AsmPrinter.cpp revision 396618b43a85e12d290a90b181c6af5d7c0c5f11
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "DwarfDebug.h"
17#include "DwarfException.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/CodeGen/MachineLoopInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Analysis/DebugInfo.h"
28#include "llvm/MC/MCAsmInfo.h"
29#include "llvm/MC/MCContext.h"
30#include "llvm/MC/MCExpr.h"
31#include "llvm/MC/MCInst.h"
32#include "llvm/MC/MCSection.h"
33#include "llvm/MC/MCStreamer.h"
34#include "llvm/MC/MCSymbol.h"
35#include "llvm/Target/Mangler.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetLowering.h"
39#include "llvm/Target/TargetLoweringObjectFile.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Assembly/Writer.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/Format.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/Timer.h"
49using namespace llvm;
50
51static const char *DWARFGroupName = "DWARF Emission";
52static const char *DbgTimerName = "DWARF Debug Writer";
53static const char *EHTimerName = "DWARF Exception Writer";
54
55STATISTIC(EmittedInsts, "Number of machine instrs printed");
56
57char AsmPrinter::ID = 0;
58
59typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
60static gcp_map_type &getGCMap(void *&P) {
61  if (P == 0)
62    P = new gcp_map_type();
63  return *(gcp_map_type*)P;
64}
65
66
67/// getGVAlignmentLog2 - Return the alignment to use for the specified global
68/// value in log2 form.  This rounds up to the preferred alignment if possible
69/// and legal.
70static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
71                                   unsigned InBits = 0) {
72  unsigned NumBits = 0;
73  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
74    NumBits = TD.getPreferredAlignmentLog(GVar);
75
76  // If InBits is specified, round it to it.
77  if (InBits > NumBits)
78    NumBits = InBits;
79
80  // If the GV has a specified alignment, take it into account.
81  if (GV->getAlignment() == 0)
82    return NumBits;
83
84  unsigned GVAlign = Log2_32(GV->getAlignment());
85
86  // If the GVAlign is larger than NumBits, or if we are required to obey
87  // NumBits because the GV has an assigned section, obey it.
88  if (GVAlign > NumBits || GV->hasSection())
89    NumBits = GVAlign;
90  return NumBits;
91}
92
93
94
95
96AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
97  : MachineFunctionPass(ID),
98    TM(tm), MAI(tm.getMCAsmInfo()),
99    OutContext(Streamer.getContext()),
100    OutStreamer(Streamer),
101    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
102  DD = 0; DE = 0; MMI = 0; LI = 0;
103  CurrentFnSym = CurrentFnSymForSize = 0;
104  GCMetadataPrinters = 0;
105  VerboseAsm = Streamer.isVerboseAsm();
106}
107
108AsmPrinter::~AsmPrinter() {
109  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
110
111  if (GCMetadataPrinters != 0) {
112    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
113
114    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
115      delete I->second;
116    delete &GCMap;
117    GCMetadataPrinters = 0;
118  }
119
120  delete &OutStreamer;
121}
122
123/// getFunctionNumber - Return a unique ID for the current function.
124///
125unsigned AsmPrinter::getFunctionNumber() const {
126  return MF->getFunctionNumber();
127}
128
129const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
130  return TM.getTargetLowering()->getObjFileLowering();
131}
132
133
134/// getTargetData - Return information about data layout.
135const TargetData &AsmPrinter::getTargetData() const {
136  return *TM.getTargetData();
137}
138
139/// getCurrentSection() - Return the current section we are emitting to.
140const MCSection *AsmPrinter::getCurrentSection() const {
141  return OutStreamer.getCurrentSection();
142}
143
144
145
146void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
147  AU.setPreservesAll();
148  MachineFunctionPass::getAnalysisUsage(AU);
149  AU.addRequired<MachineModuleInfo>();
150  AU.addRequired<GCModuleInfo>();
151  if (isVerbose())
152    AU.addRequired<MachineLoopInfo>();
153}
154
155bool AsmPrinter::doInitialization(Module &M) {
156  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
157  MMI->AnalyzeModule(M);
158
159  // Initialize TargetLoweringObjectFile.
160  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
161    .Initialize(OutContext, TM);
162
163  Mang = new Mangler(OutContext, *TM.getTargetData());
164
165  // Allow the target to emit any magic that it wants at the start of the file.
166  EmitStartOfAsmFile(M);
167
168  // Very minimal debug info. It is ignored if we emit actual debug info. If we
169  // don't, this at least helps the user find where a global came from.
170  if (MAI->hasSingleParameterDotFile()) {
171    // .file "foo.c"
172    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
173  }
174
175  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
176  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
177  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
178    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
179      MP->beginAssembly(*this);
180
181  // Emit module-level inline asm if it exists.
182  if (!M.getModuleInlineAsm().empty()) {
183    OutStreamer.AddComment("Start of file scope inline assembly");
184    OutStreamer.AddBlankLine();
185    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
186    OutStreamer.AddComment("End of file scope inline assembly");
187    OutStreamer.AddBlankLine();
188  }
189
190  if (MAI->doesSupportDebugInformation())
191    DD = new DwarfDebug(this, &M);
192
193  switch (MAI->getExceptionHandlingType()) {
194  case ExceptionHandling::None:
195    return false;
196  case ExceptionHandling::SjLj:
197  case ExceptionHandling::DwarfCFI:
198    DE = new DwarfCFIException(this);
199    return false;
200  case ExceptionHandling::ARM:
201    DE = new ARMException(this);
202    return false;
203  case ExceptionHandling::Win64:
204    DE = new Win64Exception(this);
205    return false;
206  }
207
208  llvm_unreachable("Unknown exception type.");
209}
210
211void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
212  switch ((GlobalValue::LinkageTypes)Linkage) {
213  case GlobalValue::CommonLinkage:
214  case GlobalValue::LinkOnceAnyLinkage:
215  case GlobalValue::LinkOnceODRLinkage:
216  case GlobalValue::WeakAnyLinkage:
217  case GlobalValue::WeakODRLinkage:
218  case GlobalValue::LinkerPrivateWeakLinkage:
219  case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
220    if (MAI->getWeakDefDirective() != 0) {
221      // .globl _foo
222      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
223
224      if ((GlobalValue::LinkageTypes)Linkage !=
225          GlobalValue::LinkerPrivateWeakDefAutoLinkage)
226        // .weak_definition _foo
227        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
228      else
229        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
230    } else if (MAI->getLinkOnceDirective() != 0) {
231      // .globl _foo
232      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
233      //NOTE: linkonce is handled by the section the symbol was assigned to.
234    } else {
235      // .weak _foo
236      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
237    }
238    break;
239  case GlobalValue::DLLExportLinkage:
240  case GlobalValue::AppendingLinkage:
241    // FIXME: appending linkage variables should go into a section of
242    // their name or something.  For now, just emit them as external.
243  case GlobalValue::ExternalLinkage:
244    // If external or appending, declare as a global symbol.
245    // .globl _foo
246    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
247    break;
248  case GlobalValue::PrivateLinkage:
249  case GlobalValue::InternalLinkage:
250  case GlobalValue::LinkerPrivateLinkage:
251    break;
252  default:
253    llvm_unreachable("Unknown linkage type!");
254  }
255}
256
257
258/// EmitGlobalVariable - Emit the specified global variable to the .s file.
259void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
260  if (GV->hasInitializer()) {
261    // Check to see if this is a special global used by LLVM, if so, emit it.
262    if (EmitSpecialLLVMGlobal(GV))
263      return;
264
265    if (isVerbose()) {
266      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
267                     /*PrintType=*/false, GV->getParent());
268      OutStreamer.GetCommentOS() << '\n';
269    }
270  }
271
272  MCSymbol *GVSym = Mang->getSymbol(GV);
273  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
274
275  if (!GV->hasInitializer())   // External globals require no extra code.
276    return;
277
278  if (MAI->hasDotTypeDotSizeDirective())
279    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
280
281  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
282
283  const TargetData *TD = TM.getTargetData();
284  uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
285
286  // If the alignment is specified, we *must* obey it.  Overaligning a global
287  // with a specified alignment is a prompt way to break globals emitted to
288  // sections and expected to be contiguous (e.g. ObjC metadata).
