AsmPrinter.cpp revision 58ed5d27258df9688ac2694cf5e3d31f7dbdeef6
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineJumpTableInfo.h" 22#include "llvm/CodeGen/MachineModuleInfo.h" 23#include "llvm/CodeGen/DwarfWriter.h" 24#include "llvm/Support/CommandLine.h" 25#include "llvm/Support/Mangler.h" 26#include "llvm/Support/raw_ostream.h" 27#include "llvm/Target/TargetAsmInfo.h" 28#include "llvm/Target/TargetData.h" 29#include "llvm/Target/TargetLowering.h" 30#include "llvm/Target/TargetMachine.h" 31#include "llvm/Target/TargetOptions.h" 32#include "llvm/Target/TargetRegisterInfo.h" 33#include "llvm/ADT/SmallPtrSet.h" 34#include "llvm/ADT/SmallString.h" 35#include "llvm/ADT/StringExtras.h" 36#include <cerrno> 37using namespace llvm; 38 39static cl::opt<cl::boolOrDefault> 40AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 41 cl::init(cl::BOU_UNSET)); 42 43char AsmPrinter::ID = 0; 44AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm, 45 const TargetAsmInfo *T, unsigned OL, bool VDef) 46 : MachineFunctionPass(&ID), FunctionNumber(0), OptLevel(OL), O(o), 47 TM(tm), TAI(T), TRI(tm.getRegisterInfo()), 48 IsInTextSection(false) 49{ 50 switch (AsmVerbose) { 51 case cl::BOU_UNSET: VerboseAsm = VDef; break; 52 case cl::BOU_TRUE: VerboseAsm = true; break; 53 case cl::BOU_FALSE: VerboseAsm = false; break; 54 } 55} 56 57AsmPrinter::~AsmPrinter() { 58 for (gcp_iterator I = GCMetadataPrinters.begin(), 59 E = GCMetadataPrinters.end(); I != E; ++I) 60 delete I->second; 61} 62 63/// SwitchToTextSection - Switch to the specified text section of the executable 64/// if we are not already in it! 65/// 66void AsmPrinter::SwitchToTextSection(const char *NewSection, 67 const GlobalValue *GV) { 68 std::string NS; 69 if (GV && GV->hasSection()) 70 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 71 else 72 NS = NewSection; 73 74 // If we're already in this section, we're done. 75 if (CurrentSection == NS) return; 76 77 // Close the current section, if applicable. 78 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 79 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 80 81 CurrentSection = NS; 82 83 if (!CurrentSection.empty()) 84 O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n'; 85 86 IsInTextSection = true; 87} 88 89/// SwitchToDataSection - Switch to the specified data section of the executable 90/// if we are not already in it! 91/// 92void AsmPrinter::SwitchToDataSection(const char *NewSection, 93 const GlobalValue *GV) { 94 std::string NS; 95 if (GV && GV->hasSection()) 96 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 97 else 98 NS = NewSection; 99 100 // If we're already in this section, we're done. 101 if (CurrentSection == NS) return; 102 103 // Close the current section, if applicable. 104 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 105 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 106 107 CurrentSection = NS; 108 109 if (!CurrentSection.empty()) 110 O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n'; 111 112 IsInTextSection = false; 113} 114 115/// SwitchToSection - Switch to the specified section of the executable if we 116/// are not already in it! 117void AsmPrinter::SwitchToSection(const Section* NS) { 118 const std::string& NewSection = NS->getName(); 119 120 // If we're already in this section, we're done. 121 if (CurrentSection == NewSection) return; 122 123 // Close the current section, if applicable. 124 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 125 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 126 127 // FIXME: Make CurrentSection a Section* in the future 128 CurrentSection = NewSection; 129 CurrentSection_ = NS; 130 131 if (!CurrentSection.empty()) { 132 // If section is named we need to switch into it via special '.section' 133 // directive and also append funky flags. Otherwise - section name is just 134 // some magic assembler directive. 135 if (NS->isNamed()) 136 O << TAI->getSwitchToSectionDirective() 137 << CurrentSection 138 << TAI->getSectionFlags(NS->getFlags()); 139 else 140 O << CurrentSection; 141 O << TAI->getDataSectionStartSuffix() << '\n'; 142 } 143 144 IsInTextSection = (NS->getFlags() & SectionFlags::Code); 145} 146 147void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 148 MachineFunctionPass::getAnalysisUsage(AU); 149 AU.addRequired<GCModuleInfo>(); 150} 151 152bool AsmPrinter::doInitialization(Module &M) { 153 Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix()); 154 155 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 156 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 157 158 if (TAI->hasSingleParameterDotFile()) { 159 /* Very minimal debug info. It is ignored if we emit actual 160 debug info. If we don't, this at helps the user find where 161 a function came from. */ 162 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 163 } 164 165 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 166 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 167 MP->beginAssembly(O, *this, *TAI); 168 169 if (!M.getModuleInlineAsm().empty()) 170 O << TAI->getCommentString() << " Start of file scope inline assembly\n" 171 << M.getModuleInlineAsm() 172 << '\n' << TAI->getCommentString() 173 << " End of file scope inline assembly\n"; 174 175 SwitchToDataSection(""); // Reset back to no section. 176 177 MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 178 if (MMI) MMI->AnalyzeModule(M); 179 DW = getAnalysisIfAvailable<DwarfWriter>(); 180 return false; 181} 182 183bool AsmPrinter::doFinalization(Module &M) { 184 if (TAI->getWeakRefDirective()) { 185 if (!ExtWeakSymbols.empty()) 186 SwitchToDataSection(""); 187 188 for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(), 189 e = ExtWeakSymbols.end(); i != e; ++i) 190 O << TAI->getWeakRefDirective() << Mang->getValueName(*i) << '\n'; 191 } 192 193 if (TAI->getSetDirective()) { 194 if (!M.alias_empty()) 195 SwitchToSection(TAI->getTextSection()); 196 197 O << '\n'; 198 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 199 I!