AsmPrinter.cpp revision 40c57860dad429d3c938ed5f918c2c66f3b5fa72
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineFunction.h" 22#include "llvm/CodeGen/MachineJumpTableInfo.h" 23#include "llvm/CodeGen/MachineLoopInfo.h" 24#include "llvm/CodeGen/MachineModuleInfo.h" 25#include "llvm/CodeGen/DwarfWriter.h" 26#include "llvm/Analysis/DebugInfo.h" 27#include "llvm/MC/MCContext.h" 28#include "llvm/MC/MCInst.h" 29#include "llvm/MC/MCSection.h" 30#include "llvm/MC/MCStreamer.h" 31#include "llvm/MC/MCSymbol.h" 32#include "llvm/Support/CommandLine.h" 33#include "llvm/Support/ErrorHandling.h" 34#include "llvm/Support/FormattedStream.h" 35#include "llvm/Support/Mangler.h" 36#include "llvm/MC/MCAsmInfo.h" 37#include "llvm/Target/TargetData.h" 38#include "llvm/Target/TargetLowering.h" 39#include "llvm/Target/TargetLoweringObjectFile.h" 40#include "llvm/Target/TargetOptions.h" 41#include "llvm/Target/TargetRegisterInfo.h" 42#include "llvm/ADT/SmallPtrSet.h" 43#include "llvm/ADT/SmallString.h" 44#include "llvm/ADT/StringExtras.h" 45#include <cerrno> 46using namespace llvm; 47 48static cl::opt<cl::boolOrDefault> 49AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 50 cl::init(cl::BOU_UNSET)); 51 52char AsmPrinter::ID = 0; 53AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm, 54 const MCAsmInfo *T, bool VDef) 55 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 56 TM(tm), MAI(T), TRI(tm.getRegisterInfo()), 57 58 OutContext(*new MCContext()), 59 // FIXME: Pass instprinter to streamer. 60 OutStreamer(*createAsmStreamer(OutContext, O, *T, 0)), 61 62 LastMI(0), LastFn(0), Counter(~0U), 63 PrevDLT(0, 0, ~0U, ~0U) { 64 DW = 0; MMI = 0; 65 switch (AsmVerbose) { 66 case cl::BOU_UNSET: VerboseAsm = VDef; break; 67 case cl::BOU_TRUE: VerboseAsm = true; break; 68 case cl::BOU_FALSE: VerboseAsm = false; break; 69 } 70} 71 72AsmPrinter::~AsmPrinter() { 73 for (gcp_iterator I = GCMetadataPrinters.begin(), 74 E = GCMetadataPrinters.end(); I != E; ++I) 75 delete I->second; 76 77 delete &OutStreamer; 78 delete &OutContext; 79} 80 81TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 82 return TM.getTargetLowering()->getObjFileLowering(); 83} 84 85/// getCurrentSection() - Return the current section we are emitting to. 86const MCSection *AsmPrinter::getCurrentSection() const { 87 return OutStreamer.getCurrentSection(); 88} 89 90 91void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 92 AU.setPreservesAll(); 93 MachineFunctionPass::getAnalysisUsage(AU); 94 AU.addRequired<GCModuleInfo>(); 95 if (VerboseAsm) 96 AU.addRequired<MachineLoopInfo>(); 97} 98 99bool AsmPrinter::doInitialization(Module &M) { 100 // Initialize TargetLoweringObjectFile. 101 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 102 .Initialize(OutContext, TM); 103 104 Mang = new Mangler(M, MAI->getGlobalPrefix(), MAI->getPrivateGlobalPrefix(), 105 MAI->getLinkerPrivateGlobalPrefix()); 106 107 if (MAI->doesAllowQuotesInName()) 108 Mang->setUseQuotes(true); 109 110 if (MAI->doesAllowNameToStartWithDigit()) 111 Mang->setSymbolsCanStartWithDigit(true); 112 113 // Allow the target to emit any magic that it wants at the start of the file. 114 EmitStartOfAsmFile(M); 115 116 if (MAI->hasSingleParameterDotFile()) { 117 /* Very minimal debug info. It is ignored if we emit actual 118 debug info. If we don't, this at least helps the user find where 119 a function came from. */ 120 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 121 } 122 123 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 124 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 125 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 126 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 127 MP->beginAssembly(O, *this, *MAI); 128 129 if (!M.getModuleInlineAsm().empty()) 130 O << MAI->getCommentString() << " Start of file scope inline assembly\n" 131 << M.getModuleInlineAsm() 132 << '\n' << MAI->getCommentString() 133 << " End of file scope inline assembly\n"; 134 135 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 136 if (MMI) 137 MMI->AnalyzeModule(M); 138 DW = getAnalysisIfAvailable<DwarfWriter>(); 139 if (DW) 140 DW->BeginModule(&M, MMI, O, this, MAI); 141 142 return false; 143} 144 145bool AsmPrinter::doFinalization(Module &M) { 146 // Emit global variables. 147 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 148 I != E; ++I) 149 PrintGlobalVariable(I); 150 151 // Emit final debug information. 152 if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling()) 153 DW->EndModule(); 154 155 // If the target wants to know about weak references, print them all. 156 if (MAI->getWeakRefDirective()) { 157 // FIXME: This is not lazy, it would be nice to only print weak references 158 // to stuff that is actually used. Note that doing so would require targets 159 // to notice uses in operands (due to constant exprs etc). This should 160 // happen with the MC stuff eventually. 161 162 // Print out module-level global variables here. 163 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 164 I != E; ++I) { 165 if (I->hasExternalWeakLinkage()) 166 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 167 } 168 169 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 170 if (I->hasExternalWeakLinkage()) 171 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 172 } 173 } 174 175 if (MAI->getSetDirective()) { 176 O << '\n'; 177 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 178 I != E; ++I) { 179 std::string Name = Mang->getMangledName(I); 180 181 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 182 std::string Target = Mang->getMangledName(GV); 183 184 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 185 O << "\t.globl\t" << Name << '\n'; 186 else if (I->hasWeakLinkage()) 187 O << MAI->getWeakRefDirective() << Name << '\n'; 188 else if (!I->hasLocalLinkage()) 189 llvm_unreachable("Invalid alias linkage"); 190 191 printVisibility(Name, I->getVisibility()); 192 193 O << MAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 194 } 195 } 196 197 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 198 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 199 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 200 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 201 MP->finishAssembly(O, *this, *MAI); 202 203 // If we don't have any trampolines, then we don't require stack memory 204 // to be executable. Some targets have a directive to declare this. 205 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 206 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 207 if (MAI->getNonexecutableStackDirective()) 208 O << MAI->getNonexecutableStackDirective() << '\n'; 209 210 211 // Allow the target to emit any magic that it wants at the end of the file, 212 // after everything else has gone out. 213 EmitEndOfAsmFile(M); 214 215 delete Mang; Mang = 0; 216 DW = 0; MMI = 0; 217 218 OutStreamer.Finish(); 219 return false; 220} 221 222void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 223 // What's my mangled name? 224 CurrentFnName = Mang->getMangledName(MF.getFunction()); 225 IncrementFunctionNumber(); 226 227 if (VerboseAsm) 228 LI = &getAnalysis<MachineLoopInfo>(); 229} 230 231namespace { 232 // SectionCPs - Keep track the alignment, constpool entries per Section. 233 struct SectionCPs { 234 const MCSection *S; 235 unsigned Alignment; 236 SmallVector<unsigned, 4> CPEs; 237 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}; 238 }; 239} 240 241/// EmitConstantPool - Print to the current output stream assembly 242/// representations of the constants in the constant pool MCP. This is 243/// used to print out constants which have been "spilled to memory" by 244/// the code generator. 245/// 246void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 247 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 248 if (CP.empty()) return; 249 250 // Calculate sections for constant pool entries. We collect entries to go into 251 // the same section together to reduce amount of section switch statements. 