289  unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
290
291  // Handle common and BSS local symbols (.lcomm).
292  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
293    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
294    unsigned Align = 1 << AlignLog;
295
296    // Handle common symbols.
297    if (GVKind.isCommon()) {
298      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
299        Align = 0;
300
301      // .comm _foo, 42, 4
302      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
303      return;
304    }
305
306    // Handle local BSS symbols.
307    if (MAI->hasMachoZeroFillDirective()) {
308      const MCSection *TheSection =
309        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
310      // .zerofill __DATA, __bss, _foo, 400, 5
311      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
312      return;
313    }
314
315    if (MAI->getLCOMMDirectiveType() != LCOMM::None &&
316        (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) {
317      // .lcomm _foo, 42
318      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
319      return;
320    }
321
322    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
323      Align = 0;
324
325    // .local _foo
326    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
327    // .comm _foo, 42, 4
328    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
329    return;
330  }
331
332  const MCSection *TheSection =
333    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
334
335  // Handle the zerofill directive on darwin, which is a special form of BSS
336  // emission.
337  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
338    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
339
340    // .globl _foo
341    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
342    // .zerofill __DATA, __common, _foo, 400, 5
343    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
344    return;
345  }
346
347  // Handle thread local data for mach-o which requires us to output an
348  // additional structure of data and mangle the original symbol so that we
349  // can reference it later.
350  //
351  // TODO: This should become an "emit thread local global" method on TLOF.
352  // All of this macho specific stuff should be sunk down into TLOFMachO and
353  // stuff like "TLSExtraDataSection" should no longer be part of the parent
354  // TLOF class.  This will also make it more obvious that stuff like
355  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
356  // specific code.
357  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
358    // Emit the .tbss symbol
359    MCSymbol *MangSym =
360      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
361
362    if (GVKind.isThreadBSS())
363      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
364    else if (GVKind.isThreadData()) {
365      OutStreamer.SwitchSection(TheSection);
366
367      EmitAlignment(AlignLog, GV);
368      OutStreamer.EmitLabel(MangSym);
369
370      EmitGlobalConstant(GV->getInitializer());
371    }
372
373    OutStreamer.AddBlankLine();
374
375    // Emit the variable struct for the runtime.
376    const MCSection *TLVSect
377      = getObjFileLowering().getTLSExtraDataSection();
378
379    OutStreamer.SwitchSection(TLVSect);
380    // Emit the linkage here.
381    EmitLinkage(GV->getLinkage(), GVSym);
382    OutStreamer.EmitLabel(GVSym);
383
384    // Three pointers in size:
385    //   - __tlv_bootstrap - used to make sure support exists
386    //   - spare pointer, used when mapped by the runtime
387    //   - pointer to mangled symbol above with initializer
388    unsigned PtrSize = TD->getPointerSizeInBits()/8;
389    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
390                          PtrSize, 0);
391    OutStreamer.EmitIntValue(0, PtrSize, 0);
392    OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
393
394    OutStreamer.AddBlankLine();
395    return;
396  }
397
398  OutStreamer.SwitchSection(TheSection);
399
400  EmitLinkage(GV->getLinkage(), GVSym);
401  EmitAlignment(AlignLog, GV);
402
403  OutStreamer.EmitLabel(GVSym);
404
405  EmitGlobalConstant(GV->getInitializer());
406
407  if (MAI->hasDotTypeDotSizeDirective())
408    // .size foo, 42
409    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
410
411  OutStreamer.AddBlankLine();
412}
413
414/// EmitFunctionHeader - This method emits the header for the current
415/// function.
416void AsmPrinter::EmitFunctionHeader() {
417  // Print out constants referenced by the function
418  EmitConstantPool();
419
420  // Print the 'header' of function.
421  const Function *F = MF->getFunction();
422
423  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
424  EmitVisibility(CurrentFnSym, F->getVisibility());
425
426  EmitLinkage(F->getLinkage(), CurrentFnSym);
427  EmitAlignment(MF->getAlignment(), F);
428
429  if (MAI->hasDotTypeDotSizeDirective())
430    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
431
432  if (isVerbose()) {
433    WriteAsOperand(OutStreamer.GetCommentOS(), F,
434                   /*PrintType=*/false, F->getParent());
435    OutStreamer.GetCommentOS() << '\n';
436  }
437
438  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
439  // do their wild and crazy things as required.
440  EmitFunctionEntryLabel();
441
442  // If the function had address-taken blocks that got deleted, then we have
443  // references to the dangling symbols.  Emit them at the start of the function
444  // so that we don't get references to undefined symbols.
445  std::vector<MCSymbol*> DeadBlockSyms;
446  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
447  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
448    OutStreamer.AddComment("Address taken block that was later removed");
449    OutStreamer.EmitLabel(DeadBlockSyms[i]);
450  }
451
452  // Add some workaround for linkonce linkage on Cygwin\MinGW.
453  if (MAI->getLinkOnceDirective() != 0 &&
454      (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
455    // FIXME: What is this?
456    MCSymbol *FakeStub =
457      OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
458                                   CurrentFnSym->getName());
459    OutStreamer.EmitLabel(FakeStub);
460  }
461
462  // Emit pre-function debug and/or EH information.
463  if (DE) {
464    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
465    DE->BeginFunction(MF);
466  }
467  if (DD) {
468    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
469    DD->beginFunction(MF);
470  }
471}
472
473/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
474/// function.  This can be overridden by targets as required to do custom stuff.
475void AsmPrinter::EmitFunctionEntryLabel() {
476  // The function label could have already been emitted if two symbols end up
477  // conflicting due to asm renaming.  Detect this and emit an error.
478  if (CurrentFnSym->isUndefined())
479    return OutStreamer.EmitLabel(CurrentFnSym);
480
481  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
482                     "' label emitted multiple times to assembly file");
483}
484
485
486/// EmitComments - Pretty-print comments for instructions.
487static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
488  const MachineFunction *MF = MI.getParent()->getParent();
489  const TargetMachine &TM = MF->getTarget();
490
491  // Check for spills and reloads
492  int FI;
493
494  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
495
496  // We assume a single instruction only has a spill or reload, not
497  // both.
498  const MachineMemOperand *MMO;
499  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
500    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
501      MMO = *MI.memoperands_begin();
502      CommentOS << MMO->getSize() << "-byte Reload\n";
503    }
504  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
505    if (FrameInfo->isSpillSlotObjectIndex(FI))
506      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
507  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
508    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
509      MMO = *MI.memoperands_begin();
510      CommentOS << MMO->getSize() << "-byte Spill\n";
511    }
512  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
513    if (FrameInfo->isSpillSlotObjectIndex(FI))
514      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
515  }
516
517  // Check for spill-induced copies
518  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
519    CommentOS << " Reload Reuse\n";
520}
521
522/// EmitImplicitDef - This method emits the specified machine instruction
523/// that is an implicit def.
524static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
525  unsigned RegNo = MI->getOperand(0).getReg();
526  AP.OutStreamer.AddComment(Twine("implicit-def: ") +
527                            AP.TM.getRegisterInfo()->getName(RegNo));
528  AP.OutStreamer.AddBlankLine();
529}
530
531static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) {
532  std::string Str = "kill:";
533  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
534    const MachineOperand &Op = MI->getOperand(i);
535    assert(Op.isReg() && "KILL instruction must have only register operands");
536    Str += ' ';
537    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
538    Str += (Op.isDef() ? "<def>" : "<kill>");
539  }
540  AP.OutStreamer.AddComment(Str);
541  AP.OutStreamer.AddBlankLine();
542}
543
544/// EmitDebugValueComment - This method handles the target-independent form
545/// of DBG_VALUE, returning true if it was able to do so.  A false return
546/// means the target will need to handle MI in EmitInstruction.
547static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
548  // This code handles only the 3-operand target-independent form.
549  if (MI->getNumOperands() != 3)
550    return false;
551
552  SmallString<128> Str;
553  raw_svector_ostream OS(Str);
554  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
555
556  // cast away const; DIetc do not take const operands for some reason.
