AsmPrinter.cpp revision 4226f4f0f9da548c575e6b7a423429627262529f
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/CodeGen/DwarfWriter.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Mangler.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetAsmInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include "llvm/ADT/StringExtras.h"
36#include <cerrno>
37using namespace llvm;
38
39static cl::opt<cl::boolOrDefault>
40AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
41           cl::init(cl::BOU_UNSET));
42
43char AsmPrinter::ID = 0;
44AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
45                       const TargetAsmInfo *T, bool F, bool VDef)
46  : MachineFunctionPass(&ID), FunctionNumber(0), Fast(F), O(o),
47    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
48    IsInTextSection(false)
49{
50  switch (AsmVerbose) {
51  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
52  case cl::BOU_TRUE:  VerboseAsm = true;  break;
53  case cl::BOU_FALSE: VerboseAsm = false; break;
54  }
55}
56
57AsmPrinter::~AsmPrinter() {
58  for (gcp_iterator I = GCMetadataPrinters.begin(),
59                    E = GCMetadataPrinters.end(); I != E; ++I)
60    delete I->second;
61}
62
63/// SwitchToTextSection - Switch to the specified text section of the executable
64/// if we are not already in it!
65///
66void AsmPrinter::SwitchToTextSection(const char *NewSection,
67                                     const GlobalValue *GV) {
68  std::string NS;
69  if (GV && GV->hasSection())
70    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
71  else
72    NS = NewSection;
73
74  // If we're already in this section, we're done.
75  if (CurrentSection == NS) return;
76
77  // Close the current section, if applicable.
78  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
79    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
80
81  CurrentSection = NS;
82
83  if (!CurrentSection.empty())
84    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
85
86  IsInTextSection = true;
87}
88
89/// SwitchToDataSection - Switch to the specified data section of the executable
90/// if we are not already in it!
91///
92void AsmPrinter::SwitchToDataSection(const char *NewSection,
93                                     const GlobalValue *GV) {
94  std::string NS;
95  if (GV && GV->hasSection())
96    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
97  else
98    NS = NewSection;
99
100  // If we're already in this section, we're done.
101  if (CurrentSection == NS) return;
102
103  // Close the current section, if applicable.
104  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
105    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
106
107  CurrentSection = NS;
108
109  if (!CurrentSection.empty())
110    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
111
112  IsInTextSection = false;
113}
114
115/// SwitchToSection - Switch to the specified section of the executable if we
116/// are not already in it!
117void AsmPrinter::SwitchToSection(const Section* NS) {
118  const std::string& NewSection = NS->getName();
119
120  // If we're already in this section, we're done.
121  if (CurrentSection == NewSection) return;
122
123  // Close the current section, if applicable.
124  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
125    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
126
127  // FIXME: Make CurrentSection a Section* in the future
128  CurrentSection = NewSection;
129  CurrentSection_ = NS;
130
131  if (!CurrentSection.empty()) {
132    // If section is named we need to switch into it via special '.section'
133    // directive and also append funky flags. Otherwise - section name is just
134    // some magic assembler directive.
135    if (NS->isNamed())
136      O << TAI->getSwitchToSectionDirective()
137        << CurrentSection
138        << TAI->getSectionFlags(NS->getFlags());
139    else
140      O << CurrentSection;
141    O << TAI->getDataSectionStartSuffix() << '\n';
142  }
143
144  IsInTextSection = (NS->getFlags() & SectionFlags::Code);
145}
146
147void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
148  MachineFunctionPass::getAnalysisUsage(AU);
149  AU.addRequired<GCModuleInfo>();
150}
151
152bool AsmPrinter::doInitialization(Module &M) {
153  Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix());
154
155  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
156  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
157
158  if (TAI->hasSingleParameterDotFile()) {
159    /* Very minimal debug info. It is ignored if we emit actual
160       debug info. If we don't, this at helps the user find where
161       a function came from. */
162    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
163  }
164
165  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
166    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
167      MP->beginAssembly(O, *this, *TAI);
168
169  if (!M.getModuleInlineAsm().empty())
170    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
171      << M.getModuleInlineAsm()
172      << '\n' << TAI->getCommentString()
173      << " End of file scope inline assembly\n";
174
175  SwitchToDataSection("");   // Reset back to no section.
176
177  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
178  if (MMI) MMI->AnalyzeModule(M);
179  DW = getAnalysisIfAvailable<DwarfWriter>();
180  return false;
181}
182
183bool AsmPrinter::doFinalization(Module &M) {
184  if (TAI->getWeakRefDirective()) {
185    if (!ExtWeakSymbols.empty())
186      SwitchToDataSection("");
187
188    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
189         e = ExtWeakSymbols.end(); i != e; ++i) {
190      const GlobalValue *GV = *i;
191      std::string Name = Mang->getValueName(GV);
192      O << TAI->getWeakRefDirective() << Name << '\n';
193    }
194  }
195
196  if (TAI->getSetDirective()) {
197    if (!M.alias_empty())
198      SwitchToSection(TAI->getTextSection());
199
200    O << '\n';
201    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
202         I!=E; ++I) {
203      std::string Name = Mang->getValueName(I);
204      std::string Target;
205
206      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
207      Target = Mang->getValueName(GV);
208
209      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
210        O << "\t.globl\t" << Name << '\n';
211      else if (I->hasWeakLinkage())
212        O << TAI->getWeakRefDirective() << Name << '\n';
213      else if (!I->hasLocalLinkage())
214        assert(0 && "Invalid alias linkage");
215
216      printVisibility(Name, I->getVisibility());
217
218      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
219    }
220  }
221
222  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
223  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
224  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
225    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
226      MP->finishAssembly(O, *this, *TAI);
227
228  // If we don't have any trampolines, then we don't require stack memory
229  // to be executable. Some targets have a directive to declare this.
230  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
231  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
232    if (TAI->getNonexecutableStackDirective())
233      O << TAI->getNonexecutableStackDirective() << '\n';
234
235  delete Mang; Mang = 0;
236  return false;
237}
238
239std::string
240AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const {
241  assert(MF && "No machine function?");
242  std::string Name = MF->getFunction()->getName();
243  if (Name.empty())
244    Name = Mang->getValueName(MF->getFunction());
245  return Mang->makeNameProper(TAI->getEHGlobalPrefix() +
246                              Name + ".eh", TAI->getGlobalPrefix());
247}
248
249void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
250  // What's my mangled name?
251  CurrentFnName = Mang->getValueName(MF.getFunction());
252  IncrementFunctionNumber();
253}
254
255namespace {
256  // SectionCPs - Keep track the alignment, constpool entries per Section.
