AsmPrinter.cpp revision 396618b43a85e12d290a90b181c6af5d7c0c5f11
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#define DEBUG_TYPE "asm-printer" 15#include "llvm/CodeGen/AsmPrinter.h" 16#include "DwarfDebug.h" 17#include "DwarfException.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineFrameInfo.h" 22#include "llvm/CodeGen/MachineFunction.h" 23#include "llvm/CodeGen/MachineJumpTableInfo.h" 24#include "llvm/CodeGen/MachineLoopInfo.h" 25#include "llvm/CodeGen/MachineModuleInfo.h" 26#include "llvm/Analysis/ConstantFolding.h" 27#include "llvm/Analysis/DebugInfo.h" 28#include "llvm/MC/MCAsmInfo.h" 29#include "llvm/MC/MCContext.h" 30#include "llvm/MC/MCExpr.h" 31#include "llvm/MC/MCInst.h" 32#include "llvm/MC/MCSection.h" 33#include "llvm/MC/MCStreamer.h" 34#include "llvm/MC/MCSymbol.h" 35#include "llvm/Target/Mangler.h" 36#include "llvm/Target/TargetData.h" 37#include "llvm/Target/TargetInstrInfo.h" 38#include "llvm/Target/TargetLowering.h" 39#include "llvm/Target/TargetLoweringObjectFile.h" 40#include "llvm/Target/TargetOptions.h" 41#include "llvm/Target/TargetRegisterInfo.h" 42#include "llvm/Assembly/Writer.h" 43#include "llvm/ADT/SmallString.h" 44#include "llvm/ADT/Statistic.h" 45#include "llvm/Support/ErrorHandling.h" 46#include "llvm/Support/Format.h" 47#include "llvm/Support/MathExtras.h" 48#include "llvm/Support/Timer.h" 49using namespace llvm; 50 51static const char *DWARFGroupName = "DWARF Emission"; 52static const char *DbgTimerName = "DWARF Debug Writer"; 53static const char *EHTimerName = "DWARF Exception Writer"; 54 55STATISTIC(EmittedInsts, "Number of machine instrs printed"); 56 57char AsmPrinter::ID = 0; 58 59typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type; 60static gcp_map_type &getGCMap(void *&P) { 61 if (P == 0) 62 P = new gcp_map_type(); 63 return *(gcp_map_type*)P; 64} 65 66 67/// getGVAlignmentLog2 - Return the alignment to use for the specified global 68/// value in log2 form. This rounds up to the preferred alignment if possible 69/// and legal. 70static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD, 71 unsigned InBits = 0) { 72 unsigned NumBits = 0; 73 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 74 NumBits = TD.getPreferredAlignmentLog(GVar); 75 76 // If InBits is specified, round it to it. 77 if (InBits > NumBits) 78 NumBits = InBits; 79 80 // If the GV has a specified alignment, take it into account. 81 if (GV->getAlignment() == 0) 82 return NumBits; 83 84 unsigned GVAlign = Log2_32(GV->getAlignment()); 85 86 // If the GVAlign is larger than NumBits, or if we are required to obey 87 // NumBits because the GV has an assigned section, obey it. 88 if (GVAlign > NumBits || GV->hasSection()) 89 NumBits = GVAlign; 90 return NumBits; 91} 92 93 94 95 96AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 97 : MachineFunctionPass(ID), 98 TM(tm), MAI(tm.getMCAsmInfo()), 99 OutContext(Streamer.getContext()), 100 OutStreamer(Streamer), 101 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { 102 DD = 0; DE = 0; MMI = 0; LI = 0; 103 CurrentFnSym = CurrentFnSymForSize = 0; 104 GCMetadataPrinters = 0; 105 VerboseAsm = Streamer.isVerboseAsm(); 106} 107 108AsmPrinter::~AsmPrinter() { 109 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized"); 110 111 if (GCMetadataPrinters != 0) { 112 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 113 114 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I) 115 delete I->second; 116 delete &GCMap; 117 GCMetadataPrinters = 0; 118 } 119 120 delete &OutStreamer; 121} 122 123/// getFunctionNumber - Return a unique ID for the current function. 124/// 125unsigned AsmPrinter::getFunctionNumber() const { 126 return MF->getFunctionNumber(); 127} 128 129const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 130 return TM.getTargetLowering()->getObjFileLowering(); 131} 132 133 134/// getTargetData - Return information about data layout. 135const TargetData &AsmPrinter::getTargetData() const { 136 return *TM.getTargetData(); 137} 138 139/// getCurrentSection() - Return the current section we are emitting to. 140const MCSection *AsmPrinter::getCurrentSection() const { 141 return OutStreamer.getCurrentSection(); 142} 143 144 145 146void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 147 AU.setPreservesAll(); 148 MachineFunctionPass::getAnalysisUsage(AU); 149 AU.addRequired<MachineModuleInfo>(); 150 AU.addRequired<GCModuleInfo>(); 151 if (isVerbose()) 152 AU.addRequired<MachineLoopInfo>(); 153} 154 155bool AsmPrinter::doInitialization(Module &M) { 156 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 157 MMI->AnalyzeModule(M); 158 159 // Initialize TargetLoweringObjectFile. 160 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 161 .Initialize(OutContext, TM); 162 163 Mang = new Mangler(OutContext, *TM.getTargetData()); 164 165 // Allow the target to emit any magic that it wants at the start of the file. 166 EmitStartOfAsmFile(M); 167 168 // Very minimal debug info. It is ignored if we emit actual debug info. If we 169 // don't, this at least helps the user find where a global came from. 170 if (MAI->hasSingleParameterDotFile()) { 171 // .file "foo.c" 172 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 173 } 174 175 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 176 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 177 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 178 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 179 MP->beginAssembly(*this); 180 181 // Emit module-level inline asm if it exists. 182 if (!M.getModuleInlineAsm().empty()) { 183 OutStreamer.AddComment("Start of file scope inline assembly"); 184 OutStreamer.AddBlankLine(); 185 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 186 OutStreamer.AddComment("End of file scope inline assembly"); 187 OutStreamer.AddBlankLine(); 188 } 189 190 if (MAI->doesSupportDebugInformation()) 191 DD = new DwarfDebug(this, &M); 192 193 switch (MAI->getExceptionHandlingType()) { 194 case ExceptionHandling::None: 195 return false; 196 case ExceptionHandling::SjLj: 197 case ExceptionHandling::DwarfCFI: 198 DE = new DwarfCFIException(this); 199 return false; 200 case ExceptionHandling::ARM: 201 DE = new ARMException(this); 202 return false; 203 case ExceptionHandling::Win64: 204 DE = new Win64Exception(this); 205 return false; 206 } 207 208 llvm_unreachable("Unknown exception type."); 209} 210 211void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const { 212 switch ((GlobalValue::LinkageTypes)Linkage) { 213 case GlobalValue::CommonLinkage: 214 case GlobalValue::LinkOnceAnyLinkage: 215 case GlobalValue::LinkOnceODRLinkage: 216 case GlobalValue::WeakAnyLinkage: 217 case GlobalValue::WeakODRLinkage: 218 case GlobalValue::LinkerPrivateWeakLinkage: 219 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: 220 if (MAI->getWeakDefDirective() != 0) { 221 // .globl _foo 222 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 223 224 if ((GlobalValue::LinkageTypes)Linkage != 225 GlobalValue::LinkerPrivateWeakDefAutoLinkage) 226 // .weak_definition _foo 227 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 228 else 229 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 230 } else if (MAI->getLinkOnceDirective() != 0) { 231 // .globl _foo 232 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 233 //NOTE: linkonce is handled by the section the symbol was assigned to. 234 } else { 235 // .weak _foo 236 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 237 } 238 break; 239 case GlobalValue::DLLExportLinkage: 240 case GlobalValue::AppendingLinkage: 241 // FIXME: appending linkage variables should go into a section of 242 // their name or something. For now, just emit them as external. 243 case GlobalValue::ExternalLinkage: 244 // If external or appending, declare as a global symbol. 245 // .globl _foo 246 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 247 break; 248 case GlobalValue::PrivateLinkage: 249 case GlobalValue::InternalLinkage: 250 case GlobalValue::LinkerPrivateLinkage: 251 break; 252 default: 253 llvm_unreachable("Unknown linkage type!"); 254 } 255} 256 257 258/// EmitGlobalVariable - Emit the specified global variable to the .s file. 259void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 260 if (GV->hasInitializer()) { 261 // Check to see if this is a special global used by LLVM, if so, emit it. 262 if (EmitSpecialLLVMGlobal(GV)) 263 return; 264 265 if (isVerbose()) { 266 WriteAsOperand(OutStreamer.GetCommentOS(), GV, 267 /*PrintType=*/false, GV->getParent()); 268 OutStreamer.GetCommentOS() << '\n'; 269 } 270 } 271 272 MCSymbol *GVSym = Mang->getSymbol(GV); 273 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 274 275 if (!GV->hasInitializer()) // External globals require no extra code. 276 return; 277 278 if (MAI->hasDotTypeDotSizeDirective()) 279 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 280 281 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 282 283 const TargetData *TD = TM.getTargetData(); 284 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType()); 285 286 // If the alignment is specified, we *must* obey it. Overaligning a global 287 // with a specified alignment is a prompt way to break globals emitted to 288 // sections and expected to be contiguous (e.g. ObjC metadata). 289 unsigned AlignLog = getGVAlignmentLog2(GV, *TD); 290 291 // Handle common and BSS local symbols (.lcomm). 292 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 293 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 294 unsigned Align = 1 << AlignLog; 295 296 // Handle common symbols. 297 if (GVKind.isCommon()) { 298 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 299 Align = 0; 300 301 // .comm _foo, 42, 4 302 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 303 return; 304 } 305 306 // Handle local BSS symbols. 