AsmPrinter.cpp revision 34982576a43887e7f062ed0a3571af2cbab003f3
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#define DEBUG_TYPE "asm-printer" 15#include "llvm/CodeGen/AsmPrinter.h" 16#include "DwarfDebug.h" 17#include "DwarfException.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineFrameInfo.h" 22#include "llvm/CodeGen/MachineFunction.h" 23#include "llvm/CodeGen/MachineJumpTableInfo.h" 24#include "llvm/CodeGen/MachineLoopInfo.h" 25#include "llvm/CodeGen/MachineModuleInfo.h" 26#include "llvm/Analysis/ConstantFolding.h" 27#include "llvm/Analysis/DebugInfo.h" 28#include "llvm/MC/MCAsmInfo.h" 29#include "llvm/MC/MCContext.h" 30#include "llvm/MC/MCExpr.h" 31#include "llvm/MC/MCInst.h" 32#include "llvm/MC/MCSection.h" 33#include "llvm/MC/MCStreamer.h" 34#include "llvm/MC/MCSymbol.h" 35#include "llvm/Target/Mangler.h" 36#include "llvm/Target/TargetData.h" 37#include "llvm/Target/TargetInstrInfo.h" 38#include "llvm/Target/TargetLowering.h" 39#include "llvm/Target/TargetLoweringObjectFile.h" 40#include "llvm/Target/TargetOptions.h" 41#include "llvm/Target/TargetRegisterInfo.h" 42#include "llvm/Assembly/Writer.h" 43#include "llvm/ADT/SmallString.h" 44#include "llvm/ADT/Statistic.h" 45#include "llvm/Support/ErrorHandling.h" 46#include "llvm/Support/Format.h" 47#include "llvm/Support/MathExtras.h" 48#include "llvm/Support/Timer.h" 49using namespace llvm; 50 51static const char *DWARFGroupName = "DWARF Emission"; 52static const char *DbgTimerName = "DWARF Debug Writer"; 53static const char *EHTimerName = "DWARF Exception Writer"; 54 55STATISTIC(EmittedInsts, "Number of machine instrs printed"); 56 57char AsmPrinter::ID = 0; 58 59typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type; 60static gcp_map_type &getGCMap(void *&P) { 61 if (P == 0) 62 P = new gcp_map_type(); 63 return *(gcp_map_type*)P; 64} 65 66 67/// getGVAlignmentLog2 - Return the alignment to use for the specified global 68/// value in log2 form. This rounds up to the preferred alignment if possible 69/// and legal. 70static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD, 71 unsigned InBits = 0) { 72 unsigned NumBits = 0; 73 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 74 NumBits = TD.getPreferredAlignmentLog(GVar); 75 76 // If InBits is specified, round it to it. 77 if (InBits > NumBits) 78 NumBits = InBits; 79 80 // If the GV has a specified alignment, take it into account. 81 if (GV->getAlignment() == 0) 82 return NumBits; 83 84 unsigned GVAlign = Log2_32(GV->getAlignment()); 85 86 // If the GVAlign is larger than NumBits, or if we are required to obey 87 // NumBits because the GV has an assigned section, obey it. 88 if (GVAlign > NumBits || GV->hasSection()) 89 NumBits = GVAlign; 90 return NumBits; 91} 92 93 94 95 96AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 97 : MachineFunctionPass(ID), 98 TM(tm), MAI(tm.getMCAsmInfo()), 99 OutContext(Streamer.getContext()), 100 OutStreamer(Streamer), 101 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { 102 DD = 0; DE = 0; MMI = 0; LI = 0; 103 GCMetadataPrinters = 0; 104 VerboseAsm = Streamer.isVerboseAsm(); 105} 106 107AsmPrinter::~AsmPrinter() { 108 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized"); 109 110 if (GCMetadataPrinters != 0) { 111 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 112 113 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I) 114 delete I->second; 115 delete &GCMap; 116 GCMetadataPrinters = 0; 117 } 118 119 delete &OutStreamer; 120} 121 122/// getFunctionNumber - Return a unique ID for the current function. 123/// 124unsigned AsmPrinter::getFunctionNumber() const { 125 return MF->getFunctionNumber(); 126} 127 128const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 129 return TM.getTargetLowering()->getObjFileLowering(); 130} 131 132 133/// getTargetData - Return information about data layout. 134const TargetData &AsmPrinter::getTargetData() const { 135 return *TM.getTargetData(); 136} 137 138/// getCurrentSection() - Return the current section we are emitting to. 139const MCSection *AsmPrinter::getCurrentSection() const { 140 return OutStreamer.getCurrentSection(); 141} 142 143 144 145void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 146 AU.setPreservesAll(); 147 MachineFunctionPass::getAnalysisUsage(AU); 148 AU.addRequired<MachineModuleInfo>(); 149 AU.addRequired<GCModuleInfo>(); 150 if (isVerbose()) 151 AU.addRequired<MachineLoopInfo>(); 152} 153 154bool AsmPrinter::doInitialization(Module &M) { 155 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 156 MMI->AnalyzeModule(M); 157 158 // Initialize TargetLoweringObjectFile. 159 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 160 .Initialize(OutContext, TM); 161 162 Mang = new Mangler(OutContext, *TM.getTargetData()); 163 164 // Allow the target to emit any magic that it wants at the start of the file. 165 EmitStartOfAsmFile(M); 166 167 // Very minimal debug info. It is ignored if we emit actual debug info. If we 168 // don't, this at least helps the user find where a global came from. 169 if (MAI->hasSingleParameterDotFile()) { 170 // .file "foo.c" 171 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 172 } 173 174 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 175 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 176 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 177 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 178 MP->beginAssembly(*this); 179 180 // Emit module-level inline asm if it exists. 181 if (!M.getModuleInlineAsm().empty()) { 182 OutStreamer.AddComment("Start of file scope inline assembly"); 183 OutStreamer.AddBlankLine(); 184 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 185 OutStreamer.AddComment("End of file scope inline assembly"); 186 OutStreamer.AddBlankLine(); 187 } 188 189 if (MAI->doesSupportDebugInformation()) 190 DD = new DwarfDebug(this, &M); 191 192 switch (MAI->getExceptionHandlingType()) { 193 case ExceptionHandling::None: 194 return false; 195 case ExceptionHandling::SjLj: 196 case ExceptionHandling::DwarfCFI: 197 DE = new DwarfCFIException(this); 198 return false; 199 case ExceptionHandling::ARM: 200 DE = new ARMException(this); 201 return false; 202 case ExceptionHandling::Win64: 203 DE = new Win64Exception(this); 204 return false; 205 } 206 207 llvm_unreachable("Unknown exception type."); 208} 209 210void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const { 211 switch ((GlobalValue::LinkageTypes)Linkage) { 212 case GlobalValue::CommonLinkage: 213 case GlobalValue::LinkOnceAnyLinkage: 214 case GlobalValue::LinkOnceODRLinkage: 215 case GlobalValue::WeakAnyLinkage: 216 case GlobalValue::WeakODRLinkage: 217 case GlobalValue::LinkerPrivateWeakLinkage: 218 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: 219 if (MAI->getWeakDefDirective() != 0) { 220 // .globl _foo 221 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 222 223 if ((GlobalValue::LinkageTypes)Linkage != 224 GlobalValue::LinkerPrivateWeakDefAutoLinkage) 225 // .weak_definition _foo 226 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 227 else 228 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 229 } else if (MAI->getLinkOnceDirective() != 0) { 230 // .globl _foo 231 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 232 //NOTE: linkonce is handled by the section the symbol was assigned to. 233 } else { 234 // .weak _foo 235 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 236 } 237 break; 238 case GlobalValue::DLLExportLinkage: 239 case GlobalValue::AppendingLinkage: 240 // FIXME: appending linkage variables should go into a section of 241 // their name or something. For now, just emit them as external. 242 case GlobalValue::ExternalLinkage: 243 // If external or appending, declare as a global symbol. 244 // .globl _foo 245 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 246 break; 247 case GlobalValue::PrivateLinkage: 248 case GlobalValue::InternalLinkage: 249 case GlobalValue::LinkerPrivateLinkage: 250 break; 251 default: 252 llvm_unreachable("Unknown linkage type!"); 253 } 254} 255 256 257/// EmitGlobalVariable - Emit the specified global variable to the .s file. 258void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 259 if (GV->hasInitializer()) { 260 // Check to see if this is a special global used by LLVM, if so, emit it. 261 if (EmitSpecialLLVMGlobal(GV)) 262 return; 263 264 if (isVerbose()) { 265 WriteAsOperand(OutStreamer.GetCommentOS(), GV, 266 /*PrintType=*/false, GV->getParent()); 267 OutStreamer.GetCommentOS() << '\n'; 268 } 269 } 270 271 MCSymbol *GVSym = Mang->getSymbol(GV); 272 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 273 274 if (!GV->hasInitializer()) // External globals require no extra code. 275 return; 276 277 if (MAI->hasDotTypeDotSizeDirective()) 278 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 279 280 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 281 282 const TargetData *TD = TM.getTargetData(); 283 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType()); 284 285 // If the alignment is specified, we *must* obey it. Overaligning a global 286 // with a specified alignment is a prompt way to break globals emitted to 287 // sections and expected to be contiguous (e.g. ObjC metadata). 288 unsigned AlignLog = getGVAlignmentLog2(GV, *TD); 289 290 // Handle common and BSS local symbols (.lcomm). 291 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 292 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 293 unsigned Align = 1 << AlignLog; 294 295 // Handle common symbols. 296 if (GVKind.isCommon()) { 297 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 298 Align = 0; 299 300 // .comm _foo, 42, 4 301 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 302 return; 303 } 304 305 // Handle local BSS symbols. 