557  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
558  if (V.getContext().isSubprogram())
559    OS << DISubprogram(V.getContext()).getDisplayName() << ":";
560  OS << V.getName() << " <- ";
561
562  // Register or immediate value. Register 0 means undef.
563  if (MI->getOperand(0).isFPImm()) {
564    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
565    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
566      OS << (double)APF.convertToFloat();
567    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
568      OS << APF.convertToDouble();
569    } else {
570      // There is no good way to print long double.  Convert a copy to
571      // double.  Ah well, it's only a comment.
572      bool ignored;
573      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
574                  &ignored);
575      OS << "(long double) " << APF.convertToDouble();
576    }
577  } else if (MI->getOperand(0).isImm()) {
578    OS << MI->getOperand(0).getImm();
579  } else if (MI->getOperand(0).isCImm()) {
580    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
581  } else {
582    assert(MI->getOperand(0).isReg() && "Unknown operand type");
583    if (MI->getOperand(0).getReg() == 0) {
584      // Suppress offset, it is not meaningful here.
585      OS << "undef";
586      // NOTE: Want this comment at start of line, don't emit with AddComment.
587      AP.OutStreamer.EmitRawText(OS.str());
588      return true;
589    }
590    OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
591  }
592
593  OS << '+' << MI->getOperand(1).getImm();
594  // NOTE: Want this comment at start of line, don't emit with AddComment.
595  AP.OutStreamer.EmitRawText(OS.str());
596  return true;
597}
598
599AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
600  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
601      MF->getFunction()->needsUnwindTableEntry())
602    return CFI_M_EH;
603
604  if (MMI->hasDebugInfo())
605    return CFI_M_Debug;
606
607  return CFI_M_None;
608}
609
610bool AsmPrinter::needsSEHMoves() {
611  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
612    MF->getFunction()->needsUnwindTableEntry();
613}
614
615bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
616  return MAI->doesDwarfUseRelocationsForStringPool();
617}
618
619void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
620  MCSymbol *Label = MI.getOperand(0).getMCSymbol();
621
622  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
623    return;
624
625  if (needsCFIMoves() == CFI_M_None)
626    return;
627
628  if (MMI->getCompactUnwindEncoding() != 0)
629    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
630
631  MachineModuleInfo &MMI = MF->getMMI();
632  std::vector<MachineMove> &Moves = MMI.getFrameMoves();
633  bool FoundOne = false;
634  (void)FoundOne;
635  for (std::vector<MachineMove>::iterator I = Moves.begin(),
636         E = Moves.end(); I != E; ++I) {
637    if (I->getLabel() == Label) {
638      EmitCFIFrameMove(*I);
639      FoundOne = true;
640    }
641  }
642  assert(FoundOne);
643}
644
645/// EmitFunctionBody - This method emits the body and trailer for a
646/// function.
647void AsmPrinter::EmitFunctionBody() {
648  // Emit target-specific gunk before the function body.
649  EmitFunctionBodyStart();
650
651  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
652
653  // Print out code for the function.
654  bool HasAnyRealCode = false;
655  const MachineInstr *LastMI = 0;
656  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
657       I != E; ++I) {
658    // Print a label for the basic block.
659    EmitBasicBlockStart(I);
660    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
661         II != IE; ++II) {
662      LastMI = II;
663
664      // Print the assembly for the instruction.
665      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
666          !II->isDebugValue()) {
667        HasAnyRealCode = true;
668        ++EmittedInsts;
669      }
670
671      if (ShouldPrintDebugScopes) {
672        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
673        DD->beginInstruction(II);
674      }
675
676      if (isVerbose())
677        EmitComments(*II, OutStreamer.GetCommentOS());
678
679      switch (II->getOpcode()) {
680      case TargetOpcode::PROLOG_LABEL:
681        emitPrologLabel(*II);
682        break;
683
684      case TargetOpcode::EH_LABEL:
685      case TargetOpcode::GC_LABEL:
686        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
687        break;
688      case TargetOpcode::INLINEASM:
689        EmitInlineAsm(II);
690        break;
691      case TargetOpcode::DBG_VALUE:
692        if (isVerbose()) {
693          if (!EmitDebugValueComment(II, *this))
694            EmitInstruction(II);
695        }
696        break;
697      case TargetOpcode::IMPLICIT_DEF:
698        if (isVerbose()) EmitImplicitDef(II, *this);
699        break;
700      case TargetOpcode::KILL:
701        if (isVerbose()) EmitKill(II, *this);
702        break;
703      default:
704        if (!TM.hasMCUseLoc())
705          MCLineEntry::Make(&OutStreamer, getCurrentSection());
706
707        EmitInstruction(II);
708        break;
709      }
710
711      if (ShouldPrintDebugScopes) {
712        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
713        DD->endInstruction(II);
714      }
715    }
716  }
717
718  // If the last instruction was a prolog label, then we have a situation where
719  // we emitted a prolog but no function body. This results in the ending prolog
720  // label equaling the end of function label and an invalid "row" in the
721  // FDE. We need to emit a noop in this situation so that the FDE's rows are
722  // valid.
723  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
724
725  // If the function is empty and the object file uses .subsections_via_symbols,
726  // then we need to emit *something* to the function body to prevent the
727  // labels from collapsing together.  Just emit a noop.
728  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
729    MCInst Noop;
730    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
731    if (Noop.getOpcode()) {
732      OutStreamer.AddComment("avoids zero-length function");
733      OutStreamer.EmitInstruction(Noop);
734    } else  // Target not mc-ized yet.
735      OutStreamer.EmitRawText(StringRef("\tnop\n"));
736  }
737
738  const Function *F = MF->getFunction();
739  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
740    const BasicBlock *BB = i;
741    if (!BB->hasAddressTaken())
742      continue;
743    MCSymbol *Sym = GetBlockAddressSymbol(BB);
744    if (Sym->isDefined())
745      continue;
746    OutStreamer.AddComment("Address of block that was removed by CodeGen");
747    OutStreamer.EmitLabel(Sym);
748  }
749
750  // Emit target-specific gunk after the function body.
751  EmitFunctionBodyEnd();
752
753  // If the target wants a .size directive for the size of the function, emit
754  // it.
755  if (MAI->hasDotTypeDotSizeDirective()) {
756    // Create a symbol for the end of function, so we can get the size as
757    // difference between the function label and the temp label.
758    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
759    OutStreamer.EmitLabel(FnEndLabel);
760
761    const MCExpr *SizeExp =
762      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
763                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
764                                                      OutContext),
765                              OutContext);
766    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
767  }
768
769  // Emit post-function debug information.
770  if (DD) {
771    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
772    DD->endFunction(MF);
773  }
774  if (DE) {
775    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
776    DE->EndFunction();
777  }
778  MMI->EndFunction();
779
780  // Print out jump tables referenced by the function.
781  EmitJumpTableInfo();
782
783  OutStreamer.AddBlankLine();
784}
785
786/// getDebugValueLocation - Get location information encoded by DBG_VALUE
787/// operands.
788MachineLocation AsmPrinter::
789getDebugValueLocation(const MachineInstr *MI) const {
790  // Target specific DBG_VALUE instructions are handled by each target.
791  return MachineLocation();
792}
793
794/// EmitDwarfRegOp - Emit dwarf register operation.
795void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
796  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
797  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
798
799  for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
800       ++SR) {
801    Reg = TRI->getDwarfRegNum(*SR, false);
802    // FIXME: Get the bit range this register uses of the superregister
803    // so that we can produce a DW_OP_bit_piece
804  }
805
806  // FIXME: Handle cases like a super register being encoded as
807  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
808
809  // FIXME: We have no reasonable way of handling errors in here. The
810  // caller might be in the middle of an dwarf expression. We should
811  // probably assert that Reg >= 0 once debug info generation is more mature.
