AsmPrinter.cpp revision 47b7e5dae911bc98aa76fa5d2ee506c9304f941a
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#define DEBUG_TYPE "asm-printer" 15#include "llvm/CodeGen/AsmPrinter.h" 16#include "llvm/Assembly/Writer.h" 17#include "llvm/DerivedTypes.h" 18#include "llvm/Constants.h" 19#include "llvm/Module.h" 20#include "llvm/CodeGen/DwarfWriter.h" 21#include "llvm/CodeGen/GCMetadataPrinter.h" 22#include "llvm/CodeGen/MachineConstantPool.h" 23#include "llvm/CodeGen/MachineFrameInfo.h" 24#include "llvm/CodeGen/MachineFunction.h" 25#include "llvm/CodeGen/MachineJumpTableInfo.h" 26#include "llvm/CodeGen/MachineLoopInfo.h" 27#include "llvm/CodeGen/MachineModuleInfo.h" 28#include "llvm/Analysis/ConstantFolding.h" 29#include "llvm/Analysis/DebugInfo.h" 30#include "llvm/MC/MCContext.h" 31#include "llvm/MC/MCExpr.h" 32#include "llvm/MC/MCInst.h" 33#include "llvm/MC/MCSection.h" 34#include "llvm/MC/MCStreamer.h" 35#include "llvm/MC/MCSymbol.h" 36#include "llvm/MC/MCAsmInfo.h" 37#include "llvm/Target/Mangler.h" 38#include "llvm/Target/TargetData.h" 39#include "llvm/Target/TargetInstrInfo.h" 40#include "llvm/Target/TargetLowering.h" 41#include "llvm/Target/TargetLoweringObjectFile.h" 42#include "llvm/Target/TargetOptions.h" 43#include "llvm/Target/TargetRegisterInfo.h" 44#include "llvm/ADT/SmallPtrSet.h" 45#include "llvm/ADT/SmallString.h" 46#include "llvm/ADT/Statistic.h" 47#include "llvm/Support/CommandLine.h" 48#include "llvm/Support/Debug.h" 49#include "llvm/Support/ErrorHandling.h" 50#include "llvm/Support/Format.h" 51#include "llvm/Support/FormattedStream.h" 52#include <cerrno> 53using namespace llvm; 54 55STATISTIC(EmittedInsts, "Number of machine instrs printed"); 56 57char AsmPrinter::ID = 0; 58 59AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm, 60 MCStreamer &Streamer) 61 : MachineFunctionPass(&ID), O(o), 62 TM(tm), MAI(tm.getMCAsmInfo()), TRI(tm.getRegisterInfo()), 63 OutContext(Streamer.getContext()), 64 OutStreamer(Streamer), 65 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { 66 DW = 0; MMI = 0; 67 VerboseAsm = Streamer.isVerboseAsm(); 68} 69 70AsmPrinter::~AsmPrinter() { 71 for (gcp_iterator I = GCMetadataPrinters.begin(), 72 E = GCMetadataPrinters.end(); I != E; ++I) 73 delete I->second; 74 75 delete &OutStreamer; 76} 77 78/// getFunctionNumber - Return a unique ID for the current function. 79/// 80unsigned AsmPrinter::getFunctionNumber() const { 81 return MF->getFunctionNumber(); 82} 83 84TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 85 return TM.getTargetLowering()->getObjFileLowering(); 86} 87 88/// getCurrentSection() - Return the current section we are emitting to. 89const MCSection *AsmPrinter::getCurrentSection() const { 90 return OutStreamer.getCurrentSection(); 91} 92 93 94void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 95 AU.setPreservesAll(); 96 MachineFunctionPass::getAnalysisUsage(AU); 97 AU.addRequired<MachineModuleInfo>(); 98 AU.addRequired<GCModuleInfo>(); 99 if (VerboseAsm) 100 AU.addRequired<MachineLoopInfo>(); 101} 102 103bool AsmPrinter::doInitialization(Module &M) { 104 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 105 MMI->AnalyzeModule(M); 106 107 // Initialize TargetLoweringObjectFile. 108 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 109 .Initialize(OutContext, TM); 110 111 Mang = new Mangler(OutContext, *TM.getTargetData()); 112 113 // Allow the target to emit any magic that it wants at the start of the file. 114 EmitStartOfAsmFile(M); 115 116 // Very minimal debug info. It is ignored if we emit actual debug info. If we 117 // don't, this at least helps the user find where a global came from. 118 if (MAI->hasSingleParameterDotFile()) { 119 // .file "foo.c" 120 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 121 } 122 123 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 124 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 125 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 126 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 127 MP->beginAssembly(O, *this, *MAI); 128 129 if (!M.getModuleInlineAsm().empty()) { 130 OutStreamer.AddComment("Start of file scope inline assembly"); 131 OutStreamer.AddBlankLine(); 132 O << M.getModuleInlineAsm(); 133 134 if (*M.getModuleInlineAsm().rbegin() != '\n') 135 OutStreamer.AddBlankLine(); 136 OutStreamer.AddComment("End of file scope inline assembly"); 137 OutStreamer.AddBlankLine(); 138 } 139 140 DW = getAnalysisIfAvailable<DwarfWriter>(); 141 if (DW) 142 DW->BeginModule(&M, MMI, O, this, MAI); 143 144 return false; 145} 146 147void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const { 148 switch ((GlobalValue::LinkageTypes)Linkage) { 149 case GlobalValue::CommonLinkage: 150 case GlobalValue::LinkOnceAnyLinkage: 151 case GlobalValue::LinkOnceODRLinkage: 152 case GlobalValue::WeakAnyLinkage: 153 case GlobalValue::WeakODRLinkage: 154 case GlobalValue::LinkerPrivateLinkage: 155 if (MAI->getWeakDefDirective() != 0) { 156 // .globl _foo 157 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 158 // .weak_definition _foo 159 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 160 } else if (const char *LinkOnce = MAI->getLinkOnceDirective()) { 161 // .globl _foo 162 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 163 // FIXME: linkonce should be a section attribute, handled by COFF Section 164 // assignment. 165 // http://sourceware.org/binutils/docs-2.20/as/Linkonce.html#Linkonce 166 // .linkonce discard 167 // FIXME: It would be nice to use .linkonce samesize for non-common 168 // globals. 169 O << LinkOnce; 170 } else { 171 // .weak _foo 172 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 173 } 174 break; 175 case GlobalValue::DLLExportLinkage: 176 case GlobalValue::AppendingLinkage: 177 // FIXME: appending linkage variables should go into a section of 178 // their name or something. For now, just emit them as external. 179 case GlobalValue::ExternalLinkage: 180 // If external or appending, declare as a global symbol. 181 // .globl _foo 182 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 183 break; 184 case GlobalValue::PrivateLinkage: 185 case GlobalValue::InternalLinkage: 186 break; 187 default: 188 llvm_unreachable("Unknown linkage type!"); 189 } 190} 191 192 193/// EmitGlobalVariable - Emit the specified global variable to the .s file. 194void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 195 if (!GV->hasInitializer()) // External globals require no code. 196 return; 197 198 // Check to see if this is a special global used by LLVM, if so, emit it. 199 if (EmitSpecialLLVMGlobal(GV)) 200 return; 201 202 MCSymbol *GVSym = Mang->getSymbol(GV); 203 EmitVisibility(GVSym, GV->getVisibility()); 204 205 if (MAI->hasDotTypeDotSizeDirective()) 206 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 207 208 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 209 210 const TargetData *TD = TM.getTargetData(); 211 unsigned Size = TD->getTypeAllocSize(GV->getType()->getElementType()); 212 unsigned AlignLog = TD->getPreferredAlignmentLog(GV); 213 214 // Handle common and BSS local symbols (.lcomm). 215 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 216 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 217 218 if (VerboseAsm) { 219 WriteAsOperand(OutStreamer.GetCommentOS(), GV, 220 /*PrintType=*/false, GV->getParent()); 221 OutStreamer.GetCommentOS() << '\n'; 222 } 223 224 // Handle common symbols. 225 if (GVKind.isCommon()) { 226 // .comm _foo, 42, 4 227 OutStreamer.EmitCommonSymbol(GVSym, Size, 1 << AlignLog); 228 return; 229 } 230 231 // Handle local BSS symbols. 232 if (MAI->hasMachoZeroFillDirective()) { 233 const MCSection *TheSection = 234 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 235 // .zerofill __DATA, __bss, _foo, 400, 5 236 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 237 return; 238 } 239 240 if (MAI->hasLCOMMDirective()) { 241 // .lcomm _foo, 42 242 OutStreamer.EmitLocalCommonSymbol(GVSym, Size); 243 return; 244 } 245 246 // .local _foo 247 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 248 // .comm _foo, 42, 4 249 OutStreamer.EmitCommonSymbol(GVSym, Size, 1 << AlignLog); 250 return; 251 } 252 253 const MCSection *TheSection = 254 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 255 256 // Handle the zerofill directive on darwin, which is a special form of BSS 257 // emission. 