306 if (MAI->hasMachoZeroFillDirective()) { 307 const MCSection *TheSection = 308 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 309 // .zerofill __DATA, __bss, _foo, 400, 5 310 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 311 return; 312 } 313 314 if (MAI->getLCOMMDirectiveType() != LCOMM::None && 315 (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) { 316 // .lcomm _foo, 42 317 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 318 return; 319 } 320 321 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 322 Align = 0; 323 324 // .local _foo 325 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 326 // .comm _foo, 42, 4 327 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 328 return; 329 } 330 331 const MCSection *TheSection = 332 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 333 334 // Handle the zerofill directive on darwin, which is a special form of BSS 335 // emission. 336 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 337 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 338 339 // .globl _foo 340 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 341 // .zerofill __DATA, __common, _foo, 400, 5 342 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 343 return; 344 } 345 346 // Handle thread local data for mach-o which requires us to output an 347 // additional structure of data and mangle the original symbol so that we 348 // can reference it later. 349 // 350 // TODO: This should become an "emit thread local global" method on TLOF. 351 // All of this macho specific stuff should be sunk down into TLOFMachO and 352 // stuff like "TLSExtraDataSection" should no longer be part of the parent 353 // TLOF class. This will also make it more obvious that stuff like 354 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 355 // specific code. 356 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 357 // Emit the .tbss symbol 358 MCSymbol *MangSym = 359 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 360 361 if (GVKind.isThreadBSS()) 362 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 363 else if (GVKind.isThreadData()) { 364 OutStreamer.SwitchSection(TheSection); 365 366 EmitAlignment(AlignLog, GV); 367 OutStreamer.EmitLabel(MangSym); 368 369 EmitGlobalConstant(GV->getInitializer()); 370 } 371 372 OutStreamer.AddBlankLine(); 373 374 // Emit the variable struct for the runtime. 375 const MCSection *TLVSect 376 = getObjFileLowering().getTLSExtraDataSection(); 377 378 OutStreamer.SwitchSection(TLVSect); 379 // Emit the linkage here. 380 EmitLinkage(GV->getLinkage(), GVSym); 381 OutStreamer.EmitLabel(GVSym); 382 383 // Three pointers in size: 384 // - __tlv_bootstrap - used to make sure support exists 385 // - spare pointer, used when mapped by the runtime 386 // - pointer to mangled symbol above with initializer 387 unsigned PtrSize = TD->getPointerSizeInBits()/8; 388 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 389 PtrSize, 0); 390 OutStreamer.EmitIntValue(0, PtrSize, 0); 391 OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0); 392 393 OutStreamer.AddBlankLine(); 394 return; 395 } 396 397 OutStreamer.SwitchSection(TheSection); 398 399 EmitLinkage(GV->getLinkage(), GVSym); 400 EmitAlignment(AlignLog, GV); 401 402 OutStreamer.EmitLabel(GVSym); 403 404 EmitGlobalConstant(GV->getInitializer()); 405 406 if (MAI->hasDotTypeDotSizeDirective()) 407 // .size foo, 42 408 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 409 410 OutStreamer.AddBlankLine(); 411} 412 413/// EmitFunctionHeader - This method emits the header for the current 414/// function. 415void AsmPrinter::EmitFunctionHeader() { 416 // Print out constants referenced by the function 417 EmitConstantPool(); 418 419 // Print the 'header' of function. 420 const Function *F = MF->getFunction(); 421 422 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); 423 EmitVisibility(CurrentFnSym, F->getVisibility()); 424 425 EmitLinkage(F->getLinkage(), CurrentFnSym); 426 EmitAlignment(MF->getAlignment(), F); 427 428 if (MAI->hasDotTypeDotSizeDirective()) 429 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 430 431 if (isVerbose()) { 432 WriteAsOperand(OutStreamer.GetCommentOS(), F, 433 /*PrintType=*/false, F->getParent()); 434 OutStreamer.GetCommentOS() << '\n'; 435 } 436 437 // Emit the CurrentFnSym. This is a virtual function to allow targets to 438 // do their wild and crazy things as required. 439 EmitFunctionEntryLabel(); 440 441 // If the function had address-taken blocks that got deleted, then we have 442 // references to the dangling symbols. Emit them at the start of the function 443 // so that we don't get references to undefined symbols. 444 std::vector<MCSymbol*> DeadBlockSyms; 445 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 446 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 447 OutStreamer.AddComment("Address taken block that was later removed"); 448 OutStreamer.EmitLabel(DeadBlockSyms[i]); 449 } 450 451 // Add some workaround for linkonce linkage on Cygwin\MinGW. 452 if (MAI->getLinkOnceDirective() != 0 && 453 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) { 454 // FIXME: What is this? 455 MCSymbol *FakeStub = 456 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+ 457 CurrentFnSym->getName()); 458 OutStreamer.EmitLabel(FakeStub); 459 } 460 461 // Emit pre-function debug and/or EH information. 462 if (DE) { 463 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 464 DE->BeginFunction(MF); 465 } 466 if (DD) { 467 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 468 DD->beginFunction(MF); 469 } 470} 471 472/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 473/// function. This can be overridden by targets as required to do custom stuff. 474void AsmPrinter::EmitFunctionEntryLabel() { 475 // The function label could have already been emitted if two symbols end up 476 // conflicting due to asm renaming. Detect this and emit an error. 477 if (CurrentFnSym->isUndefined()) { 478 OutStreamer.ForceCodeRegion(); 479 return OutStreamer.EmitLabel(CurrentFnSym); 480 } 481 482 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 483 "' label emitted multiple times to assembly file"); 484} 485 486 487/// EmitComments - Pretty-print comments for instructions. 488static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 489 const MachineFunction *MF = MI.getParent()->getParent(); 490 const TargetMachine &TM = MF->getTarget(); 491 492 // Check for spills and reloads 493 int FI; 494 495 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 496 497 // We assume a single instruction only has a spill or reload, not 498 // both. 499 const MachineMemOperand *MMO; 500 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 501 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 502 MMO = *MI.memoperands_begin(); 503 CommentOS << MMO->getSize() << "-byte Reload\n"; 504 } 505 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 506 if (FrameInfo->isSpillSlotObjectIndex(FI)) 507 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 508 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 509 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 510 MMO = *MI.memoperands_begin(); 511 CommentOS << MMO->getSize() << "-byte Spill\n"; 512 } 513 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 514 if (FrameInfo->isSpillSlotObjectIndex(FI)) 515 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 516 } 517 518 // Check for spill-induced copies 519 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 520 CommentOS << " Reload Reuse\n"; 521} 522 523/// EmitImplicitDef - This method emits the specified machine instruction 524/// that is an implicit def. 525static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) { 526 unsigned RegNo = MI->getOperand(0).getReg(); 527 AP.OutStreamer.AddComment(Twine("implicit-def: ") + 528 AP.TM.getRegisterInfo()->getName(RegNo)); 529 AP.OutStreamer.AddBlankLine(); 530} 531 532static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) { 533 std::string Str = "kill:"; 534 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 535 const MachineOperand &Op = MI->getOperand(i); 536 assert(Op.isReg() && "KILL instruction must have only register operands"); 537 Str += ' '; 538 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 539 Str += (Op.isDef() ? "<def>" : "<kill>"); 540 } 541 AP.OutStreamer.AddComment(Str); 542 AP.OutStreamer.AddBlankLine(); 543} 544 545/// EmitDebugValueComment - This method handles the target-independent form 546/// of DBG_VALUE, returning true if it was able to do so. A false return 547/// means the target will need to handle MI in EmitInstruction. 548static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 549 // This code handles only the 3-operand target-independent form. 550 if (MI->getNumOperands() != 3) 551 return false; 552 553 SmallString<128> Str; 554 raw_svector_ostream OS(Str); 555 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: "; 556 557 // cast away const; DIetc do not take const operands for some reason. 558 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata())); 559 if (V.getContext().isSubprogram()) 560 OS << DISubprogram(V.getContext()).getDisplayName() << ":"; 561 OS << V.getName() << " <- "; 562 563 // Register or immediate value. Register 0 means undef. 564 if (MI->getOperand(0).isFPImm()) { 565 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 566 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 567 OS << (double)APF.convertToFloat(); 568 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 569 OS << APF.convertToDouble(); 570 } else { 571 // There is no good way to print long double. Convert a copy to 572 // double. Ah well, it's only a comment. 