307 if (MAI->hasMachoZeroFillDirective()) { 308 const MCSection *TheSection = 309 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 310 // .zerofill __DATA, __bss, _foo, 400, 5 311 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 312 return; 313 } 314 315 if (MAI->getLCOMMDirectiveType() != LCOMM::None && 316 (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) { 317 // .lcomm _foo, 42 318 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 319 return; 320 } 321 322 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 323 Align = 0; 324 325 // .local _foo 326 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 327 // .comm _foo, 42, 4 328 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 329 return; 330 } 331 332 const MCSection *TheSection = 333 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 334 335 // Handle the zerofill directive on darwin, which is a special form of BSS 336 // emission. 337 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 338 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 339 340 // .globl _foo 341 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 342 // .zerofill __DATA, __common, _foo, 400, 5 343 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 344 return; 345 } 346 347 // Handle thread local data for mach-o which requires us to output an 348 // additional structure of data and mangle the original symbol so that we 349 // can reference it later. 350 // 351 // TODO: This should become an "emit thread local global" method on TLOF. 352 // All of this macho specific stuff should be sunk down into TLOFMachO and 353 // stuff like "TLSExtraDataSection" should no longer be part of the parent 354 // TLOF class. This will also make it more obvious that stuff like 355 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 356 // specific code. 357 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 358 // Emit the .tbss symbol 359 MCSymbol *MangSym = 360 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 361 362 if (GVKind.isThreadBSS()) 363 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 364 else if (GVKind.isThreadData()) { 365 OutStreamer.SwitchSection(TheSection); 366 367 EmitAlignment(AlignLog, GV); 368 OutStreamer.EmitLabel(MangSym); 369 370 EmitGlobalConstant(GV->getInitializer()); 371 } 372 373 OutStreamer.AddBlankLine(); 374 375 // Emit the variable struct for the runtime. 376 const MCSection *TLVSect 377 = getObjFileLowering().getTLSExtraDataSection(); 378 379 OutStreamer.SwitchSection(TLVSect); 380 // Emit the linkage here. 381 EmitLinkage(GV->getLinkage(), GVSym); 382 OutStreamer.EmitLabel(GVSym); 383 384 // Three pointers in size: 385 // - __tlv_bootstrap - used to make sure support exists 386 // - spare pointer, used when mapped by the runtime 387 // - pointer to mangled symbol above with initializer 388 unsigned PtrSize = TD->getPointerSizeInBits()/8; 389 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 390 PtrSize, 0); 391 OutStreamer.EmitIntValue(0, PtrSize, 0); 392 OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0); 393 394 OutStreamer.AddBlankLine(); 395 return; 396 } 397 398 OutStreamer.SwitchSection(TheSection); 399 400 EmitLinkage(GV->getLinkage(), GVSym); 401 EmitAlignment(AlignLog, GV); 402 403 OutStreamer.EmitLabel(GVSym); 404 405 EmitGlobalConstant(GV->getInitializer()); 406 407 if (MAI->hasDotTypeDotSizeDirective()) 408 // .size foo, 42 409 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 410 411 OutStreamer.AddBlankLine(); 412} 413 414/// EmitFunctionHeader - This method emits the header for the current 415/// function. 416void AsmPrinter::EmitFunctionHeader() { 417 // Print out constants referenced by the function 418 EmitConstantPool(); 419 420 // Print the 'header' of function. 421 const Function *F = MF->getFunction(); 422 423 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); 424 EmitVisibility(CurrentFnSym, F->getVisibility()); 425 426 EmitLinkage(F->getLinkage(), CurrentFnSym); 427 EmitAlignment(MF->getAlignment(), F); 428 429 if (MAI->hasDotTypeDotSizeDirective()) 430 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 431 432 if (isVerbose()) { 433 WriteAsOperand(OutStreamer.GetCommentOS(), F, 434 /*PrintType=*/false, F->getParent()); 435 OutStreamer.GetCommentOS() << '\n'; 436 } 437 438 // Emit the CurrentFnSym. This is a virtual function to allow targets to 439 // do their wild and crazy things as required. 440 EmitFunctionEntryLabel(); 441 442 // If the function had address-taken blocks that got deleted, then we have 443 // references to the dangling symbols. Emit them at the start of the function 444 // so that we don't get references to undefined symbols. 445 std::vector<MCSymbol*> DeadBlockSyms; 446 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 447 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 448 OutStreamer.AddComment("Address taken block that was later removed"); 449 OutStreamer.EmitLabel(DeadBlockSyms[i]); 450 } 451 452 // Add some workaround for linkonce linkage on Cygwin\MinGW. 453 if (MAI->getLinkOnceDirective() != 0 && 454 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) { 455 // FIXME: What is this? 456 MCSymbol *FakeStub = 457 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+ 458 CurrentFnSym->getName()); 459 OutStreamer.EmitLabel(FakeStub); 460 } 461 462 // Emit pre-function debug and/or EH information. 463 if (DE) { 464 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 465 DE->BeginFunction(MF); 466 } 467 if (DD) { 468 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 469 DD->beginFunction(MF); 470 } 471} 472 473/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 474/// function. This can be overridden by targets as required to do custom stuff. 475void AsmPrinter::EmitFunctionEntryLabel() { 476 // The function label could have already been emitted if two symbols end up 477 // conflicting due to asm renaming. Detect this and emit an error. 478 if (CurrentFnSym->isUndefined()) 479 return OutStreamer.EmitLabel(CurrentFnSym); 480 481 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 482 "' label emitted multiple times to assembly file"); 483} 484 485 486/// EmitComments - Pretty-print comments for instructions. 487static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 488 const MachineFunction *MF = MI.getParent()->getParent(); 489 const TargetMachine &TM = MF->getTarget(); 490 491 // Check for spills and reloads 492 int FI; 493 494 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 495 496 // We assume a single instruction only has a spill or reload, not 497 // both. 498 const MachineMemOperand *MMO; 499 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 500 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 501 MMO = *MI.memoperands_begin(); 502 CommentOS << MMO->getSize() << "-byte Reload\n"; 503 } 504 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 505 if (FrameInfo->isSpillSlotObjectIndex(FI)) 506 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 507 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 508 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 509 MMO = *MI.memoperands_begin(); 510 CommentOS << MMO->getSize() << "-byte Spill\n"; 511 } 512 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 513 if (FrameInfo->isSpillSlotObjectIndex(FI)) 514 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 515 } 516 517 // Check for spill-induced copies 518 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 519 CommentOS << " Reload Reuse\n"; 520} 521 522/// EmitImplicitDef - This method emits the specified machine instruction 523/// that is an implicit def. 524static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) { 525 unsigned RegNo = MI->getOperand(0).getReg(); 526 AP.OutStreamer.AddComment(Twine("implicit-def: ") + 527 AP.TM.getRegisterInfo()->getName(RegNo)); 528 AP.OutStreamer.AddBlankLine(); 529} 530 531static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) { 532 std::string Str = "kill:"; 533 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 534 const MachineOperand &Op = MI->getOperand(i); 535 assert(Op.isReg() && "KILL instruction must have only register operands"); 536 Str += ' '; 537 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 538 Str += (Op.isDef() ? "<def>" : "<kill>"); 539 } 540 AP.OutStreamer.AddComment(Str); 541 AP.OutStreamer.AddBlankLine(); 542} 543 544/// EmitDebugValueComment - This method handles the target-independent form 545/// of DBG_VALUE, returning true if it was able to do so. A false return 546/// means the target will need to handle MI in EmitInstruction. 547static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 548 // This code handles only the 3-operand target-independent form. 549 if (MI->getNumOperands() != 3) 550 return false; 551 552 SmallString<128> Str; 553 raw_svector_ostream OS(Str); 554 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: "; 555 556 // cast away const; DIetc do not take const operands for some reason. 557 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata())); 558 if (V.getContext().isSubprogram()) 559 OS << DISubprogram(V.getContext()).getDisplayName() << ":"; 560 OS << V.getName() << " <- "; 561 562 // Register or immediate value. Register 0 means undef. 563 if (MI->getOperand(0).isFPImm()) { 564 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 565 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 566 OS << (double)APF.convertToFloat(); 567 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 568 OS << APF.convertToDouble(); 569 } else { 570 // There is no good way to print long double. Convert a copy to 571 // double. Ah well, it's only a comment. 