257  struct SectionCPs {
258    const Section *S;
259    unsigned Alignment;
260    SmallVector<unsigned, 4> CPEs;
261    SectionCPs(const Section *s, unsigned a) : S(s), Alignment(a) {};
262  };
263}
264
265/// EmitConstantPool - Print to the current output stream assembly
266/// representations of the constants in the constant pool MCP. This is
267/// used to print out constants which have been "spilled to memory" by
268/// the code generator.
269///
270void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
271  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
272  if (CP.empty()) return;
273
274  // Calculate sections for constant pool entries. We collect entries to go into
275  // the same section together to reduce amount of section switch statements.
276  SmallVector<SectionCPs, 4> CPSections;
277  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
278    MachineConstantPoolEntry CPE = CP[i];
279    unsigned Align = CPE.getAlignment();
280    const Section* S = TAI->SelectSectionForMachineConst(CPE.getType());
281    // The number of sections are small, just do a linear search from the
282    // last section to the first.
283    bool Found = false;
284    unsigned SecIdx = CPSections.size();
285    while (SecIdx != 0) {
286      if (CPSections[--SecIdx].S == S) {
287        Found = true;
288        break;
289      }
290    }
291    if (!Found) {
292      SecIdx = CPSections.size();
293      CPSections.push_back(SectionCPs(S, Align));
294    }
295
296    if (Align > CPSections[SecIdx].Alignment)
297      CPSections[SecIdx].Alignment = Align;
298    CPSections[SecIdx].CPEs.push_back(i);
299  }
300
301  // Now print stuff into the calculated sections.
302  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
303    SwitchToSection(CPSections[i].S);
304    EmitAlignment(Log2_32(CPSections[i].Alignment));
305
306    unsigned Offset = 0;
307    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
308      unsigned CPI = CPSections[i].CPEs[j];
309      MachineConstantPoolEntry CPE = CP[CPI];
310
311      // Emit inter-object padding for alignment.
312      unsigned AlignMask = CPE.getAlignment() - 1;
313      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
314      EmitZeros(NewOffset - Offset);
315
316      const Type *Ty = CPE.getType();
317      Offset = NewOffset + TM.getTargetData()->getTypePaddedSize(Ty);
318
319      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
320        << CPI << ":\t\t\t\t\t";
321      if (VerboseAsm) {
322        O << TAI->getCommentString() << ' ';
323        WriteTypeSymbolic(O, CPE.getType(), 0);
324      }
325      O << '\n';
326      if (CPE.isMachineConstantPoolEntry())
327        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
328      else
329        EmitGlobalConstant(CPE.Val.ConstVal);
330    }
331  }
332}
333
334/// EmitJumpTableInfo - Print assembly representations of the jump tables used
335/// by the current function to the current output stream.
336///
337void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
338                                   MachineFunction &MF) {
339  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
340  if (JT.empty()) return;
341
342  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
343
344  // Pick the directive to use to print the jump table entries, and switch to
345  // the appropriate section.
346  TargetLowering *LoweringInfo = TM.getTargetLowering();
347
348  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
349  const Function *F = MF.getFunction();
350  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
351  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
352     !JumpTableDataSection ||
353      SectionFlags & SectionFlags::Linkonce) {
354    // In PIC mode, we need to emit the jump table to the same section as the
355    // function body itself, otherwise the label differences won't make sense.
356    // We should also do if the section name is NULL or function is declared in
357    // discardable section.
358    SwitchToSection(TAI->SectionForGlobal(F));
359  } else {
360    SwitchToDataSection(JumpTableDataSection);
361  }
362
363  EmitAlignment(Log2_32(MJTI->getAlignment()));
364
365  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
366    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
367
368    // If this jump table was deleted, ignore it.
369    if (JTBBs.empty()) continue;
370
371    // For PIC codegen, if possible we want to use the SetDirective to reduce
372    // the number of relocations the assembler will generate for the jump table.
373    // Set directives are all printed before the jump table itself.
374    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
375    if (TAI->getSetDirective() && IsPic)
376      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
377        if (EmittedSets.insert(JTBBs[ii]))
378          printPICJumpTableSetLabel(i, JTBBs[ii]);
379
380    // On some targets (e.g. darwin) we want to emit two consequtive labels
381    // before each jump table.  The first label is never referenced, but tells
382    // the assembler and linker the extents of the jump table object.  The
383    // second label is actually referenced by the code.
384    if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
385      O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
386
387    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
388      << '_' << i << ":\n";
389
390    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
391      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
392      O << '\n';
393    }
394  }
395}
396
397void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
398                                        const MachineBasicBlock *MBB,
399                                        unsigned uid)  const {
400  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
401
402  // Use JumpTableDirective otherwise honor the entry size from the jump table
403  // info.
404  const char *JTEntryDirective = TAI->getJumpTableDirective();
405  bool HadJTEntryDirective = JTEntryDirective != NULL;
406  if (!HadJTEntryDirective) {
407    JTEntryDirective = MJTI->getEntrySize() == 4 ?
408      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
409  }
410
411  O << JTEntryDirective << ' ';
412
413  // If we have emitted set directives for the jump table entries, print
414  // them rather than the entries themselves.  If we're emitting PIC, then
415  // emit the table entries as differences between two text section labels.
416  // If we're emitting non-PIC code, then emit the entries as direct
417  // references to the target basic blocks.
418  if (IsPic) {
419    if (TAI->getSetDirective()) {
420      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
421        << '_' << uid << "_set_" << MBB->getNumber();
422    } else {
423      printBasicBlockLabel(MBB, false, false, false);
424      // If the arch uses custom Jump Table directives, don't calc relative to
425      // JT
426      if (!HadJTEntryDirective)
427        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
428          << getFunctionNumber() << '_' << uid;
429    }
430  } else {
431    printBasicBlockLabel(MBB, false, false, false);
432  }
433}
434
435
436/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
437/// special global used by LLVM.  If so, emit it and return true, otherwise
438/// do nothing and return false.
439bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
440  if (GV->getName() == "llvm.used") {
441    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
442      EmitLLVMUsedList(GV->getInitializer());
443    return true;
444  }
445
446  // Ignore debug and non-emitted data.
447  if (GV->getSection() == "llvm.metadata") return true;
448
449  if (!GV->hasAppendingLinkage()) return false;
450
451  assert(GV->hasInitializer() && "Not a special LLVM global!");
452
453  const TargetData *TD = TM.getTargetData();
454  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
455  if (GV->getName() == "llvm.global_ctors") {
456    SwitchToDataSection(TAI->getStaticCtorsSection());
457    EmitAlignment(Align, 0);
458    EmitXXStructorList(GV->getInitializer());
459    return true;
460  }
461
462  if (GV->getName() == "llvm.global_dtors") {
463    SwitchToDataSection(TAI->getStaticDtorsSection());
464    EmitAlignment(Align, 0);
465    EmitXXStructorList(GV->getInitializer());
466    return true;
467  }
468
469  return false;
470}
471
472/// findGlobalValue - if CV is an expression equivalent to a single
473/// global value, return that value.