252 SmallVector<SectionCPs, 4> CPSections; 253 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 254 const MachineConstantPoolEntry &CPE = CP[i]; 255 unsigned Align = CPE.getAlignment(); 256 257 SectionKind Kind; 258 switch (CPE.getRelocationInfo()) { 259 default: llvm_unreachable("Unknown section kind"); 260 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 261 case 1: 262 Kind = SectionKind::getReadOnlyWithRelLocal(); 263 break; 264 case 0: 265 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 266 case 4: Kind = SectionKind::getMergeableConst4(); break; 267 case 8: Kind = SectionKind::getMergeableConst8(); break; 268 case 16: Kind = SectionKind::getMergeableConst16();break; 269 default: Kind = SectionKind::getMergeableConst(); break; 270 } 271 } 272 273 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 274 275 // The number of sections are small, just do a linear search from the 276 // last section to the first. 277 bool Found = false; 278 unsigned SecIdx = CPSections.size(); 279 while (SecIdx != 0) { 280 if (CPSections[--SecIdx].S == S) { 281 Found = true; 282 break; 283 } 284 } 285 if (!Found) { 286 SecIdx = CPSections.size(); 287 CPSections.push_back(SectionCPs(S, Align)); 288 } 289 290 if (Align > CPSections[SecIdx].Alignment) 291 CPSections[SecIdx].Alignment = Align; 292 CPSections[SecIdx].CPEs.push_back(i); 293 } 294 295 // Now print stuff into the calculated sections. 296 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 297 OutStreamer.SwitchSection(CPSections[i].S); 298 EmitAlignment(Log2_32(CPSections[i].Alignment)); 299 300 unsigned Offset = 0; 301 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 302 unsigned CPI = CPSections[i].CPEs[j]; 303 MachineConstantPoolEntry CPE = CP[CPI]; 304 305 // Emit inter-object padding for alignment. 306 unsigned AlignMask = CPE.getAlignment() - 1; 307 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 308 EmitZeros(NewOffset - Offset); 309 310 const Type *Ty = CPE.getType(); 311 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 312 313 O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 314 << CPI << ':'; 315 if (VerboseAsm) { 316 O.PadToColumn(MAI->getCommentColumn()); 317 O << MAI->getCommentString() << " constant "; 318 WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent()); 319 } 320 O << '\n'; 321 if (CPE.isMachineConstantPoolEntry()) 322 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 323 else 324 EmitGlobalConstant(CPE.Val.ConstVal); 325 } 326 } 327} 328 329/// EmitJumpTableInfo - Print assembly representations of the jump tables used 330/// by the current function to the current output stream. 331/// 332void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 333 MachineFunction &MF) { 334 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 335 if (JT.empty()) return; 336 337 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 338 339 // Pick the directive to use to print the jump table entries, and switch to 340 // the appropriate section. 341 TargetLowering *LoweringInfo = TM.getTargetLowering(); 342 343 const Function *F = MF.getFunction(); 344 bool JTInDiffSection = false; 345 if (F->isWeakForLinker() || 346 (IsPic && !LoweringInfo->usesGlobalOffsetTable())) { 347 // In PIC mode, we need to emit the jump table to the same section as the 348 // function body itself, otherwise the label differences won't make sense. 349 // We should also do if the section name is NULL or function is declared in 350 // discardable section. 351 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, 352 TM)); 353 } else { 354 // Otherwise, drop it in the readonly section. 355 const MCSection *ReadOnlySection = 356 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 357 OutStreamer.SwitchSection(ReadOnlySection); 358 JTInDiffSection = true; 359 } 360 361 EmitAlignment(Log2_32(MJTI->getAlignment())); 362 363 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 364 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 365 366 // If this jump table was deleted, ignore it. 367 if (JTBBs.empty()) continue; 368 369 // For PIC codegen, if possible we want to use the SetDirective to reduce 370 // the number of relocations the assembler will generate for the jump table. 371 // Set directives are all printed before the jump table itself. 372 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 373 if (MAI->getSetDirective() && IsPic) 374 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 375 if (EmittedSets.insert(JTBBs[ii])) 376 printPICJumpTableSetLabel(i, JTBBs[ii]); 377 378 // On some targets (e.g. Darwin) we want to emit two consequtive labels 379 // before each jump table. The first label is never referenced, but tells 380 // the assembler and linker the extents of the jump table object. The 381 // second label is actually referenced by the code. 382 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) { 383 O << MAI->getLinkerPrivateGlobalPrefix() 384 << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 385 } 386 387 O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 388 << '_' << i << ":\n"; 389 390 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 391 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 392 O << '\n'; 393 } 394 } 395} 396 397void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 398 const MachineBasicBlock *MBB, 399 unsigned uid) const { 400 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 401 402 // Use JumpTableDirective otherwise honor the entry size from the jump table 403 // info. 404 const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC); 405 bool HadJTEntryDirective = JTEntryDirective != NULL; 406 if (!HadJTEntryDirective) { 407 JTEntryDirective = MJTI->getEntrySize() == 4 ? 408 MAI->getData32bitsDirective() : MAI->getData64bitsDirective(); 409 } 410 411 O << JTEntryDirective << ' '; 412 413 // If we have emitted set directives for the jump table entries, print 414 // them rather than the entries themselves. If we're emitting PIC, then 415 // emit the table entries as differences between two text section labels. 416 // If we're emitting non-PIC code, then emit the entries as direct 417 // references to the target basic blocks. 418 if (!isPIC) { 419 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 420 } else if (MAI->getSetDirective()) { 421 O << MAI->getPrivateGlobalPrefix() << getFunctionNumber() 422 << '_' << uid << "_set_" << MBB->getNumber(); 423 } else { 424 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 425 // If the arch uses custom Jump Table directives, don't calc relative to 426 // JT 427 if (!HadJTEntryDirective) 428 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" 429 << getFunctionNumber() << '_' << uid; 430 } 431} 432 433 434/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 435/// special global used by LLVM. If so, emit it and return true, otherwise 436/// do nothing and return false. 437bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 438 if (GV->getName() == "llvm.used") { 439 if (MAI->getUsedDirective() != 0) // No need to emit this at all. 440 EmitLLVMUsedList(GV->getInitializer()); 441 return true; 442 } 443 444 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 445 if (GV->getSection() == "llvm.metadata" || 446 GV->hasAvailableExternallyLinkage()) 447 return true; 448 449 if (!GV->hasAppendingLinkage()) return false; 450 451 assert(GV->hasInitializer() && "Not a special LLVM global!"); 452 453 const TargetData *TD = TM.getTargetData(); 454 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 455 if (GV->getName() == "llvm.global_ctors") { 456 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection()); 457 EmitAlignment(Align, 0); 458 EmitXXStructorList(GV->getInitializer()); 459 return true; 460 } 461 462 if (GV->getName() == "llvm.global_dtors") { 463 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection()); 464 EmitAlignment(Align, 0); 465 EmitXXStructorList(GV->getInitializer()); 466 return true; 467 } 468 469 return false; 470} 471 472/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 473/// global in the specified llvm.used list for which emitUsedDirectiveFor 474/// is true, as being used with this directive. 