258 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 259 // .globl _foo 260 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 261 // .zerofill __DATA, __common, _foo, 400, 5 262 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 263 return; 264 } 265 266 OutStreamer.SwitchSection(TheSection); 267 268 EmitLinkage(GV->getLinkage(), GVSym); 269 EmitAlignment(AlignLog, GV); 270 271 if (VerboseAsm) { 272 WriteAsOperand(OutStreamer.GetCommentOS(), GV, 273 /*PrintType=*/false, GV->getParent()); 274 OutStreamer.GetCommentOS() << '\n'; 275 } 276 OutStreamer.EmitLabel(GVSym); 277 278 EmitGlobalConstant(GV->getInitializer()); 279 280 if (MAI->hasDotTypeDotSizeDirective()) 281 // .size foo, 42 282 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 283 284 OutStreamer.AddBlankLine(); 285} 286 287/// EmitFunctionHeader - This method emits the header for the current 288/// function. 289void AsmPrinter::EmitFunctionHeader() { 290 // Print out constants referenced by the function 291 EmitConstantPool(); 292 293 // Print the 'header' of function. 294 const Function *F = MF->getFunction(); 295 296 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); 297 EmitVisibility(CurrentFnSym, F->getVisibility()); 298 299 EmitLinkage(F->getLinkage(), CurrentFnSym); 300 EmitAlignment(MF->getAlignment(), F); 301 302 if (MAI->hasDotTypeDotSizeDirective()) 303 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 304 305 if (VerboseAsm) { 306 WriteAsOperand(OutStreamer.GetCommentOS(), F, 307 /*PrintType=*/false, F->getParent()); 308 OutStreamer.GetCommentOS() << '\n'; 309 } 310 311 // Emit the CurrentFnSym. This is a virtual function to allow targets to 312 // do their wild and crazy things as required. 313 EmitFunctionEntryLabel(); 314 315 // If the function had address-taken blocks that got deleted, then we have 316 // references to the dangling symbols. Emit them at the start of the function 317 // so that we don't get references to undefined symbols. 318 std::vector<MCSymbol*> DeadBlockSyms; 319 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 320 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 321 OutStreamer.AddComment("Address taken block that was later removed"); 322 OutStreamer.EmitLabel(DeadBlockSyms[i]); 323 } 324 325 // Add some workaround for linkonce linkage on Cygwin\MinGW. 326 if (MAI->getLinkOnceDirective() != 0 && 327 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) 328 // FIXME: What is this? 329 O << "Lllvm$workaround$fake$stub$" << *CurrentFnSym << ":\n"; 330 331 // Emit pre-function debug and/or EH information. 332 if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling()) 333 DW->BeginFunction(MF); 334} 335 336/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 337/// function. This can be overridden by targets as required to do custom stuff. 338void AsmPrinter::EmitFunctionEntryLabel() { 339 OutStreamer.EmitLabel(CurrentFnSym); 340} 341 342 343/// EmitComments - Pretty-print comments for instructions. 344static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 345 const MachineFunction *MF = MI.getParent()->getParent(); 346 const TargetMachine &TM = MF->getTarget(); 347 348 DebugLoc DL = MI.getDebugLoc(); 349 if (!DL.isUnknown()) { // Print source line info. 350 DIScope Scope(DL.getScope(MF->getFunction()->getContext())); 351 // Omit the directory, because it's likely to be long and uninteresting. 352 if (Scope.Verify()) 353 CommentOS << Scope.getFilename(); 354 else 355 CommentOS << "<unknown>"; 356 CommentOS << ':' << DL.getLine(); 357 if (DL.getCol() != 0) 358 CommentOS << ':' << DL.getCol(); 359 CommentOS << '\n'; 360 } 361 362 // Check for spills and reloads 363 int FI; 364 365 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 366 367 // We assume a single instruction only has a spill or reload, not 368 // both. 369 const MachineMemOperand *MMO; 370 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 371 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 372 MMO = *MI.memoperands_begin(); 373 CommentOS << MMO->getSize() << "-byte Reload\n"; 374 } 375 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 376 if (FrameInfo->isSpillSlotObjectIndex(FI)) 377 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 378 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 379 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 380 MMO = *MI.memoperands_begin(); 381 CommentOS << MMO->getSize() << "-byte Spill\n"; 382 } 383 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 384 if (FrameInfo->isSpillSlotObjectIndex(FI)) 385 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 386 } 387 388 // Check for spill-induced copies 389 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 390 if (TM.getInstrInfo()->isMoveInstr(MI, SrcReg, DstReg, 391 SrcSubIdx, DstSubIdx)) { 392 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 393 CommentOS << " Reload Reuse\n"; 394 } 395} 396 397 398 399/// EmitFunctionBody - This method emits the body and trailer for a 400/// function. 401void AsmPrinter::EmitFunctionBody() { 402 // Emit target-specific gunk before the function body. 403 EmitFunctionBodyStart(); 404 405 // Print out code for the function. 406 bool HasAnyRealCode = false; 407 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 408 I != E; ++I) { 409 // Print a label for the basic block. 410 EmitBasicBlockStart(I); 411 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); 412 II != IE; ++II) { 413 // Print the assembly for the instruction. 414 if (!II->isLabel()) 415 HasAnyRealCode = true; 416 417 ++EmittedInsts; 418 419 // FIXME: Clean up processDebugLoc. 420 processDebugLoc(II, true); 421 422 if (VerboseAsm) 423 EmitComments(*II, OutStreamer.GetCommentOS()); 424 425 switch (II->getOpcode()) { 426 case TargetOpcode::DBG_LABEL: 427 case TargetOpcode::EH_LABEL: 428 case TargetOpcode::GC_LABEL: 429 printLabelInst(II); 430 break; 431 case TargetOpcode::INLINEASM: 432 printInlineAsm(II); 433 break; 434 case TargetOpcode::IMPLICIT_DEF: 435 printImplicitDef(II); 436 break; 437 case TargetOpcode::KILL: 438 printKill(II); 439 break; 440 default: 441 EmitInstruction(II); 442 break; 443 } 444 445 // FIXME: Clean up processDebugLoc. 446 processDebugLoc(II, false); 447 } 448 } 449 450 // If the function is empty and the object file uses .subsections_via_symbols, 451 // then we need to emit *something* to the function body to prevent the 452 // labels from collapsing together. Just emit a 0 byte. 453 if (MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) 454 OutStreamer.EmitIntValue(0, 1, 0/*addrspace*/); 455 456 // Emit target-specific gunk after the function body. 457 EmitFunctionBodyEnd(); 458 459 if (MAI->hasDotTypeDotSizeDirective()) 460 O << "\t.size\t" << *CurrentFnSym << ", .-" << *CurrentFnSym << '\n'; 461 462 // Emit post-function debug information. 463 if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling()) 464 DW->EndFunction(MF); 465 466 // Print out jump tables referenced by the function. 467 EmitJumpTableInfo(); 468 469 OutStreamer.AddBlankLine(); 470} 471 472 473bool AsmPrinter::doFinalization(Module &M) { 474 // Emit global variables. 475 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 476 I != E; ++I) 477 EmitGlobalVariable(I); 478 479 // Emit final debug information. 480 if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling()) 481 DW->EndModule(); 482 483 // If the target wants to know about weak references, print them all. 484 if (MAI->getWeakRefDirective()) { 485 // FIXME: This is not lazy, it would be nice to only print weak references 486 // to stuff that is actually used. Note that doing so would require targets 487 // to notice uses in operands (due to constant exprs etc). This should 488 // happen with the MC stuff eventually. 