812
813  if (int Offset =  MLoc.getOffset()) {
814    if (Reg < 32) {
815      OutStreamer.AddComment(
816        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
817      EmitInt8(dwarf::DW_OP_breg0 + Reg);
818    } else {
819      OutStreamer.AddComment("DW_OP_bregx");
820      EmitInt8(dwarf::DW_OP_bregx);
821      OutStreamer.AddComment(Twine(Reg));
822      EmitULEB128(Reg);
823    }
824    EmitSLEB128(Offset);
825  } else {
826    if (Reg < 32) {
827      OutStreamer.AddComment(
828        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
829      EmitInt8(dwarf::DW_OP_reg0 + Reg);
830    } else {
831      OutStreamer.AddComment("DW_OP_regx");
832      EmitInt8(dwarf::DW_OP_regx);
833      OutStreamer.AddComment(Twine(Reg));
834      EmitULEB128(Reg);
835    }
836  }
837
838  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
839}
840
841bool AsmPrinter::doFinalization(Module &M) {
842  // Emit global variables.
843  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
844       I != E; ++I)
845    EmitGlobalVariable(I);
846
847  // Emit visibility info for declarations
848  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
849    const Function &F = *I;
850    if (!F.isDeclaration())
851      continue;
852    GlobalValue::VisibilityTypes V = F.getVisibility();
853    if (V == GlobalValue::DefaultVisibility)
854      continue;
855
856    MCSymbol *Name = Mang->getSymbol(&F);
857    EmitVisibility(Name, V, false);
858  }
859
860  // Emit module flags.
861  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
862  M.getModuleFlagsMetadata(ModuleFlags);
863  if (!ModuleFlags.empty())
864    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
865
866  // Finalize debug and EH information.
867  if (DE) {
868    {
869      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
870      DE->EndModule();
871    }
872    delete DE; DE = 0;
873  }
874  if (DD) {
875    {
876      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
877      DD->endModule();
878    }
879    delete DD; DD = 0;
880  }
881
882  // If the target wants to know about weak references, print them all.
883  if (MAI->getWeakRefDirective()) {
884    // FIXME: This is not lazy, it would be nice to only print weak references
885    // to stuff that is actually used.  Note that doing so would require targets
886    // to notice uses in operands (due to constant exprs etc).  This should
887    // happen with the MC stuff eventually.
888
889    // Print out module-level global variables here.
890    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
891         I != E; ++I) {
892      if (!I->hasExternalWeakLinkage()) continue;
893      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
894    }
895
896    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
897      if (!I->hasExternalWeakLinkage()) continue;
898      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
899    }
900  }
901
902  if (MAI->hasSetDirective()) {
903    OutStreamer.AddBlankLine();
904    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
905         I != E; ++I) {
906      MCSymbol *Name = Mang->getSymbol(I);
907
908      const GlobalValue *GV = I->getAliasedGlobal();
909      MCSymbol *Target = Mang->getSymbol(GV);
910
911      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
912        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
913      else if (I->hasWeakLinkage())
914        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
915      else
916        assert(I->hasLocalLinkage() && "Invalid alias linkage");
917
918      EmitVisibility(Name, I->getVisibility());
919
920      // Emit the directives as assignments aka .set:
921      OutStreamer.EmitAssignment(Name,
922                                 MCSymbolRefExpr::Create(Target, OutContext));
923    }
924  }
925
926  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
927  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
928  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
929    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
930      MP->finishAssembly(*this);
931
932  // If we don't have any trampolines, then we don't require stack memory
933  // to be executable. Some targets have a directive to declare this.
934  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
935  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
936    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
937      OutStreamer.SwitchSection(S);
938
939  // Allow the target to emit any magic that it wants at the end of the file,
940  // after everything else has gone out.
941  EmitEndOfAsmFile(M);
942
943  delete Mang; Mang = 0;
944  MMI = 0;
945
946  OutStreamer.Finish();
947  return false;
948}
949
950void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
951  this->MF = &MF;
952  // Get the function symbol.
953  CurrentFnSym = Mang->getSymbol(MF.getFunction());
954  CurrentFnSymForSize = CurrentFnSym;
955
956  if (isVerbose())
957    LI = &getAnalysis<MachineLoopInfo>();
958}
959
960namespace {
961  // SectionCPs - Keep track the alignment, constpool entries per Section.
962  struct SectionCPs {
963    const MCSection *S;
964    unsigned Alignment;
965    SmallVector<unsigned, 4> CPEs;
966    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
967  };
968}
969
970/// EmitConstantPool - Print to the current output stream assembly
971/// representations of the constants in the constant pool MCP. This is
972/// used to print out constants which have been "spilled to memory" by
973/// the code generator.
974///
975void AsmPrinter::EmitConstantPool() {
976  const MachineConstantPool *MCP = MF->getConstantPool();
977  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
978  if (CP.empty()) return;
979
980  // Calculate sections for constant pool entries. We collect entries to go into
981  // the same section together to reduce amount of section switch statements.
982  SmallVector<SectionCPs, 4> CPSections;
983  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
984    const MachineConstantPoolEntry &CPE = CP[i];
985    unsigned Align = CPE.getAlignment();
986
987    SectionKind Kind;
988    switch (CPE.getRelocationInfo()) {
989    default: llvm_unreachable("Unknown section kind");
990    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
991    case 1:
992      Kind = SectionKind::getReadOnlyWithRelLocal();
993      break;
994    case 0:
995    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
996    case 4:  Kind = SectionKind::getMergeableConst4(); break;
997    case 8:  Kind = SectionKind::getMergeableConst8(); break;
998    case 16: Kind = SectionKind::getMergeableConst16();break;
999    default: Kind = SectionKind::getMergeableConst(); break;
1000    }
1001    }
1002
1003    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1004
1005    // The number of sections are small, just do a linear search from the
1006    // last section to the first.
1007    bool Found = false;
1008    unsigned SecIdx = CPSections.size();
1009    while (SecIdx != 0) {
1010      if (CPSections[--SecIdx].S == S) {
1011        Found = true;
1012        break;
1013      }
1014    }
1015    if (!Found) {
1016      SecIdx = CPSections.size();
1017      CPSections.push_back(SectionCPs(S, Align));
1018    }
1019
1020    if (Align > CPSections[SecIdx].Alignment)
1021      CPSections[SecIdx].Alignment = Align;
1022    CPSections[SecIdx].CPEs.push_back(i);
1023  }
1024
1025  // Now print stuff into the calculated sections.
1026  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1027    OutStreamer.SwitchSection(CPSections[i].S);
1028    EmitAlignment(Log2_32(CPSections[i].Alignment));
1029
1030    unsigned Offset = 0;
1031    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1032      unsigned CPI = CPSections[i].CPEs[j];
1033      MachineConstantPoolEntry CPE = CP[CPI];
1034
1035      // Emit inter-object padding for alignment.
1036      unsigned AlignMask = CPE.getAlignment() - 1;
1037      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1038      OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
1039
1040      Type *Ty = CPE.getType();
1041      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
1042      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1043
1044      if (CPE.isMachineConstantPoolEntry())
1045        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1046      else
1047        EmitGlobalConstant(CPE.Val.ConstVal);
1048    }
1049  }
1050}
1051
1052/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1053/// by the current function to the current output stream.
1054///
1055void AsmPrinter::EmitJumpTableInfo() {
1056  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1057  if (MJTI == 0) return;
1058  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1059  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1060  if (JT.empty()) return;
1061
1062  // Pick the directive to use to print the jump table entries, and switch to
1063  // the appropriate section.
1064  const Function *F = MF->getFunction();
1065  bool JTInDiffSection = false;
1066  if (// In PIC mode, we need to emit the jump table to the same section as the
1067      // function body itself, otherwise the label differences won't make sense.
1068      // FIXME: Need a better predicate for this: what about custom entries?
1069      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1070      // We should also do if the section name is NULL or function is declared
1071      // in discardable section
1072      // FIXME: this isn't the right predicate, should be based on the MCSection
1073      // for the function.
1074      F->isWeakForLinker()) {
1075    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1076  } else {
1077    // Otherwise, drop it in the readonly section.
1078    const MCSection *ReadOnlySection =
1079      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1080    OutStreamer.SwitchSection(ReadOnlySection);
1081    JTInDiffSection = true;
1082  }
1083
1084  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
1085
1086  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1087    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1088
1089    // If this jump table was deleted, ignore it.
1090    if (JTBBs.empty()) continue;
1091
1092    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1093    // .set directive for each unique entry.  This reduces the number of
1094    // relocations the assembler will generate for the jump table.