475void AsmPrinter::EmitLLVMUsedList(Constant *List) { 476 const char *Directive = MAI->getUsedDirective(); 477 478 // Should be an array of 'i8*'. 479 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 480 if (InitList == 0) return; 481 482 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 483 const GlobalValue *GV = 484 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 485 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) { 486 O << Directive; 487 EmitConstantValueOnly(InitList->getOperand(i)); 488 O << '\n'; 489 } 490 } 491} 492 493/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 494/// function pointers, ignoring the init priority. 495void AsmPrinter::EmitXXStructorList(Constant *List) { 496 // Should be an array of '{ int, void ()* }' structs. The first value is the 497 // init priority, which we ignore. 498 if (!isa<ConstantArray>(List)) return; 499 ConstantArray *InitList = cast<ConstantArray>(List); 500 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 501 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 502 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 503 504 if (CS->getOperand(1)->isNullValue()) 505 return; // Found a null terminator, exit printing. 506 // Emit the function pointer. 507 EmitGlobalConstant(CS->getOperand(1)); 508 } 509} 510 511 512//===----------------------------------------------------------------------===// 513/// LEB 128 number encoding. 514 515/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) 516/// representing an unsigned leb128 value. 517void AsmPrinter::PrintULEB128(unsigned Value) const { 518 char Buffer[20]; 519 do { 520 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 521 Value >>= 7; 522 if (Value) Byte |= 0x80; 523 O << "0x" << utohex_buffer(Byte, Buffer+20); 524 if (Value) O << ", "; 525 } while (Value); 526} 527 528/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) 529/// representing a signed leb128 value. 530void AsmPrinter::PrintSLEB128(int Value) const { 531 int Sign = Value >> (8 * sizeof(Value) - 1); 532 bool IsMore; 533 char Buffer[20]; 534 535 do { 536 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 537 Value >>= 7; 538 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 539 if (IsMore) Byte |= 0x80; 540 O << "0x" << utohex_buffer(Byte, Buffer+20); 541 if (IsMore) O << ", "; 542 } while (IsMore); 543} 544 545//===--------------------------------------------------------------------===// 546// Emission and print routines 547// 548 549/// PrintHex - Print a value as a hexidecimal value. 550/// 551void AsmPrinter::PrintHex(int Value) const { 552 char Buffer[20]; 553 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); 554} 555 556/// EOL - Print a newline character to asm stream. If a comment is present 557/// then it will be printed first. Comments should not contain '\n'. 558void AsmPrinter::EOL() const { 559 O << '\n'; 560} 561 562void AsmPrinter::EOL(const std::string &Comment) const { 563 if (VerboseAsm && !Comment.empty()) { 564 O.PadToColumn(MAI->getCommentColumn()); 565 O << MAI->getCommentString() 566 << ' ' 567 << Comment; 568 } 569 O << '\n'; 570} 571 572void AsmPrinter::EOL(const char* Comment) const { 573 if (VerboseAsm && *Comment) { 574 O.PadToColumn(MAI->getCommentColumn()); 575 O << MAI->getCommentString() 576 << ' ' 577 << Comment; 578 } 579 O << '\n'; 580} 581 582static const char *DecodeDWARFEncoding(unsigned Encoding) { 583 switch (Encoding) { 584 case dwarf::DW_EH_PE_absptr: 585 return "absptr"; 586 case dwarf::DW_EH_PE_omit: 587 return "omit"; 588 case dwarf::DW_EH_PE_pcrel: 589 return "pcrel"; 590 case dwarf::DW_EH_PE_udata4: 591 return "udata4"; 592 case dwarf::DW_EH_PE_udata8: 593 return "udata8"; 594 case dwarf::DW_EH_PE_sdata4: 595 return "sdata4"; 596 case dwarf::DW_EH_PE_sdata8: 597 return "sdata8"; 598 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4: 599 return "pcrel udata4"; 600 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4: 601 return "pcrel sdata4"; 602 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8: 603 return "pcrel udata8"; 604 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8: 605 return "pcrel sdata8"; 606 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4: 607 return "indirect pcrel udata4"; 608 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4: 609 return "indirect pcrel sdata4"; 610 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8: 611 return "indirect pcrel udata8"; 612 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8: 613 return "indirect pcrel sdata8"; 614 } 615 616 return 0; 617} 618 619void AsmPrinter::EOL(const char *Comment, unsigned Encoding) const { 620 if (VerboseAsm && *Comment) { 621 O.PadToColumn(MAI->getCommentColumn()); 622 O << MAI->getCommentString() 623 << ' ' 624 << Comment; 625 626 if (const char *EncStr = DecodeDWARFEncoding(Encoding)) 627 O << " (" << EncStr << ')'; 628 } 629 O << '\n'; 630} 631 632/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 633/// unsigned leb128 value. 634void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 635 if (MAI->hasLEB128()) { 636 O << "\t.uleb128\t" 637 << Value; 638 } else { 639 O << MAI->getData8bitsDirective(); 640 PrintULEB128(Value); 641 } 642} 643 644/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 645/// signed leb128 value. 646void AsmPrinter::EmitSLEB128Bytes(int Value) const { 647 if (MAI->hasLEB128()) { 648 O << "\t.sleb128\t" 649 << Value; 650 } else { 651 O << MAI->getData8bitsDirective(); 652 PrintSLEB128(Value); 653 } 654} 655 656/// EmitInt8 - Emit a byte directive and value. 657/// 658void AsmPrinter::EmitInt8(int Value) const { 659 O << MAI->getData8bitsDirective(); 660 PrintHex(Value & 0xFF); 661} 662 663/// EmitInt16 - Emit a short directive and value. 664/// 665void AsmPrinter::EmitInt16(int Value) const { 666 O << MAI->getData16bitsDirective(); 667 PrintHex(Value & 0xFFFF); 668} 669 670/// EmitInt32 - Emit a long directive and value. 671/// 672void AsmPrinter::EmitInt32(int Value) const { 673 O << MAI->getData32bitsDirective(); 674 PrintHex(Value); 675} 676 677/// EmitInt64 - Emit a long long directive and value. 678/// 679void AsmPrinter::EmitInt64(uint64_t Value) const { 680 if (MAI->getData64bitsDirective()) { 681 O << MAI->getData64bitsDirective(); 682 PrintHex(Value); 683 } else { 684 if (TM.getTargetData()->isBigEndian()) { 685 EmitInt32(unsigned(Value >> 32)); O << '\n'; 686 EmitInt32(unsigned(Value)); 687 } else { 688 EmitInt32(unsigned(Value)); O << '\n'; 689 EmitInt32(unsigned(Value >> 32)); 690 } 691 } 692} 693 694/// toOctal - Convert the low order bits of X into an octal digit. 695/// 696static inline char toOctal(int X) { 697 return (X&7)+'0'; 698} 699 700/// printStringChar - Print a char, escaped if necessary. 701/// 702static void printStringChar(formatted_raw_ostream &O, unsigned char C) { 703 if (C == '"') { 704 O << "\\\""; 705 } else if (C == '\\') { 706 O << "\\\\"; 707 } else if (isprint((unsigned char)C)) { 708 O << C; 709 } else { 710 switch(C) { 711 case '\b': O << "\\b"; break; 712 case '\f': O << "\\f"; break; 713 case '\n': O << "\\n"; break; 714 case '\r': O << "\\r"; break; 715 case '\t': O << "\\t"; break; 716 default: 717 O << '\\'; 718 O << toOctal(C >> 6); 719 O << toOctal(C >> 3); 720 O << toOctal(C >> 0); 721 break; 722 } 723 } 724} 725 726/// EmitString - Emit a string with quotes and a null terminator. 727/// Special characters are emitted properly. 