489 490 // Print out module-level global variables here. 491 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 492 I != E; ++I) { 493 if (!I->hasExternalWeakLinkage()) continue; 494 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 495 } 496 497 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 498 if (!I->hasExternalWeakLinkage()) continue; 499 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 500 } 501 } 502 503 if (MAI->hasSetDirective()) { 504 OutStreamer.AddBlankLine(); 505 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 506 I != E; ++I) { 507 MCSymbol *Name = Mang->getSymbol(I); 508 509 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 510 MCSymbol *Target = Mang->getSymbol(GV); 511 512 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 513 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 514 else if (I->hasWeakLinkage()) 515 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 516 else 517 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 518 519 EmitVisibility(Name, I->getVisibility()); 520 521 // Emit the directives as assignments aka .set: 522 OutStreamer.EmitAssignment(Name, 523 MCSymbolRefExpr::Create(Target, OutContext)); 524 } 525 } 526 527 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 528 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 529 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 530 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 531 MP->finishAssembly(O, *this, *MAI); 532 533 // If we don't have any trampolines, then we don't require stack memory 534 // to be executable. Some targets have a directive to declare this. 535 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 536 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 537 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 538 OutStreamer.SwitchSection(S); 539 540 // Allow the target to emit any magic that it wants at the end of the file, 541 // after everything else has gone out. 542 EmitEndOfAsmFile(M); 543 544 delete Mang; Mang = 0; 545 DW = 0; MMI = 0; 546 547 OutStreamer.Finish(); 548 return false; 549} 550 551void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 552 this->MF = &MF; 553 // Get the function symbol. 554 CurrentFnSym = Mang->getSymbol(MF.getFunction()); 555 556 if (VerboseAsm) 557 LI = &getAnalysis<MachineLoopInfo>(); 558} 559 560namespace { 561 // SectionCPs - Keep track the alignment, constpool entries per Section. 562 struct SectionCPs { 563 const MCSection *S; 564 unsigned Alignment; 565 SmallVector<unsigned, 4> CPEs; 566 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 567 }; 568} 569 570/// EmitConstantPool - Print to the current output stream assembly 571/// representations of the constants in the constant pool MCP. This is 572/// used to print out constants which have been "spilled to memory" by 573/// the code generator. 574/// 575void AsmPrinter::EmitConstantPool() { 576 const MachineConstantPool *MCP = MF->getConstantPool(); 577 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 578 if (CP.empty()) return; 579 580 // Calculate sections for constant pool entries. We collect entries to go into 581 // the same section together to reduce amount of section switch statements. 582 SmallVector<SectionCPs, 4> CPSections; 583 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 584 const MachineConstantPoolEntry &CPE = CP[i]; 585 unsigned Align = CPE.getAlignment(); 586 587 SectionKind Kind; 588 switch (CPE.getRelocationInfo()) { 589 default: llvm_unreachable("Unknown section kind"); 590 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 591 case 1: 592 Kind = SectionKind::getReadOnlyWithRelLocal(); 593 break; 594 case 0: 595 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 596 case 4: Kind = SectionKind::getMergeableConst4(); break; 597 case 8: Kind = SectionKind::getMergeableConst8(); break; 598 case 16: Kind = SectionKind::getMergeableConst16();break; 599 default: Kind = SectionKind::getMergeableConst(); break; 600 } 601 } 602 603 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 604 605 // The number of sections are small, just do a linear search from the 606 // last section to the first. 607 bool Found = false; 608 unsigned SecIdx = CPSections.size(); 609 while (SecIdx != 0) { 610 if (CPSections[--SecIdx].S == S) { 611 Found = true; 612 break; 613 } 614 } 615 if (!Found) { 616 SecIdx = CPSections.size(); 617 CPSections.push_back(SectionCPs(S, Align)); 618 } 619 620 if (Align > CPSections[SecIdx].Alignment) 621 CPSections[SecIdx].Alignment = Align; 622 CPSections[SecIdx].CPEs.push_back(i); 623 } 624 625 // Now print stuff into the calculated sections. 626 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 627 OutStreamer.SwitchSection(CPSections[i].S); 628 EmitAlignment(Log2_32(CPSections[i].Alignment)); 629 630 unsigned Offset = 0; 631 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 632 unsigned CPI = CPSections[i].CPEs[j]; 633 MachineConstantPoolEntry CPE = CP[CPI]; 634 635 // Emit inter-object padding for alignment. 636 unsigned AlignMask = CPE.getAlignment() - 1; 637 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 638 OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/); 639 640 const Type *Ty = CPE.getType(); 641 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 642 643 // Emit the label with a comment on it. 644 if (VerboseAsm) { 645 OutStreamer.GetCommentOS() << "constant pool "; 646 WriteTypeSymbolic(OutStreamer.GetCommentOS(), CPE.getType(), 647 MF->getFunction()->getParent()); 648 OutStreamer.GetCommentOS() << '\n'; 649 } 650 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 651 652 if (CPE.isMachineConstantPoolEntry()) 653 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 654 else 655 EmitGlobalConstant(CPE.Val.ConstVal); 656 } 657 } 658} 659 660/// EmitJumpTableInfo - Print assembly representations of the jump tables used 661/// by the current function to the current output stream. 662/// 663void AsmPrinter::EmitJumpTableInfo() { 664 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 665 if (MJTI == 0) return; 666 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 667 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 668 if (JT.empty()) return; 669 670 // Pick the directive to use to print the jump table entries, and switch to 671 // the appropriate section. 672 const Function *F = MF->getFunction(); 673 bool JTInDiffSection = false; 674 if (// In PIC mode, we need to emit the jump table to the same section as the 675 // function body itself, otherwise the label differences won't make sense. 676 // FIXME: Need a better predicate for this: what about custom entries? 677 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 678 // We should also do if the section name is NULL or function is declared 679 // in discardable section 680 // FIXME: this isn't the right predicate, should be based on the MCSection 681 // for the function. 682 F->isWeakForLinker()) { 683 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); 684 } else { 685 // Otherwise, drop it in the readonly section. 686 const MCSection *ReadOnlySection = 687 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 688 OutStreamer.SwitchSection(ReadOnlySection); 689 JTInDiffSection = true; 690 } 691 692 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData()))); 693 694 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 695 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 696 697 // If this jump table was deleted, ignore it. 698 if (JTBBs.empty()) continue; 699 700 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 701 // .set directive for each unique entry. This reduces the number of 702 // relocations the assembler will generate for the jump table. 703 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 704 MAI->hasSetDirective()) { 705 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 706 const TargetLowering *TLI = TM.getTargetLowering(); 707 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 708 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 709 const MachineBasicBlock *MBB = JTBBs[ii]; 710 if (!EmittedSets.insert(MBB)) continue; 711 712 // .set LJTSet, LBB32-base 713 const MCExpr *LHS = 714 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 715 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 716 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 717 } 718 } 719 720 // On some targets (e.g. Darwin) we want to emit two consequtive labels 721 // before each jump table. The first label is never referenced, but tells 722 // the assembler and linker the extents of the jump table object. The 723 // second label is actually referenced by the code. 724 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) 725 // FIXME: This doesn't have to have any specific name, just any randomly 726 // named and numbered 'l' label would work. Simplify GetJTISymbol. 