474const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
475  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
476    return GV;
477  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
478    const TargetData *TD = TM.getTargetData();
479    unsigned Opcode = CE->getOpcode();
480    switch (Opcode) {
481    case Instruction::GetElementPtr: {
482      const Constant *ptrVal = CE->getOperand(0);
483      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
484      if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
485        return 0;
486      return findGlobalValue(ptrVal);
487    }
488    case Instruction::BitCast:
489      return findGlobalValue(CE->getOperand(0));
490    default:
491      return 0;
492    }
493  }
494  return 0;
495}
496
497/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
498/// global in the specified llvm.used list for which emitUsedDirectiveFor
499/// is true, as being used with this directive.
500
501void AsmPrinter::EmitLLVMUsedList(Constant *List) {
502  const char *Directive = TAI->getUsedDirective();
503
504  // Should be an array of 'sbyte*'.
505  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
506  if (InitList == 0) return;
507
508  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
509    const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
510    if (TAI->emitUsedDirectiveFor(GV, Mang)) {
511      O << Directive;
512      EmitConstantValueOnly(InitList->getOperand(i));
513      O << '\n';
514    }
515  }
516}
517
518/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
519/// function pointers, ignoring the init priority.
520void AsmPrinter::EmitXXStructorList(Constant *List) {
521  // Should be an array of '{ int, void ()* }' structs.  The first value is the
522  // init priority, which we ignore.
523  if (!isa<ConstantArray>(List)) return;
524  ConstantArray *InitList = cast<ConstantArray>(List);
525  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
526    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
527      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
528
529      if (CS->getOperand(1)->isNullValue())
530        return;  // Found a null terminator, exit printing.
531      // Emit the function pointer.
532      EmitGlobalConstant(CS->getOperand(1));
533    }
534}
535
536/// getGlobalLinkName - Returns the asm/link name of of the specified
537/// global variable.  Should be overridden by each target asm printer to
538/// generate the appropriate value.
539const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
540  std::string LinkName;
541
542  if (isa<Function>(GV)) {
543    LinkName += TAI->getFunctionAddrPrefix();
544    LinkName += Mang->getValueName(GV);
545    LinkName += TAI->getFunctionAddrSuffix();
546  } else {
547    LinkName += TAI->getGlobalVarAddrPrefix();
548    LinkName += Mang->getValueName(GV);
549    LinkName += TAI->getGlobalVarAddrSuffix();
550  }
551
552  return LinkName;
553}
554
555/// EmitExternalGlobal - Emit the external reference to a global variable.
556/// Should be overridden if an indirect reference should be used.
557void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
558  O << getGlobalLinkName(GV);
559}
560
561
562
563//===----------------------------------------------------------------------===//
564/// LEB 128 number encoding.
565
566/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
567/// representing an unsigned leb128 value.
568void AsmPrinter::PrintULEB128(unsigned Value) const {
569  char Buffer[20];
570  do {
571    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
572    Value >>= 7;
573    if (Value) Byte |= 0x80;
574    O << "0x" << utohex_buffer(Byte, Buffer+20);
575    if (Value) O << ", ";
576  } while (Value);
577}
578
579/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
580/// representing a signed leb128 value.
581void AsmPrinter::PrintSLEB128(int Value) const {
582  int Sign = Value >> (8 * sizeof(Value) - 1);
583  bool IsMore;
584  char Buffer[20];
585
586  do {
587    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
588    Value >>= 7;
589    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
590    if (IsMore) Byte |= 0x80;
591    O << "0x" << utohex_buffer(Byte, Buffer+20);
592    if (IsMore) O << ", ";
593  } while (IsMore);
594}
595
596//===--------------------------------------------------------------------===//
597// Emission and print routines
598//
599
600/// PrintHex - Print a value as a hexidecimal value.
601///
602void AsmPrinter::PrintHex(int Value) const {
603  char Buffer[20];
604  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
605}
606
607/// EOL - Print a newline character to asm stream.  If a comment is present
608/// then it will be printed first.  Comments should not contain '\n'.
609void AsmPrinter::EOL() const {
610  O << '\n';
611}
612
613void AsmPrinter::EOL(const std::string &Comment) const {
614  if (VerboseAsm && !Comment.empty()) {
615    O << '\t'
616      << TAI->getCommentString()
617      << ' '
618      << Comment;
619  }
620  O << '\n';
621}
622
623void AsmPrinter::EOL(const char* Comment) const {
624  if (VerboseAsm && *Comment) {
625    O << '\t'
626      << TAI->getCommentString()
627      << ' '
628      << Comment;
629  }
630  O << '\n';
631}
632
633/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
634/// unsigned leb128 value.
635void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
636  if (TAI->hasLEB128()) {
637    O << "\t.uleb128\t"
638      << Value;
639  } else {
640    O << TAI->getData8bitsDirective();
641    PrintULEB128(Value);
642  }
643}
644
645/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
646/// signed leb128 value.
647void AsmPrinter::EmitSLEB128Bytes(int Value) const {
648  if (TAI->hasLEB128()) {
649    O << "\t.sleb128\t"
650      << Value;
651  } else {
652    O << TAI->getData8bitsDirective();
653    PrintSLEB128(Value);
654  }
655}
656
657/// EmitInt8 - Emit a byte directive and value.
658///
659void AsmPrinter::EmitInt8(int Value) const {
660  O << TAI->getData8bitsDirective();
661  PrintHex(Value & 0xFF);
662}
663
664/// EmitInt16 - Emit a short directive and value.
665///
666void AsmPrinter::EmitInt16(int Value) const {
667  O << TAI->getData16bitsDirective();
668  PrintHex(Value & 0xFFFF);
669}
670
671/// EmitInt32 - Emit a long directive and value.
672///
673void AsmPrinter::EmitInt32(int Value) const {
674  O << TAI->getData32bitsDirective();
675  PrintHex(Value);
676}
677
678/// EmitInt64 - Emit a long long directive and value.
679///
680void AsmPrinter::EmitInt64(uint64_t Value) const {
681  if (TAI->getData64bitsDirective()) {
682    O << TAI->getData64bitsDirective();
683    PrintHex(Value);
684  } else {
685    if (TM.getTargetData()->isBigEndian()) {
686      EmitInt32(unsigned(Value >> 32)); O << '\n';
687      EmitInt32(unsigned(Value));
688    } else {
689      EmitInt32(unsigned(Value)); O << '\n';
690      EmitInt32(unsigned(Value >> 32));
691    }
692  }
693}
694
695/// toOctal - Convert the low order bits of X into an octal digit.