572 bool ignored; 573 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 574 &ignored); 575 OS << "(long double) " << APF.convertToDouble(); 576 } 577 } else if (MI->getOperand(0).isImm()) { 578 OS << MI->getOperand(0).getImm(); 579 } else if (MI->getOperand(0).isCImm()) { 580 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 581 } else { 582 assert(MI->getOperand(0).isReg() && "Unknown operand type"); 583 if (MI->getOperand(0).getReg() == 0) { 584 // Suppress offset, it is not meaningful here. 585 OS << "undef"; 586 // NOTE: Want this comment at start of line, don't emit with AddComment. 587 AP.OutStreamer.EmitRawText(OS.str()); 588 return true; 589 } 590 OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg()); 591 } 592 593 OS << '+' << MI->getOperand(1).getImm(); 594 // NOTE: Want this comment at start of line, don't emit with AddComment. 595 AP.OutStreamer.EmitRawText(OS.str()); 596 return true; 597} 598 599AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 600 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 601 MF->getFunction()->needsUnwindTableEntry()) 602 return CFI_M_EH; 603 604 if (MMI->hasDebugInfo()) 605 return CFI_M_Debug; 606 607 return CFI_M_None; 608} 609 610bool AsmPrinter::needsSEHMoves() { 611 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 612 MF->getFunction()->needsUnwindTableEntry(); 613} 614 615bool AsmPrinter::needsRelocationsForDwarfStringPool() const { 616 return MAI->doesDwarfUseRelocationsForStringPool(); 617} 618 619void AsmPrinter::emitPrologLabel(const MachineInstr &MI) { 620 MCSymbol *Label = MI.getOperand(0).getMCSymbol(); 621 622 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 623 return; 624 625 if (needsCFIMoves() == CFI_M_None) 626 return; 627 628 if (MMI->getCompactUnwindEncoding() != 0) 629 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 630 631 MachineModuleInfo &MMI = MF->getMMI(); 632 std::vector<MachineMove> &Moves = MMI.getFrameMoves(); 633 bool FoundOne = false; 634 (void)FoundOne; 635 for (std::vector<MachineMove>::iterator I = Moves.begin(), 636 E = Moves.end(); I != E; ++I) { 637 if (I->getLabel() == Label) { 638 EmitCFIFrameMove(*I); 639 FoundOne = true; 640 } 641 } 642 assert(FoundOne); 643} 644 645/// EmitFunctionBody - This method emits the body and trailer for a 646/// function. 647void AsmPrinter::EmitFunctionBody() { 648 // Emit target-specific gunk before the function body. 649 EmitFunctionBodyStart(); 650 651 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo(); 652 653 // Print out code for the function. 654 bool HasAnyRealCode = false; 655 const MachineInstr *LastMI = 0; 656 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 657 I != E; ++I) { 658 // Print a label for the basic block. 659 EmitBasicBlockStart(I); 660 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); 661 II != IE; ++II) { 662 LastMI = II; 663 664 // Print the assembly for the instruction. 665 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() && 666 !II->isDebugValue()) { 667 HasAnyRealCode = true; 668 ++EmittedInsts; 669 } 670 671 if (ShouldPrintDebugScopes) { 672 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 673 DD->beginInstruction(II); 674 } 675 676 if (isVerbose()) 677 EmitComments(*II, OutStreamer.GetCommentOS()); 678 679 switch (II->getOpcode()) { 680 case TargetOpcode::PROLOG_LABEL: 681 emitPrologLabel(*II); 682 break; 683 684 case TargetOpcode::EH_LABEL: 685 case TargetOpcode::GC_LABEL: 686 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol()); 687 break; 688 case TargetOpcode::INLINEASM: 689 EmitInlineAsm(II); 690 break; 691 case TargetOpcode::DBG_VALUE: 692 if (isVerbose()) { 693 if (!EmitDebugValueComment(II, *this)) 694 EmitInstruction(II); 695 } 696 break; 697 case TargetOpcode::IMPLICIT_DEF: 698 if (isVerbose()) EmitImplicitDef(II, *this); 699 break; 700 case TargetOpcode::KILL: 701 if (isVerbose()) EmitKill(II, *this); 702 break; 703 default: 704 if (!TM.hasMCUseLoc()) 705 MCLineEntry::Make(&OutStreamer, getCurrentSection()); 706 707 EmitInstruction(II); 708 break; 709 } 710 711 if (ShouldPrintDebugScopes) { 712 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 713 DD->endInstruction(II); 714 } 715 } 716 } 717 718 // If the last instruction was a prolog label, then we have a situation where 719 // we emitted a prolog but no function body. This results in the ending prolog 720 // label equaling the end of function label and an invalid "row" in the 721 // FDE. We need to emit a noop in this situation so that the FDE's rows are 722 // valid. 723 bool RequiresNoop = LastMI && LastMI->isPrologLabel(); 724 725 // If the function is empty and the object file uses .subsections_via_symbols, 726 // then we need to emit *something* to the function body to prevent the 727 // labels from collapsing together. Just emit a noop. 728 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 729 MCInst Noop; 730 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 731 if (Noop.getOpcode()) { 732 OutStreamer.AddComment("avoids zero-length function"); 733 OutStreamer.EmitInstruction(Noop); 734 } else // Target not mc-ized yet. 735 OutStreamer.EmitRawText(StringRef("\tnop\n")); 736 } 737 738 const Function *F = MF->getFunction(); 739 for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) { 740 const BasicBlock *BB = i; 741 if (!BB->hasAddressTaken()) 742 continue; 743 MCSymbol *Sym = GetBlockAddressSymbol(BB); 744 if (Sym->isDefined()) 745 continue; 746 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 747 OutStreamer.EmitLabel(Sym); 748 } 749 750 // Emit target-specific gunk after the function body. 751 EmitFunctionBodyEnd(); 752 753 // If the target wants a .size directive for the size of the function, emit 754 // it. 755 if (MAI->hasDotTypeDotSizeDirective()) { 756 // Create a symbol for the end of function, so we can get the size as 757 // difference between the function label and the temp label. 758 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 759 OutStreamer.EmitLabel(FnEndLabel); 760 761 const MCExpr *SizeExp = 762 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 763 MCSymbolRefExpr::Create(CurrentFnSymForSize, 764 OutContext), 765 OutContext); 766 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 767 } 768 769 // Emit post-function debug information. 770 if (DD) { 771 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 772 DD->endFunction(MF); 773 } 774 if (DE) { 775 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 776 DE->EndFunction(); 777 } 778 MMI->EndFunction(); 779 780 // Print out jump tables referenced by the function. 781 EmitJumpTableInfo(); 782 783 OutStreamer.AddBlankLine(); 784} 785 786/// getDebugValueLocation - Get location information encoded by DBG_VALUE 787/// operands. 788MachineLocation AsmPrinter:: 789getDebugValueLocation(const MachineInstr *MI) const { 790 // Target specific DBG_VALUE instructions are handled by each target. 791 return MachineLocation(); 792} 793 794/// EmitDwarfRegOp - Emit dwarf register operation. 795void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const { 796 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 797 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); 798 799 for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0; 800 ++SR) { 801 Reg = TRI->getDwarfRegNum(*SR, false); 802 // FIXME: Get the bit range this register uses of the superregister 803 // so that we can produce a DW_OP_bit_piece 804 } 805 806 // FIXME: Handle cases like a super register being encoded as 807 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33 808 809 // FIXME: We have no reasonable way of handling errors in here. The 810 // caller might be in the middle of an dwarf expression. We should 811 // probably assert that Reg >= 0 once debug info generation is more mature. 812 813 if (int Offset = MLoc.getOffset()) { 814 if (Reg < 32) { 815 OutStreamer.AddComment( 816 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); 817 EmitInt8(dwarf::DW_OP_breg0 + Reg); 818 } else { 819 OutStreamer.AddComment("DW_OP_bregx"); 820 EmitInt8(dwarf::DW_OP_bregx); 821 OutStreamer.AddComment(Twine(Reg)); 822 EmitULEB128(Reg); 823 } 824 EmitSLEB128(Offset); 825 } else { 826 if (Reg < 32) { 827 OutStreamer.AddComment( 828 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); 829 EmitInt8(dwarf::DW_OP_reg0 + Reg); 830 } else { 831 OutStreamer.AddComment("DW_OP_regx"); 832 EmitInt8(dwarf::DW_OP_regx); 833 OutStreamer.AddComment(Twine(Reg)); 834 EmitULEB128(Reg); 835 } 836 } 837 838 // FIXME: Produce a DW_OP_bit_piece if we used a superregister 839} 840 841bool AsmPrinter::doFinalization(Module &M) { 842 // Emit global variables. 843 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 844 I != E; ++I) 845 EmitGlobalVariable(I); 846 847 // Emit visibility info for declarations 848 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 849 const Function &F = *I; 850 if (!F.isDeclaration()) 851 continue; 852 GlobalValue::VisibilityTypes V = F.getVisibility(); 853 if (V == GlobalValue::DefaultVisibility) 854 continue; 855 856 MCSymbol *Name = Mang->getSymbol(&F); 857 EmitVisibility(Name, V, false); 858 } 859 860 // Emit module flags. 861 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 862 M.getModuleFlagsMetadata(ModuleFlags); 863 if (!ModuleFlags.empty()) 864 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM); 865 866 // Finalize debug and EH information. 867 if (DE) { 868 { 869 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 870 DE->EndModule(); 871 } 872 delete DE; DE = 0; 873 } 874 if (DD) { 875 { 876 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 877 DD->endModule(); 878 } 879 delete DD; DD = 0; 880 } 881 882 // If the target wants to know about weak references, print them all. 883 if (MAI->getWeakRefDirective()) { 884 // FIXME: This is not lazy, it would be nice to only print weak references 885 // to stuff that is actually used. Note that doing so would require targets 886 // to notice uses in operands (due to constant exprs etc). This should 887 // happen with the MC stuff eventually. 