=E; ++I) { 200 std::string Name = Mang->getValueName(I); 201 std::string Target; 202 203 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 204 Target = Mang->getValueName(GV); 205 206 if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) 207 O << "\t.globl\t" << Name << '\n'; 208 else if (I->hasWeakLinkage()) 209 O << TAI->getWeakRefDirective() << Name << '\n'; 210 else if (!I->hasLocalLinkage()) 211 assert(0 && "Invalid alias linkage"); 212 213 printVisibility(Name, I->getVisibility()); 214 215 O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 216 } 217 } 218 219 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 220 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 221 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 222 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 223 MP->finishAssembly(O, *this, *TAI); 224 225 // If we don't have any trampolines, then we don't require stack memory 226 // to be executable. Some targets have a directive to declare this. 227 Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 228 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 229 if (TAI->getNonexecutableStackDirective()) 230 O << TAI->getNonexecutableStackDirective() << '\n'; 231 232 delete Mang; Mang = 0; 233 return false; 234} 235 236const std::string & 237AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF, 238 std::string &Name) const { 239 assert(MF && "No machine function?"); 240 Name = MF->getFunction()->getName(); 241 if (Name.empty()) 242 Name = Mang->getValueName(MF->getFunction()); 243 Name = Mang->makeNameProper(TAI->getEHGlobalPrefix() + 244 Name + ".eh", TAI->getGlobalPrefix()); 245 return Name; 246} 247 248void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 249 // What's my mangled name? 250 CurrentFnName = Mang->getValueName(MF.getFunction()); 251 IncrementFunctionNumber(); 252} 253 254namespace { 255 // SectionCPs - Keep track the alignment, constpool entries per Section. 256 struct SectionCPs { 257 const Section *S; 258 unsigned Alignment; 259 SmallVector<unsigned, 4> CPEs; 260 SectionCPs(const Section *s, unsigned a) : S(s), Alignment(a) {}; 261 }; 262} 263 264/// EmitConstantPool - Print to the current output stream assembly 265/// representations of the constants in the constant pool MCP. This is 266/// used to print out constants which have been "spilled to memory" by 267/// the code generator. 268/// 269void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 270 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 271 if (CP.empty()) return; 272 273 // Calculate sections for constant pool entries. We collect entries to go into 274 // the same section together to reduce amount of section switch statements. 275 SmallVector<SectionCPs, 4> CPSections; 276 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 277 MachineConstantPoolEntry CPE = CP[i]; 278 unsigned Align = CPE.getAlignment(); 279 const Section* S = TAI->SelectSectionForMachineConst(CPE.getType()); 280 // The number of sections are small, just do a linear search from the 281 // last section to the first. 282 bool Found = false; 283 unsigned SecIdx = CPSections.size(); 284 while (SecIdx != 0) { 285 if (CPSections[--SecIdx].S == S) { 286 Found = true; 287 break; 288 } 289 } 290 if (!Found) { 291 SecIdx = CPSections.size(); 292 CPSections.push_back(SectionCPs(S, Align)); 293 } 294 295 if (Align > CPSections[SecIdx].Alignment) 296 CPSections[SecIdx].Alignment = Align; 297 CPSections[SecIdx].CPEs.push_back(i); 298 } 299 300 // Now print stuff into the calculated sections. 301 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 302 SwitchToSection(CPSections[i].S); 303 EmitAlignment(Log2_32(CPSections[i].Alignment)); 304 305 unsigned Offset = 0; 306 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 307 unsigned CPI = CPSections[i].CPEs[j]; 308 MachineConstantPoolEntry CPE = CP[CPI]; 309 310 // Emit inter-object padding for alignment. 311 unsigned AlignMask = CPE.getAlignment() - 1; 312 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 313 EmitZeros(NewOffset - Offset); 314 315 const Type *Ty = CPE.getType(); 316 Offset = NewOffset + TM.getTargetData()->getTypePaddedSize(Ty); 317 318 O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 319 << CPI << ":\t\t\t\t\t"; 320 if (VerboseAsm) { 321 O << TAI->getCommentString() << ' '; 322 WriteTypeSymbolic(O, CPE.getType(), 0); 323 } 324 O << '\n'; 325 if (CPE.isMachineConstantPoolEntry()) 326 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 327 else 328 EmitGlobalConstant(CPE.Val.ConstVal); 329 } 330 } 331} 332 333/// EmitJumpTableInfo - Print assembly representations of the jump tables used 334/// by the current function to the current output stream. 335/// 336void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 337 MachineFunction &MF) { 338 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 339 if (JT.empty()) return; 340 341 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 342 343 // Pick the directive to use to print the jump table entries, and switch to 344 // the appropriate section. 345 TargetLowering *LoweringInfo = TM.getTargetLowering(); 346 347 const char* JumpTableDataSection = TAI->getJumpTableDataSection(); 348 const Function *F = MF.getFunction(); 349 unsigned SectionFlags = TAI->SectionFlagsForGlobal(F); 350 if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) || 351 !JumpTableDataSection || 352 SectionFlags & SectionFlags::Linkonce) { 353 // In PIC mode, we need to emit the jump table to the same section as the 354 // function body itself, otherwise the label differences won't make sense. 355 // We should also do if the section name is NULL or function is declared in 356 // discardable section. 357 SwitchToSection(TAI->SectionForGlobal(F)); 358 } else { 359 SwitchToDataSection(JumpTableDataSection); 360 } 361 362 EmitAlignment(Log2_32(MJTI->getAlignment())); 363 364 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 365 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 366 367 // If this jump table was deleted, ignore it. 368 if (JTBBs.empty()) continue; 369 370 // For PIC codegen, if possible we want to use the SetDirective to reduce 371 // the number of relocations the assembler will generate for the jump table. 372 // Set directives are all printed before the jump table itself. 373 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 374 if (TAI->getSetDirective() && IsPic) 375 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 376 if (EmittedSets.insert(JTBBs[ii])) 377 printPICJumpTableSetLabel(i, JTBBs[ii]); 378 379 // On some targets (e.g. darwin) we want to emit two consequtive labels 380 // before each jump table. The first label is never referenced, but tells 381 // the assembler and linker the extents of the jump table object. The 382 // second label is actually referenced by the code. 383 if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) 384 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 385 386 O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 387 << '_' << i << ":\n"; 388 389 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 390 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 391 O << '\n'; 392 } 393 } 394} 395 396void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 397 const MachineBasicBlock *MBB, 398 unsigned uid) const { 399 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 400 401 // Use JumpTableDirective otherwise honor the entry size from the jump table 402 // info. 403 const char *JTEntryDirective = TAI->getJumpTableDirective(); 404 bool HadJTEntryDirective = JTEntryDirective != NULL; 405 if (!HadJTEntryDirective) { 406 JTEntryDirective = MJTI->getEntrySize() == 4 ? 