696///
697static inline char toOctal(int X) {
698  return (X&7)+'0';
699}
700
701/// printStringChar - Print a char, escaped if necessary.
702///
703static void printStringChar(raw_ostream &O, unsigned char C) {
704  if (C == '"') {
705    O << "\\\"";
706  } else if (C == '\\') {
707    O << "\\\\";
708  } else if (isprint((unsigned char)C)) {
709    O << C;
710  } else {
711    switch(C) {
712    case '\b': O << "\\b"; break;
713    case '\f': O << "\\f"; break;
714    case '\n': O << "\\n"; break;
715    case '\r': O << "\\r"; break;
716    case '\t': O << "\\t"; break;
717    default:
718      O << '\\';
719      O << toOctal(C >> 6);
720      O << toOctal(C >> 3);
721      O << toOctal(C >> 0);
722      break;
723    }
724  }
725}
726
727/// EmitString - Emit a string with quotes and a null terminator.
728/// Special characters are emitted properly.
729/// \literal (Eg. '\t') \endliteral
730void AsmPrinter::EmitString(const std::string &String) const {
731  EmitString(String.c_str(), String.size());
732}
733
734void AsmPrinter::EmitString(const char *String, unsigned Size) const {
735  const char* AscizDirective = TAI->getAscizDirective();
736  if (AscizDirective)
737    O << AscizDirective;
738  else
739    O << TAI->getAsciiDirective();
740  O << '\"';
741  for (unsigned i = 0; i < Size; ++i)
742    printStringChar(O, String[i]);
743  if (AscizDirective)
744    O << '\"';
745  else
746    O << "\\0\"";
747}
748
749
750/// EmitFile - Emit a .file directive.
751void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
752  O << "\t.file\t" << Number << " \"";
753  for (unsigned i = 0, N = Name.size(); i < N; ++i)
754    printStringChar(O, Name[i]);
755  O << '\"';
756}
757
758
759//===----------------------------------------------------------------------===//
760
761// EmitAlignment - Emit an alignment directive to the specified power of
762// two boundary.  For example, if you pass in 3 here, you will get an 8
763// byte alignment.  If a global value is specified, and if that global has
764// an explicit alignment requested, it will unconditionally override the
765// alignment request.  However, if ForcedAlignBits is specified, this value
766// has final say: the ultimate alignment will be the max of ForcedAlignBits
767// and the alignment computed with NumBits and the global.
768//
769// The algorithm is:
770//     Align = NumBits;
771//     if (GV && GV->hasalignment) Align = GV->getalignment();
772//     Align = std::max(Align, ForcedAlignBits);
773//
774void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
775                               unsigned ForcedAlignBits,
776                               bool UseFillExpr) const {
777  if (GV && GV->getAlignment())
778    NumBits = Log2_32(GV->getAlignment());
779  NumBits = std::max(NumBits, ForcedAlignBits);
780
781  if (NumBits == 0) return;   // No need to emit alignment.
782  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
783  O << TAI->getAlignDirective() << NumBits;
784
785  unsigned FillValue = TAI->getTextAlignFillValue();
786  UseFillExpr &= IsInTextSection && FillValue;
787  if (UseFillExpr) {
788    O << ',';
789    PrintHex(FillValue);
790  }
791  O << '\n';
792}
793
794
795/// EmitZeros - Emit a block of zeros.
796///
797void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
798  if (NumZeros) {
799    if (TAI->getZeroDirective()) {
800      O << TAI->getZeroDirective() << NumZeros;
801      if (TAI->getZeroDirectiveSuffix())
802        O << TAI->getZeroDirectiveSuffix();
803      O << '\n';
804    } else {
805      for (; NumZeros; --NumZeros)
806        O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
807    }
808  }
809}
810
811// Print out the specified constant, without a storage class.  Only the
812// constants valid in constant expressions can occur here.
813void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
814  if (CV->isNullValue() || isa<UndefValue>(CV))
815    O << '0';
816  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
817    O << CI->getZExtValue();
818  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
819    // This is a constant address for a global variable or function. Use the
820    // name of the variable or function as the address value, possibly
821    // decorating it with GlobalVarAddrPrefix/Suffix or
822    // FunctionAddrPrefix/Suffix (these all default to "" )
823    if (isa<Function>(GV)) {
824      O << TAI->getFunctionAddrPrefix()
825        << Mang->getValueName(GV)
826        << TAI->getFunctionAddrSuffix();
827    } else {
828      O << TAI->getGlobalVarAddrPrefix()
829        << Mang->getValueName(GV)
830        << TAI->getGlobalVarAddrSuffix();
831    }
832  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
833    const TargetData *TD = TM.getTargetData();
834    unsigned Opcode = CE->getOpcode();
835    switch (Opcode) {
836    case Instruction::GetElementPtr: {
837      // generate a symbolic expression for the byte address
838      const Constant *ptrVal = CE->getOperand(0);
839      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
840      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
841                                                idxVec.size())) {
842        // Truncate/sext the offset to the pointer size.
843        if (TD->getPointerSizeInBits() != 64) {
844          int SExtAmount = 64-TD->getPointerSizeInBits();
845          Offset = (Offset << SExtAmount) >> SExtAmount;
846        }
847
848        if (Offset)
849          O << '(';
850        EmitConstantValueOnly(ptrVal);
851        if (Offset > 0)
852          O << ") + " << Offset;
853        else if (Offset < 0)
854          O << ") - " << -Offset;
855      } else {
856        EmitConstantValueOnly(ptrVal);
857      }
858      break;
859    }
860    case Instruction::Trunc:
861    case Instruction::ZExt:
862    case Instruction::SExt:
863    case Instruction::FPTrunc:
864    case Instruction::FPExt:
865    case Instruction::UIToFP:
866    case Instruction::SIToFP:
867    case Instruction::FPToUI:
868    case Instruction::FPToSI:
869      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
870      break;
871    case Instruction::BitCast:
872      return EmitConstantValueOnly(CE->getOperand(0));
873
874    case Instruction::IntToPtr: {
875      // Handle casts to pointers by changing them into casts to the appropriate
876      // integer type.  This promotes constant folding and simplifies this code.
877      Constant *Op = CE->getOperand(0);
878      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
879      return EmitConstantValueOnly(Op);
880    }
881
882
883    case Instruction::PtrToInt: {
884      // Support only foldable casts to/from pointers that can be eliminated by
885      // changing the pointer to the appropriately sized integer type.