727 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 728 729 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 730 731 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 732 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 733 } 734} 735 736/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 737/// current stream. 738void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 739 const MachineBasicBlock *MBB, 740 unsigned UID) const { 741 const MCExpr *Value = 0; 742 switch (MJTI->getEntryKind()) { 743 case MachineJumpTableInfo::EK_Inline: 744 llvm_unreachable("Cannot emit EK_Inline jump table entry"); break; 745 case MachineJumpTableInfo::EK_Custom32: 746 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 747 OutContext); 748 break; 749 case MachineJumpTableInfo::EK_BlockAddress: 750 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 751 // .word LBB123 752 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 753 break; 754 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 755 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 756 // with a relocation as gp-relative, e.g.: 757 // .gprel32 LBB123 758 MCSymbol *MBBSym = MBB->getSymbol(); 759 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 760 return; 761 } 762 763 case MachineJumpTableInfo::EK_LabelDifference32: { 764 // EK_LabelDifference32 - Each entry is the address of the block minus 765 // the address of the jump table. This is used for PIC jump tables where 766 // gprel32 is not supported. e.g.: 767 // .word LBB123 - LJTI1_2 768 // If the .set directive is supported, this is emitted as: 769 // .set L4_5_set_123, LBB123 - LJTI1_2 770 // .word L4_5_set_123 771 772 // If we have emitted set directives for the jump table entries, print 773 // them rather than the entries themselves. If we're emitting PIC, then 774 // emit the table entries as differences between two text section labels. 775 if (MAI->hasSetDirective()) { 776 // If we used .set, reference the .set's symbol. 777 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 778 OutContext); 779 break; 780 } 781 // Otherwise, use the difference as the jump table entry. 782 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 783 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 784 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 785 break; 786 } 787 } 788 789 assert(Value && "Unknown entry kind!"); 790 791 unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData()); 792 OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0); 793} 794 795 796/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 797/// special global used by LLVM. If so, emit it and return true, otherwise 798/// do nothing and return false. 799bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 800 if (GV->getName() == "llvm.used") { 801 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 802 EmitLLVMUsedList(GV->getInitializer()); 803 return true; 804 } 805 806 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 807 if (GV->getSection() == "llvm.metadata" || 808 GV->hasAvailableExternallyLinkage()) 809 return true; 810 811 if (!GV->hasAppendingLinkage()) return false; 812 813 assert(GV->hasInitializer() && "Not a special LLVM global!"); 814 815 const TargetData *TD = TM.getTargetData(); 816 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 817 if (GV->getName() == "llvm.global_ctors") { 818 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection()); 819 EmitAlignment(Align, 0); 820 EmitXXStructorList(GV->getInitializer()); 821 822 if (TM.getRelocationModel() == Reloc::Static && 823 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 824 StringRef Sym(".constructors_used"); 825 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 826 MCSA_Reference); 827 } 828 return true; 829 } 830 831 if (GV->getName() == "llvm.global_dtors") { 832 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection()); 833 EmitAlignment(Align, 0); 834 EmitXXStructorList(GV->getInitializer()); 835 836 if (TM.getRelocationModel() == Reloc::Static && 837 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 838 StringRef Sym(".destructors_used"); 839 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 840 MCSA_Reference); 841 } 842 return true; 843 } 844 845 return false; 846} 847 848/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 849/// global in the specified llvm.used list for which emitUsedDirectiveFor 850/// is true, as being used with this directive. 851void AsmPrinter::EmitLLVMUsedList(Constant *List) { 852 // Should be an array of 'i8*'. 853 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 854 if (InitList == 0) return; 855 856 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 857 const GlobalValue *GV = 858 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 859 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) 860 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip); 861 } 862} 863 864/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 865/// function pointers, ignoring the init priority. 866void AsmPrinter::EmitXXStructorList(Constant *List) { 867 // Should be an array of '{ int, void ()* }' structs. The first value is the 868 // init priority, which we ignore. 869 if (!isa<ConstantArray>(List)) return; 870 ConstantArray *InitList = cast<ConstantArray>(List); 871 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 872 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 873 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 874 875 if (CS->getOperand(1)->isNullValue()) 876 return; // Found a null terminator, exit printing. 877 // Emit the function pointer. 878 EmitGlobalConstant(CS->getOperand(1)); 879 } 880} 881 882//===--------------------------------------------------------------------===// 883// Emission and print routines 884// 885 886/// EmitInt8 - Emit a byte directive and value. 887/// 888void AsmPrinter::EmitInt8(int Value) const { 889 OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/); 890} 891 892/// EmitInt16 - Emit a short directive and value. 893/// 894void AsmPrinter::EmitInt16(int Value) const { 895 OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/); 896} 897 898/// EmitInt32 - Emit a long directive and value. 899/// 900void AsmPrinter::EmitInt32(int Value) const { 901 OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/); 902} 903 904/// EmitInt64 - Emit a long long directive and value. 905/// 906void AsmPrinter::EmitInt64(uint64_t Value) const { 907 OutStreamer.EmitIntValue(Value, 8, 0/*addrspace*/); 908} 909 910/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 911/// in bytes of the directive is specified by Size and Hi/Lo specify the 912/// labels. This implicitly uses .set if it is available. 913void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 914 unsigned Size) const { 915 // Get the Hi-Lo expression. 916 const MCExpr *Diff = 917 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 918 MCSymbolRefExpr::Create(Lo, OutContext), 919 OutContext); 920 921 if (!MAI->hasSetDirective()) { 922 OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/); 923 return; 924 } 925 926 // Otherwise, emit with .set (aka assignment). 927 MCSymbol *SetLabel = 928 OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) + 929 "set" + Twine(SetCounter++)); 930 OutStreamer.EmitAssignment(SetLabel, Diff); 931 OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/); 932} 933 934 935//===----------------------------------------------------------------------===// 936 937// EmitAlignment - Emit an alignment directive to the specified power of 938// two boundary. For example, if you pass in 3 here, you will get an 8 939// byte alignment. If a global value is specified, and if that global has 940// an explicit alignment requested, it will unconditionally override the 941// alignment request. However, if ForcedAlignBits is specified, this value 942// has final say: the ultimate alignment will be the max of ForcedAlignBits 943// and the alignment computed with NumBits and the global. 