888 889 // Print out module-level global variables here. 890 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 891 I != E; ++I) { 892 if (!I->hasExternalWeakLinkage()) continue; 893 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 894 } 895 896 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 897 if (!I->hasExternalWeakLinkage()) continue; 898 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 899 } 900 } 901 902 if (MAI->hasSetDirective()) { 903 OutStreamer.AddBlankLine(); 904 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 905 I != E; ++I) { 906 MCSymbol *Name = Mang->getSymbol(I); 907 908 const GlobalValue *GV = I->getAliasedGlobal(); 909 MCSymbol *Target = Mang->getSymbol(GV); 910 911 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 912 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 913 else if (I->hasWeakLinkage()) 914 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 915 else 916 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 917 918 EmitVisibility(Name, I->getVisibility()); 919 920 // Emit the directives as assignments aka .set: 921 OutStreamer.EmitAssignment(Name, 922 MCSymbolRefExpr::Create(Target, OutContext)); 923 } 924 } 925 926 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 927 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 928 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 929 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 930 MP->finishAssembly(*this); 931 932 // If we don't have any trampolines, then we don't require stack memory 933 // to be executable. Some targets have a directive to declare this. 934 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 935 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 936 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 937 OutStreamer.SwitchSection(S); 938 939 // Allow the target to emit any magic that it wants at the end of the file, 940 // after everything else has gone out. 941 EmitEndOfAsmFile(M); 942 943 delete Mang; Mang = 0; 944 MMI = 0; 945 946 OutStreamer.Finish(); 947 return false; 948} 949 950void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 951 this->MF = &MF; 952 // Get the function symbol. 953 CurrentFnSym = Mang->getSymbol(MF.getFunction()); 954 CurrentFnSymForSize = CurrentFnSym; 955 956 if (isVerbose()) 957 LI = &getAnalysis<MachineLoopInfo>(); 958} 959 960namespace { 961 // SectionCPs - Keep track the alignment, constpool entries per Section. 962 struct SectionCPs { 963 const MCSection *S; 964 unsigned Alignment; 965 SmallVector<unsigned, 4> CPEs; 966 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 967 }; 968} 969 970/// EmitConstantPool - Print to the current output stream assembly 971/// representations of the constants in the constant pool MCP. This is 972/// used to print out constants which have been "spilled to memory" by 973/// the code generator. 974/// 975void AsmPrinter::EmitConstantPool() { 976 const MachineConstantPool *MCP = MF->getConstantPool(); 977 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 978 if (CP.empty()) return; 979 980 // Calculate sections for constant pool entries. We collect entries to go into 981 // the same section together to reduce amount of section switch statements. 982 SmallVector<SectionCPs, 4> CPSections; 983 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 984 const MachineConstantPoolEntry &CPE = CP[i]; 985 unsigned Align = CPE.getAlignment(); 986 987 SectionKind Kind; 988 switch (CPE.getRelocationInfo()) { 989 default: llvm_unreachable("Unknown section kind"); 990 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 991 case 1: 992 Kind = SectionKind::getReadOnlyWithRelLocal(); 993 break; 994 case 0: 995 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 996 case 4: Kind = SectionKind::getMergeableConst4(); break; 997 case 8: Kind = SectionKind::getMergeableConst8(); break; 998 case 16: Kind = SectionKind::getMergeableConst16();break; 999 default: Kind = SectionKind::getMergeableConst(); break; 1000 } 1001 } 1002 1003 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 1004 1005 // The number of sections are small, just do a linear search from the 1006 // last section to the first. 1007 bool Found = false; 1008 unsigned SecIdx = CPSections.size(); 1009 while (SecIdx != 0) { 1010 if (CPSections[--SecIdx].S == S) { 1011 Found = true; 1012 break; 1013 } 1014 } 1015 if (!Found) { 1016 SecIdx = CPSections.size(); 1017 CPSections.push_back(SectionCPs(S, Align)); 1018 } 1019 1020 if (Align > CPSections[SecIdx].Alignment) 1021 CPSections[SecIdx].Alignment = Align; 1022 CPSections[SecIdx].CPEs.push_back(i); 1023 } 1024 1025 // Now print stuff into the calculated sections. 1026 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1027 OutStreamer.SwitchSection(CPSections[i].S); 1028 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1029 1030 unsigned Offset = 0; 1031 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1032 unsigned CPI = CPSections[i].CPEs[j]; 1033 MachineConstantPoolEntry CPE = CP[CPI]; 1034 1035 // Emit inter-object padding for alignment. 1036 unsigned AlignMask = CPE.getAlignment() - 1; 1037 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1038 OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/); 1039 1040 Type *Ty = CPE.getType(); 1041 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 1042 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1043 1044 if (CPE.isMachineConstantPoolEntry()) 1045 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1046 else 1047 EmitGlobalConstant(CPE.Val.ConstVal); 1048 } 1049 } 1050} 1051 1052/// EmitJumpTableInfo - Print assembly representations of the jump tables used 1053/// by the current function to the current output stream. 1054/// 1055void AsmPrinter::EmitJumpTableInfo() { 1056 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1057 if (MJTI == 0) return; 1058 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1059 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1060 if (JT.empty()) return; 1061 1062 // Pick the directive to use to print the jump table entries, and switch to 1063 // the appropriate section. 1064 const Function *F = MF->getFunction(); 1065 bool JTInDiffSection = false; 1066 if (// In PIC mode, we need to emit the jump table to the same section as the 1067 // function body itself, otherwise the label differences won't make sense. 1068 // FIXME: Need a better predicate for this: what about custom entries? 1069 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1070 // We should also do if the section name is NULL or function is declared 1071 // in discardable section 1072 // FIXME: this isn't the right predicate, should be based on the MCSection 1073 // for the function. 1074 F->isWeakForLinker()) { 1075 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); 1076 } else { 1077 // Otherwise, drop it in the readonly section. 1078 const MCSection *ReadOnlySection = 1079 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1080 OutStreamer.SwitchSection(ReadOnlySection); 1081 JTInDiffSection = true; 1082 } 1083 1084 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData()))); 1085 1086 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1087 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1088 1089 // If this jump table was deleted, ignore it. 1090 if (JTBBs.empty()) continue; 1091 1092 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1093 // .set directive for each unique entry. This reduces the number of 1094 // relocations the assembler will generate for the jump table. 1095 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1096 MAI->hasSetDirective()) { 1097 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1098 const TargetLowering *TLI = TM.getTargetLowering(); 1099 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1100 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1101 const MachineBasicBlock *MBB = JTBBs[ii]; 1102 if (!EmittedSets.insert(MBB)) continue; 1103 1104 // .set LJTSet, LBB32-base 1105 const MCExpr *LHS = 1106 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1107 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1108 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1109 } 1110 } 1111 1112 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1113 // before each jump table. The first label is never referenced, but tells 1114 // the assembler and linker the extents of the jump table object. The 1115 // second label is actually referenced by the code. 1116 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) 1117 // FIXME: This doesn't have to have any specific name, just any randomly 1118 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1119 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1120 1121 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1122 1123 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1124 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1125 } 1126} 1127 1128/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1129/// current stream. 