886      Constant *Op = CE->getOperand(0);
887      const Type *Ty = CE->getType();
888
889      // We can emit the pointer value into this slot if the slot is an
890      // integer slot greater or equal to the size of the pointer.
891      if (TD->getTypePaddedSize(Ty) >= TD->getTypePaddedSize(Op->getType()))
892        return EmitConstantValueOnly(Op);
893
894      O << "((";
895      EmitConstantValueOnly(Op);
896      APInt ptrMask = APInt::getAllOnesValue(TD->getTypePaddedSizeInBits(Ty));
897
898      SmallString<40> S;
899      ptrMask.toStringUnsigned(S);
900      O << ") & " << S.c_str() << ')';
901      break;
902    }
903    case Instruction::Add:
904    case Instruction::Sub:
905    case Instruction::And:
906    case Instruction::Or:
907    case Instruction::Xor:
908      O << '(';
909      EmitConstantValueOnly(CE->getOperand(0));
910      O << ')';
911      switch (Opcode) {
912      case Instruction::Add:
913       O << " + ";
914       break;
915      case Instruction::Sub:
916       O << " - ";
917       break;
918      case Instruction::And:
919       O << " & ";
920       break;
921      case Instruction::Or:
922       O << " | ";
923       break;
924      case Instruction::Xor:
925       O << " ^ ";
926       break;
927      default:
928       break;
929      }
930      O << '(';
931      EmitConstantValueOnly(CE->getOperand(1));
932      O << ')';
933      break;
934    default:
935      assert(0 && "Unsupported operator!");
936    }
937  } else {
938    assert(0 && "Unknown constant value!");
939  }
940}
941
942/// printAsCString - Print the specified array as a C compatible string, only if
943/// the predicate isString is true.
944///
945static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
946                           unsigned LastElt) {
947  assert(CVA->isString() && "Array is not string compatible!");
948
949  O << '\"';
950  for (unsigned i = 0; i != LastElt; ++i) {
951    unsigned char C =
952        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
953    printStringChar(O, C);
954  }
955  O << '\"';
956}
957
958/// EmitString - Emit a zero-byte-terminated string constant.
959///
960void AsmPrinter::EmitString(const ConstantArray *CVA) const {
961  unsigned NumElts = CVA->getNumOperands();
962  if (TAI->getAscizDirective() && NumElts &&
963      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
964    O << TAI->getAscizDirective();
965    printAsCString(O, CVA, NumElts-1);
966  } else {
967    O << TAI->getAsciiDirective();
968    printAsCString(O, CVA, NumElts);
969  }
970  O << '\n';
971}
972
973void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA) {
974  if (CVA->isString()) {
975    EmitString(CVA);
976  } else { // Not a string.  Print the values in successive locations
977    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
978      EmitGlobalConstant(CVA->getOperand(i));
979  }
980}
981
982void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
983  const VectorType *PTy = CP->getType();
984
985  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
986    EmitGlobalConstant(CP->getOperand(I));
987}
988
989void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
990                                          unsigned AddrSpace) {
991  // Print the fields in successive locations. Pad to align if needed!
992  const TargetData *TD = TM.getTargetData();
993  unsigned Size = TD->getTypePaddedSize(CVS->getType());
994  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
995  uint64_t sizeSoFar = 0;
996  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
997    const Constant* field = CVS->getOperand(i);
998
999    // Check if padding is needed and insert one or more 0s.
1000    uint64_t fieldSize = TD->getTypePaddedSize(field->getType());
1001    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1002                        - cvsLayout->getElementOffset(i)) - fieldSize;
1003    sizeSoFar += fieldSize + padSize;
1004
1005    // Now print the actual field value.
1006    EmitGlobalConstant(field, AddrSpace);
1007
1008    // Insert padding - this may include padding to increase the size of the
1009    // current field up to the ABI size (if the struct is not packed) as well
1010    // as padding to ensure that the next field starts at the right offset.
1011    EmitZeros(padSize, AddrSpace);
1012  }
1013  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1014         "Layout of constant struct may be incorrect!");
1015}
1016
1017void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1018                                      unsigned AddrSpace) {
1019  // FP Constants are printed as integer constants to avoid losing
1020  // precision...
1021  const TargetData *TD = TM.getTargetData();
1022  if (CFP->getType() == Type::DoubleTy) {
1023    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1024    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1025    if (TAI->getData64bitsDirective(AddrSpace)) {
1026      O << TAI->getData64bitsDirective(AddrSpace) << i;
1027      if (VerboseAsm)
1028        O << '\t' << TAI->getCommentString() << " double value: " << Val;
1029      O << '\n';
1030    } else if (TD->isBigEndian()) {
1031      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1032      if (VerboseAsm)
1033        O << '\t' << TAI->getCommentString()
1034          << " double most significant word " << Val;
1035      O << '\n';
1036      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1037      if (VerboseAsm)
1038        O << '\t' << TAI->getCommentString()
1039          << " double least significant word " << Val;
1040      O << '\n';
1041    } else {
1042      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1043      if (VerboseAsm)
1044        O << '\t' << TAI->getCommentString()
1045          << " double least significant word " << Val;
1046      O << '\n';
1047      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1048      if (VerboseAsm)
1049        O << '\t' << TAI->getCommentString()
1050          << " double most significant word " << Val;
1051      O << '\n';
1052    }
1053    return;
1054  } else if (CFP->getType() == Type::FloatTy) {
1055    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1056    O << TAI->getData32bitsDirective(AddrSpace)
1057      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1058    if (VerboseAsm)
1059      O << '\t' << TAI->getCommentString() << " float " << Val;
1060    O << '\n';
1061    return;
1062  } else if (CFP->getType() == Type::X86_FP80Ty) {
1063    // all long double variants are printed as hex
1064    // api needed to prevent premature destruction
1065    APInt api = CFP->getValueAPF().bitcastToAPInt();
1066    const uint64_t *p = api.getRawData();
1067    // Convert to double so we can print the approximate val as a comment.
