(MAI->getCommentColumn()); 1154 O << MAI->getCommentString() 1155 << " next word"; 1156 } 1157 O << '\n'; 1158 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1159 if (VerboseAsm) { 1160 O.PadToColumn(MAI->getCommentColumn()); 1161 O << MAI->getCommentString() 1162 << " least significant word"; 1163 } 1164 O << '\n'; 1165 } else { 1166 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1167 if (VerboseAsm) { 1168 O.PadToColumn(MAI->getCommentColumn()); 1169 O << MAI->getCommentString() 1170 << " least significant word of ppc_fp128"; 1171 } 1172 O << '\n'; 1173 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1174 if (VerboseAsm) { 1175 O.PadToColumn(MAI->getCommentColumn()); 1176 O << MAI->getCommentString() 1177 << " next word"; 1178 } 1179 O << '\n'; 1180 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1181 if (VerboseAsm) { 1182 O.PadToColumn(MAI->getCommentColumn()); 1183 O << MAI->getCommentString() 1184 << " next word"; 1185 } 1186 O << '\n'; 1187 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1188 if (VerboseAsm) { 1189 O.PadToColumn(MAI->getCommentColumn()); 1190 O << MAI->getCommentString() 1191 << " most significant word"; 1192 } 1193 O << '\n'; 1194 } 1195 return; 1196 } else llvm_unreachable("Floating point constant type not handled"); 1197} 1198 1199void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 1200 unsigned AddrSpace) { 1201 const TargetData *TD = TM.getTargetData(); 1202 unsigned BitWidth = CI->getBitWidth(); 1203 assert(isPowerOf2_32(BitWidth) && 1204 "Non-power-of-2-sized integers not handled!"); 1205 1206 // We don't expect assemblers to support integer data directives 1207 // for more than 64 bits, so we emit the data in at most 64-bit 1208 // quantities at a time. 1209 const uint64_t *RawData = CI->getValue().getRawData(); 1210 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1211 uint64_t Val; 1212 if (TD->isBigEndian()) 1213 Val = RawData[e - i - 1]; 1214 else 1215 Val = RawData[i]; 1216 1217 if (MAI->getData64bitsDirective(AddrSpace)) 1218 O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n'; 1219 else if (TD->isBigEndian()) { 1220 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1221 if (VerboseAsm) { 1222 O.PadToColumn(MAI->getCommentColumn()); 1223 O << MAI->getCommentString() 1224 << " most significant half of i64 " << Val; 1225 } 1226 O << '\n'; 1227 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1228 if (VerboseAsm) { 1229 O.PadToColumn(MAI->getCommentColumn()); 1230 O << MAI->getCommentString() 1231 << " least significant half of i64 " << Val; 1232 } 1233 O << '\n'; 1234 } else { 1235 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1236 if (VerboseAsm) { 1237 O.PadToColumn(MAI->getCommentColumn()); 1238 O << MAI->getCommentString() 1239 << " least significant half of i64 " << Val; 1240 } 1241 O << '\n'; 1242 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1243 if (VerboseAsm) { 1244 O.PadToColumn(MAI->getCommentColumn()); 1245 O << MAI->getCommentString() 1246 << " most significant half of i64 " << Val; 1247 } 1248 O << '\n'; 1249 } 1250 } 1251} 1252 1253/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1254void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1255 const TargetData *TD = TM.getTargetData(); 1256 const Type *type = CV->getType(); 1257 unsigned Size = TD->getTypeAllocSize(type); 1258 1259 if (CV->isNullValue() || isa<UndefValue>(CV)) { 1260 EmitZeros(Size, AddrSpace); 1261 return; 1262 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 1263 EmitGlobalConstantArray(CVA , AddrSpace); 1264 return; 1265 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 1266 EmitGlobalConstantStruct(CVS, AddrSpace); 1267 return; 1268 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1269 EmitGlobalConstantFP(CFP, AddrSpace); 1270 return; 1271 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1272 // Small integers are handled below; large integers are handled