1130void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1131 const MachineBasicBlock *MBB, 1132 unsigned UID) const { 1133 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1134 const MCExpr *Value = 0; 1135 switch (MJTI->getEntryKind()) { 1136 case MachineJumpTableInfo::EK_Inline: 1137 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1138 case MachineJumpTableInfo::EK_Custom32: 1139 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1140 OutContext); 1141 break; 1142 case MachineJumpTableInfo::EK_BlockAddress: 1143 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1144 // .word LBB123 1145 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1146 break; 1147 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1148 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1149 // with a relocation as gp-relative, e.g.: 1150 // .gprel32 LBB123 1151 MCSymbol *MBBSym = MBB->getSymbol(); 1152 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1153 return; 1154 } 1155 1156 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1157 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1158 // with a relocation as gp-relative, e.g.: 1159 // .gpdword LBB123 1160 MCSymbol *MBBSym = MBB->getSymbol(); 1161 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1162 return; 1163 } 1164 1165 case MachineJumpTableInfo::EK_LabelDifference32: { 1166 // EK_LabelDifference32 - Each entry is the address of the block minus 1167 // the address of the jump table. This is used for PIC jump tables where 1168 // gprel32 is not supported. e.g.: 1169 // .word LBB123 - LJTI1_2 1170 // If the .set directive is supported, this is emitted as: 1171 // .set L4_5_set_123, LBB123 - LJTI1_2 1172 // .word L4_5_set_123 1173 1174 // If we have emitted set directives for the jump table entries, print 1175 // them rather than the entries themselves. If we're emitting PIC, then 1176 // emit the table entries as differences between two text section labels. 1177 if (MAI->hasSetDirective()) { 1178 // If we used .set, reference the .set's symbol. 1179 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1180 OutContext); 1181 break; 1182 } 1183 // Otherwise, use the difference as the jump table entry. 1184 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1185 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1186 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1187 break; 1188 } 1189 } 1190 1191 assert(Value && "Unknown entry kind!"); 1192 1193 unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData()); 1194 OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0); 1195} 1196 1197 1198/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1199/// special global used by LLVM. If so, emit it and return true, otherwise 1200/// do nothing and return false. 1201bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1202 if (GV->getName() == "llvm.used") { 1203 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1204 EmitLLVMUsedList(GV->getInitializer()); 1205 return true; 1206 } 1207 1208 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1209 if (GV->getSection() == "llvm.metadata" || 1210 GV->hasAvailableExternallyLinkage()) 1211 return true; 1212 1213 if (!GV->hasAppendingLinkage()) return false; 1214 1215 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1216 1217 if (GV->getName() == "llvm.global_ctors") { 1218 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1219 1220 if (TM.getRelocationModel() == Reloc::Static && 1221 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1222 StringRef Sym(".constructors_used"); 1223 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1224 MCSA_Reference); 1225 } 1226 return true; 1227 } 1228 1229 if (GV->getName() == "llvm.global_dtors") { 1230 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1231 1232 if (TM.getRelocationModel() == Reloc::Static && 1233 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1234 StringRef Sym(".destructors_used"); 1235 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1236 MCSA_Reference); 1237 } 1238 return true; 1239 } 1240 1241 return false; 1242} 1243 1244/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1245/// global in the specified llvm.used list for which emitUsedDirectiveFor 1246/// is true, as being used with this directive. 1247void AsmPrinter::EmitLLVMUsedList(const Constant *List) { 1248 // Should be an array of 'i8*'. 1249 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1250 if (InitList == 0) return; 1251 1252 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1253 const GlobalValue *GV = 1254 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1255 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) 1256 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip); 1257 } 1258} 1259 1260typedef std::pair<unsigned, Constant*> Structor; 1261 1262static bool priority_order(const Structor& lhs, const Structor& rhs) { 1263 return lhs.first < rhs.first; 1264} 1265 1266/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1267/// priority. 1268void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1269 // Should be an array of '{ int, void ()* }' structs. The first value is the 1270 // init priority. 1271 if (!isa<ConstantArray>(List)) return; 1272 1273 // Sanity check the structors list. 1274 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1275 if (!InitList) return; // Not an array! 1276 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1277 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs! 1278 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1279 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1280 1281 // Gather the structors in a form that's convenient for sorting by priority. 1282 SmallVector<Structor, 8> Structors; 1283 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1284 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 1285 if (!CS) continue; // Malformed. 1286 if (CS->getOperand(1)->isNullValue()) 1287 break; // Found a null terminator, skip the rest. 1288 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1289 if (!Priority) continue; // Malformed. 1290 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535), 1291 CS->getOperand(1))); 1292 } 1293 1294 // Emit the function pointers in the target-specific order 1295 const TargetData *TD = TM.getTargetData(); 1296 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 1297 std::stable_sort(Structors.begin(), Structors.end(), priority_order); 1298 for (unsigned i = 0, e = Structors.size(); i != e; ++i) { 1299 const MCSection *OutputSection = 1300 (isCtor ? 1301 getObjFileLowering().getStaticCtorSection(Structors[i].first) : 1302 getObjFileLowering().getStaticDtorSection(Structors[i].first)); 1303 OutStreamer.SwitchSection(OutputSection); 1304 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1305 EmitAlignment(Align); 1306 EmitXXStructor(Structors[i].second); 1307 } 1308} 1309 1310//===--------------------------------------------------------------------===// 1311// Emission and print routines 1312// 1313 1314/// EmitInt8 - Emit a byte directive and value. 1315/// 1316void AsmPrinter::EmitInt8(int Value) const { 1317 OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/); 1318} 1319 1320/// EmitInt16 - Emit a short directive and value. 1321/// 1322void AsmPrinter::EmitInt16(int Value) const { 1323 OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/); 1324} 1325 1326/// EmitInt32 - Emit a long directive and value. 1327/// 1328void AsmPrinter::EmitInt32(int Value) const { 1329 OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/); 1330} 1331 1332/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1333/// in bytes of the directive is specified by Size and Hi/Lo specify the 1334/// labels. This implicitly uses .set if it is available. 1335void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1336 unsigned Size) const { 1337 // Get the Hi-Lo expression. 1338 const MCExpr *Diff = 1339 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1340 MCSymbolRefExpr::Create(Lo, OutContext), 1341 OutContext); 1342 1343 if (!MAI->hasSetDirective()) { 1344 OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/); 1345 return; 1346 } 1347 1348 // Otherwise, emit with .set (aka assignment). 1349 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1350 OutStreamer.EmitAssignment(SetLabel, Diff); 1351 OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/); 1352} 1353 1354/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1355/// where the size in bytes of the directive is specified by Size and Hi/Lo 1356/// specify the labels. This implicitly uses .set if it is available. 1357void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1358 const MCSymbol *Lo, unsigned Size) 1359 const { 1360 1361 // Emit Hi+Offset - Lo 1362 // Get the Hi+Offset expression. 1363 const MCExpr *Plus = 1364 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1365 MCConstantExpr::Create(Offset, OutContext), 1366 OutContext); 1367 1368 // Get the Hi+Offset-Lo expression. 1369 const MCExpr *Diff = 1370 MCBinaryExpr::CreateSub(Plus, 1371 MCSymbolRefExpr::Create(Lo, OutContext), 1372 OutContext); 1373 1374 if (!MAI->hasSetDirective()) 1375 OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/); 1376 else { 1377 // Otherwise, emit with .set (aka assignment). 1378 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1379 OutStreamer.EmitAssignment(SetLabel, Diff); 1380 OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/); 1381 } 1382} 1383 1384/// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1385/// where the size in bytes of the directive is specified by Size and Label 1386/// specifies the label. This implicitly uses .set if it is available. 1387void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1388 unsigned Size) 1389 const { 1390 1391 // Emit Label+Offset 1392 const MCExpr *Plus = 1393 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext), 1394 MCConstantExpr::Create(Offset, OutContext), 1395 OutContext); 1396 1397 OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/); 1398} 1399 1400 1401//===----------------------------------------------------------------------===// 1402 1403// EmitAlignment - Emit an alignment directive to the specified power of 1404// two boundary. For example, if you pass in 3 here, you will get an 8 1405// byte alignment. If a global value is specified, and if that global has 1406// an explicit alignment requested, it will override the alignment request 1407// if required for correctness. 