1095    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1096        MAI->hasSetDirective()) {
1097      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1098      const TargetLowering *TLI = TM.getTargetLowering();
1099      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1100      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1101        const MachineBasicBlock *MBB = JTBBs[ii];
1102        if (!EmittedSets.insert(MBB)) continue;
1103
1104        // .set LJTSet, LBB32-base
1105        const MCExpr *LHS =
1106          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1107        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1108                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1109      }
1110    }
1111
1112    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1113    // before each jump table.  The first label is never referenced, but tells
1114    // the assembler and linker the extents of the jump table object.  The
1115    // second label is actually referenced by the code.
1116    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1117      // FIXME: This doesn't have to have any specific name, just any randomly
1118      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1119      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1120
1121    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1122
1123    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1124      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1125  }
1126}
1127
1128/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1129/// current stream.
1130void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1131                                    const MachineBasicBlock *MBB,
1132                                    unsigned UID) const {
1133  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1134  const MCExpr *Value = 0;
1135  switch (MJTI->getEntryKind()) {
1136  case MachineJumpTableInfo::EK_Inline:
1137    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1138  case MachineJumpTableInfo::EK_Custom32:
1139    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1140                                                              OutContext);
1141    break;
1142  case MachineJumpTableInfo::EK_BlockAddress:
1143    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1144    //     .word LBB123
1145    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1146    break;
1147  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1148    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1149    // with a relocation as gp-relative, e.g.:
1150    //     .gprel32 LBB123
1151    MCSymbol *MBBSym = MBB->getSymbol();
1152    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1153    return;
1154  }
1155
1156  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1157    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1158    // with a relocation as gp-relative, e.g.:
1159    //     .gpdword LBB123
1160    MCSymbol *MBBSym = MBB->getSymbol();
1161    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1162    return;
1163  }
1164
1165  case MachineJumpTableInfo::EK_LabelDifference32: {
1166    // EK_LabelDifference32 - Each entry is the address of the block minus
1167    // the address of the jump table.  This is used for PIC jump tables where
1168    // gprel32 is not supported.  e.g.:
1169    //      .word LBB123 - LJTI1_2
1170    // If the .set directive is supported, this is emitted as:
1171    //      .set L4_5_set_123, LBB123 - LJTI1_2
1172    //      .word L4_5_set_123
1173
1174    // If we have emitted set directives for the jump table entries, print
1175    // them rather than the entries themselves.  If we're emitting PIC, then
1176    // emit the table entries as differences between two text section labels.
1177    if (MAI->hasSetDirective()) {
1178      // If we used .set, reference the .set's symbol.
1179      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1180                                      OutContext);
1181      break;
1182    }
1183    // Otherwise, use the difference as the jump table entry.
1184    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1185    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1186    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1187    break;
1188  }
1189  }
1190
1191  assert(Value && "Unknown entry kind!");
1192
1193  unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
1194  OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
1195}
1196
1197
1198/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1199/// special global used by LLVM.  If so, emit it and return true, otherwise
1200/// do nothing and return false.
1201bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1202  if (GV->getName() == "llvm.used") {
1203    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1204      EmitLLVMUsedList(GV->getInitializer());
1205    return true;
1206  }
1207
1208  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1209  if (GV->getSection() == "llvm.metadata" ||
1210      GV->hasAvailableExternallyLinkage())
1211    return true;
1212
1213  if (!GV->hasAppendingLinkage()) return false;
1214
1215  assert(GV->hasInitializer() && "Not a special LLVM global!");
1216
1217  if (GV->getName() == "llvm.global_ctors") {
1218    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1219
1220    if (TM.getRelocationModel() == Reloc::Static &&
1221        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1222      StringRef Sym(".constructors_used");
1223      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1224                                      MCSA_Reference);
1225    }
1226    return true;
1227  }
1228
1229  if (GV->getName() == "llvm.global_dtors") {
1230    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1231
1232    if (TM.getRelocationModel() == Reloc::Static &&
1233        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1234      StringRef Sym(".destructors_used");
1235      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1236                                      MCSA_Reference);
1237    }
1238    return true;
1239  }
1240
1241  return false;
1242}
1243
1244/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1245/// global in the specified llvm.used list for which emitUsedDirectiveFor
1246/// is true, as being used with this directive.
1247void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1248  // Should be an array of 'i8*'.
1249  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1250  if (InitList == 0) return;
1251
1252  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1253    const GlobalValue *GV =
1254      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1255    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1256      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1257  }
1258}
1259
1260typedef std::pair<unsigned, Constant*> Structor;
1261
1262static bool priority_order(const Structor& lhs, const Structor& rhs) {
1263  return lhs.first < rhs.first;
1264}
1265
1266/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1267/// priority.
1268void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1269  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1270  // init priority.
1271  if (!isa<ConstantArray>(List)) return;
1272
1273  // Sanity check the structors list.
1274  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1275  if (!InitList) return; // Not an array!
1276  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1277  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1278  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1279      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1280
1281  // Gather the structors in a form that's convenient for sorting by priority.
1282  SmallVector<Structor, 8> Structors;
1283  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1284    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1285    if (!CS) continue; // Malformed.
1286    if (CS->getOperand(1)->isNullValue())
1287      break;  // Found a null terminator, skip the rest.
1288    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1289    if (!Priority) continue; // Malformed.
1290    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1291                                       CS->getOperand(1)));
1292  }
1293
1294  // Emit the function pointers in the target-specific order
1295  const TargetData *TD = TM.getTargetData();
1296  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1297  std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1298  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1299    const MCSection *OutputSection =
1300      (isCtor ?
1301       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1302       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1303    OutStreamer.SwitchSection(OutputSection);
1304    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1305      EmitAlignment(Align);
1306    EmitXXStructor(Structors[i].second);
1307  }
1308}
1309
1310//===--------------------------------------------------------------------===//
1311// Emission and print routines
1312//
1313
1314/// EmitInt8 - Emit a byte directive and value.
1315///
1316void AsmPrinter::EmitInt8(int Value) const {
1317  OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
1318}
1319
1320/// EmitInt16 - Emit a short directive and value.
1321///
1322void AsmPrinter::EmitInt16(int Value) const {
1323  OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
1324}
1325
1326/// EmitInt32 - Emit a long directive and value.
1327///
1328void AsmPrinter::EmitInt32(int Value) const {
1329  OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
1330}
1331
1332/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1333/// in bytes of the directive is specified by Size and Hi/Lo specify the
1334/// labels.  This implicitly uses .set if it is available.
1335void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1336                                     unsigned Size) const {
1337  // Get the Hi-Lo expression.
1338  const MCExpr *Diff =
1339    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1340                            MCSymbolRefExpr::Create(Lo, OutContext),
1341                            OutContext);
1342
1343  if (!MAI->hasSetDirective()) {
1344    OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
1345    return;
1346  }
1347
1348  // Otherwise, emit with .set (aka assignment).
1349  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1350  OutStreamer.EmitAssignment(SetLabel, Diff);
1351  OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
1352}
1353
1354/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1355/// where the size in bytes of the directive is specified by Size and Hi/Lo
1356/// specify the labels.  This implicitly uses .set if it is available.
1357void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1358                                           const MCSymbol *Lo, unsigned Size)
1359  const {
1360
1361  // Emit Hi+Offset - Lo
1362  // Get the Hi+Offset expression.
1363  const MCExpr *Plus =
1364    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1365                            MCConstantExpr::Create(Offset, OutContext),
1366                            OutContext);
1367
1368  // Get the Hi+Offset-Lo expression.
1369  const MCExpr *Diff =
1370    MCBinaryExpr::CreateSub(Plus,
1371                            MCSymbolRefExpr::Create(Lo, OutContext),
1372                            OutContext);
1373
1374  if (!MAI->hasSetDirective())
1375    OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
1376  else {
1377    // Otherwise, emit with .set (aka assignment).
1378    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1379    OutStreamer.EmitAssignment(SetLabel, Diff);
1380    OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
1381  }
1382}
1383
1384/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1385/// where the size in bytes of the directive is specified by Size and Label
1386/// specifies the label.  This implicitly uses .set if it is available.