944// 945// The algorithm is: 946// Align = NumBits; 947// if (GV && GV->hasalignment) Align = GV->getalignment(); 948// Align = std::max(Align, ForcedAlignBits); 949// 950void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 951 unsigned ForcedAlignBits, 952 bool UseFillExpr) const { 953 if (GV && GV->getAlignment()) 954 NumBits = Log2_32(GV->getAlignment()); 955 NumBits = std::max(NumBits, ForcedAlignBits); 956 957 if (NumBits == 0) return; // No need to emit alignment. 958 959 if (getCurrentSection()->getKind().isText()) 960 OutStreamer.EmitCodeAlignment(1 << NumBits); 961 else 962 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); 963} 964 965/// LowerConstant - Lower the specified LLVM Constant to an MCExpr. 966/// 967static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) { 968 MCContext &Ctx = AP.OutContext; 969 970 if (CV->isNullValue() || isa<UndefValue>(CV)) 971 return MCConstantExpr::Create(0, Ctx); 972 973 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 974 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 975 976 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 977 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); 978 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 979 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 980 981 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 982 if (CE == 0) { 983 llvm_unreachable("Unknown constant value to lower!"); 984 return MCConstantExpr::Create(0, Ctx); 985 } 986 987 switch (CE->getOpcode()) { 988 default: 989 // If the code isn't optimized, there may be outstanding folding 990 // opportunities. Attempt to fold the expression using TargetData as a 991 // last resort before giving up. 992 if (Constant *C = 993 ConstantFoldConstantExpression(CE, AP.TM.getTargetData())) 994 if (C != CE) 995 return LowerConstant(C, AP); 996#ifndef NDEBUG 997 CE->dump(); 998#endif 999 llvm_unreachable("FIXME: Don't support this constant expr"); 1000 case Instruction::GetElementPtr: { 1001 const TargetData &TD = *AP.TM.getTargetData(); 1002 // Generate a symbolic expression for the byte address 1003 const Constant *PtrVal = CE->getOperand(0); 1004 SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end()); 1005 int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), &IdxVec[0], 1006 IdxVec.size()); 1007 1008 const MCExpr *Base = LowerConstant(CE->getOperand(0), AP); 1009 if (Offset == 0) 1010 return Base; 1011 1012 // Truncate/sext the offset to the pointer size. 1013 if (TD.getPointerSizeInBits() != 64) { 1014 int SExtAmount = 64-TD.getPointerSizeInBits(); 1015 Offset = (Offset << SExtAmount) >> SExtAmount; 1016 } 1017 1018 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1019 Ctx); 1020 } 1021 1022 case Instruction::Trunc: 1023 // We emit the value and depend on the assembler to truncate the generated 1024 // expression properly. This is important for differences between 1025 // blockaddress labels. Since the two labels are in the same function, it 1026 // is reasonable to treat their delta as a 32-bit value. 1027 // FALL THROUGH. 1028 case Instruction::BitCast: 1029 return LowerConstant(CE->getOperand(0), AP); 1030 1031 case Instruction::IntToPtr: { 1032 const TargetData &TD = *AP.TM.getTargetData(); 1033 // Handle casts to pointers by changing them into casts to the appropriate 1034 // integer type. This promotes constant folding and simplifies this code. 1035 Constant *Op = CE->getOperand(0); 1036 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), 1037 false/*ZExt*/); 1038 return LowerConstant(Op, AP); 1039 } 1040 1041 case Instruction::PtrToInt: { 1042 const TargetData &TD = *AP.TM.getTargetData(); 1043 // Support only foldable casts to/from pointers that can be eliminated by 1044 // changing the pointer to the appropriately sized integer type. 1045 Constant *Op = CE->getOperand(0); 1046 const Type *Ty = CE->getType(); 1047 1048 const MCExpr *OpExpr = LowerConstant(Op, AP); 1049 1050 // We can emit the pointer value into this slot if the slot is an 1051 // integer slot equal to the size of the pointer. 1052 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) 1053 return OpExpr; 1054 1055 // Otherwise the pointer is smaller than the resultant integer, mask off 1056 // the high bits so we are sure to get a proper truncation if the input is 1057 // a constant expr. 1058 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); 1059 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1060 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1061 } 1062 1063 // The MC library also has a right-shift operator, but it isn't consistently 1064 // signed or unsigned between different targets. 1065 case Instruction::Add: 1066 case Instruction::Sub: 1067 case Instruction::Mul: 1068 case Instruction::SDiv: 1069 case Instruction::SRem: 1070 case Instruction::Shl: 1071 case Instruction::And: 1072 case Instruction::Or: 1073 case Instruction::Xor: { 1074 const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP); 1075 const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP); 1076 switch (CE->getOpcode()) { 1077 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1078 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1079 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1080 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1081 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1082 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1083 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1084 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1085 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1086 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1087 } 1088 } 1089 } 1090} 1091 1092static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace, 1093 AsmPrinter &AP) { 1094 if (AddrSpace != 0 || !CA->isString()) { 1095 // Not a string. Print the values in successive locations 1096 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1097 AP.EmitGlobalConstant(CA->getOperand(i), AddrSpace); 1098 return; 1099 } 1100 1101 // Otherwise, it can be emitted as .ascii. 1102 SmallVector<char, 128> TmpVec; 1103 TmpVec.reserve(CA->getNumOperands()); 1104 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1105 TmpVec.push_back(cast<ConstantInt>(CA->getOperand(i))->getZExtValue()); 1106 1107 AP.OutStreamer.EmitBytes(StringRef(TmpVec.data(), TmpVec.size()), AddrSpace); 1108} 1109 1110static void EmitGlobalConstantVector(const ConstantVector *CV, 1111 unsigned AddrSpace, AsmPrinter &AP) { 1112 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1113 AP.EmitGlobalConstant(CV->getOperand(i), AddrSpace); 1114} 1115 1116static void EmitGlobalConstantStruct(const ConstantStruct *CS, 1117 unsigned AddrSpace, AsmPrinter &AP) { 1118 // Print the fields in successive locations. Pad to align if needed! 1119 const TargetData *TD = AP.TM.getTargetData(); 1120 unsigned Size = TD->getTypeAllocSize(CS->getType()); 1121 const StructLayout *Layout = TD->getStructLayout(CS->getType()); 1122 uint64_t SizeSoFar = 0; 1123 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1124 const Constant *Field = CS->getOperand(i); 1125 1126 // Check if padding is needed and insert one or more 0s. 1127 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType()); 1128 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1129 - Layout->getElementOffset(i)) - FieldSize; 1130 SizeSoFar += FieldSize + PadSize; 1131 1132 // Now print the actual field value. 1133 AP.EmitGlobalConstant(Field, AddrSpace); 1134 1135 // Insert padding - this may include padding to increase the size of the 1136 // current field up to the ABI size (if the struct is not packed) as well 1137 // as padding to ensure that the next field starts at the right offset. 