407 TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); 408 } 409 410 O << JTEntryDirective << ' '; 411 412 // If we have emitted set directives for the jump table entries, print 413 // them rather than the entries themselves. If we're emitting PIC, then 414 // emit the table entries as differences between two text section labels. 415 // If we're emitting non-PIC code, then emit the entries as direct 416 // references to the target basic blocks. 417 if (IsPic) { 418 if (TAI->getSetDirective()) { 419 O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() 420 << '_' << uid << "_set_" << MBB->getNumber(); 421 } else { 422 printBasicBlockLabel(MBB, false, false, false); 423 // If the arch uses custom Jump Table directives, don't calc relative to 424 // JT 425 if (!HadJTEntryDirective) 426 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" 427 << getFunctionNumber() << '_' << uid; 428 } 429 } else { 430 printBasicBlockLabel(MBB, false, false, false); 431 } 432} 433 434 435/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 436/// special global used by LLVM. If so, emit it and return true, otherwise 437/// do nothing and return false. 438bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 439 if (GV->getName() == "llvm.used") { 440 if (TAI->getUsedDirective() != 0) // No need to emit this at all. 441 EmitLLVMUsedList(GV->getInitializer()); 442 return true; 443 } 444 445 // Ignore debug and non-emitted data. 446 if (GV->getSection() == "llvm.metadata" || 447 GV->hasAvailableExternallyLinkage()) 448 return true; 449 450 if (!GV->hasAppendingLinkage()) return false; 451 452 assert(GV->hasInitializer() && "Not a special LLVM global!"); 453 454 const TargetData *TD = TM.getTargetData(); 455 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 456 if (GV->getName() == "llvm.global_ctors") { 457 SwitchToDataSection(TAI->getStaticCtorsSection()); 458 EmitAlignment(Align, 0); 459 EmitXXStructorList(GV->getInitializer()); 460 return true; 461 } 462 463 if (GV->getName() == "llvm.global_dtors") { 464 SwitchToDataSection(TAI->getStaticDtorsSection()); 465 EmitAlignment(Align, 0); 466 EmitXXStructorList(GV->getInitializer()); 467 return true; 468 } 469 470 return false; 471} 472 473/// findGlobalValue - if CV is an expression equivalent to a single 474/// global value, return that value. 475const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) { 476 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 477 return GV; 478 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 479 const TargetData *TD = TM.getTargetData(); 480 unsigned Opcode = CE->getOpcode(); 481 switch (Opcode) { 482 case Instruction::GetElementPtr: { 483 const Constant *ptrVal = CE->getOperand(0); 484 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 485 if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size())) 486 return 0; 487 return findGlobalValue(ptrVal); 488 } 489 case Instruction::BitCast: 490 return findGlobalValue(CE->getOperand(0)); 491 default: 492 return 0; 493 } 494 } 495 return 0; 496} 497 498/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each 499/// global in the specified llvm.used list for which emitUsedDirectiveFor 500/// is true, as being used with this directive. 501 502void AsmPrinter::EmitLLVMUsedList(Constant *List) { 503 const char *Directive = TAI->getUsedDirective(); 504 505 // Should be an array of 'sbyte*'. 506 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 507 if (InitList == 0) return; 508 509 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 510 const GlobalValue *GV = findGlobalValue(InitList->getOperand(i)); 511 if (TAI->emitUsedDirectiveFor(GV, Mang)) { 512 O << Directive; 513 EmitConstantValueOnly(InitList->getOperand(i)); 514 O << '\n'; 515 } 516 } 517} 518 519/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 520/// function pointers, ignoring the init priority. 521void AsmPrinter::EmitXXStructorList(Constant *List) { 522 // Should be an array of '{ int, void ()* }' structs. The first value is the 523 // init priority, which we ignore. 524 if (!isa<ConstantArray>(List)) return; 525 ConstantArray *InitList = cast<ConstantArray>(List); 526 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 527 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 528 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 529 530 if (CS->getOperand(1)->isNullValue()) 531 return; // Found a null terminator, exit printing. 532 // Emit the function pointer. 533 EmitGlobalConstant(CS->getOperand(1)); 534 } 535} 536 537/// getGlobalLinkName - Returns the asm/link name of of the specified 538/// global variable. Should be overridden by each target asm printer to 539/// generate the appropriate value. 540const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV, 541 std::string &LinkName) const { 542 if (isa<Function>(GV)) { 543 LinkName += TAI->getFunctionAddrPrefix(); 544 LinkName += Mang->getValueName(GV); 545 LinkName += TAI->getFunctionAddrSuffix(); 546 } else { 547 LinkName += TAI->getGlobalVarAddrPrefix(); 548 LinkName += Mang->getValueName(GV); 549 LinkName += TAI->getGlobalVarAddrSuffix(); 550 } 551 552 return LinkName; 553} 554 555/// EmitExternalGlobal - Emit the external reference to a global variable. 556/// Should be overridden if an indirect reference should be used. 557void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { 558 std::string GLN; 559 O << getGlobalLinkName(GV, GLN); 560} 561 562 563 564//===----------------------------------------------------------------------===// 565/// LEB 128 number encoding. 566 567/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) 568/// representing an unsigned leb128 value. 569void AsmPrinter::PrintULEB128(unsigned Value) const { 570 char Buffer[20]; 571 do { 572 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 573 Value >>= 7; 574 if (Value) Byte |= 0x80; 575 O << "0x" << utohex_buffer(Byte, Buffer+20); 576 if (Value) O << ", "; 577 } while (Value); 578} 579 580/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) 581/// representing a signed leb128 value. 