1408// 1409void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { 1410 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits); 1411 1412 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1413 1414 if (getCurrentSection()->getKind().isText()) 1415 OutStreamer.EmitCodeAlignment(1 << NumBits); 1416 else 1417 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); 1418} 1419 1420//===----------------------------------------------------------------------===// 1421// Constant emission. 1422//===----------------------------------------------------------------------===// 1423 1424/// LowerConstant - Lower the specified LLVM Constant to an MCExpr. 1425/// 1426static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) { 1427 MCContext &Ctx = AP.OutContext; 1428 1429 if (CV->isNullValue() || isa<UndefValue>(CV)) 1430 return MCConstantExpr::Create(0, Ctx); 1431 1432 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1433 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1434 1435 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1436 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); 1437 1438 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1439 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1440 1441 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1442 if (CE == 0) { 1443 llvm_unreachable("Unknown constant value to lower!"); 1444 } 1445 1446 switch (CE->getOpcode()) { 1447 default: 1448 // If the code isn't optimized, there may be outstanding folding 1449 // opportunities. Attempt to fold the expression using TargetData as a 1450 // last resort before giving up. 1451 if (Constant *C = 1452 ConstantFoldConstantExpression(CE, AP.TM.getTargetData())) 1453 if (C != CE) 1454 return LowerConstant(C, AP); 1455 1456 // Otherwise report the problem to the user. 1457 { 1458 std::string S; 1459 raw_string_ostream OS(S); 1460 OS << "Unsupported expression in static initializer: "; 1461 WriteAsOperand(OS, CE, /*PrintType=*/false, 1462 !AP.MF ? 0 : AP.MF->getFunction()->getParent()); 1463 report_fatal_error(OS.str()); 1464 } 1465 case Instruction::GetElementPtr: { 1466 const TargetData &TD = *AP.TM.getTargetData(); 1467 // Generate a symbolic expression for the byte address 1468 const Constant *PtrVal = CE->getOperand(0); 1469 SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end()); 1470 int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec); 1471 1472 const MCExpr *Base = LowerConstant(CE->getOperand(0), AP); 1473 if (Offset == 0) 1474 return Base; 1475 1476 // Truncate/sext the offset to the pointer size. 1477 if (TD.getPointerSizeInBits() != 64) { 1478 int SExtAmount = 64-TD.getPointerSizeInBits(); 1479 Offset = (Offset << SExtAmount) >> SExtAmount; 1480 } 1481 1482 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1483 Ctx); 1484 } 1485 1486 case Instruction::Trunc: 1487 // We emit the value and depend on the assembler to truncate the generated 1488 // expression properly. This is important for differences between 1489 // blockaddress labels. Since the two labels are in the same function, it 1490 // is reasonable to treat their delta as a 32-bit value. 1491 // FALL THROUGH. 1492 case Instruction::BitCast: 1493 return LowerConstant(CE->getOperand(0), AP); 1494 1495 case Instruction::IntToPtr: { 1496 const TargetData &TD = *AP.TM.getTargetData(); 1497 // Handle casts to pointers by changing them into casts to the appropriate 1498 // integer type. This promotes constant folding and simplifies this code. 1499 Constant *Op = CE->getOperand(0); 1500 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), 1501 false/*ZExt*/); 1502 return LowerConstant(Op, AP); 1503 } 1504 1505 case Instruction::PtrToInt: { 1506 const TargetData &TD = *AP.TM.getTargetData(); 1507 // Support only foldable casts to/from pointers that can be eliminated by 1508 // changing the pointer to the appropriately sized integer type. 1509 Constant *Op = CE->getOperand(0); 1510 Type *Ty = CE->getType(); 1511 1512 const MCExpr *OpExpr = LowerConstant(Op, AP); 1513 1514 // We can emit the pointer value into this slot if the slot is an 1515 // integer slot equal to the size of the pointer. 1516 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) 1517 return OpExpr; 1518 1519 // Otherwise the pointer is smaller than the resultant integer, mask off 1520 // the high bits so we are sure to get a proper truncation if the input is 1521 // a constant expr. 1522 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); 1523 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1524 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1525 } 1526 1527 // The MC library also has a right-shift operator, but it isn't consistently 1528 // signed or unsigned between different targets. 1529 case Instruction::Add: 1530 case Instruction::Sub: 1531 case Instruction::Mul: 1532 case Instruction::SDiv: 1533 case Instruction::SRem: 1534 case Instruction::Shl: 1535 case Instruction::And: 1536 case Instruction::Or: 1537 case Instruction::Xor: { 1538 const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP); 1539 const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP); 1540 switch (CE->getOpcode()) { 1541 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1542 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1543 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1544 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1545 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1546 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1547 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1548 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1549 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1550 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1551 } 1552 } 1553 } 1554} 1555 1556static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace, 1557 AsmPrinter &AP); 1558 1559/// isRepeatedByteSequence - Determine whether the given value is 1560/// composed of a repeated sequence of identical bytes and return the 1561/// byte value. If it is not a repeated sequence, return -1. 1562static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1563 StringRef Data = V->getRawDataValues(); 1564 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1565 char C = Data[0]; 1566 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1567 if (Data[i] != C) return -1; 1568 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1569} 1570 1571 1572/// isRepeatedByteSequence - Determine whether the given value is 1573/// composed of a repeated sequence of identical bytes and return the 1574/// byte value. If it is not a repeated sequence, return -1. 1575static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1576 1577 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1578 if (CI->getBitWidth() > 64) return -1; 1579 1580 uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType()); 1581 uint64_t Value = CI->getZExtValue(); 1582 1583 // Make sure the constant is at least 8 bits long and has a power 1584 // of 2 bit width. This guarantees the constant bit width is 1585 // always a multiple of 8 bits, avoiding issues with padding out 1586 // to Size and other such corner cases. 1587 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1588 1589 uint8_t Byte = static_cast<uint8_t>(Value); 1590 1591 for (unsigned i = 1; i < Size; ++i) { 1592 Value >>= 8; 1593 if (static_cast<uint8_t>(Value) != Byte) return -1; 1594 } 1595 return Byte; 1596 } 1597 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1598 // Make sure all array elements are sequences of the same repeated 1599 // byte. 1600 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1601 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1602 if (Byte == -1) return -1; 1603 1604 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1605 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1606 if (ThisByte == -1) return -1; 1607 if (Byte != ThisByte) return -1; 1608 } 1609 return Byte; 1610 } 1611 1612 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1613 return isRepeatedByteSequence(CDS); 1614 1615 return -1; 1616} 1617 1618static void EmitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1619 unsigned AddrSpace,AsmPrinter &AP){ 1620 1621 // See if we can aggregate this into a .fill, if so, emit it as such. 1622 int Value = isRepeatedByteSequence(CDS, AP.TM); 1623 if (Value != -1) { 1624 uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType()); 1625 // Don't emit a 1-byte object as a .fill. 1626 if (Bytes > 1) 1627 return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1628 } 1629 1630 // If this can be emitted with .ascii/.asciz, emit it as such. 1631 if (CDS->isString()) 1632 return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace); 1633 1634 // Otherwise, emit the values in successive locations. 1635 unsigned ElementByteSize = CDS->getElementByteSize(); 1636 if (isa<IntegerType>(CDS->getElementType())) { 1637 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1638 if (AP.isVerbose()) 1639 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1640 CDS->getElementAsInteger(i)); 1641 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1642 ElementByteSize, AddrSpace); 1643 } 1644 } else if (ElementByteSize == 4) { 1645 // FP Constants are printed as integer constants to avoid losing 1646 // precision. 