1068    APFloat DoubleVal = CFP->getValueAPF();
1069    bool ignored;
1070    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1071                      &ignored);
1072    if (TD->isBigEndian()) {
1073      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1074      if (VerboseAsm)
1075        O << '\t' << TAI->getCommentString()
1076          << " long double most significant halfword of ~"
1077          << DoubleVal.convertToDouble();
1078      O << '\n';
1079      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1080      if (VerboseAsm)
1081        O << '\t' << TAI->getCommentString() << " long double next halfword";
1082      O << '\n';
1083      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1084      if (VerboseAsm)
1085        O << '\t' << TAI->getCommentString() << " long double next halfword";
1086      O << '\n';
1087      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1088      if (VerboseAsm)
1089        O << '\t' << TAI->getCommentString() << " long double next halfword";
1090      O << '\n';
1091      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1092      if (VerboseAsm)
1093        O << '\t' << TAI->getCommentString()
1094          << " long double least significant halfword";
1095      O << '\n';
1096     } else {
1097      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1098      if (VerboseAsm)
1099        O << '\t' << TAI->getCommentString()
1100          << " long double least significant halfword of ~"
1101          << DoubleVal.convertToDouble();
1102      O << '\n';
1103      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1104      if (VerboseAsm)
1105        O << '\t' << TAI->getCommentString()
1106          << " long double next halfword";
1107      O << '\n';
1108      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1109      if (VerboseAsm)
1110        O << '\t' << TAI->getCommentString()
1111          << " long double next halfword";
1112      O << '\n';
1113      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1114      if (VerboseAsm)
1115        O << '\t' << TAI->getCommentString()
1116          << " long double next halfword";
1117      O << '\n';
1118      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1119      if (VerboseAsm)
1120        O << '\t' << TAI->getCommentString()
1121          << " long double most significant halfword";
1122      O << '\n';
1123    }
1124    EmitZeros(TD->getTypePaddedSize(Type::X86_FP80Ty) -
1125              TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
1126    return;
1127  } else if (CFP->getType() == Type::PPC_FP128Ty) {
1128    // all long double variants are printed as hex
1129    // api needed to prevent premature destruction
1130    APInt api = CFP->getValueAPF().bitcastToAPInt();
1131    const uint64_t *p = api.getRawData();
1132    if (TD->isBigEndian()) {
1133      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1134      if (VerboseAsm)
1135        O << '\t' << TAI->getCommentString()
1136          << " long double most significant word";
1137      O << '\n';
1138      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1139      if (VerboseAsm)
1140        O << '\t' << TAI->getCommentString()
1141        << " long double next word";
1142      O << '\n';
1143      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1144      if (VerboseAsm)
1145        O << '\t' << TAI->getCommentString()
1146          << " long double next word";
1147      O << '\n';
1148      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1149      if (VerboseAsm)
1150        O << '\t' << TAI->getCommentString()
1151          << " long double least significant word";
1152      O << '\n';
1153     } else {
1154      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1155      if (VerboseAsm)
1156        O << '\t' << TAI->getCommentString()
1157          << " long double least significant word";
1158      O << '\n';
1159      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1160      if (VerboseAsm)
1161        O << '\t' << TAI->getCommentString()
1162          << " long double next word";
1163      O << '\n';
1164      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1165      if (VerboseAsm)
1166        O << '\t' << TAI->getCommentString()
1167          << " long double next word";
1168      O << '\n';
1169      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1170      if (VerboseAsm)
1171        O << '\t' << TAI->getCommentString()
1172          << " long double most significant word";
1173      O << '\n';
1174    }
1175    return;
1176  } else assert(0 && "Floating point constant type not handled");
1177}
1178
1179void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1180                                            unsigned AddrSpace) {
1181  const TargetData *TD = TM.getTargetData();
1182  unsigned BitWidth = CI->getBitWidth();
1183  assert(isPowerOf2_32(BitWidth) &&
1184         "Non-power-of-2-sized integers not handled!");
1185
1186  // We don't expect assemblers to support integer data directives
1187  // for more than 64 bits, so we emit the data in at most 64-bit
1188  // quantities at a time.
1189  const uint64_t *RawData = CI->getValue().getRawData();
1190  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1191    uint64_t Val;
1192    if (TD->isBigEndian())
1193      Val = RawData[e - i - 1];
1194    else
1195      Val = RawData[i];
1196
1197    if (TAI->getData64bitsDirective(AddrSpace))
1198      O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1199    else if (TD->isBigEndian()) {
1200      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1201      if (VerboseAsm)
1202        O << '\t' << TAI->getCommentString()
1203          << " Double-word most significant word " << Val;
1204      O << '\n';
1205      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1206      if (VerboseAsm)
1207        O << '\t' << TAI->getCommentString()
1208          << " Double-word least significant word " << Val;
1209      O << '\n';
1210    } else {
1211      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1212      if (VerboseAsm)
1213        O << '\t' << TAI->getCommentString()
1214          << " Double-word least significant word " << Val;
1215      O << '\n';
1216      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1217      if (VerboseAsm)
1218        O << '\t' << TAI->getCommentString()
1219          << " Double-word most significant word " << Val;
1220      O << '\n';
1221    }
1222  }
1223}
1224
1225/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1226void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1227  const TargetData *TD = TM.getTargetData();
1228  const Type *type = CV->getType();
1229  unsigned Size = TD->getTypePaddedSize(type);
1230
1231  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1232    EmitZeros(Size, AddrSpace);
1233    return;
1234  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1235    EmitGlobalConstantArray(CVA);
1236    return;
1237  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1238    EmitGlobalConstantStruct(CVS, AddrSpace);
1239    return;
1240  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1241    EmitGlobalConstantFP(CFP, AddrSpace);
1242    return;
1243  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1244    // Small integers are handled below; large integers are handled here.
1245    if (Size > 4) {
1246      EmitGlobalConstantLargeInt(CI, AddrSpace);
1247      return;
1248    }
1249  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1250    EmitGlobalConstantVector(CP);
1251    return;
1252  }
1253
1254  printDataDirective(type, AddrSpace);
1255  EmitConstantValueOnly(CV);
1256  if (VerboseAsm) {
1257    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1258      SmallString<40> S;
1259      CI->getValue().toStringUnsigned(S, 16);
1260      O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1261    }
1262  }
1263  O << '\n';
1264}
1265
1266void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1267  // Target doesn't support this yet!
1268  abort();
1269}
1270
1271/// PrintSpecial - Print information related to the specified machine instr
1272/// that is independent of the operand, and may be independent of the instr
1273/// itself.  This can be useful for portably encoding the comment character
1274/// or other bits of target-specific knowledge into the asmstrings.  The
1275/// syntax used is ${:comment}.  Targets can override this to add support
1276/// for their own strange codes.
1277void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1278  if (!strcmp(Code, "private")) {
1279    O << TAI->getPrivateGlobalPrefix();
1280  } else if (!strcmp(Code, "comment")) {
1281    if (VerboseAsm)
1282      O << TAI->getCommentString();
1283  } else if (!strcmp(Code, "uid")) {
1284    // Assign a unique ID to this machine instruction.
1285    static const MachineInstr *LastMI = 0;
1286    static const Function *F = 0;
1287    static unsigned Counter = 0U-1;
1288
1289    // Comparing the address of MI isn't sufficient, because machineinstrs may
1290    // be allocated to the same address across functions.