582void AsmPrinter::PrintSLEB128(int Value) const { 583 int Sign = Value >> (8 * sizeof(Value) - 1); 584 bool IsMore; 585 char Buffer[20]; 586 587 do { 588 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 589 Value >>= 7; 590 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 591 if (IsMore) Byte |= 0x80; 592 O << "0x" << utohex_buffer(Byte, Buffer+20); 593 if (IsMore) O << ", "; 594 } while (IsMore); 595} 596 597//===--------------------------------------------------------------------===// 598// Emission and print routines 599// 600 601/// PrintHex - Print a value as a hexidecimal value. 602/// 603void AsmPrinter::PrintHex(int Value) const { 604 char Buffer[20]; 605 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); 606} 607 608/// EOL - Print a newline character to asm stream. If a comment is present 609/// then it will be printed first. Comments should not contain '\n'. 610void AsmPrinter::EOL() const { 611 O << '\n'; 612} 613 614void AsmPrinter::EOL(const std::string &Comment) const { 615 if (VerboseAsm && !Comment.empty()) { 616 O << '\t' 617 << TAI->getCommentString() 618 << ' ' 619 << Comment; 620 } 621 O << '\n'; 622} 623 624void AsmPrinter::EOL(const char* Comment) const { 625 if (VerboseAsm && *Comment) { 626 O << '\t' 627 << TAI->getCommentString() 628 << ' ' 629 << Comment; 630 } 631 O << '\n'; 632} 633 634/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 635/// unsigned leb128 value. 636void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 637 if (TAI->hasLEB128()) { 638 O << "\t.uleb128\t" 639 << Value; 640 } else { 641 O << TAI->getData8bitsDirective(); 642 PrintULEB128(Value); 643 } 644} 645 646/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 647/// signed leb128 value. 648void AsmPrinter::EmitSLEB128Bytes(int Value) const { 649 if (TAI->hasLEB128()) { 650 O << "\t.sleb128\t" 651 << Value; 652 } else { 653 O << TAI->getData8bitsDirective(); 654 PrintSLEB128(Value); 655 } 656} 657 658/// EmitInt8 - Emit a byte directive and value. 659/// 660void AsmPrinter::EmitInt8(int Value) const { 661 O << TAI->getData8bitsDirective(); 662 PrintHex(Value & 0xFF); 663} 664 665/// EmitInt16 - Emit a short directive and value. 666/// 667void AsmPrinter::EmitInt16(int Value) const { 668 O << TAI->getData16bitsDirective(); 669 PrintHex(Value & 0xFFFF); 670} 671 672/// EmitInt32 - Emit a long directive and value. 673/// 674void AsmPrinter::EmitInt32(int Value) const { 675 O << TAI->getData32bitsDirective(); 676 PrintHex(Value); 677} 678 679/// EmitInt64 - Emit a long long directive and value. 680/// 681void AsmPrinter::EmitInt64(uint64_t Value) const { 682 if (TAI->getData64bitsDirective()) { 683 O << TAI->getData64bitsDirective(); 684 PrintHex(Value); 685 } else { 686 if (TM.getTargetData()->isBigEndian()) { 687 EmitInt32(unsigned(Value >> 32)); O << '\n'; 688 EmitInt32(unsigned(Value)); 689 } else { 690 EmitInt32(unsigned(Value)); O << '\n'; 691 EmitInt32(unsigned(Value >> 32)); 692 } 693 } 694} 695 696/// toOctal - Convert the low order bits of X into an octal digit. 697/// 698static inline char toOctal(int X) { 699 return (X&7)+'0'; 700} 701 702/// printStringChar - Print a char, escaped if necessary. 703/// 704static void printStringChar(raw_ostream &O, unsigned char C) { 705 if (C == '"') { 706 O << "\\\""; 707 } else if (C == '\\') { 708 O << "\\\\"; 709 } else if (isprint((unsigned char)C)) { 710 O << C; 711 } else { 712 switch(C) { 713 case '\b': O << "\\b"; break; 714 case '\f': O << "\\f"; break; 715 case '\n': O << "\\n"; break; 716 case '\r': O << "\\r"; break; 717 case '\t': O << "\\t"; break; 718 default: 719 O << '\\'; 720 O << toOctal(C >> 6); 721 O << toOctal(C >> 3); 722 O << toOctal(C >> 0); 723 break; 724 } 725 } 726} 727 728/// EmitString - Emit a string with quotes and a null terminator. 729/// Special characters are emitted properly. 730/// \literal (Eg. '\t') \endliteral 731void AsmPrinter::EmitString(const std::string &String) const { 732 EmitString(String.c_str(), String.size()); 733} 734 735void AsmPrinter::EmitString(const char *String, unsigned Size) const { 736 const char* AscizDirective = TAI->getAscizDirective(); 737 if (AscizDirective) 738 O << AscizDirective; 739 else 740 O << TAI->getAsciiDirective(); 741 O << '\"'; 742 for (unsigned i = 0; i < Size; ++i) 743 printStringChar(O, String[i]); 744 if (AscizDirective) 745 O << '\"'; 746 else 747 O << "\\0\""; 748} 749 750 751/// EmitFile - Emit a .file directive. 752void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 753 O << "\t.file\t" << Number << " \""; 754 for (unsigned i = 0, N = Name.size(); i < N; ++i) 755 printStringChar(O, Name[i]); 756 O << '\"'; 757} 758 759 760//===----------------------------------------------------------------------===// 761 762// EmitAlignment - Emit an alignment directive to the specified power of 763// two boundary. For example, if you pass in 3 here, you will get an 8 764// byte alignment. If a global value is specified, and if that global has 765// an explicit alignment requested, it will unconditionally override the 766// alignment request. However, if ForcedAlignBits is specified, this value 767// has final say: the ultimate alignment will be the max of ForcedAlignBits 768// and the alignment computed with NumBits and the global. 769// 770// The algorithm is: 771// Align = NumBits; 772// if (GV && GV->hasalignment) Align = GV->getalignment(); 773// Align = std::max(Align, ForcedAlignBits); 774// 775void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 776 unsigned ForcedAlignBits, 777 bool UseFillExpr) const { 778 if (GV && GV->getAlignment()) 779 NumBits = Log2_32(GV->getAlignment()); 780 NumBits = std::max(NumBits, ForcedAlignBits); 781 782 if (NumBits == 0) return; // No need to emit alignment. 783 if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; 784 O << TAI->getAlignDirective() << NumBits; 785 786 unsigned FillValue = TAI->getTextAlignFillValue(); 787 UseFillExpr &= IsInTextSection && FillValue; 788 if (UseFillExpr) { 789 O << ','; 790 PrintHex(FillValue); 791 } 792 O << '\n'; 793} 794 795 796/// EmitZeros - Emit a block of zeros. 