728/// \literal (Eg. '\t') \endliteral 729void AsmPrinter::EmitString(const std::string &String) const { 730 EmitString(String.c_str(), String.size()); 731} 732 733void AsmPrinter::EmitString(const char *String, unsigned Size) const { 734 const char* AscizDirective = MAI->getAscizDirective(); 735 if (AscizDirective) 736 O << AscizDirective; 737 else 738 O << MAI->getAsciiDirective(); 739 O << '\"'; 740 for (unsigned i = 0; i < Size; ++i) 741 printStringChar(O, String[i]); 742 if (AscizDirective) 743 O << '\"'; 744 else 745 O << "\\0\""; 746} 747 748 749/// EmitFile - Emit a .file directive. 750void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 751 O << "\t.file\t" << Number << " \""; 752 for (unsigned i = 0, N = Name.size(); i < N; ++i) 753 printStringChar(O, Name[i]); 754 O << '\"'; 755} 756 757 758//===----------------------------------------------------------------------===// 759 760// EmitAlignment - Emit an alignment directive to the specified power of 761// two boundary. For example, if you pass in 3 here, you will get an 8 762// byte alignment. If a global value is specified, and if that global has 763// an explicit alignment requested, it will unconditionally override the 764// alignment request. However, if ForcedAlignBits is specified, this value 765// has final say: the ultimate alignment will be the max of ForcedAlignBits 766// and the alignment computed with NumBits and the global. 767// 768// The algorithm is: 769// Align = NumBits; 770// if (GV && GV->hasalignment) Align = GV->getalignment(); 771// Align = std::max(Align, ForcedAlignBits); 772// 773void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 774 unsigned ForcedAlignBits, 775 bool UseFillExpr) const { 776 if (GV && GV->getAlignment()) 777 NumBits = Log2_32(GV->getAlignment()); 778 NumBits = std::max(NumBits, ForcedAlignBits); 779 780 if (NumBits == 0) return; // No need to emit alignment. 781 782 unsigned FillValue = 0; 783 if (getCurrentSection()->getKind().isText()) 784 FillValue = MAI->getTextAlignFillValue(); 785 786 OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0); 787} 788 789/// EmitZeros - Emit a block of zeros. 790/// 791void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const { 792 if (NumZeros) { 793 if (MAI->getZeroDirective()) { 794 O << MAI->getZeroDirective() << NumZeros; 795 if (MAI->getZeroDirectiveSuffix()) 796 O << MAI->getZeroDirectiveSuffix(); 797 O << '\n'; 798 } else { 799 for (; NumZeros; --NumZeros) 800 O << MAI->getData8bitsDirective(AddrSpace) << "0\n"; 801 } 802 } 803} 804 805// Print out the specified constant, without a storage class. Only the 806// constants valid in constant expressions can occur here. 807void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 808 if (CV->isNullValue() || isa<UndefValue>(CV)) 809 O << '0'; 810 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 811 O << CI->getZExtValue(); 812 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 813 // This is a constant address for a global variable or function. Use the 814 // name of the variable or function as the address value. 815 O << Mang->getMangledName(GV); 816 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 817 const TargetData *TD = TM.getTargetData(); 818 unsigned Opcode = CE->getOpcode(); 819 switch (Opcode) { 820 case Instruction::Trunc: 821 case Instruction::ZExt: 822 case Instruction::SExt: 823 case Instruction::FPTrunc: 824 case Instruction::FPExt: 825 case Instruction::UIToFP: 826 case Instruction::SIToFP: 827 case Instruction::FPToUI: 828 case Instruction::FPToSI: 829 llvm_unreachable("FIXME: Don't support this constant cast expr"); 830 case Instruction::GetElementPtr: { 831 // generate a symbolic expression for the byte address 832 const Constant *ptrVal = CE->getOperand(0); 833 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 834 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 835 idxVec.size())) { 836 // Truncate/sext the offset to the pointer size. 837 if (TD->getPointerSizeInBits() != 64) { 838 int SExtAmount = 64-TD->getPointerSizeInBits(); 839 Offset = (Offset << SExtAmount) >> SExtAmount; 840 } 841 842 if (Offset) 843 O << '('; 844 EmitConstantValueOnly(ptrVal); 845 if (Offset > 0) 846 O << ") + " << Offset; 847 else if (Offset < 0) 848 O << ") - " << -Offset; 849 } else { 850 EmitConstantValueOnly(ptrVal); 851 } 852 break; 853 } 854 case Instruction::BitCast: 855 return EmitConstantValueOnly(CE->getOperand(0)); 856 857 case Instruction::IntToPtr: { 858 // Handle casts to pointers by changing them into casts to the appropriate 859 // integer type. This promotes constant folding and simplifies this code. 860 Constant *Op = CE->getOperand(0); 861 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()), 862 false/*ZExt*/); 863 return EmitConstantValueOnly(Op); 864 } 865 866 867 case Instruction::PtrToInt: { 868 // Support only foldable casts to/from pointers that can be eliminated by 869 // changing the pointer to the appropriately sized integer type. 870 Constant *Op = CE->getOperand(0); 871 const Type *Ty = CE->getType(); 872 873 // We can emit the pointer value into this slot if the slot is an 874 // integer slot greater or equal to the size of the pointer. 875 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType())) 876 return EmitConstantValueOnly(Op); 877 878 O << "(("; 879 EmitConstantValueOnly(Op); 880 APInt ptrMask = 881 APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType())); 882 883 SmallString<40> S; 884 ptrMask.toStringUnsigned(S); 885 O << ") & " << S.str() << ')'; 886 break; 887 } 888 case Instruction::Add: 889 case Instruction::Sub: 890 case Instruction::And: 891 case Instruction::Or: 892 case Instruction::Xor: 893 O << '('; 894 EmitConstantValueOnly(CE->getOperand(0)); 895 O << ')'; 896 switch (Opcode) { 897 case Instruction::Add: 898 O << " + "; 899 break; 900 case Instruction::Sub: 901 O << " - "; 902 break; 903 case Instruction::And: 904 O << " & "; 905 break; 906 case Instruction::Or: 907 O << " | "; 908 break; 909 case Instruction::Xor: 910 O << " ^ "; 911 break; 912 default: 913 break; 914 } 915 O << '('; 916 EmitConstantValueOnly(CE->getOperand(1)); 917 O << ')'; 918 break; 919 default: 920 llvm_unreachable("Unsupported operator!"); 921 } 922 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 923 GetBlockAddressSymbol(BA)->print(O, MAI); 924 } else { 925 llvm_unreachable("Unknown constant value!"); 926 } 927} 928 929/// printAsCString - Print the specified array as a C compatible string, only if 930/// the predicate isString is true. 931/// 932static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA, 933 unsigned LastElt) { 934 assert(CVA->isString() && "Array is not string compatible!"); 935 936 O << '\"'; 937 for (unsigned i = 0; i != LastElt; ++i) { 938 unsigned char C = 939 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 940 printStringChar(O, C); 941 } 942 O << '\"'; 943} 944 945/// EmitString - Emit a zero-byte-terminated string constant. 946/// 947void AsmPrinter::EmitString(const ConstantArray *CVA) const { 948 unsigned NumElts = CVA->getNumOperands(); 949 if (MAI->getAscizDirective() && NumElts && 950 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 951 O << MAI->getAscizDirective(); 952 printAsCString(O, CVA, NumElts-1); 953 } else { 954 O << MAI->getAsciiDirective(); 955 printAsCString(O, CVA, NumElts); 956 } 957 O << '\n'; 958} 959 960void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA, 961 unsigned AddrSpace) { 962 if (CVA->isString()) { 963 EmitString(CVA); 964 } else { // Not a string. Print the values in successive locations 965 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 966 EmitGlobalConstant(CVA->getOperand(i), AddrSpace); 967 } 968} 969 970void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) { 971 const VectorType *PTy = CP->getType(); 972 973 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 974 EmitGlobalConstant(CP->getOperand(I)); 975} 976 977void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS, 978 unsigned AddrSpace) { 979 // Print the fields in successive locations. Pad to align if needed! 