573 bool ignored; 574 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 575 &ignored); 576 OS << "(long double) " << APF.convertToDouble(); 577 } 578 } else if (MI->getOperand(0).isImm()) { 579 OS << MI->getOperand(0).getImm(); 580 } else if (MI->getOperand(0).isCImm()) { 581 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 582 } else { 583 assert(MI->getOperand(0).isReg() && "Unknown operand type"); 584 if (MI->getOperand(0).getReg() == 0) { 585 // Suppress offset, it is not meaningful here. 586 OS << "undef"; 587 // NOTE: Want this comment at start of line, don't emit with AddComment. 588 AP.OutStreamer.EmitRawText(OS.str()); 589 return true; 590 } 591 OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg()); 592 } 593 594 OS << '+' << MI->getOperand(1).getImm(); 595 // NOTE: Want this comment at start of line, don't emit with AddComment. 596 AP.OutStreamer.EmitRawText(OS.str()); 597 return true; 598} 599 600AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 601 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 602 MF->getFunction()->needsUnwindTableEntry()) 603 return CFI_M_EH; 604 605 if (MMI->hasDebugInfo()) 606 return CFI_M_Debug; 607 608 return CFI_M_None; 609} 610 611bool AsmPrinter::needsSEHMoves() { 612 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 613 MF->getFunction()->needsUnwindTableEntry(); 614} 615 616bool AsmPrinter::needsRelocationsForDwarfStringPool() const { 617 return MAI->doesDwarfUseRelocationsForStringPool(); 618} 619 620void AsmPrinter::emitPrologLabel(const MachineInstr &MI) { 621 MCSymbol *Label = MI.getOperand(0).getMCSymbol(); 622 623 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 624 return; 625 626 if (needsCFIMoves() == CFI_M_None) 627 return; 628 629 if (MMI->getCompactUnwindEncoding() != 0) 630 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 631 632 MachineModuleInfo &MMI = MF->getMMI(); 633 std::vector<MachineMove> &Moves = MMI.getFrameMoves(); 634 bool FoundOne = false; 635 (void)FoundOne; 636 for (std::vector<MachineMove>::iterator I = Moves.begin(), 637 E = Moves.end(); I != E; ++I) { 638 if (I->getLabel() == Label) { 639 EmitCFIFrameMove(*I); 640 FoundOne = true; 641 } 642 } 643 assert(FoundOne); 644} 645 646/// EmitFunctionBody - This method emits the body and trailer for a 647/// function. 648void AsmPrinter::EmitFunctionBody() { 649 // Emit target-specific gunk before the function body. 650 EmitFunctionBodyStart(); 651 652 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo(); 653 654 // Print out code for the function. 655 bool HasAnyRealCode = false; 656 const MachineInstr *LastMI = 0; 657 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 658 I != E; ++I) { 659 // Print a label for the basic block. 660 EmitBasicBlockStart(I); 661 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); 662 II != IE; ++II) { 663 LastMI = II; 664 665 // Print the assembly for the instruction. 666 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() && 667 !II->isDebugValue()) { 668 HasAnyRealCode = true; 669 ++EmittedInsts; 670 } 671 672 if (ShouldPrintDebugScopes) { 673 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 674 DD->beginInstruction(II); 675 } 676 677 if (isVerbose()) 678 EmitComments(*II, OutStreamer.GetCommentOS()); 679 680 switch (II->getOpcode()) { 681 case TargetOpcode::PROLOG_LABEL: 682 emitPrologLabel(*II); 683 break; 684 685 case TargetOpcode::EH_LABEL: 686 case TargetOpcode::GC_LABEL: 687 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol()); 688 break; 689 case TargetOpcode::INLINEASM: 690 EmitInlineAsm(II); 691 break; 692 case TargetOpcode::DBG_VALUE: 693 if (isVerbose()) { 694 if (!EmitDebugValueComment(II, *this)) 695 EmitInstruction(II); 696 } 697 break; 698 case TargetOpcode::IMPLICIT_DEF: 699 if (isVerbose()) EmitImplicitDef(II, *this); 700 break; 701 case TargetOpcode::KILL: 702 if (isVerbose()) EmitKill(II, *this); 703 break; 704 default: 705 if (!TM.hasMCUseLoc()) 706 MCLineEntry::Make(&OutStreamer, getCurrentSection()); 707 708 EmitInstruction(II); 709 break; 710 } 711 712 if (ShouldPrintDebugScopes) { 713 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 714 DD->endInstruction(II); 715 } 716 } 717 } 718 719 // If the last instruction was a prolog label, then we have a situation where 720 // we emitted a prolog but no function body. This results in the ending prolog 721 // label equaling the end of function label and an invalid "row" in the 722 // FDE. We need to emit a noop in this situation so that the FDE's rows are 723 // valid. 724 bool RequiresNoop = LastMI && LastMI->isPrologLabel(); 725 726 // If the function is empty and the object file uses .subsections_via_symbols, 727 // then we need to emit *something* to the function body to prevent the 728 // labels from collapsing together. Just emit a noop. 729 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 730 MCInst Noop; 731 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 732 if (Noop.getOpcode()) { 733 OutStreamer.AddComment("avoids zero-length function"); 734 OutStreamer.EmitInstruction(Noop); 735 } else // Target not mc-ized yet. 736 OutStreamer.EmitRawText(StringRef("\tnop\n")); 737 } 738 739 const Function *F = MF->getFunction(); 740 for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) { 741 const BasicBlock *BB = i; 742 if (!BB->hasAddressTaken()) 743 continue; 744 MCSymbol *Sym = GetBlockAddressSymbol(BB); 745 if (Sym->isDefined()) 746 continue; 747 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 748 OutStreamer.EmitLabel(Sym); 749 } 750 751 // Emit target-specific gunk after the function body. 752 EmitFunctionBodyEnd(); 753 754 // If the target wants a .size directive for the size of the function, emit 755 // it. 756 if (MAI->hasDotTypeDotSizeDirective()) { 757 // Create a symbol for the end of function, so we can get the size as 758 // difference between the function label and the temp label. 759 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 760 OutStreamer.EmitLabel(FnEndLabel); 761 762 const MCExpr *SizeExp = 763 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 764 MCSymbolRefExpr::Create(CurrentFnSym, OutContext), 765 OutContext); 766 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 767 } 768 769 // Emit post-function debug information. 770 if (DD) { 771 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 772 DD->endFunction(MF); 773 } 774 if (DE) { 775 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 776 DE->EndFunction(); 777 } 778 MMI->EndFunction(); 779 780 // Print out jump tables referenced by the function. 781 EmitJumpTableInfo(); 782 783 OutStreamer.AddBlankLine(); 784} 785 786/// getDebugValueLocation - Get location information encoded by DBG_VALUE 787/// operands. 788MachineLocation AsmPrinter:: 789getDebugValueLocation(const MachineInstr *MI) const { 790 // Target specific DBG_VALUE instructions are handled by each target. 791 return MachineLocation(); 792} 793 794/// EmitDwarfRegOp - Emit dwarf register operation. 795void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const { 796 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 797 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); 798 799 for (const unsigned *SR = TRI->getSuperRegisters(MLoc.getReg()); 800 *SR && Reg < 0; ++SR) { 801 Reg = TRI->getDwarfRegNum(*SR, false); 802 // FIXME: Get the bit range this register uses of the superregister 803 // so that we can produce a DW_OP_bit_piece 804 } 805 806 // FIXME: Handle cases like a super register being encoded as 807 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33 808 809 // FIXME: We have no reasonable way of handling errors in here. The 810 // caller might be in the middle of an dwarf expression. We should 811 // probably assert that Reg >= 0 once debug info generation is more mature. 812 813 if (int Offset = MLoc.getOffset()) { 814 if (Reg < 32) { 815 OutStreamer.AddComment( 816 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); 817 EmitInt8(dwarf::DW_OP_breg0 + Reg); 818 } else { 819 OutStreamer.AddComment("DW_OP_bregx"); 820 EmitInt8(dwarf::DW_OP_bregx); 821 OutStreamer.AddComment(Twine(Reg)); 822 EmitULEB128(Reg); 823 } 824 EmitSLEB128(Offset); 825 } else { 826 if (Reg < 32) { 827 OutStreamer.AddComment( 828 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); 829 EmitInt8(dwarf::DW_OP_reg0 + Reg); 830 } else { 831 OutStreamer.AddComment("DW_OP_regx"); 832 EmitInt8(dwarf::DW_OP_regx); 833 OutStreamer.AddComment(Twine(Reg)); 834 EmitULEB128(Reg); 835 } 836 } 837 838 // FIXME: Produce a DW_OP_bit_piece if we used a superregister 839} 840 841bool AsmPrinter::doFinalization(Module &M) { 842 // Emit global variables. 843 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 844 I != E; ++I) 845 EmitGlobalVariable(I); 846 847 // Emit visibility info for declarations 848 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 849 const Function &F = *I; 850 if (!F.isDeclaration()) 851 continue; 852 GlobalValue::VisibilityTypes V = F.getVisibility(); 853 if (V == GlobalValue::DefaultVisibility) 854 continue; 855 856 MCSymbol *Name = Mang->getSymbol(&F); 857 EmitVisibility(Name, V, false); 858 } 859 860 // Finalize debug and EH information. 861 if (DE) { 862 { 863 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 864 DE->EndModule(); 865 } 866 delete DE; DE = 0; 867 } 868 if (DD) { 869 { 870 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 871 DD->endModule(); 872 } 873 delete DD; DD = 0; 874 } 875 876 // If the target wants to know about weak references, print them all. 877 if (MAI->getWeakRefDirective()) { 878 // FIXME: This is not lazy, it would be nice to only print weak references 879 // to stuff that is actually used. Note that doing so would require targets 880 // to notice uses in operands (due to constant exprs etc). This should 881 // happen with the MC stuff eventually. 