here. 1273 if (Size > 4) { 1274 EmitGlobalConstantLargeInt(CI, AddrSpace); 1275 return; 1276 } 1277 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1278 EmitGlobalConstantVector(CP); 1279 return; 1280 } 1281 1282 printDataDirective(type, AddrSpace); 1283 EmitConstantValueOnly(CV); 1284 if (VerboseAsm) { 1285 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1286 SmallString<40> S; 1287 CI->getValue().toStringUnsigned(S, 16); 1288 O.PadToColumn(MAI->getCommentColumn()); 1289 O << MAI->getCommentString() << " 0x" << S.str(); 1290 } 1291 } 1292 O << '\n'; 1293} 1294 1295void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1296 // Target doesn't support this yet! 1297 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1298} 1299 1300/// PrintSpecial - Print information related to the specified machine instr 1301/// that is independent of the operand, and may be independent of the instr 1302/// itself. This can be useful for portably encoding the comment character 1303/// or other bits of target-specific knowledge into the asmstrings. The 1304/// syntax used is ${:comment}. Targets can override this to add support 1305/// for their own strange codes. 1306void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1307 if (!strcmp(Code, "private")) { 1308 O << MAI->getPrivateGlobalPrefix(); 1309 } else if (!strcmp(Code, "comment")) { 1310 if (VerboseAsm) 1311 O << MAI->getCommentString(); 1312 } else if (!strcmp(Code, "uid")) { 1313 // Comparing the address of MI isn't sufficient, because machineinstrs may 1314 // be allocated to the same address across functions. 1315 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1316 1317 // If this is a new LastFn instruction, bump the counter. 1318 if (LastMI != MI || LastFn != ThisF) { 1319 ++Counter; 1320 LastMI = MI; 1321 LastFn = ThisF; 1322 } 1323 O << Counter; 1324 } else { 1325 std::string msg; 1326 raw_string_ostream Msg(msg); 1327 Msg << "Unknown special formatter '" << Code 1328 << "' for machine instr: " << *MI; 1329 llvm_report_error(Msg.str()); 1330 } 1331} 1332 1333/// processDebugLoc - Processes the debug information of each machine 1334/// instruction's DebugLoc. 1335void AsmPrinter::processDebugLoc(DebugLoc DL) { 1336 if (!MAI || !DW) 1337 return; 1338 1339 if (MAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) { 1340 if (!DL.isUnknown()) { 1341 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL); 1342 1343 if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT) 1344 printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col, 1345 DICompileUnit(CurDLT.CompileUnit))); 1346 1347 PrevDLT = CurDLT; 1348 } 1349 } 1350} 1351 1352/// printInlineAsm - This method formats and prints the specified machine 1353/// instruction that is an inline asm. 1354void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1355 unsigned NumOperands = MI->getNumOperands(); 1356 1357 // Count the number of register definitions. 1358 unsigned NumDefs = 0; 1359 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1360 ++NumDefs) 1361 assert(NumDefs != NumOperands-1 && "No asm string?"); 1362 1363 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1364 1365 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1366 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1367 1368 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1369 // These are useful to see where empty asm's wound up. 1370 if (AsmStr[0] == 0) { 1371 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1372 O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n'; 1373 return; 1374 } 1375 1376 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1377 1378 // The variant of the current asmprinter. 1379 int AsmPrinterVariant = MAI->getAssemblerDialect(); 1380 1381 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1382 const char *LastEmitted = AsmStr; // One past the last character emitted. 