797/// 798void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const { 799 if (NumZeros) { 800 if (TAI->getZeroDirective()) { 801 O << TAI->getZeroDirective() << NumZeros; 802 if (TAI->getZeroDirectiveSuffix()) 803 O << TAI->getZeroDirectiveSuffix(); 804 O << '\n'; 805 } else { 806 for (; NumZeros; --NumZeros) 807 O << TAI->getData8bitsDirective(AddrSpace) << "0\n"; 808 } 809 } 810} 811 812// Print out the specified constant, without a storage class. Only the 813// constants valid in constant expressions can occur here. 814void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 815 if (CV->isNullValue() || isa<UndefValue>(CV)) 816 O << '0'; 817 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 818 O << CI->getZExtValue(); 819 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 820 // This is a constant address for a global variable or function. Use the 821 // name of the variable or function as the address value, possibly 822 // decorating it with GlobalVarAddrPrefix/Suffix or 823 // FunctionAddrPrefix/Suffix (these all default to "" ) 824 if (isa<Function>(GV)) { 825 O << TAI->getFunctionAddrPrefix() 826 << Mang->getValueName(GV) 827 << TAI->getFunctionAddrSuffix(); 828 } else { 829 O << TAI->getGlobalVarAddrPrefix() 830 << Mang->getValueName(GV) 831 << TAI->getGlobalVarAddrSuffix(); 832 } 833 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 834 const TargetData *TD = TM.getTargetData(); 835 unsigned Opcode = CE->getOpcode(); 836 switch (Opcode) { 837 case Instruction::GetElementPtr: { 838 // generate a symbolic expression for the byte address 839 const Constant *ptrVal = CE->getOperand(0); 840 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 841 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 842 idxVec.size())) { 843 // Truncate/sext the offset to the pointer size. 844 if (TD->getPointerSizeInBits() != 64) { 845 int SExtAmount = 64-TD->getPointerSizeInBits(); 846 Offset = (Offset << SExtAmount) >> SExtAmount; 847 } 848 849 if (Offset) 850 O << '('; 851 EmitConstantValueOnly(ptrVal); 852 if (Offset > 0) 853 O << ") + " << Offset; 854 else if (Offset < 0) 855 O << ") - " << -Offset; 856 } else { 857 EmitConstantValueOnly(ptrVal); 858 } 859 break; 860 } 861 case Instruction::Trunc: 862 case Instruction::ZExt: 863 case Instruction::SExt: 864 case Instruction::FPTrunc: 865 case Instruction::FPExt: 866 case Instruction::UIToFP: 867 case Instruction::SIToFP: 868 case Instruction::FPToUI: 869 case Instruction::FPToSI: 870 assert(0 && "FIXME: Don't yet support this kind of constant cast expr"); 871 break; 872 case Instruction::BitCast: 873 return EmitConstantValueOnly(CE->getOperand(0)); 874 875 case Instruction::IntToPtr: { 876 // Handle casts to pointers by changing them into casts to the appropriate 877 // integer type. This promotes constant folding and simplifies this code. 878 Constant *Op = CE->getOperand(0); 879 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/); 880 return EmitConstantValueOnly(Op); 881 } 882 883 884 case Instruction::PtrToInt: { 885 // Support only foldable casts to/from pointers that can be eliminated by 886 // changing the pointer to the appropriately sized integer type. 887 Constant *Op = CE->getOperand(0); 888 const Type *Ty = CE->getType(); 889 890 // We can emit the pointer value into this slot if the slot is an 891 // integer slot greater or equal to the size of the pointer. 892 if (TD->getTypePaddedSize(Ty) >= TD->getTypePaddedSize(Op->getType())) 893 return EmitConstantValueOnly(Op); 894 895 O << "(("; 896 EmitConstantValueOnly(Op); 897 APInt ptrMask = APInt::getAllOnesValue(TD->getTypePaddedSizeInBits(Ty)); 898 899 SmallString<40> S; 900 ptrMask.toStringUnsigned(S); 901 O << ") & " << S.c_str() << ')'; 902 break; 903 } 904 case Instruction::Add: 905 case Instruction::Sub: 906 case Instruction::And: 907 case Instruction::Or: 908 case Instruction::Xor: 909 O << '('; 910 EmitConstantValueOnly(CE->getOperand(0)); 911 O << ')'; 912 switch (Opcode) { 913 case Instruction::Add: 914 O << " + "; 915 break; 916 case Instruction::Sub: 917 O << " - "; 918 break; 919 case Instruction::And: 920 O << " & "; 921 break; 922 case Instruction::Or: 923 O << " | "; 924 break; 925 case Instruction::Xor: 926 O << " ^ "; 927 break; 928 default: 929 break; 930 } 931 O << '('; 932 EmitConstantValueOnly(CE->getOperand(1)); 933 O << ')'; 934 break; 935 default: 936 assert(0 && "Unsupported operator!"); 937 } 938 } else { 939 assert(0 && "Unknown constant value!"); 940 } 941} 942 943/// printAsCString - Print the specified array as a C compatible string, only if 944/// the predicate isString is true. 945/// 946static void printAsCString(raw_ostream &O, const ConstantArray *CVA, 947 unsigned LastElt) { 948 assert(CVA->isString() && "Array is not string compatible!"); 949 950 O << '\"'; 951 for (unsigned i = 0; i != LastElt; ++i) { 952 unsigned char C = 953 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 954 printStringChar(O, C); 955 } 956 O << '\"'; 957} 958 959/// EmitString - Emit a zero-byte-terminated string constant. 960/// 961void AsmPrinter::EmitString(const ConstantArray *CVA) const { 962 unsigned NumElts = CVA->getNumOperands(); 963 if (TAI->getAscizDirective() && NumElts && 964 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 965 O << TAI->getAscizDirective(); 966 printAsCString(O, CVA, NumElts-1); 967 } else { 968 O << TAI->getAsciiDirective(); 969 printAsCString(O, CVA, NumElts); 970 } 971 O << '\n'; 972} 973 974void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA, 975 unsigned AddrSpace) { 976 if (CVA->isString()) { 977 EmitString(CVA); 978 } else { // Not a string. Print the values in successive locations 979 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 980 EmitGlobalConstant(CVA->getOperand(i), AddrSpace); 981 } 982} 983 984void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) { 985 const VectorType *PTy = CP->getType(); 986 987 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 988 EmitGlobalConstant(CP->getOperand(I)); 989} 990 991void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS, 992 unsigned AddrSpace) { 993 // Print the fields in successive locations. Pad to align if needed! 994 const TargetData *TD = TM.getTargetData(); 995 unsigned Size = TD->getTypePaddedSize(CVS->getType()); 996 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 997 uint64_t sizeSoFar = 0; 998 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 999 const Constant* field = CVS->getOperand(i); 1000 1001 // Check if padding is needed and insert one or more 0s. 1002 uint64_t fieldSize = TD->getTypePaddedSize(field->getType()); 1003 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 1004 - cvsLayout->getElementOffset(i)) - fieldSize; 1005 sizeSoFar += fieldSize + padSize; 1006 1007 // Now print the actual field value. 1008 EmitGlobalConstant(field, AddrSpace); 1009 1010 // Insert padding - this may include padding to increase the size of the 1011 // current field up to the ABI size (if the struct is not packed) as well 1012 // as padding to ensure that the next field starts at the right offset. 