882 883 // Print out module-level global variables here. 884 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 885 I != E; ++I) { 886 if (!I->hasExternalWeakLinkage()) continue; 887 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 888 } 889 890 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 891 if (!I->hasExternalWeakLinkage()) continue; 892 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 893 } 894 } 895 896 if (MAI->hasSetDirective()) { 897 OutStreamer.AddBlankLine(); 898 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 899 I != E; ++I) { 900 MCSymbol *Name = Mang->getSymbol(I); 901 902 const GlobalValue *GV = I->getAliasedGlobal(); 903 MCSymbol *Target = Mang->getSymbol(GV); 904 905 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 906 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 907 else if (I->hasWeakLinkage()) 908 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 909 else 910 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 911 912 EmitVisibility(Name, I->getVisibility()); 913 914 // Emit the directives as assignments aka .set: 915 OutStreamer.EmitAssignment(Name, 916 MCSymbolRefExpr::Create(Target, OutContext)); 917 } 918 } 919 920 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 921 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 922 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 923 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 924 MP->finishAssembly(*this); 925 926 // If we don't have any trampolines, then we don't require stack memory 927 // to be executable. Some targets have a directive to declare this. 928 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 929 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 930 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 931 OutStreamer.SwitchSection(S); 932 933 // Allow the target to emit any magic that it wants at the end of the file, 934 // after everything else has gone out. 935 EmitEndOfAsmFile(M); 936 937 delete Mang; Mang = 0; 938 MMI = 0; 939 940 OutStreamer.Finish(); 941 return false; 942} 943 944void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 945 this->MF = &MF; 946 // Get the function symbol. 947 CurrentFnSym = Mang->getSymbol(MF.getFunction()); 948 949 if (isVerbose()) 950 LI = &getAnalysis<MachineLoopInfo>(); 951} 952 953namespace { 954 // SectionCPs - Keep track the alignment, constpool entries per Section. 955 struct SectionCPs { 956 const MCSection *S; 957 unsigned Alignment; 958 SmallVector<unsigned, 4> CPEs; 959 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 960 }; 961} 962 963/// EmitConstantPool - Print to the current output stream assembly 964/// representations of the constants in the constant pool MCP. This is 965/// used to print out constants which have been "spilled to memory" by 966/// the code generator. 967/// 968void AsmPrinter::EmitConstantPool() { 969 const MachineConstantPool *MCP = MF->getConstantPool(); 970 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 971 if (CP.empty()) return; 972 973 // Calculate sections for constant pool entries. We collect entries to go into 974 // the same section together to reduce amount of section switch statements. 975 SmallVector<SectionCPs, 4> CPSections; 976 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 977 const MachineConstantPoolEntry &CPE = CP[i]; 978 unsigned Align = CPE.getAlignment(); 979 980 SectionKind Kind; 981 switch (CPE.getRelocationInfo()) { 982 default: llvm_unreachable("Unknown section kind"); 983 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 984 case 1: 985 Kind = SectionKind::getReadOnlyWithRelLocal(); 986 break; 987 case 0: 988 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 989 case 4: Kind = SectionKind::getMergeableConst4(); break; 990 case 8: Kind = SectionKind::getMergeableConst8(); break; 991 case 16: Kind = SectionKind::getMergeableConst16();break; 992 default: Kind = SectionKind::getMergeableConst(); break; 993 } 994 } 995 996 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 997 998 // The number of sections are small, just do a linear search from the 999 // last section to the first. 1000 bool Found = false; 1001 unsigned SecIdx = CPSections.size(); 1002 while (SecIdx != 0) { 1003 if (CPSections[--SecIdx].S == S) { 1004 Found = true; 1005 break; 1006 } 1007 } 1008 if (!Found) { 1009 SecIdx = CPSections.size(); 1010 CPSections.push_back(SectionCPs(S, Align)); 1011 } 1012 1013 if (Align > CPSections[SecIdx].Alignment) 1014 CPSections[SecIdx].Alignment = Align; 1015 CPSections[SecIdx].CPEs.push_back(i); 1016 } 1017 1018 // Now print stuff into the calculated sections. 1019 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1020 OutStreamer.SwitchSection(CPSections[i].S); 1021 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1022 1023 unsigned Offset = 0; 1024 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1025 unsigned CPI = CPSections[i].CPEs[j]; 1026 MachineConstantPoolEntry CPE = CP[CPI]; 1027 1028 // Emit inter-object padding for alignment. 1029 unsigned AlignMask = CPE.getAlignment() - 1; 1030 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1031 OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/); 1032 1033 Type *Ty = CPE.getType(); 1034 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 1035 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1036 1037 if (CPE.isMachineConstantPoolEntry()) 1038 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1039 else 1040 EmitGlobalConstant(CPE.Val.ConstVal); 1041 } 1042 } 1043} 1044 1045/// EmitJumpTableInfo - Print assembly representations of the jump tables used 1046/// by the current function to the current output stream. 1047/// 1048void AsmPrinter::EmitJumpTableInfo() { 1049 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1050 if (MJTI == 0) return; 1051 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1052 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1053 if (JT.empty()) return; 1054 1055 // Pick the directive to use to print the jump table entries, and switch to 1056 // the appropriate section. 1057 const Function *F = MF->getFunction(); 1058 bool JTInDiffSection = false; 1059 if (// In PIC mode, we need to emit the jump table to the same section as the 1060 // function body itself, otherwise the label differences won't make sense. 1061 // FIXME: Need a better predicate for this: what about custom entries? 1062 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1063 // We should also do if the section name is NULL or function is declared 1064 // in discardable section 1065 // FIXME: this isn't the right predicate, should be based on the MCSection 1066 // for the function. 1067 F->isWeakForLinker()) { 1068 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); 1069 } else { 1070 // Otherwise, drop it in the readonly section. 1071 const MCSection *ReadOnlySection = 1072 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1073 OutStreamer.SwitchSection(ReadOnlySection); 1074 JTInDiffSection = true; 1075 } 1076 1077 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData()))); 1078 1079 // If we know the form of the jump table, go ahead and tag it as such. 1080 if (!JTInDiffSection) { 1081 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32) { 1082 OutStreamer.EmitJumpTable32Region(); 1083 } else { 1084 OutStreamer.EmitDataRegion(); 1085 } 1086 } 1087 1088 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1089 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1090 1091 // If this jump table was deleted, ignore it. 1092 if (JTBBs.empty()) continue; 1093 1094 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1095 // .set directive for each unique entry. This reduces the number of 1096 // relocations the assembler will generate for the jump table. 1097 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1098 MAI->hasSetDirective()) { 1099 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1100 const TargetLowering *TLI = TM.getTargetLowering(); 1101 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1102 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1103 const MachineBasicBlock *MBB = JTBBs[ii]; 1104 if (!EmittedSets.insert(MBB)) continue; 1105 1106 // .set LJTSet, LBB32-base 1107 const MCExpr *LHS = 1108 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1109 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1110 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1111 } 1112 } 1113 1114 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1115 // before each jump table. The first label is never referenced, but tells 1116 // the assembler and linker the extents of the jump table object. The 1117 // second label is actually referenced by the code. 1118 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) 1119 // FIXME: This doesn't have to have any specific name, just any randomly 1120 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1121 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1122 1123 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1124 1125 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1126 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1127 } 1128} 1129 1130/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1131/// current stream. 