1383 1384 while (*LastEmitted) { 1385 switch (*LastEmitted) { 1386 default: { 1387 // Not a special case, emit the string section literally. 1388 const char *LiteralEnd = LastEmitted+1; 1389 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1390 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1391 ++LiteralEnd; 1392 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1393 O.write(LastEmitted, LiteralEnd-LastEmitted); 1394 LastEmitted = LiteralEnd; 1395 break; 1396 } 1397 case '\n': 1398 ++LastEmitted; // Consume newline character. 1399 O << '\n'; // Indent code with newline. 1400 break; 1401 case '$': { 1402 ++LastEmitted; // Consume '$' character. 1403 bool Done = true; 1404 1405 // Handle escapes. 1406 switch (*LastEmitted) { 1407 default: Done = false; break; 1408 case '$': // $$ -> $ 1409 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1410 O << '$'; 1411 ++LastEmitted; // Consume second '$' character. 1412 break; 1413 case '(': // $( -> same as GCC's { character. 1414 ++LastEmitted; // Consume '(' character. 1415 if (CurVariant != -1) { 1416 llvm_report_error("Nested variants found in inline asm string: '" 1417 + std::string(AsmStr) + "'"); 1418 } 1419 CurVariant = 0; // We're in the first variant now. 1420 break; 1421 case '|': 1422 ++LastEmitted; // consume '|' character. 1423 if (CurVariant == -1) 1424 O << '|'; // this is gcc's behavior for | outside a variant 1425 else 1426 ++CurVariant; // We're in the next variant. 1427 break; 1428 case ')': // $) -> same as GCC's } char. 1429 ++LastEmitted; // consume ')' character. 1430 if (CurVariant == -1) 1431 O << '}'; // this is gcc's behavior for } outside a variant 1432 else 1433 CurVariant = -1; 1434 break; 1435 } 1436 if (Done) break; 1437 1438 bool HasCurlyBraces = false; 1439 if (*LastEmitted == '{') { // ${variable} 1440 ++LastEmitted; // Consume '{' character. 1441 HasCurlyBraces = true; 1442 } 1443 1444 // If we have ${:foo}, then this is not a real operand reference, it is a 1445 // "magic" string reference, just like in .td files. Arrange to call 1446 // PrintSpecial. 1447 if (HasCurlyBraces && *LastEmitted == ':') { 1448 ++LastEmitted; 1449 const char *StrStart = LastEmitted; 1450 const char *StrEnd = strchr(StrStart, '}'); 1451 if (StrEnd == 0) { 1452 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '" 1453 + std::string(AsmStr) + "'"); 1454 } 1455 1456 std::string Val(StrStart, StrEnd); 1457 PrintSpecial(MI, Val.c_str()); 1458 LastEmitted = StrEnd+1; 1459 break; 1460 } 1461 1462 const char *IDStart = LastEmitted; 1463 char *IDEnd; 1464 errno = 0; 1465 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1466 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1467 llvm_report_error("Bad $ operand number in inline asm string: '" 1468 + std::string(AsmStr) + "'"); 1469 } 1470 LastEmitted = IDEnd; 1471 1472 char Modifier[2] = { 0, 0 }; 1473 1474 if (HasCurlyBraces) { 1475 // If we have curly braces, check for a modifier character. This 1476 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1477 if (*LastEmitted == ':') { 1478 ++LastEmitted; // Consume ':' character. 1479 if (*LastEmitted == 0) { 1480 llvm_report_error("Bad ${:} expression in inline asm string: '" 1481 + std::string(AsmStr) + "'"); 1482 } 1483 1484 Modifier[0] = *LastEmitted; 1485 ++LastEmitted; // Consume modifier character. 1486 } 1487 1488 if (*LastEmitted != '}') { 1489 llvm_report_error("Bad ${} expression in inline asm string: '" 1490 + std::string(AsmStr) + "'"); 1491 } 1492 ++LastEmitted; // Consume '}' character. 1493 } 1494 1495 if ((unsigned)Val >= NumOperands-1) { 1496 llvm_report_error("Invalid $ operand number in inline asm string: '" 1497 + std::string(AsmStr) + "'"); 1498 } 1499 1500 // Okay, we finally have a value number. Ask the target to print this 1501 // operand! 1502 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1503 unsigned OpNo = 1; 1504 1505 bool Error = false; 1506 1507 // Scan to find the machine operand number for the operand. 