1387void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1388                                      unsigned Size)
1389  const {
1390
1391  // Emit Label+Offset
1392  const MCExpr *Plus =
1393    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext),
1394                            MCConstantExpr::Create(Offset, OutContext),
1395                            OutContext);
1396
1397  OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/);
1398}
1399
1400
1401//===----------------------------------------------------------------------===//
1402
1403// EmitAlignment - Emit an alignment directive to the specified power of
1404// two boundary.  For example, if you pass in 3 here, you will get an 8
1405// byte alignment.  If a global value is specified, and if that global has
1406// an explicit alignment requested, it will override the alignment request
1407// if required for correctness.
1408//
1409void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1410  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
1411
1412  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1413
1414  if (getCurrentSection()->getKind().isText())
1415    OutStreamer.EmitCodeAlignment(1 << NumBits);
1416  else
1417    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1418}
1419
1420//===----------------------------------------------------------------------===//
1421// Constant emission.
1422//===----------------------------------------------------------------------===//
1423
1424/// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
1425///
1426static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) {
1427  MCContext &Ctx = AP.OutContext;
1428
1429  if (CV->isNullValue() || isa<UndefValue>(CV))
1430    return MCConstantExpr::Create(0, Ctx);
1431
1432  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1433    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1434
1435  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1436    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1437
1438  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1439    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1440
1441  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1442  if (CE == 0) {
1443    llvm_unreachable("Unknown constant value to lower!");
1444  }
1445
1446  switch (CE->getOpcode()) {
1447  default:
1448    // If the code isn't optimized, there may be outstanding folding
1449    // opportunities. Attempt to fold the expression using TargetData as a
1450    // last resort before giving up.
1451    if (Constant *C =
1452          ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
1453      if (C != CE)
1454        return LowerConstant(C, AP);
1455
1456    // Otherwise report the problem to the user.
1457    {
1458      std::string S;
1459      raw_string_ostream OS(S);
1460      OS << "Unsupported expression in static initializer: ";
1461      WriteAsOperand(OS, CE, /*PrintType=*/false,
1462                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1463      report_fatal_error(OS.str());
1464    }
1465  case Instruction::GetElementPtr: {
1466    const TargetData &TD = *AP.TM.getTargetData();
1467    // Generate a symbolic expression for the byte address
1468    const Constant *PtrVal = CE->getOperand(0);
1469    SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
1470    int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
1471
1472    const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
1473    if (Offset == 0)
1474      return Base;
1475
1476    // Truncate/sext the offset to the pointer size.
1477    if (TD.getPointerSizeInBits() != 64) {
1478      int SExtAmount = 64-TD.getPointerSizeInBits();
1479      Offset = (Offset << SExtAmount) >> SExtAmount;
1480    }
1481
1482    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1483                                   Ctx);
1484  }
1485
1486  case Instruction::Trunc:
1487    // We emit the value and depend on the assembler to truncate the generated
1488    // expression properly.  This is important for differences between
1489    // blockaddress labels.  Since the two labels are in the same function, it
1490    // is reasonable to treat their delta as a 32-bit value.
1491    // FALL THROUGH.
1492  case Instruction::BitCast:
1493    return LowerConstant(CE->getOperand(0), AP);
1494
1495  case Instruction::IntToPtr: {
1496    const TargetData &TD = *AP.TM.getTargetData();
1497    // Handle casts to pointers by changing them into casts to the appropriate
1498    // integer type.  This promotes constant folding and simplifies this code.
1499    Constant *Op = CE->getOperand(0);
1500    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1501                                      false/*ZExt*/);
1502    return LowerConstant(Op, AP);
1503  }
1504
1505  case Instruction::PtrToInt: {
1506    const TargetData &TD = *AP.TM.getTargetData();
1507    // Support only foldable casts to/from pointers that can be eliminated by
1508    // changing the pointer to the appropriately sized integer type.
1509    Constant *Op = CE->getOperand(0);
1510    Type *Ty = CE->getType();
1511
1512    const MCExpr *OpExpr = LowerConstant(Op, AP);
1513
1514    // We can emit the pointer value into this slot if the slot is an
1515    // integer slot equal to the size of the pointer.
1516    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1517      return OpExpr;
1518
1519    // Otherwise the pointer is smaller than the resultant integer, mask off
1520    // the high bits so we are sure to get a proper truncation if the input is
1521    // a constant expr.
1522    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1523    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1524    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1525  }
1526
1527  // The MC library also has a right-shift operator, but it isn't consistently
1528  // signed or unsigned between different targets.
1529  case Instruction::Add:
1530  case Instruction::Sub:
1531  case Instruction::Mul:
1532  case Instruction::SDiv:
1533  case Instruction::SRem:
1534  case Instruction::Shl:
1535  case Instruction::And:
1536  case Instruction::Or:
1537  case Instruction::Xor: {
1538    const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
1539    const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
1540    switch (CE->getOpcode()) {
1541    default: llvm_unreachable("Unknown binary operator constant cast expr");
1542    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1543    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1544    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1545    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1546    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1547    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1548    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1549    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1550    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1551    }
1552  }
1553  }
1554}
1555
1556static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1557                                   AsmPrinter &AP);
1558
1559/// isRepeatedByteSequence - Determine whether the given value is
1560/// composed of a repeated sequence of identical bytes and return the
1561/// byte value.  If it is not a repeated sequence, return -1.
1562static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1563  StringRef Data = V->getRawDataValues();
1564  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1565  char C = Data[0];
1566  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1567    if (Data[i] != C) return -1;
1568  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1569}
1570
1571
1572/// isRepeatedByteSequence - Determine whether the given value is
1573/// composed of a repeated sequence of identical bytes and return the
1574/// byte value.  If it is not a repeated sequence, return -1.
1575static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1576
1577  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1578    if (CI->getBitWidth() > 64) return -1;
1579
1580    uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
1581    uint64_t Value = CI->getZExtValue();
1582
1583    // Make sure the constant is at least 8 bits long and has a power
1584    // of 2 bit width.  This guarantees the constant bit width is
1585    // always a multiple of 8 bits, avoiding issues with padding out
1586    // to Size and other such corner cases.
1587    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1588
1589    uint8_t Byte = static_cast<uint8_t>(Value);
1590
1591    for (unsigned i = 1; i < Size; ++i) {
1592      Value >>= 8;
1593      if (static_cast<uint8_t>(Value) != Byte) return -1;
1594    }
1595    return Byte;
1596  }
1597  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1598    // Make sure all array elements are sequences of the same repeated
1599    // byte.
1600    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1601    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1602    if (Byte == -1) return -1;
1603
1604    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1605      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1606      if (ThisByte == -1) return -1;
1607      if (Byte != ThisByte) return -1;
1608    }
1609    return Byte;
1610  }
1611
1612  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1613    return isRepeatedByteSequence(CDS);
1614
1615  return -1;
1616}
1617
1618static void EmitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1619                                             unsigned AddrSpace,AsmPrinter &AP){
1620
1621  // See if we can aggregate this into a .fill, if so, emit it as such.
1622  int Value = isRepeatedByteSequence(CDS, AP.TM);
1623  if (Value != -1) {
1624    uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType());
1625    // Don't emit a 1-byte object as a .fill.
1626    if (Bytes > 1)
1627      return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1628  }
1629
1630  // If this can be emitted with .ascii/.asciz, emit it as such.
1631  if (CDS->isString())
1632    return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1633
1634  // Otherwise, emit the values in successive locations.
1635  unsigned ElementByteSize = CDS->getElementByteSize();
1636  if (isa<IntegerType>(CDS->getElementType())) {
1637    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1638      if (AP.isVerbose())
1639        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1640                                                CDS->getElementAsInteger(i));
1641      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1642                                  ElementByteSize, AddrSpace);
1643    }
1644  } else if (ElementByteSize == 4) {
1645    // FP Constants are printed as integer constants to avoid losing
1646    // precision.