1013 EmitZeros(padSize, AddrSpace); 1014 } 1015 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 1016 "Layout of constant struct may be incorrect!"); 1017} 1018 1019void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP, 1020 unsigned AddrSpace) { 1021 // FP Constants are printed as integer constants to avoid losing 1022 // precision... 1023 const TargetData *TD = TM.getTargetData(); 1024 if (CFP->getType() == Type::DoubleTy) { 1025 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 1026 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1027 if (TAI->getData64bitsDirective(AddrSpace)) { 1028 O << TAI->getData64bitsDirective(AddrSpace) << i; 1029 if (VerboseAsm) 1030 O << '\t' << TAI->getCommentString() << " double value: " << Val; 1031 O << '\n'; 1032 } else if (TD->isBigEndian()) { 1033 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1034 if (VerboseAsm) 1035 O << '\t' << TAI->getCommentString() 1036 << " double most significant word " << Val; 1037 O << '\n'; 1038 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1039 if (VerboseAsm) 1040 O << '\t' << TAI->getCommentString() 1041 << " double least significant word " << Val; 1042 O << '\n'; 1043 } else { 1044 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1045 if (VerboseAsm) 1046 O << '\t' << TAI->getCommentString() 1047 << " double least significant word " << Val; 1048 O << '\n'; 1049 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1050 if (VerboseAsm) 1051 O << '\t' << TAI->getCommentString() 1052 << " double most significant word " << Val; 1053 O << '\n'; 1054 } 1055 return; 1056 } else if (CFP->getType() == Type::FloatTy) { 1057 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1058 O << TAI->getData32bitsDirective(AddrSpace) 1059 << CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1060 if (VerboseAsm) 1061 O << '\t' << TAI->getCommentString() << " float " << Val; 1062 O << '\n'; 1063 return; 1064 } else if (CFP->getType() == Type::X86_FP80Ty) { 1065 // all long double variants are printed as hex 1066 // api needed to prevent premature destruction 1067 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1068 const uint64_t *p = api.getRawData(); 1069 // Convert to double so we can print the approximate val as a comment. 1070 APFloat DoubleVal = CFP->getValueAPF(); 1071 bool ignored; 1072 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1073 &ignored); 1074 if (TD->isBigEndian()) { 1075 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1076 if (VerboseAsm) 1077 O << '\t' << TAI->getCommentString() 1078 << " long double most significant halfword of ~" 1079 << DoubleVal.convertToDouble(); 1080 O << '\n'; 1081 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1082 if (VerboseAsm) 1083 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1084 O << '\n'; 1085 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1086 if (VerboseAsm) 1087 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1088 O << '\n'; 1089 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1090 if (VerboseAsm) 1091 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1092 O << '\n'; 1093 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1094 if (VerboseAsm) 1095 O << '\t' << TAI->getCommentString() 1096 << " long double least significant halfword"; 1097 O << '\n'; 1098 } else { 1099 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1100 if (VerboseAsm) 1101 O << '\t' << TAI->getCommentString() 1102 << " long double least significant halfword of ~" 1103 << DoubleVal.convertToDouble(); 1104 O << '\n'; 1105 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1106 if (VerboseAsm) 1107 O << '\t' << TAI->getCommentString() 1108 << " long double next halfword"; 1109 O << '\n'; 1110 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1111 if (VerboseAsm) 1112 O << '\t' << TAI->getCommentString() 1113 << " long double next halfword"; 1114 O << '\n'; 1115 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1116 if (VerboseAsm) 1117 O << '\t' << TAI->getCommentString() 1118 << " long double next halfword"; 1119 O << '\n'; 1120 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1121 if (VerboseAsm) 1122 O << '\t' << TAI->getCommentString() 1123 << " long double most significant halfword"; 1124 O << '\n'; 1125 } 1126 EmitZeros(TD->getTypePaddedSize(Type::X86_FP80Ty) - 1127 TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace); 1128 return; 1129 } else if (CFP->getType() == Type::PPC_FP128Ty) { 1130 // all long double variants are printed as hex 1131 // api needed to prevent premature destruction 1132 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1133 const uint64_t *p = api.getRawData(); 1134 if (TD->isBigEndian()) { 1135 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1136 if (VerboseAsm) 1137 O << '\t' << TAI->getCommentString() 1138 << " long double most significant word"; 1139 O << '\n'; 1140 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1141 if (VerboseAsm) 1142 O << '\t' << TAI->getCommentString() 1143 << " long double next word"; 1144 O << '\n'; 1145 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1146 if (VerboseAsm) 1147 O << '\t' << TAI->getCommentString() 1148 << " long double next word"; 1149 O << '\n'; 1150 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1151 if (VerboseAsm) 1152 O << '\t' << TAI->getCommentString() 1153 << " long double least significant word"; 1154 O << '\n'; 1155 } else { 1156 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1157 if (VerboseAsm) 1158 O << '\t' << TAI->getCommentString() 1159 << " long double least significant word"; 1160 O << '\n'; 1161 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1162 if (VerboseAsm) 1163 O << '\t' << TAI->getCommentString() 1164 << " long double next word"; 1165 O << '\n'; 1166 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1167 if (VerboseAsm) 1168 O << '\t' << TAI->getCommentString() 1169 << " long double next word"; 1170 O << '\n'; 1171 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1172 if (VerboseAsm) 1173 O << '\t' << TAI->getCommentString() 1174 << " long double most significant word"; 1175 O << '\n'; 1176 } 1177 return; 1178 } else assert(0 && "Floating point constant type not handled"); 1179} 1180 1181void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 1182 unsigned AddrSpace) { 1183 const TargetData *TD = TM.getTargetData(); 1184 unsigned BitWidth = CI->getBitWidth(); 1185 assert(isPowerOf2_32(BitWidth) && 1186 "Non-power-of-2-sized integers not handled!"); 1187 1188 // We don't expect assemblers to support integer data directives 1189 // for more than 64 bits, so we emit the data in at most 64-bit 1190 // quantities at a time. 1191 const uint64_t *RawData = CI->getValue().getRawData(); 1192 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1193 