1132void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1133 const MachineBasicBlock *MBB, 1134 unsigned UID) const { 1135 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1136 const MCExpr *Value = 0; 1137 switch (MJTI->getEntryKind()) { 1138 case MachineJumpTableInfo::EK_Inline: 1139 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1140 case MachineJumpTableInfo::EK_Custom32: 1141 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1142 OutContext); 1143 break; 1144 case MachineJumpTableInfo::EK_BlockAddress: 1145 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1146 // .word LBB123 1147 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1148 break; 1149 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1150 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1151 // with a relocation as gp-relative, e.g.: 1152 // .gprel32 LBB123 1153 MCSymbol *MBBSym = MBB->getSymbol(); 1154 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1155 return; 1156 } 1157 1158 case MachineJumpTableInfo::EK_LabelDifference32: { 1159 // EK_LabelDifference32 - Each entry is the address of the block minus 1160 // the address of the jump table. This is used for PIC jump tables where 1161 // gprel32 is not supported. e.g.: 1162 // .word LBB123 - LJTI1_2 1163 // If the .set directive is supported, this is emitted as: 1164 // .set L4_5_set_123, LBB123 - LJTI1_2 1165 // .word L4_5_set_123 1166 1167 // If we have emitted set directives for the jump table entries, print 1168 // them rather than the entries themselves. If we're emitting PIC, then 1169 // emit the table entries as differences between two text section labels. 1170 if (MAI->hasSetDirective()) { 1171 // If we used .set, reference the .set's symbol. 1172 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1173 OutContext); 1174 break; 1175 } 1176 // Otherwise, use the difference as the jump table entry. 1177 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1178 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1179 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1180 break; 1181 } 1182 } 1183 1184 assert(Value && "Unknown entry kind!"); 1185 1186 unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData()); 1187 OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0); 1188} 1189 1190 1191/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1192/// special global used by LLVM. If so, emit it and return true, otherwise 1193/// do nothing and return false. 1194bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1195 if (GV->getName() == "llvm.used") { 1196 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1197 EmitLLVMUsedList(GV->getInitializer()); 1198 return true; 1199 } 1200 1201 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1202 if (GV->getSection() == "llvm.metadata" || 1203 GV->hasAvailableExternallyLinkage()) 1204 return true; 1205 1206 if (!GV->hasAppendingLinkage()) return false; 1207 1208 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1209 1210 if (GV->getName() == "llvm.global_ctors") { 1211 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1212 1213 if (TM.getRelocationModel() == Reloc::Static && 1214 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1215 StringRef Sym(".constructors_used"); 1216 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1217 MCSA_Reference); 1218 } 1219 return true; 1220 } 1221 1222 if (GV->getName() == "llvm.global_dtors") { 1223 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1224 1225 if (TM.getRelocationModel() == Reloc::Static && 1226 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1227 StringRef Sym(".destructors_used"); 1228 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1229 MCSA_Reference); 1230 } 1231 return true; 1232 } 1233 1234 return false; 1235} 1236 1237/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1238/// global in the specified llvm.used list for which emitUsedDirectiveFor 1239/// is true, as being used with this directive. 1240void AsmPrinter::EmitLLVMUsedList(const Constant *List) { 1241 // Should be an array of 'i8*'. 1242 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1243 if (InitList == 0) return; 1244 1245 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1246 const GlobalValue *GV = 1247 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1248 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) 1249 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip); 1250 } 1251} 1252 1253typedef std::pair<unsigned, Constant*> Structor; 1254 1255static bool priority_order(const Structor& lhs, const Structor& rhs) { 1256 return lhs.first < rhs.first; 1257} 1258 1259/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1260/// priority. 1261void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1262 // Should be an array of '{ int, void ()* }' structs. The first value is the 1263 // init priority. 1264 if (!isa<ConstantArray>(List)) return; 1265 1266 // Sanity check the structors list. 1267 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1268 if (!InitList) return; // Not an array! 1269 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1270 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs! 1271 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1272 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1273 1274 // Gather the structors in a form that's convenient for sorting by priority. 1275 SmallVector<Structor, 8> Structors; 1276 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1277 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 1278 if (!CS) continue; // Malformed. 1279 if (CS->getOperand(1)->isNullValue()) 1280 break; // Found a null terminator, skip the rest. 1281 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1282 if (!Priority) continue; // Malformed. 1283 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535), 1284 CS->getOperand(1))); 1285 } 1286 1287 // Emit the function pointers in the target-specific order 1288 const TargetData *TD = TM.getTargetData(); 1289 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 1290 std::stable_sort(Structors.begin(), Structors.end(), priority_order); 1291 for (unsigned i = 0, e = Structors.size(); i != e; ++i) { 1292 const MCSection *OutputSection = 1293 (isCtor ? 1294 getObjFileLowering().getStaticCtorSection(Structors[i].first) : 1295 getObjFileLowering().getStaticDtorSection(Structors[i].first)); 1296 OutStreamer.SwitchSection(OutputSection); 1297 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1298 EmitAlignment(Align); 1299 EmitXXStructor(Structors[i].second); 1300 } 1301} 1302 1303//===--------------------------------------------------------------------===// 1304// Emission and print routines 1305// 1306 1307/// EmitInt8 - Emit a byte directive and value. 1308/// 1309void AsmPrinter::EmitInt8(int Value) const { 1310 OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/); 1311} 1312 1313/// EmitInt16 - Emit a short directive and value. 1314/// 1315void AsmPrinter::EmitInt16(int Value) const { 1316 OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/); 1317} 1318 1319/// EmitInt32 - Emit a long directive and value. 1320/// 1321void AsmPrinter::EmitInt32(int Value) const { 1322 OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/); 1323} 1324 1325/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1326/// in bytes of the directive is specified by Size and Hi/Lo specify the 1327/// labels. This implicitly uses .set if it is available. 1328void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1329 unsigned Size) const { 1330 // Get the Hi-Lo expression. 1331 const MCExpr *Diff = 1332 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1333 MCSymbolRefExpr::Create(Lo, OutContext), 1334 OutContext); 1335 1336 if (!MAI->hasSetDirective()) { 1337 OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/); 1338 return; 1339 } 1340 1341 // Otherwise, emit with .set (aka assignment). 1342 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1343 OutStreamer.EmitAssignment(SetLabel, Diff); 1344 OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/); 1345} 1346 1347/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1348/// where the size in bytes of the directive is specified by Size and Hi/Lo 1349/// specify the labels. This implicitly uses .set if it is available. 1350void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1351 const MCSymbol *Lo, unsigned Size) 1352 const { 1353 1354 // Emit Hi+Offset - Lo 1355 // Get the Hi+Offset expression. 1356 const MCExpr *Plus = 1357 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1358 MCConstantExpr::Create(Offset, OutContext), 1359 OutContext); 1360 1361 // Get the Hi+Offset-Lo expression. 1362 const MCExpr *Diff = 1363 MCBinaryExpr::CreateSub(Plus, 1364 MCSymbolRefExpr::Create(Lo, OutContext), 1365 OutContext); 1366 1367 if (!MAI->hasSetDirective()) 1368 OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/); 1369 else { 1370 // Otherwise, emit with .set (aka assignment). 1371 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1372 OutStreamer.EmitAssignment(SetLabel, Diff); 1373 OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/); 1374 } 1375} 1376 1377/// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1378/// where the size in bytes of the directive is specified by Size and Label 1379/// specifies the label. This implicitly uses .set if it is available. 1380void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1381 unsigned Size) 1382 const { 1383 1384 // Emit Label+Offset 1385 const MCExpr *Plus = 1386 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext), 1387 MCConstantExpr::Create(Offset, OutContext), 1388 OutContext); 1389 1390 OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/); 1391} 1392 1393 1394//===----------------------------------------------------------------------===// 1395 1396// EmitAlignment - Emit an alignment directive to the specified power of 1397// two boundary. For example, if you pass in 3 here, you will get an 8 1398// byte alignment. If a global value is specified, and if that global has 1399// an explicit alignment requested, it will override the alignment request 1400// if required for correctness. 