1291    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1292
1293    // If this is a new machine instruction, bump the counter.
1294    if (LastMI != MI || F != ThisF) {
1295      ++Counter;
1296      LastMI = MI;
1297      F = ThisF;
1298    }
1299    O << Counter;
1300  } else {
1301    cerr << "Unknown special formatter '" << Code
1302         << "' for machine instr: " << *MI;
1303    exit(1);
1304  }
1305}
1306
1307
1308/// printInlineAsm - This method formats and prints the specified machine
1309/// instruction that is an inline asm.
1310void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1311  unsigned NumOperands = MI->getNumOperands();
1312
1313  // Count the number of register definitions.
1314  unsigned NumDefs = 0;
1315  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1316       ++NumDefs)
1317    assert(NumDefs != NumOperands-1 && "No asm string?");
1318
1319  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1320
1321  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1322  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1323
1324  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1325  // These are useful to see where empty asm's wound up.
1326  if (AsmStr[0] == 0) {
1327    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1328    return;
1329  }
1330
1331  O << TAI->getInlineAsmStart() << "\n\t";
1332
1333  // The variant of the current asmprinter.
1334  int AsmPrinterVariant = TAI->getAssemblerDialect();
1335
1336  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1337  const char *LastEmitted = AsmStr; // One past the last character emitted.
1338
1339  while (*LastEmitted) {
1340    switch (*LastEmitted) {
1341    default: {
1342      // Not a special case, emit the string section literally.
1343      const char *LiteralEnd = LastEmitted+1;
1344      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1345             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1346        ++LiteralEnd;
1347      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1348        O.write(LastEmitted, LiteralEnd-LastEmitted);
1349      LastEmitted = LiteralEnd;
1350      break;
1351    }
1352    case '\n':
1353      ++LastEmitted;   // Consume newline character.
1354      O << '\n';       // Indent code with newline.
1355      break;
1356    case '$': {
1357      ++LastEmitted;   // Consume '$' character.
1358      bool Done = true;
1359
1360      // Handle escapes.
1361      switch (*LastEmitted) {
1362      default: Done = false; break;
1363      case '$':     // $$ -> $
1364        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1365          O << '$';
1366        ++LastEmitted;  // Consume second '$' character.
1367        break;
1368      case '(':             // $( -> same as GCC's { character.
1369        ++LastEmitted;      // Consume '(' character.
1370        if (CurVariant != -1) {
1371          cerr << "Nested variants found in inline asm string: '"
1372               << AsmStr << "'\n";
1373          exit(1);
1374        }
1375        CurVariant = 0;     // We're in the first variant now.
1376        break;
1377      case '|':
1378        ++LastEmitted;  // consume '|' character.
1379        if (CurVariant == -1)
1380          O << '|';       // this is gcc's behavior for | outside a variant
1381        else
1382          ++CurVariant;   // We're in the next variant.
1383        break;
1384      case ')':         // $) -> same as GCC's } char.
1385        ++LastEmitted;  // consume ')' character.
1386        if (CurVariant == -1)
1387          O << '}';     // this is gcc's behavior for } outside a variant
1388        else
1389          CurVariant = -1;
1390        break;
1391      }
1392      if (Done) break;
1393
1394      bool HasCurlyBraces = false;
1395      if (*LastEmitted == '{') {     // ${variable}
1396        ++LastEmitted;               // Consume '{' character.
1397        HasCurlyBraces = true;
1398      }
1399
1400      // If we have ${:foo}, then this is not a real operand reference, it is a
1401      // "magic" string reference, just like in .td files.  Arrange to call
1402      // PrintSpecial.
1403      if (HasCurlyBraces && *LastEmitted == ':') {
1404        ++LastEmitted;
1405        const char *StrStart = LastEmitted;
1406        const char *StrEnd = strchr(StrStart, '}');
1407        if (StrEnd == 0) {
1408          cerr << "Unterminated ${:foo} operand in inline asm string: '"
1409               << AsmStr << "'\n";
1410          exit(1);
1411        }
1412
1413        std::string Val(StrStart, StrEnd);
1414        PrintSpecial(MI, Val.c_str());
1415        LastEmitted = StrEnd+1;
1416        break;
1417      }
1418
1419      const char *IDStart = LastEmitted;
1420      char *IDEnd;
1421      errno = 0;
1422      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1423      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1424        cerr << "Bad $ operand number in inline asm string: '"
1425             << AsmStr << "'\n";
1426        exit(1);
1427      }
1428      LastEmitted = IDEnd;
1429
1430      char Modifier[2] = { 0, 0 };
1431
1432      if (HasCurlyBraces) {
1433        // If we have curly braces, check for a modifier character.  This
1434        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1435        if (*LastEmitted == ':') {
1436          ++LastEmitted;    // Consume ':' character.
1437          if (*LastEmitted == 0) {
1438            cerr << "Bad ${:} expression in inline asm string: '"
1439                 << AsmStr << "'\n";
1440            exit(1);
1441          }
1442
1443          Modifier[0] = *LastEmitted;
1444          ++LastEmitted;    // Consume modifier character.
1445        }
1446
1447        if (*LastEmitted != '}') {
1448          cerr << "Bad ${} expression in inline asm string: '"
1449               << AsmStr << "'\n";
1450          exit(1);
1451        }
1452        ++LastEmitted;    // Consume '}' character.
1453      }
1454
1455      if ((unsigned)Val >= NumOperands-1) {
1456        cerr << "Invalid $ operand number in inline asm string: '"
1457             << AsmStr << "'\n";
1458        exit(1);
1459      }
1460
1461      // Okay, we finally have a value number.  Ask the target to print this
1462      // operand!
1463      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1464        unsigned OpNo = 1;
1465
1466        bool Error = false;
1467
1468        // Scan to find the machine operand number for the operand.
1469        for (; Val; --Val) {
1470          if (OpNo >= MI->getNumOperands()) break;
1471          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1472          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1473        }
1474
1475        if (OpNo >= MI->getNumOperands()) {
1476          Error = true;
1477        } else {
1478          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1479          ++OpNo;  // Skip over the ID number.
1480
1481          if (Modifier[0]=='l')  // labels are target independent
1482            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1483                                 false, false, false);
1484          else {
1485            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1486            if ((OpFlags & 7) == 4) {
1487              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1488                                                Modifier[0] ? Modifier : 0);
1489            } else {
1490              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1491                                          Modifier[0] ? Modifier : 0);
1492            }
1493          }
1494        }
1495        if (Error) {
1496          cerr << "Invalid operand found in inline asm: '"
1497               << AsmStr << "'\n";
1498          MI->dump();
1499          exit(1);
1500        }
1501      }
1502      break;
1503    }
1504    }
1505  }
1506  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1507}
1508
1509/// printImplicitDef - This method prints the specified machine instruction
1510/// that is an implicit def.