uint64_t Val; 1194 if (TD->isBigEndian()) 1195 Val = RawData[e - i - 1]; 1196 else 1197 Val = RawData[i]; 1198 1199 if (TAI->getData64bitsDirective(AddrSpace)) 1200 O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n'; 1201 else if (TD->isBigEndian()) { 1202 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1203 if (VerboseAsm) 1204 O << '\t' << TAI->getCommentString() 1205 << " Double-word most significant word " << Val; 1206 O << '\n'; 1207 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1208 if (VerboseAsm) 1209 O << '\t' << TAI->getCommentString() 1210 << " Double-word least significant word " << Val; 1211 O << '\n'; 1212 } else { 1213 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1214 if (VerboseAsm) 1215 O << '\t' << TAI->getCommentString() 1216 << " Double-word least significant word " << Val; 1217 O << '\n'; 1218 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1219 if (VerboseAsm) 1220 O << '\t' << TAI->getCommentString() 1221 << " Double-word most significant word " << Val; 1222 O << '\n'; 1223 } 1224 } 1225} 1226 1227/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1228void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1229 const TargetData *TD = TM.getTargetData(); 1230 const Type *type = CV->getType(); 1231 unsigned Size = TD->getTypePaddedSize(type); 1232 1233 if (CV->isNullValue() || isa<UndefValue>(CV)) { 1234 EmitZeros(Size, AddrSpace); 1235 return; 1236 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 1237 EmitGlobalConstantArray(CVA , AddrSpace); 1238 return; 1239 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 1240 EmitGlobalConstantStruct(CVS, AddrSpace); 1241 return; 1242 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1243 EmitGlobalConstantFP(CFP, AddrSpace); 1244 return; 1245 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1246 // Small integers are handled below; large integers are handled here. 1247 if (Size > 4) { 1248 EmitGlobalConstantLargeInt(CI, AddrSpace); 1249 return; 1250 } 1251 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1252 EmitGlobalConstantVector(CP); 1253 return; 1254 } 1255 1256 printDataDirective(type, AddrSpace); 1257 EmitConstantValueOnly(CV); 1258 if (VerboseAsm) { 1259 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1260 SmallString<40> S; 1261 CI->getValue().toStringUnsigned(S, 16); 1262 O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str(); 1263 } 1264 } 1265 O << '\n'; 1266} 1267 1268void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1269 // Target doesn't support this yet! 1270 abort(); 1271} 1272 1273/// PrintSpecial - Print information related to the specified machine instr 1274/// that is independent of the operand, and may be independent of the instr 1275/// itself. This can be useful for portably encoding the comment character 1276/// or other bits of target-specific knowledge into the asmstrings. The 1277/// syntax used is ${:comment}. Targets can override this to add support 1278/// for their own strange codes. 1279void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1280 if (!strcmp(Code, "private")) { 1281 O << TAI->getPrivateGlobalPrefix(); 1282 } else if (!strcmp(Code, "comment")) { 1283 if (VerboseAsm) 1284 O << TAI->getCommentString(); 1285 } else if (!strcmp(Code, "uid")) { 1286 // Assign a unique ID to this machine instruction. 1287 static const MachineInstr *LastMI = 0; 1288 static const Function *F = 0; 1289 static unsigned Counter = 0U-1; 1290 1291 // Comparing the address of MI isn't sufficient, because machineinstrs may 1292 // be allocated to the same address across functions. 1293 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1294 1295 // If this is a new machine instruction, bump the counter. 1296 if (LastMI != MI || F != ThisF) { 1297 ++Counter; 1298 LastMI = MI; 1299 F = ThisF; 1300 } 1301 O << Counter; 1302 } else { 1303 cerr << "Unknown special formatter '" << Code 1304 << "' for machine instr: " << *MI; 1305 exit(1); 1306 } 1307} 1308 1309 1310/// printInlineAsm - This method formats and prints the specified machine 1311/// instruction that is an inline asm. 1312void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1313 unsigned NumOperands = MI->getNumOperands(); 1314 1315 // Count the number of register definitions. 1316 unsigned NumDefs = 0; 1317 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1318 ++NumDefs) 1319 assert(NumDefs != NumOperands-1 && "No asm string?"); 1320 1321 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1322 1323 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1324 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1325 1326 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1327 // These are useful to see where empty asm's wound up. 1328 if (AsmStr[0] == 0) { 1329 O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1330 return; 1331 } 1332 1333 O << TAI->getInlineAsmStart() << "\n\t"; 1334 1335 // The variant of the current asmprinter. 1336 int AsmPrinterVariant = TAI->getAssemblerDialect(); 1337 1338 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1339 const char *LastEmitted = AsmStr; // One past the last character emitted. 1340 1341 while (*LastEmitted) { 1342 switch (*LastEmitted) { 1343 default: { 1344 // Not a special case, emit the string section literally. 1345 const char *LiteralEnd = LastEmitted+1; 1346 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1347 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1348 ++LiteralEnd; 1349 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1350 O.write(LastEmitted, LiteralEnd-LastEmitted); 1351 LastEmitted = LiteralEnd; 1352 break; 1353 } 1354 case '\n': 1355 ++LastEmitted; // Consume newline character. 1356 O << '\n'; // Indent code with newline. 1357 break; 1358 case '$': { 1359 ++LastEmitted; // Consume '$' character. 1360 bool Done = true; 1361 1362 // Handle escapes. 1363 switch (*LastEmitted) { 1364 default: Done = false; break; 1365 case '$': // $$ -> $ 1366 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1367 O << '$'; 1368 ++LastEmitted; // Consume second '$' character. 1369 break; 1370 case '(': // $( -> same as GCC's { character. 1371 ++LastEmitted; // Consume '(' character. 1372 if (CurVariant != -1) { 1373 cerr << "Nested variants found in inline asm string: '" 1374 << AsmStr << "'\n"; 1375 exit(1); 1376 } 1377 CurVariant = 0; // We're in the first variant now. 1378 break; 1379 case '|': 1380 ++LastEmitted; // consume '|' character. 1381 if (CurVariant == -1) 1382 O << '|'; // this is gcc's behavior for | outside a variant 1383 else 1384 ++CurVariant; // We're in the next variant. 