1508 for (; Val; --Val) { 1509 if (OpNo >= MI->getNumOperands()) break; 1510 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1511 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1512 } 1513 1514 if (OpNo >= MI->getNumOperands()) { 1515 Error = true; 1516 } else { 1517 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1518 ++OpNo; // Skip over the ID number. 1519 1520 if (Modifier[0]=='l') // labels are target independent 1521 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), 1522 false, false, false); 1523 else { 1524 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1525 if ((OpFlags & 7) == 4) { 1526 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1527 Modifier[0] ? Modifier : 0); 1528 } else { 1529 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1530 Modifier[0] ? Modifier : 0); 1531 } 1532 } 1533 } 1534 if (Error) { 1535 std::string msg; 1536 raw_string_ostream Msg(msg); 1537 Msg << "Invalid operand found in inline asm: '" 1538 << AsmStr << "'\n"; 1539 MI->print(Msg); 1540 llvm_report_error(Msg.str()); 1541 } 1542 } 1543 break; 1544 } 1545 } 1546 } 1547 O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n'; 1548} 1549 1550/// printImplicitDef - This method prints the specified machine instruction 1551/// that is an implicit def. 1552void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1553 if (VerboseAsm) { 1554 O.PadToColumn(MAI->getCommentColumn()); 1555 O << MAI->getCommentString() << " implicit-def: " 1556 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; 1557 } 1558} 1559 1560/// printLabel - This method prints a local label used by debug and 1561/// exception handling tables. 1562void AsmPrinter::printLabel(const MachineInstr *MI) const { 1563 printLabel(MI->getOperand(0).getImm()); 1564} 1565 1566void AsmPrinter::printLabel(unsigned Id) const { 1567 O << MAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; 1568} 1569 1570/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1571/// instruction, using the specified assembler variant. Targets should 1572/// overried this to format as appropriate. 1573bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1574 unsigned AsmVariant, const char *ExtraCode) { 1575 // Target doesn't support this yet! 1576 return true; 1577} 1578 1579bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1580 unsigned AsmVariant, 1581 const char *ExtraCode) { 1582 // Target doesn't support this yet! 1583 return true; 1584} 1585 1586/// printBasicBlockLabel - This method prints the label for the specified 1587/// MachineBasicBlock 1588void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, 1589 bool printAlign, 1590 bool printColon, 1591 bool printComment) const { 1592 if (printAlign) { 1593 unsigned Align = MBB->getAlignment(); 1594 if (Align) 1595 EmitAlignment(Log2_32(Align)); 1596 } 1597 1598 O << MAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' 1599 << MBB->getNumber(); 1600 if (printColon) 1601 O << ':'; 1602 if (printComment) { 1603 if (const BasicBlock *BB = MBB->getBasicBlock()) 1604 if (BB->hasName()) { 1605 O.PadToColumn(MAI->getCommentColumn()); 1606 O << MAI->getCommentString() << ' '; 1607 WriteAsOperand(O, BB, /*PrintType=*/false); 1608 } 1609 1610 if (printColon) 1611 EmitComments(*MBB); 1612 } 1613} 1614 1615/// printPICJumpTableSetLabel - This method prints a set label for the 1616/// specified MachineBasicBlock for a jumptable entry. 