1401// 1402void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { 1403 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits); 1404 1405 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1406 1407 if (getCurrentSection()->getKind().isText()) 1408 OutStreamer.EmitCodeAlignment(1 << NumBits); 1409 else 1410 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); 1411} 1412 1413//===----------------------------------------------------------------------===// 1414// Constant emission. 1415//===----------------------------------------------------------------------===// 1416 1417/// LowerConstant - Lower the specified LLVM Constant to an MCExpr. 1418/// 1419static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) { 1420 MCContext &Ctx = AP.OutContext; 1421 1422 if (CV->isNullValue() || isa<UndefValue>(CV)) 1423 return MCConstantExpr::Create(0, Ctx); 1424 1425 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1426 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1427 1428 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1429 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); 1430 1431 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1432 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1433 1434 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1435 if (CE == 0) { 1436 llvm_unreachable("Unknown constant value to lower!"); 1437 } 1438 1439 switch (CE->getOpcode()) { 1440 default: 1441 // If the code isn't optimized, there may be outstanding folding 1442 // opportunities. Attempt to fold the expression using TargetData as a 1443 // last resort before giving up. 1444 if (Constant *C = 1445 ConstantFoldConstantExpression(CE, AP.TM.getTargetData())) 1446 if (C != CE) 1447 return LowerConstant(C, AP); 1448 1449 // Otherwise report the problem to the user. 1450 { 1451 std::string S; 1452 raw_string_ostream OS(S); 1453 OS << "Unsupported expression in static initializer: "; 1454 WriteAsOperand(OS, CE, /*PrintType=*/false, 1455 !AP.MF ? 0 : AP.MF->getFunction()->getParent()); 1456 report_fatal_error(OS.str()); 1457 } 1458 case Instruction::GetElementPtr: { 1459 const TargetData &TD = *AP.TM.getTargetData(); 1460 // Generate a symbolic expression for the byte address 1461 const Constant *PtrVal = CE->getOperand(0); 1462 SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end()); 1463 int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec); 1464 1465 const MCExpr *Base = LowerConstant(CE->getOperand(0), AP); 1466 if (Offset == 0) 1467 return Base; 1468 1469 // Truncate/sext the offset to the pointer size. 1470 if (TD.getPointerSizeInBits() != 64) { 1471 int SExtAmount = 64-TD.getPointerSizeInBits(); 1472 Offset = (Offset << SExtAmount) >> SExtAmount; 1473 } 1474 1475 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1476 Ctx); 1477 } 1478 1479 case Instruction::Trunc: 1480 // We emit the value and depend on the assembler to truncate the generated 1481 // expression properly. This is important for differences between 1482 // blockaddress labels. Since the two labels are in the same function, it 1483 // is reasonable to treat their delta as a 32-bit value. 1484 // FALL THROUGH. 1485 case Instruction::BitCast: 1486 return LowerConstant(CE->getOperand(0), AP); 1487 1488 case Instruction::IntToPtr: { 1489 const TargetData &TD = *AP.TM.getTargetData(); 1490 // Handle casts to pointers by changing them into casts to the appropriate 1491 // integer type. This promotes constant folding and simplifies this code. 1492 Constant *Op = CE->getOperand(0); 1493 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), 1494 false/*ZExt*/); 1495 return LowerConstant(Op, AP); 1496 } 1497 1498 case Instruction::PtrToInt: { 1499 const TargetData &TD = *AP.TM.getTargetData(); 1500 // Support only foldable casts to/from pointers that can be eliminated by 1501 // changing the pointer to the appropriately sized integer type. 1502 Constant *Op = CE->getOperand(0); 1503 Type *Ty = CE->getType(); 1504 1505 const MCExpr *OpExpr = LowerConstant(Op, AP); 1506 1507 // We can emit the pointer value into this slot if the slot is an 1508 // integer slot equal to the size of the pointer. 1509 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) 1510 return OpExpr; 1511 1512 // Otherwise the pointer is smaller than the resultant integer, mask off 1513 // the high bits so we are sure to get a proper truncation if the input is 1514 // a constant expr. 1515 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); 1516 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1517 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1518 } 1519 1520 // The MC library also has a right-shift operator, but it isn't consistently 1521 // signed or unsigned between different targets. 1522 case Instruction::Add: 1523 case Instruction::Sub: 1524 case Instruction::Mul: 1525 case Instruction::SDiv: 1526 case Instruction::SRem: 1527 case Instruction::Shl: 1528 case Instruction::And: 1529 case Instruction::Or: 1530 case Instruction::Xor: { 1531 const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP); 1532 const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP); 1533 switch (CE->getOpcode()) { 1534 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1535 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1536 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1537 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1538 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1539 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1540 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1541 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1542 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1543 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1544 } 1545 } 1546 } 1547} 1548 1549static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace, 1550 AsmPrinter &AP); 1551 1552/// isRepeatedByteSequence - Determine whether the given value is 1553/// composed of a repeated sequence of identical bytes and return the 1554/// byte value. If it is not a repeated sequence, return -1. 1555static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1556 StringRef Data = V->getRawDataValues(); 1557 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1558 char C = Data[0]; 1559 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1560 if (Data[i] != C) return -1; 1561 return C; 1562} 1563 1564 1565/// isRepeatedByteSequence - Determine whether the given value is 1566/// composed of a repeated sequence of identical bytes and return the 1567/// byte value. If it is not a repeated sequence, return -1. 1568static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1569 1570 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1571 if (CI->getBitWidth() > 64) return -1; 1572 1573 uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType()); 1574 uint64_t Value = CI->getZExtValue(); 1575 1576 // Make sure the constant is at least 8 bits long and has a power 1577 // of 2 bit width. This guarantees the constant bit width is 1578 // always a multiple of 8 bits, avoiding issues with padding out 1579 // to Size and other such corner cases. 1580 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1581 1582 uint8_t Byte = static_cast<uint8_t>(Value); 1583 1584 for (unsigned i = 1; i < Size; ++i) { 1585 Value >>= 8; 1586 if (static_cast<uint8_t>(Value) != Byte) return -1; 1587 } 1588 return Byte; 1589 } 1590 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1591 // Make sure all array elements are sequences of the same repeated 1592 // byte. 1593 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1594 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1595 if (Byte == -1) return -1; 1596 1597 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1598 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1599 if (ThisByte == -1) return -1; 1600 if (Byte != ThisByte) return -1; 1601 } 1602 return Byte; 1603 } 1604 1605 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1606 return isRepeatedByteSequence(CDS); 1607 1608 return -1; 1609} 1610 1611static void EmitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1612 unsigned AddrSpace,AsmPrinter &AP){ 1613 1614 // See if we can aggregate this into a .fill, if so, emit it as such. 1615 int Value = isRepeatedByteSequence(CDS, AP.TM); 1616 if (Value != -1) { 1617 uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType()); 1618 return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1619 } 1620 1621 // If this can be emitted with .ascii/.asciz, emit it as such. 1622 if (CDS->isString()) 1623 return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace); 1624 1625 // Otherwise, emit the values in successive locations. 1626 unsigned ElementByteSize = CDS->getElementByteSize(); 1627 if (isa<IntegerType>(CDS->getElementType())) { 1628 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1629 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1630 ElementByteSize, AddrSpace); 1631 } 1632 return; 1633 } 1634 1635 // FP Constants are printed as integer constants to avoid losing 1636 // precision. 1637 assert(CDS->getElementType()->isFloatTy() || 1638 CDS->getElementType()->isDoubleTy()); 1639 1640 if (ElementByteSize == 4) { 1641 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1642 union { 1643 float F; 1644 uint32_t I; 1645 }; 1646 1647 F = CDS->getElementAsFloat(i); 1648 if (AP.isVerbose()) 1649 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1650 AP.OutStreamer.EmitIntValue(I, 4, AddrSpace); 1651 } 1652 return; 1653 } 1654 1655 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1656 union { 1657 double F; 1658 uint64_t I; 1659 }; 1660 1661 F = CDS->getElementAsDouble(i); 1662 if (AP.isVerbose()) 1663 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1664 AP.OutStreamer.EmitIntValue(I, 8, AddrSpace); 1665 } 1666} 1667 1668static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace, 1669 AsmPrinter &AP) { 1670 if (AddrSpace != 0 || !CA->isString()) { 1671 // Not a string. Print the values in successive locations. 