980 const TargetData *TD = TM.getTargetData(); 981 unsigned Size = TD->getTypeAllocSize(CVS->getType()); 982 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 983 uint64_t sizeSoFar = 0; 984 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 985 const Constant* field = CVS->getOperand(i); 986 987 // Check if padding is needed and insert one or more 0s. 988 uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); 989 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 990 - cvsLayout->getElementOffset(i)) - fieldSize; 991 sizeSoFar += fieldSize + padSize; 992 993 // Now print the actual field value. 994 EmitGlobalConstant(field, AddrSpace); 995 996 // Insert padding - this may include padding to increase the size of the 997 // current field up to the ABI size (if the struct is not packed) as well 998 // as padding to ensure that the next field starts at the right offset. 999 EmitZeros(padSize, AddrSpace); 1000 } 1001 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 1002 "Layout of constant struct may be incorrect!"); 1003} 1004 1005void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP, 1006 unsigned AddrSpace) { 1007 // FP Constants are printed as integer constants to avoid losing 1008 // precision... 1009 LLVMContext &Context = CFP->getContext(); 1010 const TargetData *TD = TM.getTargetData(); 1011 if (CFP->getType()->isDoubleTy()) { 1012 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 1013 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1014 if (MAI->getData64bitsDirective(AddrSpace)) { 1015 O << MAI->getData64bitsDirective(AddrSpace) << i; 1016 if (VerboseAsm) { 1017 O.PadToColumn(MAI->getCommentColumn()); 1018 O << MAI->getCommentString() << " double " << Val; 1019 } 1020 O << '\n'; 1021 } else if (TD->isBigEndian()) { 1022 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1023 if (VerboseAsm) { 1024 O.PadToColumn(MAI->getCommentColumn()); 1025 O << MAI->getCommentString() 1026 << " most significant word of double " << Val; 1027 } 1028 O << '\n'; 1029 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1030 if (VerboseAsm) { 1031 O.PadToColumn(MAI->getCommentColumn()); 1032 O << MAI->getCommentString() 1033 << " least significant word of double " << Val; 1034 } 1035 O << '\n'; 1036 } else { 1037 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1038 if (VerboseAsm) { 1039 O.PadToColumn(MAI->getCommentColumn()); 1040 O << MAI->getCommentString() 1041 << " least significant word of double " << Val; 1042 } 1043 O << '\n'; 1044 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1045 if (VerboseAsm) { 1046 O.PadToColumn(MAI->getCommentColumn()); 1047 O << MAI->getCommentString() 1048 << " most significant word of double " << Val; 1049 } 1050 O << '\n'; 1051 } 1052 return; 1053 } 1054 1055 if (CFP->getType()->isFloatTy()) { 1056 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1057 O << MAI->getData32bitsDirective(AddrSpace) 1058 << CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1059 if (VerboseAsm) { 1060 O.PadToColumn(MAI->getCommentColumn()); 1061 O << MAI->getCommentString() << " float " << Val; 1062 } 1063 O << '\n'; 1064 return; 1065 } 1066 1067 if (CFP->getType()->isX86_FP80Ty()) { 1068 // all long double variants are printed as hex 1069 // api needed to prevent premature destruction 1070 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1071 const uint64_t *p = api.getRawData(); 1072 // Convert to double so we can print the approximate val as a comment. 1073 APFloat DoubleVal = CFP->getValueAPF(); 1074 bool ignored; 1075 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1076 &ignored); 1077 if (TD->isBigEndian()) { 1078 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1079 if (VerboseAsm) { 1080 O.PadToColumn(MAI->getCommentColumn()); 1081 O << MAI->getCommentString() 1082 << " most significant halfword of x86_fp80 ~" 1083 << DoubleVal.convertToDouble(); 1084 } 1085 O << '\n'; 1086 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1087 if (VerboseAsm) { 1088 O.PadToColumn(MAI->getCommentColumn()); 1089 O << MAI->getCommentString() << " next halfword"; 1090 } 1091 O << '\n'; 1092 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1093 if (VerboseAsm) { 1094 O.PadToColumn(MAI->getCommentColumn()); 1095 O << MAI->getCommentString() << " next halfword"; 1096 } 1097 O << '\n'; 1098 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1099 if (VerboseAsm) { 1100 O.PadToColumn(MAI->getCommentColumn()); 1101 O << MAI->getCommentString() << " next halfword"; 1102 } 1103 O << '\n'; 1104 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1105 if (VerboseAsm) { 1106 O.PadToColumn(MAI->getCommentColumn()); 1107 O << MAI->getCommentString() 1108 << " least significant halfword"; 1109 } 1110 O << '\n'; 1111 } else { 1112 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1113 if (VerboseAsm) { 1114 O.PadToColumn(MAI->getCommentColumn()); 1115 O << MAI->getCommentString() 1116 << " least significant halfword of x86_fp80 ~" 1117 << DoubleVal.convertToDouble(); 1118 } 1119 O << '\n'; 1120 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1121 if (VerboseAsm) { 1122 O.PadToColumn(MAI->getCommentColumn()); 1123 O << MAI->getCommentString() 1124 << " next halfword"; 1125 } 1126 O << '\n'; 1127 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1128 if (VerboseAsm) { 1129 O.PadToColumn(MAI->getCommentColumn()); 1130 O << MAI->getCommentString() 1131 << " next halfword"; 1132 } 1133 O << '\n'; 1134 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1135 if (VerboseAsm) { 1136 O.PadToColumn(MAI->getCommentColumn()); 1137 O << MAI->getCommentString() 1138 << " next halfword"; 1139 } 1140 O << '\n'; 1141 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1142 if (VerboseAsm) { 1143 O.PadToColumn(MAI->getCommentColumn()); 1144 O << MAI->getCommentString() 1145 << " most significant halfword"; 1146 } 1147 O << '\n'; 1148 } 1149 EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) - 1150 TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace); 1151 return; 1152 } 1153 1154 if (CFP->getType()->isPPC_FP128Ty()) { 1155 // all long double variants are printed as hex 1156 // api needed to prevent premature destruction 1157 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1158 const uint64_t *p = api.getRawData(); 1159 if (TD->isBigEndian()) { 1160 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1161 if (VerboseAsm) { 1162 O.PadToColumn(MAI->getCommentColumn()); 1163 O << MAI->getCommentString() 1164 << " most significant word of ppc_fp128"; 1165 } 1166 O << '\n'; 1167 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1168 if (VerboseAsm) { 1169 O.PadToColumn(MAI->getCommentColumn()); 1170 O << MAI->getCommentString() 1171 << " next word"; 1172 } 1173 O << '\n'; 1174 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1175 if (VerboseAsm) { 1176 O.PadToColumn(MAI->getCommentColumn()); 1177 O << MAI->getCommentString() 1178 << " next word"; 1179 } 1180 O << '\n'; 1181 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1182 if (VerboseAsm) { 1183 O.PadToColumn(MAI->getCommentColumn()); 1184 O << MAI->getCommentString() 1185 << " least significant word"; 1186 } 1187 O << '\n'; 1188 } else { 1189 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1190 if (VerboseAsm) { 1191 O.PadToColumn(MAI->getCommentColumn()); 1192 O << MAI->getCommentString() 1193 << " least significant word of ppc_fp128"; 1194 } 1195 O << '\n'; 1196 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1197 if (VerboseAsm) { 1198 O.PadToColumn(MAI->getCommentColumn()); 1199 O << MAI->getCommentString() 1200 << " next word"; 1201 } 1202 O << '\n'; 1203 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1204 if (VerboseAsm) { 1205 O.PadToColumn(MAI->getCommentColumn()); 1206 O << MAI->getCommentString() 1207 << " next word"; 1208 } 1209 O << '\n'; 1210 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1211 if (VerboseAsm) { 1212 O.PadToColumn(MAI->getCommentColumn()); 1213 O << MAI->getCommentString() 1214 << " most significant word"; 1215 } 1216 O << '\n'; 1217 } 1218 return; 1219 } else llvm_unreachable("Floating point constant type not handled"); 1220} 1221 1222void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 1223 unsigned AddrSpace) { 1224 const TargetData *TD = TM.getTargetData(); 1225 unsigned BitWidth = CI->getBitWidth(); 1226 assert(isPowerOf2_32(BitWidth) && 1227 "Non-power-of-2-sized integers not handled!"); 1228 1229 // We don't expect assemblers to support integer data directives 1230 // for more than 64 bits, so we emit the data in at most 64-bit 1231 // quantities at a time. 1232 const uint64_t *RawData = CI->getValue().getRawData(); 1233 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1234 uint64_t Val; 1235 if (TD->isBigEndian()) 1236 Val = RawData[e - i - 1]; 1237 else 1238 Val = RawData[i]; 1239 1240 if (MAI->getData64bitsDirective(AddrSpace)) 1241 O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n'; 1242 else if (TD->isBigEndian()) { 1243 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1244 if (VerboseAsm) { 1245 O.PadToColumn(MAI->getCommentColumn()); 1246 O << MAI->getCommentString() 1247 << " most significant half of i64 " << Val; 1248 } 1249 O << '\n'; 1250 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1251 if (VerboseAsm) { 1252 O.PadToColumn(MAI->getCommentColumn()); 1253 O << MAI->getCommentString() 1254 << " least significant half of i64 " << Val; 1255 } 1256 O << '\n'; 1257 } else { 1258 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1259 if (VerboseAsm) { 1260 O.PadToColumn(MAI->getCommentColumn()); 1261 O << MAI->getCommentString() 1262 << " least significant half of i64 " << Val; 1263 } 1264 O << '\n'; 1265 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1266 if (VerboseAsm) { 1267 O.PadToColumn(MAI->getCommentColumn()); 1268 O << MAI->getCommentString() 1269 << " most significant half of i64 " << Val; 1270 } 1271 O << '\n'; 1272 } 1273 } 1274} 1275 1276/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1277void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1278 const TargetData *TD = TM.getTargetData(); 1279 const Type *type = CV->getType(); 1280 unsigned Size = TD->getTypeAllocSize(type); 1281 1282 if (CV->isNullValue() || isa<UndefValue>(CV)) { 1283 EmitZeros(Size, AddrSpace); 1284 return; 1285 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 1286 EmitGlobalConstantArray(CVA , AddrSpace); 1287 return; 1288 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 1289 EmitGlobalConstantStruct(CVS, AddrSpace); 1290 return; 1291 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1292 EmitGlobalConstantFP(CFP, AddrSpace); 1293 return; 1294 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1295 // Small integers are handled below; large integers are handled here. 1296 if (Size > 4) { 1297 EmitGlobalConstantLargeInt(CI, AddrSpace); 1298 return; 1299 } 1300 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1301 EmitGlobalConstantVector(CP); 1302 return; 1303 } 1304 1305 printDataDirective(type, AddrSpace); 1306 EmitConstantValueOnly(CV); 1307 if (VerboseAsm) { 1308 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1309 SmallString<40> S; 1310 CI->getValue().toStringUnsigned(S, 16); 1311 O.PadToColumn(MAI->getCommentColumn()); 1312 O << MAI->getCommentString() << " 0x" << S.str(); 1313 } 1314 } 1315 O << '\n'; 1316} 1317 1318void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1319 // Target doesn't support this yet! 1320 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1321} 1322 1323/// PrintSpecial - Print information related to the specified machine instr 1324/// that is independent of the operand, and may be independent of the instr 1325/// itself. This can be useful for portably encoding the comment character 1326/// or other bits of target-specific knowledge into the asmstrings. The 1327/// syntax used is ${:comment}. Targets can override this to add support 1328/// for their own strange codes. 1329void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1330 if (!strcmp(Code, "private")) { 1331 O << MAI->getPrivateGlobalPrefix(); 1332 } else if (!strcmp(Code, "comment")) { 1333 if (VerboseAsm) 1334 O << MAI->getCommentString(); 1335 } else if (!strcmp(Code, "uid")) { 1336 // Comparing the address of MI isn't sufficient, because machineinstrs may 1337 // be allocated to the same address across functions. 1338 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1339 1340 // If this is a new LastFn instruction, bump the counter. 1341 if (LastMI != MI || LastFn != ThisF) { 1342 ++Counter; 1343 LastMI = MI; 1344 LastFn = ThisF; 1345 } 1346 O << Counter; 1347 } else { 1348 std::string msg; 1349 raw_string_ostream Msg(msg); 1350 Msg << "Unknown special formatter '" << Code 1351 << "' for machine instr: " << *MI; 1352 llvm_report_error(Msg.str()); 1353 } 1354} 1355 1356/// processDebugLoc - Processes the debug information of each machine 1357/// instruction's DebugLoc. 1358void AsmPrinter::processDebugLoc(const MachineInstr *MI, 1359 bool BeforePrintingInsn) { 1360 if (!MAI || !DW) 1361 return; 1362 DebugLoc DL = MI->getDebugLoc(); 1363 if (MAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) { 1364 if (!DL.isUnknown()) { 1365 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL); 1366 if (BeforePrintingInsn) { 1367 if (CurDLT.Scope != 0 && PrevDLT != CurDLT) { 1368 unsigned L = DW->RecordSourceLine(CurDLT.Line, CurDLT.Col, 1369 CurDLT.Scope); 1370 printLabel(L); 1371 O << '\n'; 1372#ifdef ATTACH_DEBUG_INFO_TO_AN_INSN 1373 DW->SetDbgScopeBeginLabels(MI, L); 1374#endif 1375 } else { 1376#ifdef ATTACH_DEBUG_INFO_TO_AN_INSN 1377 DW->SetDbgScopeEndLabels(MI, 0); 1378#endif 1379 } 1380 } 1381 PrevDLT = CurDLT; 1382 } 1383 } 1384} 1385 1386/// printInlineAsm - This method formats and prints the specified machine 1387/// instruction that is an inline asm. 1388void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1389 unsigned NumOperands = MI->getNumOperands(); 1390 1391 // Count the number of register definitions. 1392 unsigned NumDefs = 0; 1393 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1394 ++NumDefs) 1395 assert(NumDefs != NumOperands-1 && "No asm string?"); 1396 1397 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1398 1399 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1400 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1401 1402 O << '\t'; 1403 1404 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1405 // These are useful to see where empty asm's wound up. 1406 if (AsmStr[0] == 0) { 1407 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1408 O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n'; 1409 return; 1410 } 1411 1412 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1413 1414 // The variant of the current asmprinter. 1415 int AsmPrinterVariant = MAI->getAssemblerDialect(); 1416 1417 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1418 const char *LastEmitted = AsmStr; // One past the last character emitted. 1419 1420 while (*LastEmitted) { 1421 switch (*LastEmitted) { 1422 default: { 1423 // Not a special case, emit the string section literally. 1424 const char *LiteralEnd = LastEmitted+1; 1425 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1426 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1427 ++LiteralEnd; 1428 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1429 O.write(LastEmitted, LiteralEnd-LastEmitted); 1430 LastEmitted = LiteralEnd; 1431 break; 1432 } 1433 case '\n': 1434 ++LastEmitted; // Consume newline character. 1435 O << '\n'; // Indent code with newline. 1436 break; 1437 case '$': { 1438 ++LastEmitted; // Consume '$' character. 1439 bool Done = true; 1440 1441 // Handle escapes. 1442 switch (*LastEmitted) { 1443 default: Done = false; break; 1444 case '$': // $$ -> $ 1445 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1446 O << '$'; 1447 ++LastEmitted; // Consume second '$' character. 