1617void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1618 const MachineBasicBlock *MBB) const { 1619 if (!MAI->getSetDirective()) 1620 return; 1621 1622 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1623 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1624 printBasicBlockLabel(MBB, false, false, false); 1625 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1626 << '_' << uid << '\n'; 1627} 1628 1629void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1630 const MachineBasicBlock *MBB) const { 1631 if (!MAI->getSetDirective()) 1632 return; 1633 1634 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1635 << getFunctionNumber() << '_' << uid << '_' << uid2 1636 << "_set_" << MBB->getNumber() << ','; 1637 printBasicBlockLabel(MBB, false, false, false); 1638 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1639 << '_' << uid << '_' << uid2 << '\n'; 1640} 1641 1642/// printDataDirective - This method prints the asm directive for the 1643/// specified type. 1644void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { 1645 const TargetData *TD = TM.getTargetData(); 1646 switch (type->getTypeID()) { 1647 case Type::FloatTyID: case Type::DoubleTyID: 1648 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1649 assert(0 && "Should have already output floating point constant."); 1650 default: 1651 assert(0 && "Can't handle printing this type of thing"); 1652 case Type::IntegerTyID: { 1653 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1654 if (BitWidth <= 8) 1655 O << MAI->getData8bitsDirective(AddrSpace); 1656 else if (BitWidth <= 16) 1657 O << MAI->getData16bitsDirective(AddrSpace); 1658 else if (BitWidth <= 32) 1659 O << MAI->getData32bitsDirective(AddrSpace); 1660 else if (BitWidth <= 64) { 1661 assert(MAI->getData64bitsDirective(AddrSpace) && 1662 "Target cannot handle 64-bit constant exprs!"); 1663 O << MAI->getData64bitsDirective(AddrSpace); 1664 } else { 1665 llvm_unreachable("Target cannot handle given data directive width!"); 1666 } 1667 break; 1668 } 1669 case Type::PointerTyID: 1670 if (TD->getPointerSize() == 8) { 1671 assert(MAI->getData64bitsDirective(AddrSpace) && 1672 "Target cannot handle 64-bit pointer exprs!"); 1673 O << MAI->getData64bitsDirective(AddrSpace); 1674 } else if (TD->getPointerSize() == 2) { 1675 O << MAI->getData16bitsDirective(AddrSpace); 1676 } else if (TD->getPointerSize() == 1) { 1677 O << MAI->getData8bitsDirective(AddrSpace); 1678 } else { 1679 O << MAI->getData32bitsDirective(AddrSpace); 1680 } 1681 break; 1682 } 1683} 1684 1685void AsmPrinter::printVisibility(const std::string& Name, 1686 unsigned Visibility) const { 1687 if (Visibility == GlobalValue::HiddenVisibility) { 1688 if (const char *Directive = MAI->getHiddenDirective()) 1689 O << Directive << Name << '\n'; 1690 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1691 if (const char *Directive = MAI->getProtectedDirective()) 1692 O << Directive << Name << '\n'; 1693 } 1694} 1695 1696void AsmPrinter::printOffset(int64_t Offset) const { 1697 if (Offset > 0) 1698 O << '+' << Offset; 1699 else if (Offset < 0) 1700 O << Offset; 1701} 1702 1703void AsmPrinter::printMCInst(const MCInst *MI) { 1704 llvm_unreachable("MCInst printing unavailable on this target!"); 1705} 1706 1707GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1708 if (!S->usesMetadata()) 1709 return 0; 1710 1711 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1712 if (GCPI != GCMetadataPrinters.end()) 1713 return GCPI->second; 1714 1715 const char *Name = S->getName().c_str(); 1716 1717 for (GCMetadataPrinterRegistry::iterator 1718 I = GCMetadataPrinterRegistry::begin(), 1719 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1720 if (strcmp(Name, I->getName()) == 0) { 1721 GCMetadataPrinter *GMP = I->instantiate(); 1722 GMP->S = S; 1723 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1724 return GMP; 1725 } 1726 1727 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1728 llvm_unreachable(0); 1729} 1730 1731/// EmitComments - Pretty-print comments for instructions 1732void AsmPrinter::EmitComments(const MachineInstr &MI) const { 1733 if (!VerboseAsm || 1734 MI.getDebugLoc().isUnknown()) 1735 return; 1736 1737 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); 1738 1739 // Print source line info. 1740 O.PadToColumn(MAI->getCommentColumn()); 1741 O << MAI->getCommentString() << " SrcLine "; 1742 if (DLT.CompileUnit->hasInitializer()) { 1743 Constant *Name = DLT.CompileUnit->getInitializer(); 1744 if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name)) 1745 if (NameString->isString()) 1746 O << NameString->getAsString() << " "; 1747 } 1748 O << DLT.Line; 1749 if (DLT.Col != 0) 1750 O << ":" << DLT.Col; 1751} 1752 1753/// EmitComments - Pretty-print comments for instructions 1754void AsmPrinter::EmitComments(const MCInst &MI) const 1755{ 1756 if (VerboseAsm) { 1757 if (!MI.getDebugLoc().isUnknown()) { 1758 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); 1759 1760 // Print source line info 1761 O.PadToColumn(MAI->getCommentColumn()); 1762 O << MAI->getCommentString() << " SrcLine "; 1763 if (DLT.CompileUnit->hasInitializer()) { 1764 Constant *Name = DLT.CompileUnit->getInitializer(); 1765 if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name)) 1766 if (NameString->isString()) { 1767 O << NameString->getAsString() << " "; 1768 } 1769 } 1770 O << DLT.Line; 1771 if (DLT.Col != 0) 1772 O << ":" << DLT.Col; 1773 } 1774 } 1775} 1776 1777/// Indent - Insert spaces into the character output stream. The 1778/// "level" is multiplied by the "scale" to calculate the number of 1779/// spaces to insert. "level" can represent something like loop 1780/// nesting level, for example. 1781/// 1782static formatted_raw_ostream & 1783Indent(formatted_raw_ostream &out, int level, int scale = 2) { 1784 for(int i = 0; i < level*scale; ++i) { 1785 out << " "; 1786 } 1787 return out; 1788} 1789 1790/// PrintChildLoopComment - Print comments about child loops within 1791/// the loop for this basic block, with nesting. 1792/// 1793static void PrintChildLoopComment(formatted_raw_ostream &O, 1794 const MachineLoop *loop, 1795 const MCAsmInfo *MAI, 1796 int FunctionNumber) { 1797 // Add child loop information 1798 for(MachineLoop::iterator cl = loop->begin(), 1799 clend = loop->end(); 1800 cl != clend; 1801 ++cl) { 1802 MachineBasicBlock *Header = (*cl)->getHeader(); 1803 assert(Header && "No header for loop"); 1804 1805 O << '\n'; 1806 O.PadToColumn(MAI->getCommentColumn()); 1807 1808 O << MAI->getCommentString(); 1809 Indent(O, (*cl)->getLoopDepth()-1) 1810 << " Child Loop BB" << FunctionNumber << "_" 1811 << Header->getNumber() << " Depth " << (*cl)->getLoopDepth(); 1812 1813 PrintChildLoopComment(O, *cl, MAI, FunctionNumber); 1814 } 1815} 1816 1817/// EmitComments - Pretty-print comments for basic blocks 1818void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const 1819{ 1820 if (VerboseAsm) { 1821 // Add loop depth information 1822 const MachineLoop *loop = LI->getLoopFor(&MBB); 1823 1824 if (loop) { 1825 // Print a newline after bb# annotation. 1826 O << "\n"; 1827 O.PadToColumn(MAI->getCommentColumn()); 1828 O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth() 1829 << '\n'; 1830 1831 O.PadToColumn(MAI->getCommentColumn()); 1832 1833 MachineBasicBlock *Header = loop->getHeader(); 1834 assert(Header && "No header for loop"); 1835 1836 if (Header == &MBB) { 1837 O << MAI->getCommentString() << " Loop Header"; 1838 PrintChildLoopComment(O, loop, MAI, getFunctionNumber()); 1839 } 1840 else { 1841 O << MAI->getCommentString() << " Loop Header is BB" 1842 << getFunctionNumber() << "_" << loop->getHeader()->getNumber(); 1843 } 1844 1845 if (loop->empty()) { 1846 O << '\n'; 1847 O.PadToColumn(MAI->getCommentColumn()); 1848 O << MAI->getCommentString() << " Inner Loop"; 1849 } 1850 1851 // Add parent loop information 1852 for (const MachineLoop *CurLoop = loop->getParentLoop(); 1853 CurLoop; 1854 CurLoop = CurLoop->getParentLoop()) { 1855 MachineBasicBlock *Header = CurLoop->getHeader(); 1856 assert(Header && "No header for loop"); 1857 1858 O << '\n'; 1859 O.PadToColumn(MAI->getCommentColumn()); 1860 O << MAI->getCommentString(); 1861 Indent(O, CurLoop->getLoopDepth()-1) 1862 << " Inside Loop BB" << getFunctionNumber() << "_" 1863 << Header->getNumber() << " Depth " << CurLoop->getLoopDepth(); 1864 } 1865 } 1866 } 1867} 1868