1647    assert(CDS->getElementType()->isFloatTy());
1648    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1649      union {
1650        float F;
1651        uint32_t I;
1652      };
1653
1654      F = CDS->getElementAsFloat(i);
1655      if (AP.isVerbose())
1656        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1657      AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1658    }
1659  } else {
1660    assert(CDS->getElementType()->isDoubleTy());
1661    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1662      union {
1663        double F;
1664        uint64_t I;
1665      };
1666
1667      F = CDS->getElementAsDouble(i);
1668      if (AP.isVerbose())
1669        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1670      AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1671    }
1672  }
1673
1674  const TargetData &TD = *AP.TM.getTargetData();
1675  unsigned Size = TD.getTypeAllocSize(CDS->getType());
1676  unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1677                        CDS->getNumElements();
1678  if (unsigned Padding = Size - EmittedSize)
1679    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1680
1681}
1682
1683static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1684                                    AsmPrinter &AP) {
1685  // See if we can aggregate some values.  Make sure it can be
1686  // represented as a series of bytes of the constant value.
1687  int Value = isRepeatedByteSequence(CA, AP.TM);
1688
1689  if (Value != -1) {
1690    uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
1691    AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1692  }
1693  else {
1694    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1695      EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1696  }
1697}
1698
1699static void EmitGlobalConstantVector(const ConstantVector *CV,
1700                                     unsigned AddrSpace, AsmPrinter &AP) {
1701  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1702    EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1703
1704  const TargetData &TD = *AP.TM.getTargetData();
1705  unsigned Size = TD.getTypeAllocSize(CV->getType());
1706  unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1707                         CV->getType()->getNumElements();
1708  if (unsigned Padding = Size - EmittedSize)
1709    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1710}
1711
1712static void EmitGlobalConstantStruct(const ConstantStruct *CS,
1713                                     unsigned AddrSpace, AsmPrinter &AP) {
1714  // Print the fields in successive locations. Pad to align if needed!
1715  const TargetData *TD = AP.TM.getTargetData();
1716  unsigned Size = TD->getTypeAllocSize(CS->getType());
1717  const StructLayout *Layout = TD->getStructLayout(CS->getType());
1718  uint64_t SizeSoFar = 0;
1719  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1720    const Constant *Field = CS->getOperand(i);
1721
1722    // Check if padding is needed and insert one or more 0s.
1723    uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1724    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1725                        - Layout->getElementOffset(i)) - FieldSize;
1726    SizeSoFar += FieldSize + PadSize;
1727
1728    // Now print the actual field value.
1729    EmitGlobalConstantImpl(Field, AddrSpace, AP);
1730
1731    // Insert padding - this may include padding to increase the size of the
1732    // current field up to the ABI size (if the struct is not packed) as well
1733    // as padding to ensure that the next field starts at the right offset.
1734    AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1735  }
1736  assert(SizeSoFar == Layout->getSizeInBytes() &&
1737         "Layout of constant struct may be incorrect!");
1738}
1739
1740static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1741                                 AsmPrinter &AP) {
1742  if (CFP->getType()->isHalfTy()) {
1743    if (AP.isVerbose()) {
1744      SmallString<10> Str;
1745      CFP->getValueAPF().toString(Str);
1746      AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
1747    }
1748    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1749    AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
1750    return;
1751  }
1752
1753  if (CFP->getType()->isFloatTy()) {
1754    if (AP.isVerbose()) {
1755      float Val = CFP->getValueAPF().convertToFloat();
1756      uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1757      AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'
1758                                    << " (" << format("0x%x", IntVal) << ")\n";
1759    }
1760    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1761    AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
1762    return;
1763  }
1764
1765  // FP Constants are printed as integer constants to avoid losing
1766  // precision.
1767  if (CFP->getType()->isDoubleTy()) {
1768    if (AP.isVerbose()) {
1769      double Val = CFP->getValueAPF().convertToDouble();
1770      uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1771      AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'
1772                                    << " (" << format("0x%lx", IntVal) << ")\n";
1773    }
1774
1775    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1776    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1777    return;
1778  }
1779
1780  if (CFP->getType()->isX86_FP80Ty()) {
1781    // all long double variants are printed as hex
1782    // API needed to prevent premature destruction
1783    APInt API = CFP->getValueAPF().bitcastToAPInt();
1784    const uint64_t *p = API.getRawData();
1785    if (AP.isVerbose()) {
1786      // Convert to double so we can print the approximate val as a comment.
1787      APFloat DoubleVal = CFP->getValueAPF();
1788      bool ignored;
1789      DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1790                        &ignored);
1791      AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
1792        << DoubleVal.convertToDouble() << '\n';
1793    }
1794
1795    if (AP.TM.getTargetData()->isBigEndian()) {
1796      AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1797      AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1798    } else {
1799      AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1800      AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1801    }
1802
1803    // Emit the tail padding for the long double.
1804    const TargetData &TD = *AP.TM.getTargetData();
1805    AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1806                             TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1807    return;
1808  }
1809
1810  assert(CFP->getType()->isPPC_FP128Ty() &&
1811         "Floating point constant type not handled");
1812  // All long double variants are printed as hex
1813  // API needed to prevent premature destruction.
1814  APInt API = CFP->getValueAPF().bitcastToAPInt();
1815  const uint64_t *p = API.getRawData();
1816  if (AP.TM.getTargetData()->isBigEndian()) {
1817    AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1818    AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1819  } else {
1820    AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1821    AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1822  }
1823}
1824
1825static void EmitGlobalConstantLargeInt(const ConstantInt *CI,
1826                                       unsigned AddrSpace, AsmPrinter &AP) {
1827  const TargetData *TD = AP.TM.getTargetData();
1828  unsigned BitWidth = CI->getBitWidth();
1829  assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1830
1831  // We don't expect assemblers to support integer data directives
1832  // for more than 64 bits, so we emit the data in at most 64-bit
1833  // quantities at a time.
1834  const uint64_t *RawData = CI->getValue().getRawData();
1835  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1836    uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1837    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1838  }
1839}
1840
1841static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1842                                   AsmPrinter &AP) {
1843  const TargetData *TD = AP.TM.getTargetData();
1844  uint64_t Size = TD->getTypeAllocSize(CV->getType());
1845  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1846    return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1847
1848  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1849    switch (Size) {
1850    case 1:
1851    case 2:
1852    case 4:
1853    case 8:
1854      if (AP.isVerbose())
1855        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1856                                                CI->getZExtValue());
1857      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1858      return;
1859    default:
1860      EmitGlobalConstantLargeInt(CI, AddrSpace, AP);
1861      return;
1862    }
1863  }
1864
1865  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1866    return EmitGlobalConstantFP(CFP, AddrSpace, AP);
1867
1868  if (isa<ConstantPointerNull>(CV)) {
1869    AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1870    return;
1871  }
1872
1873  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1874    return EmitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1875
1876  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1877    return EmitGlobalConstantArray(CVA, AddrSpace, AP);
1878
1879  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1880    return EmitGlobalConstantStruct(CVS, AddrSpace, AP);
1881
1882  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1883    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1884    // vectors).
1885    if (CE->getOpcode() == Instruction::BitCast)
1886      return EmitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1887
1888    if (Size > 8) {
1889      // If the constant expression's size is greater than 64-bits, then we have
1890      // to emit the value in chunks. Try to constant fold the value and emit it
1891      // that way.
1892      Constant *New = ConstantFoldConstantExpression(CE, TD);
1893      if (New && New != CE)
1894        return EmitGlobalConstantImpl(New, AddrSpace, AP);
1895    }
1896  }
1897
1898  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1899    return EmitGlobalConstantVector(V, AddrSpace, AP);
1900
1901  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1902  // thread the streamer with EmitValue.
1903  AP.OutStreamer.EmitValue(LowerConstant(CV, AP), Size, AddrSpace);
1904}
1905
1906/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1907void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1908  uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
1909  if (Size)
1910    EmitGlobalConstantImpl(CV, AddrSpace, *this);
1911  else if (MAI->hasSubsectionsViaSymbols()) {
1912    // If the global has zero size, emit a single byte so that two labels don't
1913    // look like they are at the same location.
1914    OutStreamer.EmitIntValue(0, 1, AddrSpace);
1915  }
1916}
1917
1918void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1919  // Target doesn't support this yet!
1920  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1921}
1922
1923void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1924  if (Offset > 0)
1925    OS << '+' << Offset;
1926  else if (Offset < 0)
1927    OS << Offset;
1928}
1929
1930//===----------------------------------------------------------------------===//
1931// Symbol Lowering Routines.