1138 AP.OutStreamer.EmitZeros(PadSize, AddrSpace); 1139 } 1140 assert(SizeSoFar == Layout->getSizeInBytes() && 1141 "Layout of constant struct may be incorrect!"); 1142} 1143 1144static void EmitGlobalConstantUnion(const ConstantUnion *CU, 1145 unsigned AddrSpace, AsmPrinter &AP) { 1146 const TargetData *TD = AP.TM.getTargetData(); 1147 unsigned Size = TD->getTypeAllocSize(CU->getType()); 1148 1149 const Constant *Contents = CU->getOperand(0); 1150 unsigned FilledSize = TD->getTypeAllocSize(Contents->getType()); 1151 1152 // Print the actually filled part 1153 AP.EmitGlobalConstant(Contents, AddrSpace); 1154 1155 // And pad with enough zeroes 1156 AP.OutStreamer.EmitZeros(Size-FilledSize, AddrSpace); 1157} 1158 1159static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace, 1160 AsmPrinter &AP) { 1161 // FP Constants are printed as integer constants to avoid losing 1162 // precision. 1163 if (CFP->getType()->isDoubleTy()) { 1164 if (AP.VerboseAsm) { 1165 double Val = CFP->getValueAPF().convertToDouble(); 1166 AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'; 1167 } 1168 1169 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1170 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1171 return; 1172 } 1173 1174 if (CFP->getType()->isFloatTy()) { 1175 if (AP.VerboseAsm) { 1176 float Val = CFP->getValueAPF().convertToFloat(); 1177 AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'; 1178 } 1179 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1180 AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace); 1181 return; 1182 } 1183 1184 if (CFP->getType()->isX86_FP80Ty()) { 1185 // all long double variants are printed as hex 1186 // api needed to prevent premature destruction 1187 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1188 const uint64_t *p = API.getRawData(); 1189 if (AP.VerboseAsm) { 1190 // Convert to double so we can print the approximate val as a comment. 1191 APFloat DoubleVal = CFP->getValueAPF(); 1192 bool ignored; 1193 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1194 &ignored); 1195 AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= " 1196 << DoubleVal.convertToDouble() << '\n'; 1197 } 1198 1199 if (AP.TM.getTargetData()->isBigEndian()) { 1200 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1201 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1202 } else { 1203 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1204 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1205 } 1206 1207 // Emit the tail padding for the long double. 1208 const TargetData &TD = *AP.TM.getTargetData(); 1209 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - 1210 TD.getTypeStoreSize(CFP->getType()), AddrSpace); 1211 return; 1212 } 1213 1214 assert(CFP->getType()->isPPC_FP128Ty() && 1215 "Floating point constant type not handled"); 1216 // All long double variants are printed as hex api needed to prevent 1217 // premature destruction. 1218 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1219 const uint64_t *p = API.getRawData(); 1220 if (AP.TM.getTargetData()->isBigEndian()) { 1221 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1222 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1223 } else { 1224 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1225 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1226 } 1227} 1228 1229static void EmitGlobalConstantLargeInt(const ConstantInt *CI, 1230 unsigned AddrSpace, AsmPrinter &AP) { 1231 const TargetData *TD = AP.TM.getTargetData(); 1232 unsigned BitWidth = CI->getBitWidth(); 1233 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); 1234 1235 // We don't expect assemblers to support integer data directives 1236 // for more than 64 bits, so we emit the data in at most 64-bit 1237 // quantities at a time. 1238 const uint64_t *RawData = CI->getValue().getRawData(); 1239 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1240 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1241 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1242 } 1243} 1244 1245/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1246void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1247 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) { 1248 uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); 1249 if (Size == 0) Size = 1; // An empty "_foo:" followed by a section is undef. 1250 return OutStreamer.EmitZeros(Size, AddrSpace); 1251 } 1252 1253 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1254 unsigned Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); 1255 switch (Size) { 1256 case 1: 1257 case 2: 1258 case 4: 1259 case 8: 1260 if (VerboseAsm) 1261 OutStreamer.GetCommentOS() << format("0x%llx\n", CI->getZExtValue()); 1262 OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace); 1263 return; 1264 default: 1265 EmitGlobalConstantLargeInt(CI, AddrSpace, *this); 1266 return; 1267 } 1268 } 1269 1270 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1271 return EmitGlobalConstantArray(CVA, AddrSpace, *this); 1272 1273 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1274 return EmitGlobalConstantStruct(CVS, AddrSpace, *this); 1275 1276 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1277 return EmitGlobalConstantFP(CFP, AddrSpace, *this); 1278 1279 if (isa<ConstantPointerNull>(CV)) { 1280 unsigned Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); 1281 OutStreamer.EmitIntValue(0, Size, AddrSpace); 1282 return; 1283 } 1284 1285 if (const ConstantUnion *CVU = dyn_cast<ConstantUnion>(CV)) 1286 return EmitGlobalConstantUnion(CVU, AddrSpace, *this); 1287 1288 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1289 return EmitGlobalConstantVector(V, AddrSpace, *this); 1290 1291 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 1292 // thread the streamer with EmitValue. 1293 OutStreamer.EmitValue(LowerConstant(CV, *this), 1294 TM.getTargetData()->getTypeAllocSize(CV->getType()), 1295 AddrSpace); 1296} 1297 1298void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1299 // Target doesn't support this yet! 1300 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1301} 1302 1303/// PrintSpecial - Print information related to the specified machine instr 1304/// that is independent of the operand, and may be independent of the instr 1305/// itself. This can be useful for portably encoding the comment character 1306/// or other bits of target-specific knowledge into the asmstrings. The 1307/// syntax used is ${:comment}. Targets can override this to add support 1308/// for their own strange codes. 1309void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1310 if (!strcmp(Code, "private")) { 1311 O << MAI->getPrivateGlobalPrefix(); 1312 } else if (!strcmp(Code, "comment")) { 1313 if (VerboseAsm) 1314 O << MAI->getCommentString(); 1315 } else if (!strcmp(Code, "uid")) { 1316 // Comparing the address of MI isn't sufficient, because machineinstrs may 1317 // be allocated to the same address across functions. 1318 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1319 1320 // If this is a new LastFn instruction, bump the counter. 1321 if (LastMI != MI || LastFn != ThisF) { 1322 ++Counter; 1323 LastMI = MI; 1324 LastFn = ThisF; 1325 } 1326 O << Counter; 1327 } else { 1328 std::string msg; 1329 raw_string_ostream Msg(msg); 1330 Msg << "Unknown special formatter '" << Code 1331 << "' for machine instr: " << *MI; 1332 llvm_report_error(Msg.str()); 1333 } 1334} 1335 1336/// processDebugLoc - Processes the debug information of each machine 1337/// instruction's DebugLoc. 1338void AsmPrinter::processDebugLoc(const MachineInstr *MI, 1339 bool BeforePrintingInsn) { 1340 if (!MAI || !DW || !MAI->doesSupportDebugInformation() 1341 || !DW->ShouldEmitDwarfDebug()) 1342 return; 1343 1344 if (!BeforePrintingInsn) 1345 // After printing instruction 1346 DW->EndScope(MI); 1347 else 1348 DW->BeginScope(MI); 1349} 1350 1351 1352/// printInlineAsm - This method formats and prints the specified machine 1353/// instruction that is an inline asm. 1354void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1355 unsigned NumOperands = MI->getNumOperands(); 1356 1357 // Count the number of register definitions. 