1672 1673 // See if we can aggregate some values. Make sure it can be 1674 // represented as a series of bytes of the constant value. 1675 int Value = isRepeatedByteSequence(CA, AP.TM); 1676 1677 if (Value != -1) { 1678 uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType()); 1679 AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1680 } 1681 else { 1682 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1683 EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP); 1684 } 1685 return; 1686 } 1687 1688 // Otherwise, it can be emitted as .ascii. 1689 SmallVector<char, 128> TmpVec; 1690 TmpVec.reserve(CA->getNumOperands()); 1691 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1692 TmpVec.push_back(cast<ConstantInt>(CA->getOperand(i))->getZExtValue()); 1693 1694 AP.OutStreamer.EmitBytes(StringRef(TmpVec.data(), TmpVec.size()), AddrSpace); 1695} 1696 1697static void EmitGlobalConstantVector(const ConstantVector *CV, 1698 unsigned AddrSpace, AsmPrinter &AP) { 1699 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1700 EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP); 1701 1702 const TargetData &TD = *AP.TM.getTargetData(); 1703 unsigned Size = TD.getTypeAllocSize(CV->getType()); 1704 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) * 1705 CV->getType()->getNumElements(); 1706 if (unsigned Padding = Size - EmittedSize) 1707 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1708} 1709 1710static void EmitGlobalConstantStruct(const ConstantStruct *CS, 1711 unsigned AddrSpace, AsmPrinter &AP) { 1712 // Print the fields in successive locations. Pad to align if needed! 1713 const TargetData *TD = AP.TM.getTargetData(); 1714 unsigned Size = TD->getTypeAllocSize(CS->getType()); 1715 const StructLayout *Layout = TD->getStructLayout(CS->getType()); 1716 uint64_t SizeSoFar = 0; 1717 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1718 const Constant *Field = CS->getOperand(i); 1719 1720 // Check if padding is needed and insert one or more 0s. 1721 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType()); 1722 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1723 - Layout->getElementOffset(i)) - FieldSize; 1724 SizeSoFar += FieldSize + PadSize; 1725 1726 // Now print the actual field value. 1727 EmitGlobalConstantImpl(Field, AddrSpace, AP); 1728 1729 // Insert padding - this may include padding to increase the size of the 1730 // current field up to the ABI size (if the struct is not packed) as well 1731 // as padding to ensure that the next field starts at the right offset. 1732 AP.OutStreamer.EmitZeros(PadSize, AddrSpace); 1733 } 1734 assert(SizeSoFar == Layout->getSizeInBytes() && 1735 "Layout of constant struct may be incorrect!"); 1736} 1737 1738static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace, 1739 AsmPrinter &AP) { 1740 if (CFP->getType()->isHalfTy()) { 1741 if (AP.isVerbose()) { 1742 SmallString<10> Str; 1743 CFP->getValueAPF().toString(Str); 1744 AP.OutStreamer.GetCommentOS() << "half " << Str << '\n'; 1745 } 1746 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1747 AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace); 1748 return; 1749 } 1750 1751 if (CFP->getType()->isFloatTy()) { 1752 if (AP.isVerbose()) { 1753 float Val = CFP->getValueAPF().convertToFloat(); 1754 AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'; 1755 } 1756 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1757 AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace); 1758 return; 1759 } 1760 1761 // FP Constants are printed as integer constants to avoid losing 1762 // precision. 1763 if (CFP->getType()->isDoubleTy()) { 1764 if (AP.isVerbose()) { 1765 double Val = CFP->getValueAPF().convertToDouble(); 1766 AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'; 1767 } 1768 1769 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1770 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1771 return; 1772 } 1773 1774 if (CFP->getType()->isX86_FP80Ty()) { 1775 // all long double variants are printed as hex 1776 // API needed to prevent premature destruction 1777 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1778 const uint64_t *p = API.getRawData(); 1779 if (AP.isVerbose()) { 1780 // Convert to double so we can print the approximate val as a comment. 1781 APFloat DoubleVal = CFP->getValueAPF(); 1782 bool ignored; 1783 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1784 &ignored); 1785 AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= " 1786 << DoubleVal.convertToDouble() << '\n'; 1787 } 1788 1789 if (AP.TM.getTargetData()->isBigEndian()) { 1790 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1791 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1792 } else { 1793 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1794 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1795 } 1796 1797 // Emit the tail padding for the long double. 1798 const TargetData &TD = *AP.TM.getTargetData(); 1799 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - 1800 TD.getTypeStoreSize(CFP->getType()), AddrSpace); 1801 return; 1802 } 1803 1804 assert(CFP->getType()->isPPC_FP128Ty() && 1805 "Floating point constant type not handled"); 1806 // All long double variants are printed as hex 1807 // API needed to prevent premature destruction. 1808 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1809 const uint64_t *p = API.getRawData(); 1810 if (AP.TM.getTargetData()->isBigEndian()) { 1811 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1812 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1813 } else { 1814 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1815 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1816 } 1817} 1818 1819static void EmitGlobalConstantLargeInt(const ConstantInt *CI, 1820 unsigned AddrSpace, AsmPrinter &AP) { 1821 const TargetData *TD = AP.TM.getTargetData(); 1822 unsigned BitWidth = CI->getBitWidth(); 1823 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); 1824 1825 // We don't expect assemblers to support integer data directives 1826 // for more than 64 bits, so we emit the data in at most 64-bit 1827 // quantities at a time. 1828 const uint64_t *RawData = CI->getValue().getRawData(); 1829 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1830 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1831 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1832 } 1833} 1834 1835static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace, 1836 AsmPrinter &AP) { 1837 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) { 1838 uint64_t Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1839 return AP.OutStreamer.EmitZeros(Size, AddrSpace); 1840 } 1841 1842 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1843 unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1844 switch (Size) { 1845 case 1: 1846 case 2: 1847 case 4: 1848 case 8: 1849 if (AP.isVerbose()) 1850 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1851 CI->getZExtValue()); 1852 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace); 1853 return; 1854 default: 1855 EmitGlobalConstantLargeInt(CI, AddrSpace, AP); 1856 return; 1857 } 1858 } 1859 1860 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1861 return EmitGlobalConstantFP(CFP, AddrSpace, AP); 1862 1863 if (isa<ConstantPointerNull>(CV)) { 1864 unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1865 AP.OutStreamer.EmitIntValue(0, Size, AddrSpace); 1866 return; 1867 } 1868 1869 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 1870 return EmitGlobalConstantDataSequential(CDS, AddrSpace, AP); 1871 1872 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1873 return EmitGlobalConstantArray(CVA, AddrSpace, AP); 1874 1875 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1876 return EmitGlobalConstantStruct(CVS, AddrSpace, AP); 1877 1878 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 1879 // vectors). 1880 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) 1881 if (CE->getOpcode() == Instruction::BitCast) 1882 return EmitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP); 1883 1884 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1885 return EmitGlobalConstantVector(V, AddrSpace, AP); 1886 1887 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 1888 // thread the streamer with EmitValue. 1889 AP.OutStreamer.EmitValue(LowerConstant(CV, AP), 1890 AP.TM.getTargetData()->getTypeAllocSize(CV->getType()), 1891 AddrSpace); 1892} 1893 1894/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1895void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1896 uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); 1897 if (Size) 1898 EmitGlobalConstantImpl(CV, AddrSpace, *this); 1899 else if (MAI->hasSubsectionsViaSymbols()) { 1900 // If the global has zero size, emit a single byte so that two labels don't 1901 // look like they are at the same location. 1902 OutStreamer.EmitIntValue(0, 1, AddrSpace); 1903 } 1904} 1905 1906void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1907 // Target doesn't support this yet! 1908 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1909} 1910 1911void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 1912 if (Offset > 0) 1913 OS << '+' << Offset; 1914 else if (Offset < 0) 1915 OS << Offset; 1916} 1917 1918//===----------------------------------------------------------------------===// 1919// Symbol Lowering Routines. 