1647 assert(CDS->getElementType()->isFloatTy()); 1648 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1649 union { 1650 float F; 1651 uint32_t I; 1652 }; 1653 1654 F = CDS->getElementAsFloat(i); 1655 if (AP.isVerbose()) 1656 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1657 AP.OutStreamer.EmitIntValue(I, 4, AddrSpace); 1658 } 1659 } else { 1660 assert(CDS->getElementType()->isDoubleTy()); 1661 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1662 union { 1663 double F; 1664 uint64_t I; 1665 }; 1666 1667 F = CDS->getElementAsDouble(i); 1668 if (AP.isVerbose()) 1669 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1670 AP.OutStreamer.EmitIntValue(I, 8, AddrSpace); 1671 } 1672 } 1673 1674 const TargetData &TD = *AP.TM.getTargetData(); 1675 unsigned Size = TD.getTypeAllocSize(CDS->getType()); 1676 unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) * 1677 CDS->getNumElements(); 1678 if (unsigned Padding = Size - EmittedSize) 1679 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1680 1681} 1682 1683static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace, 1684 AsmPrinter &AP) { 1685 // See if we can aggregate some values. Make sure it can be 1686 // represented as a series of bytes of the constant value. 1687 int Value = isRepeatedByteSequence(CA, AP.TM); 1688 1689 if (Value != -1) { 1690 uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType()); 1691 AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1692 } 1693 else { 1694 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1695 EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP); 1696 } 1697} 1698 1699static void EmitGlobalConstantVector(const ConstantVector *CV, 1700 unsigned AddrSpace, AsmPrinter &AP) { 1701 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1702 EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP); 1703 1704 const TargetData &TD = *AP.TM.getTargetData(); 1705 unsigned Size = TD.getTypeAllocSize(CV->getType()); 1706 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) * 1707 CV->getType()->getNumElements(); 1708 if (unsigned Padding = Size - EmittedSize) 1709 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1710} 1711 1712static void EmitGlobalConstantStruct(const ConstantStruct *CS, 1713 unsigned AddrSpace, AsmPrinter &AP) { 1714 // Print the fields in successive locations. Pad to align if needed! 1715 const TargetData *TD = AP.TM.getTargetData(); 1716 unsigned Size = TD->getTypeAllocSize(CS->getType()); 1717 const StructLayout *Layout = TD->getStructLayout(CS->getType()); 1718 uint64_t SizeSoFar = 0; 1719 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1720 const Constant *Field = CS->getOperand(i); 1721 1722 // Check if padding is needed and insert one or more 0s. 1723 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType()); 1724 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1725 - Layout->getElementOffset(i)) - FieldSize; 1726 SizeSoFar += FieldSize + PadSize; 1727 1728 // Now print the actual field value. 1729 EmitGlobalConstantImpl(Field, AddrSpace, AP); 1730 1731 // Insert padding - this may include padding to increase the size of the 1732 // current field up to the ABI size (if the struct is not packed) as well 1733 // as padding to ensure that the next field starts at the right offset. 1734 AP.OutStreamer.EmitZeros(PadSize, AddrSpace); 1735 } 1736 assert(SizeSoFar == Layout->getSizeInBytes() && 1737 "Layout of constant struct may be incorrect!"); 1738} 1739 1740static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace, 1741 AsmPrinter &AP) { 1742 if (CFP->getType()->isHalfTy()) { 1743 if (AP.isVerbose()) { 1744 SmallString<10> Str; 1745 CFP->getValueAPF().toString(Str); 1746 AP.OutStreamer.GetCommentOS() << "half " << Str << '\n'; 1747 } 1748 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1749 AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace); 1750 return; 1751 } 1752 1753 if (CFP->getType()->isFloatTy()) { 1754 if (AP.isVerbose()) { 1755 float Val = CFP->getValueAPF().convertToFloat(); 1756 uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1757 AP.OutStreamer.GetCommentOS() << "float " << Val << '\n' 1758 << " (" << format("0x%x", IntVal) << ")\n"; 1759 } 1760 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1761 AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace); 1762 return; 1763 } 1764 1765 // FP Constants are printed as integer constants to avoid losing 1766 // precision. 1767 if (CFP->getType()->isDoubleTy()) { 1768 if (AP.isVerbose()) { 1769 double Val = CFP->getValueAPF().convertToDouble(); 1770 uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1771 AP.OutStreamer.GetCommentOS() << "double " << Val << '\n' 1772 << " (" << format("0x%lx", IntVal) << ")\n"; 1773 } 1774 1775 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1776 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1777 return; 1778 } 1779 1780 if (CFP->getType()->isX86_FP80Ty()) { 1781 // all long double variants are printed as hex 1782 // API needed to prevent premature destruction 1783 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1784 const uint64_t *p = API.getRawData(); 1785 if (AP.isVerbose()) { 1786 // Convert to double so we can print the approximate val as a comment. 1787 APFloat DoubleVal = CFP->getValueAPF(); 1788 bool ignored; 1789 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1790 &ignored); 1791 AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= " 1792 << DoubleVal.convertToDouble() << '\n'; 1793 } 1794 1795 if (AP.TM.getTargetData()->isBigEndian()) { 1796 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1797 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1798 } else { 1799 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1800 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1801 } 1802 1803 // Emit the tail padding for the long double. 1804 const TargetData &TD = *AP.TM.getTargetData(); 1805 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - 1806 TD.getTypeStoreSize(CFP->getType()), AddrSpace); 1807 return; 1808 } 1809 1810 assert(CFP->getType()->isPPC_FP128Ty() && 1811 "Floating point constant type not handled"); 1812 // All long double variants are printed as hex 1813 // API needed to prevent premature destruction. 1814 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1815 const uint64_t *p = API.getRawData(); 1816 if (AP.TM.getTargetData()->isBigEndian()) { 1817 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1818 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1819 } else { 1820 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1821 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1822 } 1823} 1824 1825static void EmitGlobalConstantLargeInt(const ConstantInt *CI, 1826 unsigned AddrSpace, AsmPrinter &AP) { 1827 const TargetData *TD = AP.TM.getTargetData(); 1828 unsigned BitWidth = CI->getBitWidth(); 1829 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); 1830 1831 // We don't expect assemblers to support integer data directives 1832 // for more than 64 bits, so we emit the data in at most 64-bit 1833 // quantities at a time. 1834 const uint64_t *RawData = CI->getValue().getRawData(); 1835 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1836 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1837 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1838 } 1839} 1840 1841static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace, 1842 AsmPrinter &AP) { 1843 const TargetData *TD = AP.TM.getTargetData(); 1844 uint64_t Size = TD->getTypeAllocSize(CV->getType()); 1845 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 1846 return AP.OutStreamer.EmitZeros(Size, AddrSpace); 1847 1848 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1849 switch (Size) { 1850 case 1: 1851 case 2: 1852 case 4: 1853 case 8: 1854 if (AP.isVerbose()) 1855 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1856 CI->getZExtValue()); 1857 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace); 1858 return; 1859 default: 1860 EmitGlobalConstantLargeInt(CI, AddrSpace, AP); 1861 return; 1862 } 1863 } 1864 1865 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1866 return EmitGlobalConstantFP(CFP, AddrSpace, AP); 1867 1868 if (isa<ConstantPointerNull>(CV)) { 1869 AP.OutStreamer.EmitIntValue(0, Size, AddrSpace); 1870 return; 1871 } 1872 1873 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 1874 return EmitGlobalConstantDataSequential(CDS, AddrSpace, AP); 1875 1876 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1877 return EmitGlobalConstantArray(CVA, AddrSpace, AP); 1878 1879 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1880 return EmitGlobalConstantStruct(CVS, AddrSpace, AP); 1881 1882 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 1883 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 1884 // vectors). 1885 if (CE->getOpcode() == Instruction::BitCast) 1886 return EmitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP); 1887 1888 if (Size > 8) { 1889 // If the constant expression's size is greater than 64-bits, then we have 1890 // to emit the value in chunks. Try to constant fold the value and emit it 1891 // that way. 1892 Constant *New = ConstantFoldConstantExpression(CE, TD); 1893 if (New && New != CE) 1894 return EmitGlobalConstantImpl(New, AddrSpace, AP); 1895 } 1896 } 1897 1898 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1899 return EmitGlobalConstantVector(V, AddrSpace, AP); 1900 1901 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 1902 // thread the streamer with EmitValue. 1903 AP.OutStreamer.EmitValue(LowerConstant(CV, AP), Size, AddrSpace); 1904} 1905 1906/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1907void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1908 uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); 1909 if (Size) 1910 EmitGlobalConstantImpl(CV, AddrSpace, *this); 1911 else if (MAI->hasSubsectionsViaSymbols()) { 1912 // If the global has zero size, emit a single byte so that two labels don't 1913 // look like they are at the same location. 