1358 unsigned NumDefs = 0; 1359 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1360 ++NumDefs) 1361 assert(NumDefs != NumOperands-1 && "No asm string?"); 1362 1363 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1364 1365 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1366 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1367 1368 O << '\t'; 1369 1370 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1371 // These are useful to see where empty asm's wound up. 1372 if (AsmStr[0] == 0) { 1373 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1374 O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n'; 1375 return; 1376 } 1377 1378 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1379 1380 // The variant of the current asmprinter. 1381 int AsmPrinterVariant = MAI->getAssemblerDialect(); 1382 1383 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1384 const char *LastEmitted = AsmStr; // One past the last character emitted. 1385 1386 while (*LastEmitted) { 1387 switch (*LastEmitted) { 1388 default: { 1389 // Not a special case, emit the string section literally. 1390 const char *LiteralEnd = LastEmitted+1; 1391 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1392 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1393 ++LiteralEnd; 1394 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1395 O.write(LastEmitted, LiteralEnd-LastEmitted); 1396 LastEmitted = LiteralEnd; 1397 break; 1398 } 1399 case '\n': 1400 ++LastEmitted; // Consume newline character. 1401 O << '\n'; // Indent code with newline. 1402 break; 1403 case '$': { 1404 ++LastEmitted; // Consume '$' character. 1405 bool Done = true; 1406 1407 // Handle escapes. 1408 switch (*LastEmitted) { 1409 default: Done = false; break; 1410 case '$': // $$ -> $ 1411 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1412 O << '$'; 1413 ++LastEmitted; // Consume second '$' character. 1414 break; 1415 case '(': // $( -> same as GCC's { character. 1416 ++LastEmitted; // Consume '(' character. 1417 if (CurVariant != -1) { 1418 llvm_report_error("Nested variants found in inline asm string: '" 1419 + std::string(AsmStr) + "'"); 1420 } 1421 CurVariant = 0; // We're in the first variant now. 1422 break; 1423 case '|': 1424 ++LastEmitted; // consume '|' character. 1425 if (CurVariant == -1) 1426 O << '|'; // this is gcc's behavior for | outside a variant 1427 else 1428 ++CurVariant; // We're in the next variant. 1429 break; 1430 case ')': // $) -> same as GCC's } char. 1431 ++LastEmitted; // consume ')' character. 1432 if (CurVariant == -1) 1433 O << '}'; // this is gcc's behavior for } outside a variant 1434 else 1435 CurVariant = -1; 1436 break; 1437 } 1438 if (Done) break; 1439 1440 bool HasCurlyBraces = false; 1441 if (*LastEmitted == '{') { // ${variable} 1442 ++LastEmitted; // Consume '{' character. 1443 HasCurlyBraces = true; 1444 } 1445 1446 // If we have ${:foo}, then this is not a real operand reference, it is a 1447 // "magic" string reference, just like in .td files. Arrange to call 1448 // PrintSpecial. 1449 if (HasCurlyBraces && *LastEmitted == ':') { 1450 ++LastEmitted; 1451 const char *StrStart = LastEmitted; 1452 const char *StrEnd = strchr(StrStart, '}'); 1453 if (StrEnd == 0) { 1454 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '" 1455 + std::string(AsmStr) + "'"); 1456 } 1457 1458 std::string Val(StrStart, StrEnd); 1459 PrintSpecial(MI, Val.c_str()); 1460 LastEmitted = StrEnd+1; 1461 break; 1462 } 1463 1464 const char *IDStart = LastEmitted; 1465 char *IDEnd; 1466 errno = 0; 1467 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1468 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1469 llvm_report_error("Bad $ operand number in inline asm string: '" 1470 + std::string(AsmStr) + "'"); 1471 } 1472 LastEmitted = IDEnd; 1473 1474 char Modifier[2] = { 0, 0 }; 1475 1476 if (HasCurlyBraces) { 1477 // If we have curly braces, check for a modifier character. This 1478 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1479 if (*LastEmitted == ':') { 1480 ++LastEmitted; // Consume ':' character. 1481 if (*LastEmitted == 0) { 1482 llvm_report_error("Bad ${:} expression in inline asm string: '" 1483 + std::string(AsmStr) + "'"); 1484 } 1485 1486 Modifier[0] = *LastEmitted; 1487 ++LastEmitted; // Consume modifier character. 1488 } 1489 1490 if (*LastEmitted != '}') { 1491 llvm_report_error("Bad ${} expression in inline asm string: '" 1492 + std::string(AsmStr) + "'"); 1493 } 1494 ++LastEmitted; // Consume '}' character. 1495 } 1496 1497 if ((unsigned)Val >= NumOperands-1) { 1498 llvm_report_error("Invalid $ operand number in inline asm string: '" 1499 + std::string(AsmStr) + "'"); 1500 } 1501 1502 // Okay, we finally have a value number. Ask the target to print this 1503 // operand! 1504 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1505 unsigned OpNo = 1; 1506 1507 bool Error = false; 1508 1509 // Scan to find the machine operand number for the operand. 1510 for (; Val; --Val) { 1511 if (OpNo >= MI->getNumOperands()) break; 1512 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1513 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1514 } 1515 1516 if (OpNo >= MI->getNumOperands()) { 1517 Error = true; 1518 } else { 1519 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1520 ++OpNo; // Skip over the ID number. 1521 1522 if (Modifier[0] == 'l') // labels are target independent 1523 O << *MI->getOperand(OpNo).getMBB()->getSymbol(); 1524 else { 1525 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1526 if ((OpFlags & 7) == 4) { 1527 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1528 Modifier[0] ? Modifier : 0); 1529 } else { 1530 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1531 Modifier[0] ? Modifier : 0); 1532 } 1533 } 1534 } 1535 if (Error) { 1536 std::string msg; 1537 raw_string_ostream Msg(msg); 1538 Msg << "Invalid operand found in inline asm: '" << AsmStr << "'\n"; 1539 MI->print(Msg); 1540 llvm_report_error(Msg.str()); 1541 } 1542 } 1543 break; 1544 } 1545 } 1546 } 1547 O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd(); 1548 OutStreamer.AddBlankLine(); 1549} 1550 1551/// printImplicitDef - This method prints the specified machine instruction 1552/// that is an implicit def. 1553void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1554 if (!VerboseAsm) return; 1555 O.PadToColumn(MAI->getCommentColumn()); 1556 O << MAI->getCommentString() << " implicit-def: " 1557 << TRI->getName(MI->getOperand(0).getReg()); 1558 OutStreamer.AddBlankLine(); 1559} 1560 1561void AsmPrinter::printKill(const MachineInstr *MI) const { 1562 if (!VerboseAsm) return; 1563 O.PadToColumn(MAI->getCommentColumn()); 1564 O << MAI->getCommentString() << " kill:"; 1565 for (unsigned n = 0, e = MI->getNumOperands(); n != e; ++n) { 1566 const MachineOperand &op = MI->getOperand(n); 1567 assert(op.isReg() && "KILL instruction must have only register operands"); 1568 O << ' ' << TRI->getName(op.getReg()) << (op.isDef() ? "<def>" : "<kill>"); 1569 } 1570 OutStreamer.AddBlankLine(); 1571} 1572 1573/// printLabel - This method prints a local label used by debug and 1574/// exception handling tables. 1575void AsmPrinter::printLabelInst(const MachineInstr *MI) const { 1576 OutStreamer.EmitLabel(MI->getOperand(0).getMCSymbol()); 1577} 1578 1579/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1580/// instruction, using the specified assembler variant. Targets should 1581/// override this to format as appropriate. 1582bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1583 unsigned AsmVariant, const char *ExtraCode) { 1584 // Target doesn't support this yet! 1585 return true; 1586} 1587 1588bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1589 unsigned AsmVariant, 1590 const char *ExtraCode) { 1591 // Target doesn't support this yet! 1592 return true; 1593} 1594 1595MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 1596 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 1597} 1598 1599MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 1600 return MMI->getAddrLabelSymbol(BB); 1601} 1602 1603/// GetCPISymbol - Return the symbol for the specified constant pool entry. 