1920//===----------------------------------------------------------------------===// 1921 1922/// GetTempSymbol - Return the MCSymbol corresponding to the assembler 1923/// temporary label with the specified stem and unique ID. 1924MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const { 1925 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) + 1926 Name + Twine(ID)); 1927} 1928 1929/// GetTempSymbol - Return an assembler temporary label with the specified 1930/// stem. 1931MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const { 1932 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+ 1933 Name); 1934} 1935 1936 1937MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 1938 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 1939} 1940 1941MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 1942 return MMI->getAddrLabelSymbol(BB); 1943} 1944 1945/// GetCPISymbol - Return the symbol for the specified constant pool entry. 1946MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 1947 return OutContext.GetOrCreateSymbol 1948 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 1949 + "_" + Twine(CPID)); 1950} 1951 1952/// GetJTISymbol - Return the symbol for the specified jump table entry. 1953MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 1954 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 1955} 1956 1957/// GetJTSetSymbol - Return the symbol for the specified jump table .set 1958/// FIXME: privatize to AsmPrinter. 1959MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 1960 return OutContext.GetOrCreateSymbol 1961 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 1962 Twine(UID) + "_set_" + Twine(MBBID)); 1963} 1964 1965/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with 1966/// global value name as its base, with the specified suffix, and where the 1967/// symbol is forced to have private linkage if ForcePrivate is true. 1968MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, 1969 StringRef Suffix, 1970 bool ForcePrivate) const { 1971 SmallString<60> NameStr; 1972 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); 1973 NameStr.append(Suffix.begin(), Suffix.end()); 1974 return OutContext.GetOrCreateSymbol(NameStr.str()); 1975} 1976 1977/// GetExternalSymbolSymbol - Return the MCSymbol for the specified 1978/// ExternalSymbol. 1979MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 1980 SmallString<60> NameStr; 1981 Mang->getNameWithPrefix(NameStr, Sym); 1982 return OutContext.GetOrCreateSymbol(NameStr.str()); 1983} 1984 1985 1986 1987/// PrintParentLoopComment - Print comments about parent loops of this one. 1988static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 1989 unsigned FunctionNumber) { 1990 if (Loop == 0) return; 1991 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 1992 OS.indent(Loop->getLoopDepth()*2) 1993 << "Parent Loop BB" << FunctionNumber << "_" 1994 << Loop->getHeader()->getNumber() 1995 << " Depth=" << Loop->getLoopDepth() << '\n'; 1996} 1997 1998 1999/// PrintChildLoopComment - Print comments about child loops within 2000/// the loop for this basic block, with nesting. 2001static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2002 unsigned FunctionNumber) { 2003 // Add child loop information 2004 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ 2005 OS.indent((*CL)->getLoopDepth()*2) 2006 << "Child Loop BB" << FunctionNumber << "_" 2007 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() 2008 << '\n'; 2009 PrintChildLoopComment(OS, *CL, FunctionNumber); 2010 } 2011} 2012 2013/// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2014static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2015 const MachineLoopInfo *LI, 2016 const AsmPrinter &AP) { 2017 // Add loop depth information 2018 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2019 if (Loop == 0) return; 2020 2021 MachineBasicBlock *Header = Loop->getHeader(); 2022 assert(Header && "No header for loop"); 2023 2024 // If this block is not a loop header, just print out what is the loop header 2025 // and return. 2026 if (Header != &MBB) { 2027 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2028 Twine(AP.getFunctionNumber())+"_" + 2029 Twine(Loop->getHeader()->getNumber())+ 2030 " Depth="+Twine(Loop->getLoopDepth())); 2031 return; 2032 } 2033 2034 // Otherwise, it is a loop header. Print out information about child and 2035 // parent loops. 2036 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2037 2038 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2039 2040 OS << "=>"; 2041 OS.indent(Loop->getLoopDepth()*2-2); 2042 2043 OS << "This "; 2044 if (Loop->empty()) 2045 OS << "Inner "; 2046 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2047 2048 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2049} 2050 2051 2052/// EmitBasicBlockStart - This method prints the label for the specified 2053/// MachineBasicBlock, an alignment (if present) and a comment describing 2054/// it if appropriate. 2055void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 2056 // Emit an alignment directive for this block, if needed. 2057 if (unsigned Align = MBB->getAlignment()) 2058 EmitAlignment(Align); 2059 2060 // If the block has its address taken, emit any labels that were used to 2061 // reference the block. It is possible that there is more than one label 2062 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2063 // the references were generated. 2064 if (MBB->hasAddressTaken()) { 2065 const BasicBlock *BB = MBB->getBasicBlock(); 2066 if (isVerbose()) 2067 OutStreamer.AddComment("Block address taken"); 2068 2069 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); 2070 2071 for (unsigned i = 0, e = Syms.size(); i != e; ++i) 2072 OutStreamer.EmitLabel(Syms[i]); 2073 } 2074 2075 // Print the main label for the block. 2076 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { 2077 if (isVerbose() && OutStreamer.hasRawTextSupport()) { 2078 if (const BasicBlock *BB = MBB->getBasicBlock()) 2079 if (BB->hasName()) 2080 OutStreamer.AddComment("%" + BB->getName()); 2081 2082 EmitBasicBlockLoopComments(*MBB, LI, *this); 2083 2084 // NOTE: Want this comment at start of line, don't emit with AddComment. 2085 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" + 2086 Twine(MBB->getNumber()) + ":"); 2087 } 2088 } else { 2089 if (isVerbose()) { 2090 if (const BasicBlock *BB = MBB->getBasicBlock()) 2091 if (BB->hasName()) 2092 OutStreamer.AddComment("%" + BB->getName()); 2093 EmitBasicBlockLoopComments(*MBB, LI, *this); 2094 } 2095 2096 OutStreamer.EmitLabel(MBB->getSymbol()); 2097 } 2098} 2099 2100void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2101 bool IsDefinition) const { 2102 MCSymbolAttr Attr = MCSA_Invalid; 2103 2104 switch (Visibility) { 2105 default: break; 2106 case GlobalValue::HiddenVisibility: 2107 if (IsDefinition) 2108 Attr = MAI->getHiddenVisibilityAttr(); 2109 else 2110 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2111 break; 2112 case GlobalValue::ProtectedVisibility: 2113 Attr = MAI->getProtectedVisibilityAttr(); 2114 break; 2115 } 2116 2117 if (Attr != MCSA_Invalid) 2118 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2119} 2120 2121/// isBlockOnlyReachableByFallthough - Return true if the basic block has 2122/// exactly one predecessor and the control transfer mechanism between 2123/// the predecessor and this block is a fall-through. 2124bool AsmPrinter:: 2125isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2126 // If this is a landing pad, it isn't a fall through. If it has no preds, 2127 // then nothing falls through to it. 2128 if (MBB->isLandingPad() || MBB->pred_empty()) 2129 return false; 2130 2131 // If there isn't exactly one predecessor, it can't be a fall through. 2132 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 2133 ++PI2; 2134 if (PI2 != MBB->pred_end()) 2135 return false; 2136 2137 // The predecessor has to be immediately before this block. 2138 MachineBasicBlock *Pred = *PI; 2139 2140 if (!Pred->isLayoutSuccessor(MBB)) 2141 return false; 2142 2143 // If the block is completely empty, then it definitely does fall through. 2144 if (Pred->empty()) 2145 return true; 2146 2147 // Check the terminators in the previous blocks 2148 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(), 2149 IE = Pred->end(); II != IE; ++II) { 2150 MachineInstr &MI = *II; 2151 2152 // If it is not a simple branch, we are in a table somewhere. 2153 if (!MI.isBranch() || MI.isIndirectBranch()) 2154 return false; 2155 2156 // If we are the operands of one of the branches, this is not 2157 // a fall through. 2158 for (MachineInstr::mop_iterator OI = MI.operands_begin(), 2159 OE = MI.operands_end(); OI != OE; ++OI) { 2160 const MachineOperand& OP = *OI; 2161 if (OP.isJTI()) 2162 return false; 2163 if (OP.isMBB() && OP.getMBB() == MBB) 2164 return false; 2165 } 2166 } 2167 2168 return true; 2169} 2170 2171 2172 2173GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 2174 if (!S->usesMetadata()) 2175 return 0; 2176 2177 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2178 gcp_map_type::iterator GCPI = GCMap.find(S); 2179 if (GCPI != GCMap.end()) 2180 return GCPI->second; 2181 2182 const char *Name = S->getName().c_str(); 2183 2184 for (GCMetadataPrinterRegistry::iterator 2185 I = GCMetadataPrinterRegistry::begin(), 2186 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2187 if (strcmp(Name, I->getName()) == 0) { 2188 GCMetadataPrinter *GMP = I->instantiate(); 2189 GMP->S = S; 2190 GCMap.insert(std::make_pair(S, GMP)); 2191 return GMP; 2192 } 2193 2194 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2195} 2196