1448 break; 1449 case '(': // $( -> same as GCC's { character. 1450 ++LastEmitted; // Consume '(' character. 1451 if (CurVariant != -1) { 1452 llvm_report_error("Nested variants found in inline asm string: '" 1453 + std::string(AsmStr) + "'"); 1454 } 1455 CurVariant = 0; // We're in the first variant now. 1456 break; 1457 case '|': 1458 ++LastEmitted; // consume '|' character. 1459 if (CurVariant == -1) 1460 O << '|'; // this is gcc's behavior for | outside a variant 1461 else 1462 ++CurVariant; // We're in the next variant. 1463 break; 1464 case ')': // $) -> same as GCC's } char. 1465 ++LastEmitted; // consume ')' character. 1466 if (CurVariant == -1) 1467 O << '}'; // this is gcc's behavior for } outside a variant 1468 else 1469 CurVariant = -1; 1470 break; 1471 } 1472 if (Done) break; 1473 1474 bool HasCurlyBraces = false; 1475 if (*LastEmitted == '{') { // ${variable} 1476 ++LastEmitted; // Consume '{' character. 1477 HasCurlyBraces = true; 1478 } 1479 1480 // If we have ${:foo}, then this is not a real operand reference, it is a 1481 // "magic" string reference, just like in .td files. Arrange to call 1482 // PrintSpecial. 1483 if (HasCurlyBraces && *LastEmitted == ':') { 1484 ++LastEmitted; 1485 const char *StrStart = LastEmitted; 1486 const char *StrEnd = strchr(StrStart, '}'); 1487 if (StrEnd == 0) { 1488 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '" 1489 + std::string(AsmStr) + "'"); 1490 } 1491 1492 std::string Val(StrStart, StrEnd); 1493 PrintSpecial(MI, Val.c_str()); 1494 LastEmitted = StrEnd+1; 1495 break; 1496 } 1497 1498 const char *IDStart = LastEmitted; 1499 char *IDEnd; 1500 errno = 0; 1501 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1502 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1503 llvm_report_error("Bad $ operand number in inline asm string: '" 1504 + std::string(AsmStr) + "'"); 1505 } 1506 LastEmitted = IDEnd; 1507 1508 char Modifier[2] = { 0, 0 }; 1509 1510 if (HasCurlyBraces) { 1511 // If we have curly braces, check for a modifier character. This 1512 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1513 if (*LastEmitted == ':') { 1514 ++LastEmitted; // Consume ':' character. 1515 if (*LastEmitted == 0) { 1516 llvm_report_error("Bad ${:} expression in inline asm string: '" 1517 + std::string(AsmStr) + "'"); 1518 } 1519 1520 Modifier[0] = *LastEmitted; 1521 ++LastEmitted; // Consume modifier character. 1522 } 1523 1524 if (*LastEmitted != '}') { 1525 llvm_report_error("Bad ${} expression in inline asm string: '" 1526 + std::string(AsmStr) + "'"); 1527 } 1528 ++LastEmitted; // Consume '}' character. 1529 } 1530 1531 if ((unsigned)Val >= NumOperands-1) { 1532 llvm_report_error("Invalid $ operand number in inline asm string: '" 1533 + std::string(AsmStr) + "'"); 1534 } 1535 1536 // Okay, we finally have a value number. Ask the target to print this 1537 // operand! 1538 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1539 unsigned OpNo = 1; 1540 1541 bool Error = false; 1542 1543 // Scan to find the machine operand number for the operand. 1544 for (; Val; --Val) { 1545 if (OpNo >= MI->getNumOperands()) break; 1546 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1547 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1548 } 1549 1550 if (OpNo >= MI->getNumOperands()) { 1551 Error = true; 1552 } else { 1553 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1554 ++OpNo; // Skip over the ID number. 1555 1556 if (Modifier[0]=='l') // labels are target independent 1557 GetMBBSymbol(MI->getOperand(OpNo).getMBB() 1558 ->getNumber())->print(O, MAI); 1559 else { 1560 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1561 if ((OpFlags & 7) == 4) { 1562 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1563 Modifier[0] ? Modifier : 0); 1564 } else { 1565 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1566 Modifier[0] ? Modifier : 0); 1567 } 1568 } 1569 } 1570 if (Error) { 1571 std::string msg; 1572 raw_string_ostream Msg(msg); 1573 Msg << "Invalid operand found in inline asm: '" 1574 << AsmStr << "'\n"; 1575 MI->print(Msg); 1576 llvm_report_error(Msg.str()); 1577 } 1578 } 1579 break; 1580 } 1581 } 1582 } 1583 O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd(); 1584} 1585 1586/// printImplicitDef - This method prints the specified machine instruction 1587/// that is an implicit def. 1588void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1589 if (!VerboseAsm) return; 1590 O.PadToColumn(MAI->getCommentColumn()); 1591 O << MAI->getCommentString() << " implicit-def: " 1592 << TRI->getName(MI->getOperand(0).getReg()); 1593} 1594 1595void AsmPrinter::printKill(const MachineInstr *MI) const { 1596 if (!VerboseAsm) return; 1597 O.PadToColumn(MAI->getCommentColumn()); 1598 O << MAI->getCommentString() << " kill:"; 1599 for (unsigned n = 0, e = MI->getNumOperands(); n != e; ++n) { 1600 const MachineOperand &op = MI->getOperand(n); 1601 assert(op.isReg() && "KILL instruction must have only register operands"); 1602 O << ' ' << TRI->getName(op.getReg()) << (op.isDef() ? "<def>" : "<kill>"); 1603 } 1604} 1605 1606/// printLabel - This method prints a local label used by debug and 1607/// exception handling tables. 1608void AsmPrinter::printLabel(const MachineInstr *MI) const { 1609 printLabel(MI->getOperand(0).getImm()); 1610} 1611 1612void AsmPrinter::printLabel(unsigned Id) const { 1613 O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':'; 1614} 1615 1616/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1617/// instruction, using the specified assembler variant. Targets should 1618/// overried this to format as appropriate. 1619bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1620 unsigned AsmVariant, const char *ExtraCode) { 1621 // Target doesn't support this yet! 1622 return true; 1623} 1624 1625bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1626 unsigned AsmVariant, 1627 const char *ExtraCode) { 1628 // Target doesn't support this yet! 1629 return true; 1630} 1631 1632MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 1633 return GetBlockAddressSymbol(BA->getFunction(), BA->getBasicBlock()); 1634} 1635 1636MCSymbol *AsmPrinter::GetBlockAddressSymbol(const Function *F, 1637 const BasicBlock *BB) const { 1638 assert(BB->hasName() && 1639 "Address of anonymous basic block not supported yet!"); 1640 1641 // This code must use the function name itself, and not the function number, 1642 // since it must be possible to generate the label name from within other 1643 // functions. 1644 std::string FuncName = Mang->getMangledName(F); 1645 1646 SmallString<60> Name; 1647 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BA" 1648 << FuncName.size() << '_' << FuncName << '_' 1649 << Mang->makeNameProper(BB->getName()); 1650 1651 return OutContext.GetOrCreateSymbol(Name.str()); 1652} 1653 1654MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const { 1655 SmallString<60> Name; 1656 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB" 1657 << getFunctionNumber() << '_' << MBBID; 1658 1659 return OutContext.GetOrCreateSymbol(Name.str()); 1660} 1661 1662 1663/// EmitBasicBlockStart - This method prints the label for the specified 1664/// MachineBasicBlock, an alignment (if present) and a comment describing 1665/// it if appropriate. 1666void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 1667 // Emit an alignment directive for this block, if needed. 1668 if (unsigned Align = MBB->getAlignment()) 1669 EmitAlignment(Log2_32(Align)); 1670 1671 // If the block has its address taken, emit a special label to satisfy 1672 // references to the block. This is done so that we don't need to 1673 // remember the number of this label, and so that we can make 1674 // forward references to labels without knowing what their numbers 1675 // will be. 1676 if (MBB->hasAddressTaken()) { 1677 GetBlockAddressSymbol(MBB->getBasicBlock()->getParent(), 1678 MBB->getBasicBlock())->print(O, MAI); 1679 O << ':'; 1680 if (VerboseAsm) { 1681 O.PadToColumn(MAI->getCommentColumn()); 1682 O << MAI->getCommentString() << " Address Taken"; 1683 } 1684 O << '\n'; 1685 } 1686 1687 // Print the main label for the block. 