1604MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 1605 return OutContext.GetOrCreateSymbol 1606 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 1607 + "_" + Twine(CPID)); 1608} 1609 1610/// GetJTISymbol - Return the symbol for the specified jump table entry. 1611MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 1612 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 1613} 1614 1615/// GetJTSetSymbol - Return the symbol for the specified jump table .set 1616/// FIXME: privatize to AsmPrinter. 1617MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 1618 return OutContext.GetOrCreateSymbol 1619 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 1620 Twine(UID) + "_set_" + Twine(MBBID)); 1621} 1622 1623/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with 1624/// global value name as its base, with the specified suffix, and where the 1625/// symbol is forced to have private linkage if ForcePrivate is true. 1626MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, 1627 StringRef Suffix, 1628 bool ForcePrivate) const { 1629 SmallString<60> NameStr; 1630 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); 1631 NameStr.append(Suffix.begin(), Suffix.end()); 1632 return OutContext.GetOrCreateSymbol(NameStr.str()); 1633} 1634 1635/// GetExternalSymbolSymbol - Return the MCSymbol for the specified 1636/// ExternalSymbol. 1637MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 1638 SmallString<60> NameStr; 1639 Mang->getNameWithPrefix(NameStr, Sym); 1640 return OutContext.GetOrCreateSymbol(NameStr.str()); 1641} 1642 1643 1644 1645/// PrintParentLoopComment - Print comments about parent loops of this one. 1646static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 1647 unsigned FunctionNumber) { 1648 if (Loop == 0) return; 1649 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 1650 OS.indent(Loop->getLoopDepth()*2) 1651 << "Parent Loop BB" << FunctionNumber << "_" 1652 << Loop->getHeader()->getNumber() 1653 << " Depth=" << Loop->getLoopDepth() << '\n'; 1654} 1655 1656 1657/// PrintChildLoopComment - Print comments about child loops within 1658/// the loop for this basic block, with nesting. 1659static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 1660 unsigned FunctionNumber) { 1661 // Add child loop information 1662 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ 1663 OS.indent((*CL)->getLoopDepth()*2) 1664 << "Child Loop BB" << FunctionNumber << "_" 1665 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() 1666 << '\n'; 1667 PrintChildLoopComment(OS, *CL, FunctionNumber); 1668 } 1669} 1670 1671/// PrintBasicBlockLoopComments - Pretty-print comments for basic blocks. 1672static void PrintBasicBlockLoopComments(const MachineBasicBlock &MBB, 1673 const MachineLoopInfo *LI, 1674 const AsmPrinter &AP) { 1675 // Add loop depth information 1676 const MachineLoop *Loop = LI->getLoopFor(&MBB); 1677 if (Loop == 0) return; 1678 1679 MachineBasicBlock *Header = Loop->getHeader(); 1680 assert(Header && "No header for loop"); 1681 1682 // If this block is not a loop header, just print out what is the loop header 1683 // and return. 1684 if (Header != &MBB) { 1685 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 1686 Twine(AP.getFunctionNumber())+"_" + 1687 Twine(Loop->getHeader()->getNumber())+ 1688 " Depth="+Twine(Loop->getLoopDepth())); 1689 return; 1690 } 1691 1692 // Otherwise, it is a loop header. Print out information about child and 1693 // parent loops. 1694 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 1695 1696 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 1697 1698 OS << "=>"; 1699 OS.indent(Loop->getLoopDepth()*2-2); 1700 1701 OS << "This "; 1702 if (Loop->empty()) 1703 OS << "Inner "; 1704 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 1705 1706 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 1707} 1708 1709 1710/// EmitBasicBlockStart - This method prints the label for the specified 1711/// MachineBasicBlock, an alignment (if present) and a comment describing 1712/// it if appropriate. 1713void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 1714 // Emit an alignment directive for this block, if needed. 1715 if (unsigned Align = MBB->getAlignment()) 1716 EmitAlignment(Log2_32(Align)); 1717 1718 // If the block has its address taken, emit any labels that were used to 1719 // reference the block. It is possible that there is more than one label 1720 // here, because multiple LLVM BB's may have been RAUW'd to this block after 1721 // the references were generated. 1722 if (MBB->hasAddressTaken()) { 1723 const BasicBlock *BB = MBB->getBasicBlock(); 1724 if (VerboseAsm) 1725 OutStreamer.AddComment("Block address taken"); 1726 1727 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); 1728 1729 for (unsigned i = 0, e = Syms.size(); i != e; ++i) 1730 OutStreamer.EmitLabel(Syms[i]); 1731 } 1732 1733 // Print the main label for the block. 1734 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { 1735 if (VerboseAsm) { 1736 // NOTE: Want this comment at start of line. 1737 O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':'; 1738 if (const BasicBlock *BB = MBB->getBasicBlock()) 1739 if (BB->hasName()) 1740 OutStreamer.AddComment("%" + BB->getName()); 1741 1742 PrintBasicBlockLoopComments(*MBB, LI, *this); 1743 OutStreamer.AddBlankLine(); 1744 } 1745 } else { 1746 if (VerboseAsm) { 1747 if (const BasicBlock *BB = MBB->getBasicBlock()) 1748 if (BB->hasName()) 1749 OutStreamer.AddComment("%" + BB->getName()); 1750 PrintBasicBlockLoopComments(*MBB, LI, *this); 1751 } 1752 1753 OutStreamer.EmitLabel(MBB->getSymbol()); 1754 } 1755} 1756 1757void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility) const { 1758 MCSymbolAttr Attr = MCSA_Invalid; 1759 1760 switch (Visibility) { 1761 default: break; 1762 case GlobalValue::HiddenVisibility: 1763 Attr = MAI->getHiddenVisibilityAttr(); 1764 break; 1765 case GlobalValue::ProtectedVisibility: 1766 Attr = MAI->getProtectedVisibilityAttr(); 1767 break; 1768 } 1769 1770 if (Attr != MCSA_Invalid) 1771 OutStreamer.EmitSymbolAttribute(Sym, Attr); 1772} 1773 1774void AsmPrinter::printOffset(int64_t Offset) const { 1775 if (Offset > 0) 1776 O << '+' << Offset; 1777 else if (Offset < 0) 1778 O << Offset; 1779} 1780 1781/// isBlockOnlyReachableByFallthough - Return true if the basic block has 1782/// exactly one predecessor and the control transfer mechanism between 1783/// the predecessor and this block is a fall-through. 1784bool AsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) 1785 const { 1786 // If this is a landing pad, it isn't a fall through. If it has no preds, 1787 // then nothing falls through to it. 1788 if (MBB->isLandingPad() || MBB->pred_empty()) 1789 return false; 1790 1791 // If there isn't exactly one predecessor, it can't be a fall through. 1792 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 1793 ++PI2; 1794 if (PI2 != MBB->pred_end()) 1795 return false; 1796 1797 // The predecessor has to be immediately before this block. 1798 const MachineBasicBlock *Pred = *PI; 1799 1800 if (!Pred->isLayoutSuccessor(MBB)) 1801 return false; 1802 1803 // If the block is completely empty, then it definitely does fall through. 1804 if (Pred->empty()) 1805 return true; 1806 1807 // Otherwise, check the last instruction. 1808 const MachineInstr &LastInst = Pred->back(); 1809 return !LastInst.getDesc().isBarrier(); 1810} 1811 1812 1813 1814GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1815 if (!S->usesMetadata()) 1816 return 0; 1817 1818 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1819 if (GCPI != GCMetadataPrinters.end()) 1820 return GCPI->second; 1821 1822 const char *Name = S->getName().c_str(); 1823 1824 for (GCMetadataPrinterRegistry::iterator 1825 I = GCMetadataPrinterRegistry::begin(), 1826 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1827 if (strcmp(Name, I->getName()) == 0) { 1828 GCMetadataPrinter *GMP = I->instantiate(); 1829 GMP->S = S; 1830 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1831 return GMP; 1832 } 1833 1834 llvm_report_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 1835 return 0; 1836} 1837 1838