1932//===----------------------------------------------------------------------===//
1933
1934/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1935/// temporary label with the specified stem and unique ID.
1936MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1937  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1938                                      Name + Twine(ID));
1939}
1940
1941/// GetTempSymbol - Return an assembler temporary label with the specified
1942/// stem.
1943MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1944  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1945                                      Name);
1946}
1947
1948
1949MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1950  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1951}
1952
1953MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1954  return MMI->getAddrLabelSymbol(BB);
1955}
1956
1957/// GetCPISymbol - Return the symbol for the specified constant pool entry.
1958MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1959  return OutContext.GetOrCreateSymbol
1960    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1961     + "_" + Twine(CPID));
1962}
1963
1964/// GetJTISymbol - Return the symbol for the specified jump table entry.
1965MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1966  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1967}
1968
1969/// GetJTSetSymbol - Return the symbol for the specified jump table .set
1970/// FIXME: privatize to AsmPrinter.
1971MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1972  return OutContext.GetOrCreateSymbol
1973  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1974   Twine(UID) + "_set_" + Twine(MBBID));
1975}
1976
1977/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1978/// global value name as its base, with the specified suffix, and where the
1979/// symbol is forced to have private linkage if ForcePrivate is true.
1980MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1981                                                   StringRef Suffix,
1982                                                   bool ForcePrivate) const {
1983  SmallString<60> NameStr;
1984  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1985  NameStr.append(Suffix.begin(), Suffix.end());
1986  return OutContext.GetOrCreateSymbol(NameStr.str());
1987}
1988
1989/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1990/// ExternalSymbol.
1991MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
1992  SmallString<60> NameStr;
1993  Mang->getNameWithPrefix(NameStr, Sym);
1994  return OutContext.GetOrCreateSymbol(NameStr.str());
1995}
1996
1997
1998
1999/// PrintParentLoopComment - Print comments about parent loops of this one.
2000static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2001                                   unsigned FunctionNumber) {
2002  if (Loop == 0) return;
2003  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2004  OS.indent(Loop->getLoopDepth()*2)
2005    << "Parent Loop BB" << FunctionNumber << "_"
2006    << Loop->getHeader()->getNumber()
2007    << " Depth=" << Loop->getLoopDepth() << '\n';
2008}
2009
2010
2011/// PrintChildLoopComment - Print comments about child loops within
2012/// the loop for this basic block, with nesting.
2013static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2014                                  unsigned FunctionNumber) {
2015  // Add child loop information
2016  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2017    OS.indent((*CL)->getLoopDepth()*2)
2018      << "Child Loop BB" << FunctionNumber << "_"
2019      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2020      << '\n';
2021    PrintChildLoopComment(OS, *CL, FunctionNumber);
2022  }
2023}
2024
2025/// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2026static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2027                                       const MachineLoopInfo *LI,
2028                                       const AsmPrinter &AP) {
2029  // Add loop depth information
2030  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2031  if (Loop == 0) return;
2032
2033  MachineBasicBlock *Header = Loop->getHeader();
2034  assert(Header && "No header for loop");
2035
2036  // If this block is not a loop header, just print out what is the loop header
2037  // and return.
2038  if (Header != &MBB) {
2039    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2040                              Twine(AP.getFunctionNumber())+"_" +
2041                              Twine(Loop->getHeader()->getNumber())+
2042                              " Depth="+Twine(Loop->getLoopDepth()));
2043    return;
2044  }
2045
2046  // Otherwise, it is a loop header.  Print out information about child and
2047  // parent loops.
2048  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2049
2050  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2051
2052  OS << "=>";
2053  OS.indent(Loop->getLoopDepth()*2-2);
2054
2055  OS << "This ";
2056  if (Loop->empty())
2057    OS << "Inner ";
2058  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2059
2060  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2061}
2062
2063
2064/// EmitBasicBlockStart - This method prints the label for the specified
2065/// MachineBasicBlock, an alignment (if present) and a comment describing
2066/// it if appropriate.
2067void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2068  // Emit an alignment directive for this block, if needed.
2069  if (unsigned Align = MBB->getAlignment())
2070    EmitAlignment(Align);
2071
2072  // If the block has its address taken, emit any labels that were used to
2073  // reference the block.  It is possible that there is more than one label
2074  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2075  // the references were generated.
2076  if (MBB->hasAddressTaken()) {
2077    const BasicBlock *BB = MBB->getBasicBlock();
2078    if (isVerbose())
2079      OutStreamer.AddComment("Block address taken");
2080
2081    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2082
2083    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2084      OutStreamer.EmitLabel(Syms[i]);
2085  }
2086
2087  // Print some verbose block comments.
2088  if (isVerbose()) {
2089    if (const BasicBlock *BB = MBB->getBasicBlock())
2090      if (BB->hasName())
2091        OutStreamer.AddComment("%" + BB->getName());
2092    EmitBasicBlockLoopComments(*MBB, LI, *this);
2093  }
2094
2095  // Print the main label for the block.
2096  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2097    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2098      // NOTE: Want this comment at start of line, don't emit with AddComment.
2099      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2100                              Twine(MBB->getNumber()) + ":");
2101    }
2102  } else {
2103    OutStreamer.EmitLabel(MBB->getSymbol());
2104  }
2105}
2106
2107void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2108                                bool IsDefinition) const {
2109  MCSymbolAttr Attr = MCSA_Invalid;
2110
2111  switch (Visibility) {
2112  default: break;
2113  case GlobalValue::HiddenVisibility:
2114    if (IsDefinition)
2115      Attr = MAI->getHiddenVisibilityAttr();
2116    else
2117      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2118    break;
2119  case GlobalValue::ProtectedVisibility:
2120    Attr = MAI->getProtectedVisibilityAttr();
2121    break;
2122  }
2123
2124  if (Attr != MCSA_Invalid)
2125    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2126}
2127
2128/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2129/// exactly one predecessor and the control transfer mechanism between
2130/// the predecessor and this block is a fall-through.
2131bool AsmPrinter::
2132isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2133  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2134  // then nothing falls through to it.
2135  if (MBB->isLandingPad() || MBB->pred_empty())
2136    return false;
2137
2138  // If there isn't exactly one predecessor, it can't be a fall through.
2139  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2140  ++PI2;
2141  if (PI2 != MBB->pred_end())
2142    return false;
2143
2144  // The predecessor has to be immediately before this block.
2145  MachineBasicBlock *Pred = *PI;
2146
2147  if (!Pred->isLayoutSuccessor(MBB))
2148    return false;
2149
2150  // If the block is completely empty, then it definitely does fall through.
2151  if (Pred->empty())
2152    return true;
2153
2154  // Check the terminators in the previous blocks
2155  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2156         IE = Pred->end(); II != IE; ++II) {
2157    MachineInstr &MI = *II;
2158
2159    // If it is not a simple branch, we are in a table somewhere.
2160    if (!MI.isBranch() || MI.isIndirectBranch())
2161      return false;
2162
2163    // If we are the operands of one of the branches, this is not
2164    // a fall through.
2165    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2166           OE = MI.operands_end(); OI != OE; ++OI) {
2167      const MachineOperand& OP = *OI;
2168      if (OP.isJTI())
2169        return false;
2170      if (OP.isMBB() && OP.getMBB() == MBB)
2171        return false;
2172    }
2173  }
2174
2175  return true;
2176}
2177
2178
2179
2180GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2181  if (!S->usesMetadata())
2182    return 0;
2183
2184  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2185  gcp_map_type::iterator GCPI = GCMap.find(S);
2186  if (GCPI != GCMap.end())
2187    return GCPI->second;
2188
2189  const char *Name = S->getName().c_str();
2190
2191  for (GCMetadataPrinterRegistry::iterator
2192         I = GCMetadataPrinterRegistry::begin(),
2193         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2194    if (strcmp(Name, I->getName()) == 0) {
2195      GCMetadataPrinter *GMP = I->instantiate();
2196      GMP->S = S;
2197      GCMap.insert(std::make_pair(S, GMP));
2198      return GMP;
2199    }
2200
2201  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2202}
2203