1914 OutStreamer.EmitIntValue(0, 1, AddrSpace); 1915 } 1916} 1917 1918void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1919 // Target doesn't support this yet! 1920 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1921} 1922 1923void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 1924 if (Offset > 0) 1925 OS << '+' << Offset; 1926 else if (Offset < 0) 1927 OS << Offset; 1928} 1929 1930//===----------------------------------------------------------------------===// 1931// Symbol Lowering Routines. 1932//===----------------------------------------------------------------------===// 1933 1934/// GetTempSymbol - Return the MCSymbol corresponding to the assembler 1935/// temporary label with the specified stem and unique ID. 1936MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const { 1937 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) + 1938 Name + Twine(ID)); 1939} 1940 1941/// GetTempSymbol - Return an assembler temporary label with the specified 1942/// stem. 1943MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const { 1944 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+ 1945 Name); 1946} 1947 1948 1949MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 1950 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 1951} 1952 1953MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 1954 return MMI->getAddrLabelSymbol(BB); 1955} 1956 1957/// GetCPISymbol - Return the symbol for the specified constant pool entry. 1958MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 1959 return OutContext.GetOrCreateSymbol 1960 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 1961 + "_" + Twine(CPID)); 1962} 1963 1964/// GetJTISymbol - Return the symbol for the specified jump table entry. 1965MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 1966 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 1967} 1968 1969/// GetJTSetSymbol - Return the symbol for the specified jump table .set 1970/// FIXME: privatize to AsmPrinter. 1971MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 1972 return OutContext.GetOrCreateSymbol 1973 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 1974 Twine(UID) + "_set_" + Twine(MBBID)); 1975} 1976 1977/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with 1978/// global value name as its base, with the specified suffix, and where the 1979/// symbol is forced to have private linkage if ForcePrivate is true. 1980MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, 1981 StringRef Suffix, 1982 bool ForcePrivate) const { 1983 SmallString<60> NameStr; 1984 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); 1985 NameStr.append(Suffix.begin(), Suffix.end()); 1986 return OutContext.GetOrCreateSymbol(NameStr.str()); 1987} 1988 1989/// GetExternalSymbolSymbol - Return the MCSymbol for the specified 1990/// ExternalSymbol. 1991MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 1992 SmallString<60> NameStr; 1993 Mang->getNameWithPrefix(NameStr, Sym); 1994 return OutContext.GetOrCreateSymbol(NameStr.str()); 1995} 1996 1997 1998 1999/// PrintParentLoopComment - Print comments about parent loops of this one. 2000static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2001 unsigned FunctionNumber) { 2002 if (Loop == 0) return; 2003 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2004 OS.indent(Loop->getLoopDepth()*2) 2005 << "Parent Loop BB" << FunctionNumber << "_" 2006 << Loop->getHeader()->getNumber() 2007 << " Depth=" << Loop->getLoopDepth() << '\n'; 2008} 2009 2010 2011/// PrintChildLoopComment - Print comments about child loops within 2012/// the loop for this basic block, with nesting. 2013static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2014 unsigned FunctionNumber) { 2015 // Add child loop information 2016 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ 2017 OS.indent((*CL)->getLoopDepth()*2) 2018 << "Child Loop BB" << FunctionNumber << "_" 2019 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() 2020 << '\n'; 2021 PrintChildLoopComment(OS, *CL, FunctionNumber); 2022 } 2023} 2024 2025/// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2026static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2027 const MachineLoopInfo *LI, 2028 const AsmPrinter &AP) { 2029 // Add loop depth information 2030 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2031 if (Loop == 0) return; 2032 2033 MachineBasicBlock *Header = Loop->getHeader(); 2034 assert(Header && "No header for loop"); 2035 2036 // If this block is not a loop header, just print out what is the loop header 2037 // and return. 2038 if (Header != &MBB) { 2039 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2040 Twine(AP.getFunctionNumber())+"_" + 2041 Twine(Loop->getHeader()->getNumber())+ 2042 " Depth="+Twine(Loop->getLoopDepth())); 2043 return; 2044 } 2045 2046 // Otherwise, it is a loop header. Print out information about child and 2047 // parent loops. 2048 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2049 2050 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2051 2052 OS << "=>"; 2053 OS.indent(Loop->getLoopDepth()*2-2); 2054 2055 OS << "This "; 2056 if (Loop->empty()) 2057 OS << "Inner "; 2058 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2059 2060 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2061} 2062 2063 2064/// EmitBasicBlockStart - This method prints the label for the specified 2065/// MachineBasicBlock, an alignment (if present) and a comment describing 2066/// it if appropriate. 2067void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 2068 // Emit an alignment directive for this block, if needed. 2069 if (unsigned Align = MBB->getAlignment()) 2070 EmitAlignment(Align); 2071 2072 // If the block has its address taken, emit any labels that were used to 2073 // reference the block. It is possible that there is more than one label 2074 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2075 // the references were generated. 2076 if (MBB->hasAddressTaken()) { 2077 const BasicBlock *BB = MBB->getBasicBlock(); 2078 if (isVerbose()) 2079 OutStreamer.AddComment("Block address taken"); 2080 2081 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); 2082 2083 for (unsigned i = 0, e = Syms.size(); i != e; ++i) 2084 OutStreamer.EmitLabel(Syms[i]); 2085 } 2086 2087 // Print some verbose block comments. 2088 if (isVerbose()) { 2089 if (const BasicBlock *BB = MBB->getBasicBlock()) 2090 if (BB->hasName()) 2091 OutStreamer.AddComment("%" + BB->getName()); 2092 EmitBasicBlockLoopComments(*MBB, LI, *this); 2093 } 2094 2095 // Print the main label for the block. 2096 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { 2097 if (isVerbose() && OutStreamer.hasRawTextSupport()) { 2098 // NOTE: Want this comment at start of line, don't emit with AddComment. 2099 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" + 2100 Twine(MBB->getNumber()) + ":"); 2101 } 2102 } else { 2103 OutStreamer.EmitLabel(MBB->getSymbol()); 2104 } 2105} 2106 2107void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2108 bool IsDefinition) const { 2109 MCSymbolAttr Attr = MCSA_Invalid; 2110 2111 switch (Visibility) { 2112 default: break; 2113 case GlobalValue::HiddenVisibility: 2114 if (IsDefinition) 2115 Attr = MAI->getHiddenVisibilityAttr(); 2116 else 2117 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2118 break; 2119 case GlobalValue::ProtectedVisibility: 2120 Attr = MAI->getProtectedVisibilityAttr(); 2121 break; 2122 } 2123 2124 if (Attr != MCSA_Invalid) 2125 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2126} 2127 2128/// isBlockOnlyReachableByFallthough - Return true if the basic block has 2129/// exactly one predecessor and the control transfer mechanism between 2130/// the predecessor and this block is a fall-through. 2131bool AsmPrinter:: 2132isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2133 // If this is a landing pad, it isn't a fall through. If it has no preds, 2134 // then nothing falls through to it. 2135 if (MBB->isLandingPad() || MBB->pred_empty()) 2136 return false; 2137 2138 // If there isn't exactly one predecessor, it can't be a fall through. 2139 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 2140 ++PI2; 2141 if (PI2 != MBB->pred_end()) 2142 return false; 2143 2144 // The predecessor has to be immediately before this block. 2145 MachineBasicBlock *Pred = *PI; 2146 2147 if (!Pred->isLayoutSuccessor(MBB)) 2148 return false; 2149 2150 // If the block is completely empty, then it definitely does fall through. 2151 if (Pred->empty()) 2152 return true; 2153 2154 // Check the terminators in the previous blocks 2155 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(), 2156 IE = Pred->end(); II != IE; ++II) { 2157 MachineInstr &MI = *II; 2158 2159 // If it is not a simple branch, we are in a table somewhere. 2160 if (!MI.isBranch() || MI.isIndirectBranch()) 2161 return false; 2162 2163 // If we are the operands of one of the branches, this is not 2164 // a fall through. 2165 for (MachineInstr::mop_iterator OI = MI.operands_begin(), 2166 OE = MI.operands_end(); OI != OE; ++OI) { 2167 const MachineOperand& OP = *OI; 2168 if (OP.isJTI()) 2169 return false; 2170 if (OP.isMBB() && OP.getMBB() == MBB) 2171 return false; 2172 } 2173 } 2174 2175 return true; 2176} 2177 2178 2179 2180GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 2181 if (!S->usesMetadata()) 2182 return 0; 2183 2184 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2185 gcp_map_type::iterator GCPI = GCMap.find(S); 2186 if (GCPI != GCMap.end()) 2187 return GCPI->second; 2188 2189 const char *Name = S->getName().c_str(); 2190 2191 for (GCMetadataPrinterRegistry::iterator 2192 I = GCMetadataPrinterRegistry::begin(), 2193 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2194 if (strcmp(Name, I->getName()) == 0) { 2195 GCMetadataPrinter *GMP = I->instantiate(); 2196 GMP->S = S; 2197 GCMap.insert(std::make_pair(S, GMP)); 2198 return GMP; 2199 } 2200 2201 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2202} 2203