1511void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1512  if (VerboseAsm)
1513    O << '\t' << TAI->getCommentString() << " implicit-def: "
1514      << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1515}
1516
1517/// printLabel - This method prints a local label used by debug and
1518/// exception handling tables.
1519void AsmPrinter::printLabel(const MachineInstr *MI) const {
1520  printLabel(MI->getOperand(0).getImm());
1521}
1522
1523void AsmPrinter::printLabel(unsigned Id) const {
1524  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1525}
1526
1527/// printDeclare - This method prints a local variable declaration used by
1528/// debug tables.
1529/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1530/// entry into dwarf table.
1531void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1532  unsigned FI = MI->getOperand(0).getIndex();
1533  GlobalValue *GV = MI->getOperand(1).getGlobal();
1534  DW->RecordVariable(cast<GlobalVariable>(GV), FI);
1535}
1536
1537/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1538/// instruction, using the specified assembler variant.  Targets should
1539/// overried this to format as appropriate.
1540bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1541                                 unsigned AsmVariant, const char *ExtraCode) {
1542  // Target doesn't support this yet!
1543  return true;
1544}
1545
1546bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1547                                       unsigned AsmVariant,
1548                                       const char *ExtraCode) {
1549  // Target doesn't support this yet!
1550  return true;
1551}
1552
1553/// printBasicBlockLabel - This method prints the label for the specified
1554/// MachineBasicBlock
1555void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1556                                      bool printAlign,
1557                                      bool printColon,
1558                                      bool printComment) const {
1559  if (printAlign) {
1560    unsigned Align = MBB->getAlignment();
1561    if (Align)
1562      EmitAlignment(Log2_32(Align));
1563  }
1564
1565  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1566    << MBB->getNumber();
1567  if (printColon)
1568    O << ':';
1569  if (printComment && MBB->getBasicBlock())
1570    O << '\t' << TAI->getCommentString() << ' '
1571      << MBB->getBasicBlock()->getNameStart();
1572}
1573
1574/// printPICJumpTableSetLabel - This method prints a set label for the
1575/// specified MachineBasicBlock for a jumptable entry.
1576void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1577                                           const MachineBasicBlock *MBB) const {
1578  if (!TAI->getSetDirective())
1579    return;
1580
1581  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1582    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1583  printBasicBlockLabel(MBB, false, false, false);
1584  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1585    << '_' << uid << '\n';
1586}
1587
1588void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1589                                           const MachineBasicBlock *MBB) const {
1590  if (!TAI->getSetDirective())
1591    return;
1592
1593  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1594    << getFunctionNumber() << '_' << uid << '_' << uid2
1595    << "_set_" << MBB->getNumber() << ',';
1596  printBasicBlockLabel(MBB, false, false, false);
1597  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1598    << '_' << uid << '_' << uid2 << '\n';
1599}
1600
1601/// printDataDirective - This method prints the asm directive for the
1602/// specified type.
1603void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1604  const TargetData *TD = TM.getTargetData();
1605  switch (type->getTypeID()) {
1606  case Type::IntegerTyID: {
1607    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1608    if (BitWidth <= 8)
1609      O << TAI->getData8bitsDirective(AddrSpace);
1610    else if (BitWidth <= 16)
1611      O << TAI->getData16bitsDirective(AddrSpace);
1612    else if (BitWidth <= 32)
1613      O << TAI->getData32bitsDirective(AddrSpace);
1614    else if (BitWidth <= 64) {
1615      assert(TAI->getData64bitsDirective(AddrSpace) &&
1616             "Target cannot handle 64-bit constant exprs!");
1617      O << TAI->getData64bitsDirective(AddrSpace);
1618    } else {
1619      assert(0 && "Target cannot handle given data directive width!");
1620    }
1621    break;
1622  }
1623  case Type::PointerTyID:
1624    if (TD->getPointerSize() == 8) {
1625      assert(TAI->getData64bitsDirective(AddrSpace) &&
1626             "Target cannot handle 64-bit pointer exprs!");
1627      O << TAI->getData64bitsDirective(AddrSpace);
1628    } else if (TD->getPointerSize() == 2) {
1629      O << TAI->getData16bitsDirective(AddrSpace);
1630    } else if (TD->getPointerSize() == 1) {
1631      O << TAI->getData8bitsDirective(AddrSpace);
1632    } else {
1633      O << TAI->getData32bitsDirective(AddrSpace);
1634    }
1635    break;
1636  case Type::FloatTyID: case Type::DoubleTyID:
1637  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1638    assert (0 && "Should have already output floating point constant.");
1639  default:
1640    assert (0 && "Can't handle printing this type of thing");
1641    break;
1642  }
1643}
1644
1645void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1646                                   const char *Prefix) {
1647  if (Name[0]=='\"')
1648    O << '\"';
1649  O << TAI->getPrivateGlobalPrefix();
1650  if (Prefix) O << Prefix;
1651  if (Name[0]=='\"')
1652    O << '\"';
1653  if (Name[0]=='\"')
1654    O << Name[1];
1655  else
1656    O << Name;
1657  O << Suffix;
1658  if (Name[0]=='\"')
1659    O << '\"';
1660}
1661
1662void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1663  printSuffixedName(Name.c_str(), Suffix);
1664}
1665
1666void AsmPrinter::printVisibility(const std::string& Name,
1667                                 unsigned Visibility) const {
1668  if (Visibility == GlobalValue::HiddenVisibility) {
1669    if (const char *Directive = TAI->getHiddenDirective())
1670      O << Directive << Name << '\n';
1671  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1672    if (const char *Directive = TAI->getProtectedDirective())
1673      O << Directive << Name << '\n';
1674  }
1675}
1676
1677void AsmPrinter::printOffset(int64_t Offset) const {
1678  if (Offset > 0)
1679    O << '+' << Offset;
1680  else if (Offset < 0)
1681    O << Offset;
1682}
1683
1684GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1685  if (!S->usesMetadata())
1686    return 0;
1687
1688  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1689  if (GCPI != GCMetadataPrinters.end())
1690    return GCPI->second;
1691
1692  const char *Name = S->getName().c_str();
1693
1694  for (GCMetadataPrinterRegistry::iterator
1695         I = GCMetadataPrinterRegistry::begin(),
1696         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1697    if (strcmp(Name, I->getName()) == 0) {
1698      GCMetadataPrinter *GMP = I->instantiate();
1699      GMP->S = S;
1700      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1701      return GMP;
1702    }
1703
1704  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1705  abort();
1706}
1707