1688 if (MBB->pred_empty() || MBB->isOnlyReachableByFallthrough()) { 1689 if (VerboseAsm) 1690 O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':'; 1691 } else { 1692 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 1693 O << ':'; 1694 if (!VerboseAsm) 1695 O << '\n'; 1696 } 1697 1698 // Print some comments to accompany the label. 1699 if (VerboseAsm) { 1700 if (const BasicBlock *BB = MBB->getBasicBlock()) 1701 if (BB->hasName()) { 1702 O.PadToColumn(MAI->getCommentColumn()); 1703 O << MAI->getCommentString() << ' '; 1704 WriteAsOperand(O, BB, /*PrintType=*/false); 1705 } 1706 1707 EmitComments(*MBB); 1708 O << '\n'; 1709 } 1710} 1711 1712/// printPICJumpTableSetLabel - This method prints a set label for the 1713/// specified MachineBasicBlock for a jumptable entry. 1714void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1715 const MachineBasicBlock *MBB) const { 1716 if (!MAI->getSetDirective()) 1717 return; 1718 1719 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1720 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1721 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 1722 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1723 << '_' << uid << '\n'; 1724} 1725 1726void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1727 const MachineBasicBlock *MBB) const { 1728 if (!MAI->getSetDirective()) 1729 return; 1730 1731 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1732 << getFunctionNumber() << '_' << uid << '_' << uid2 1733 << "_set_" << MBB->getNumber() << ','; 1734 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 1735 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1736 << '_' << uid << '_' << uid2 << '\n'; 1737} 1738 1739/// printDataDirective - This method prints the asm directive for the 1740/// specified type. 1741void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { 1742 const TargetData *TD = TM.getTargetData(); 1743 switch (type->getTypeID()) { 1744 case Type::FloatTyID: case Type::DoubleTyID: 1745 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1746 assert(0 && "Should have already output floating point constant."); 1747 default: 1748 assert(0 && "Can't handle printing this type of thing"); 1749 case Type::IntegerTyID: { 1750 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1751 if (BitWidth <= 8) 1752 O << MAI->getData8bitsDirective(AddrSpace); 1753 else if (BitWidth <= 16) 1754 O << MAI->getData16bitsDirective(AddrSpace); 1755 else if (BitWidth <= 32) 1756 O << MAI->getData32bitsDirective(AddrSpace); 1757 else if (BitWidth <= 64) { 1758 assert(MAI->getData64bitsDirective(AddrSpace) && 1759 "Target cannot handle 64-bit constant exprs!"); 1760 O << MAI->getData64bitsDirective(AddrSpace); 1761 } else { 1762 llvm_unreachable("Target cannot handle given data directive width!"); 1763 } 1764 break; 1765 } 1766 case Type::PointerTyID: 1767 if (TD->getPointerSize() == 8) { 1768 assert(MAI->getData64bitsDirective(AddrSpace) && 1769 "Target cannot handle 64-bit pointer exprs!"); 1770 O << MAI->getData64bitsDirective(AddrSpace); 1771 } else if (TD->getPointerSize() == 2) { 1772 O << MAI->getData16bitsDirective(AddrSpace); 1773 } else if (TD->getPointerSize() == 1) { 1774 O << MAI->getData8bitsDirective(AddrSpace); 1775 } else { 1776 O << MAI->getData32bitsDirective(AddrSpace); 1777 } 1778 break; 1779 } 1780} 1781 1782void AsmPrinter::printVisibility(const std::string& Name, 1783 unsigned Visibility) const { 1784 if (Visibility == GlobalValue::HiddenVisibility) { 1785 if (const char *Directive = MAI->getHiddenDirective()) 1786 O << Directive << Name << '\n'; 1787 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1788 if (const char *Directive = MAI->getProtectedDirective()) 1789 O << Directive << Name << '\n'; 1790 } 1791} 1792 1793void AsmPrinter::printOffset(int64_t Offset) const { 1794 if (Offset > 0) 1795 O << '+' << Offset; 1796 else if (Offset < 0) 1797 O << Offset; 1798} 1799 1800GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1801 if (!S->usesMetadata()) 1802 return 0; 1803 1804 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1805 if (GCPI != GCMetadataPrinters.end()) 1806 return GCPI->second; 1807 1808 const char *Name = S->getName().c_str(); 1809 1810 for (GCMetadataPrinterRegistry::iterator 1811 I = GCMetadataPrinterRegistry::begin(), 1812 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1813 if (strcmp(Name, I->getName()) == 0) { 1814 GCMetadataPrinter *GMP = I->instantiate(); 1815 GMP->S = S; 1816 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1817 return GMP; 1818 } 1819 1820 errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1821 llvm_unreachable(0); 1822} 1823 1824/// EmitComments - Pretty-print comments for instructions 1825void AsmPrinter::EmitComments(const MachineInstr &MI) const { 1826 assert(VerboseAsm && !MI.getDebugLoc().isUnknown()); 1827 1828 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); 1829 1830 // Print source line info. 1831 O.PadToColumn(MAI->getCommentColumn()); 1832 O << MAI->getCommentString() << " SrcLine "; 1833 if (DLT.Scope) { 1834 DICompileUnit CU(DLT.Scope); 1835 if (!CU.isNull()) 1836 O << CU.getFilename() << " "; 1837 } 1838 O << DLT.Line; 1839 if (DLT.Col != 0) 1840 O << ":" << DLT.Col; 1841} 1842 1843/// PrintChildLoopComment - Print comments about child loops within 1844/// the loop for this basic block, with nesting. 1845/// 1846static void PrintChildLoopComment(formatted_raw_ostream &O, 1847 const MachineLoop *loop, 1848 const MCAsmInfo *MAI, 1849 int FunctionNumber) { 1850 // Add child loop information 1851 for(MachineLoop::iterator cl = loop->begin(), 1852 clend = loop->end(); 1853 cl != clend; 1854 ++cl) { 1855 MachineBasicBlock *Header = (*cl)->getHeader(); 1856 assert(Header && "No header for loop"); 1857 1858 O << '\n'; 1859 O.PadToColumn(MAI->getCommentColumn()); 1860 1861 O << MAI->getCommentString(); 1862 O.indent(((*cl)->getLoopDepth()-1)*2) 1863 << " Child Loop BB" << FunctionNumber << "_" 1864 << Header->getNumber() << " Depth " << (*cl)->getLoopDepth(); 1865 1866 PrintChildLoopComment(O, *cl, MAI, FunctionNumber); 1867 } 1868} 1869 1870/// EmitComments - Pretty-print comments for basic blocks 1871void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const 1872{ 1873 if (VerboseAsm) { 1874 // Add loop depth information 1875 const MachineLoop *loop = LI->getLoopFor(&MBB); 1876 1877 if (loop) { 1878 // Print a newline after bb# annotation. 1879 O << "\n"; 1880 O.PadToColumn(MAI->getCommentColumn()); 1881 O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth() 1882 << '\n'; 1883 1884 O.PadToColumn(MAI->getCommentColumn()); 1885 1886 MachineBasicBlock *Header = loop->getHeader(); 1887 assert(Header && "No header for loop"); 1888 1889 if (Header == &MBB) { 1890 O << MAI->getCommentString() << " Loop Header"; 1891 PrintChildLoopComment(O, loop, MAI, getFunctionNumber()); 1892 } 1893 else { 1894 O << MAI->getCommentString() << " Loop Header is BB" 1895 << getFunctionNumber() << "_" << loop->getHeader()->getNumber(); 1896 } 1897 1898 if (loop->empty()) { 1899 O << '\n'; 1900 O.PadToColumn(MAI->getCommentColumn()); 1901 O << MAI->getCommentString() << " Inner Loop"; 1902 } 1903 1904 // Add parent loop information 1905 for (const MachineLoop *CurLoop = loop->getParentLoop(); 1906 CurLoop; 1907 CurLoop = CurLoop->getParentLoop()) { 1908 MachineBasicBlock *Header = CurLoop->getHeader(); 1909 assert(Header && "No header for loop"); 1910 1911 O << '\n'; 1912 O.PadToColumn(MAI->getCommentColumn()); 1913 O << MAI->getCommentString(); 1914 O.indent((CurLoop->getLoopDepth()-1)*2) 1915 << " Inside Loop BB" << getFunctionNumber() << "_" 1916 << Header->getNumber() << " Depth " << CurLoop->getLoopDepth(); 1917 } 1918 } 1919 } 1920} 1921