1385 break; 1386 case ')': // $) -> same as GCC's } char. 1387 ++LastEmitted; // consume ')' character. 1388 if (CurVariant == -1) 1389 O << '}'; // this is gcc's behavior for } outside a variant 1390 else 1391 CurVariant = -1; 1392 break; 1393 } 1394 if (Done) break; 1395 1396 bool HasCurlyBraces = false; 1397 if (*LastEmitted == '{') { // ${variable} 1398 ++LastEmitted; // Consume '{' character. 1399 HasCurlyBraces = true; 1400 } 1401 1402 // If we have ${:foo}, then this is not a real operand reference, it is a 1403 // "magic" string reference, just like in .td files. Arrange to call 1404 // PrintSpecial. 1405 if (HasCurlyBraces && *LastEmitted == ':') { 1406 ++LastEmitted; 1407 const char *StrStart = LastEmitted; 1408 const char *StrEnd = strchr(StrStart, '}'); 1409 if (StrEnd == 0) { 1410 cerr << "Unterminated ${:foo} operand in inline asm string: '" 1411 << AsmStr << "'\n"; 1412 exit(1); 1413 } 1414 1415 std::string Val(StrStart, StrEnd); 1416 PrintSpecial(MI, Val.c_str()); 1417 LastEmitted = StrEnd+1; 1418 break; 1419 } 1420 1421 const char *IDStart = LastEmitted; 1422 char *IDEnd; 1423 errno = 0; 1424 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1425 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1426 cerr << "Bad $ operand number in inline asm string: '" 1427 << AsmStr << "'\n"; 1428 exit(1); 1429 } 1430 LastEmitted = IDEnd; 1431 1432 char Modifier[2] = { 0, 0 }; 1433 1434 if (HasCurlyBraces) { 1435 // If we have curly braces, check for a modifier character. This 1436 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1437 if (*LastEmitted == ':') { 1438 ++LastEmitted; // Consume ':' character. 1439 if (*LastEmitted == 0) { 1440 cerr << "Bad ${:} expression in inline asm string: '" 1441 << AsmStr << "'\n"; 1442 exit(1); 1443 } 1444 1445 Modifier[0] = *LastEmitted; 1446 ++LastEmitted; // Consume modifier character. 1447 } 1448 1449 if (*LastEmitted != '}') { 1450 cerr << "Bad ${} expression in inline asm string: '" 1451 << AsmStr << "'\n"; 1452 exit(1); 1453 } 1454 ++LastEmitted; // Consume '}' character. 1455 } 1456 1457 if ((unsigned)Val >= NumOperands-1) { 1458 cerr << "Invalid $ operand number in inline asm string: '" 1459 << AsmStr << "'\n"; 1460 exit(1); 1461 } 1462 1463 // Okay, we finally have a value number. Ask the target to print this 1464 // operand! 1465 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1466 unsigned OpNo = 1; 1467 1468 bool Error = false; 1469 1470 // Scan to find the machine operand number for the operand. 1471 for (; Val; --Val) { 1472 if (OpNo >= MI->getNumOperands()) break; 1473 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1474 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1475 } 1476 1477 if (OpNo >= MI->getNumOperands()) { 1478 Error = true; 1479 } else { 1480 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1481 ++OpNo; // Skip over the ID number. 1482 1483 if (Modifier[0]=='l') // labels are target independent 1484 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), 1485 false, false, false); 1486 else { 1487 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1488 if ((OpFlags & 7) == 4) { 1489 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1490 Modifier[0] ? Modifier : 0); 1491 } else { 1492 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1493 Modifier[0] ? Modifier : 0); 1494 } 1495 } 1496 } 1497 if (Error) { 1498 cerr << "Invalid operand found in inline asm: '" 1499 << AsmStr << "'\n"; 1500 MI->dump(); 1501 exit(1); 1502 } 1503 } 1504 break; 1505 } 1506 } 1507 } 1508 O << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1509} 1510 1511/// printImplicitDef - This method prints the specified machine instruction 1512/// that is an implicit def. 1513void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1514 if (VerboseAsm) 1515 O << '\t' << TAI->getCommentString() << " implicit-def: " 1516 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; 1517} 1518 1519/// printLabel - This method prints a local label used by debug and 1520/// exception handling tables. 1521void AsmPrinter::printLabel(const MachineInstr *MI) const { 1522 printLabel(MI->getOperand(0).getImm()); 1523} 1524 1525void AsmPrinter::printLabel(unsigned Id) const { 1526 O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; 1527} 1528 1529/// printDeclare - This method prints a local variable declaration used by 1530/// debug tables. 1531/// FIXME: It doesn't really print anything rather it inserts a DebugVariable 1532/// entry into dwarf table. 1533void AsmPrinter::printDeclare(const MachineInstr *MI) const { 1534 unsigned FI = MI->getOperand(0).getIndex(); 1535 GlobalValue *GV = MI->getOperand(1).getGlobal(); 1536 DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI); 1537} 1538 1539/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1540/// instruction, using the specified assembler variant. Targets should 1541/// overried this to format as appropriate. 1542bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1543 unsigned AsmVariant, const char *ExtraCode) { 1544 // Target doesn't support this yet! 1545 return true; 1546} 1547 1548bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1549 unsigned AsmVariant, 1550 const char *ExtraCode) { 1551 // Target doesn't support this yet! 1552 return true; 1553} 1554 1555/// printBasicBlockLabel - This method prints the label for the specified 1556/// MachineBasicBlock 1557void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, 1558 bool printAlign, 1559 bool printColon, 1560 bool printComment) const { 1561 if (printAlign) { 1562 unsigned Align = MBB->getAlignment(); 1563 if (Align) 1564 EmitAlignment(Log2_32(Align)); 1565 } 1566 1567 O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' 1568 << MBB->getNumber(); 1569 if (printColon) 1570 O << ':'; 1571 if (printComment && MBB->getBasicBlock()) 1572 O << '\t' << TAI->getCommentString() << ' ' 1573 << MBB->getBasicBlock()->getNameStart(); 1574} 1575 1576/// printPICJumpTableSetLabel - This method prints a set label for the 1577/// specified MachineBasicBlock for a jumptable entry. 1578void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1579 const MachineBasicBlock *MBB) const { 1580 if (!TAI->getSetDirective()) 1581 return; 1582 1583 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1584 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1585 printBasicBlockLabel(MBB, false, false, false); 1586 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1587 << '_' << uid << '\n'; 1588} 1589 1590void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1591 const MachineBasicBlock *MBB) const { 1592 if (!TAI->getSetDirective()) 1593 return; 1594 1595 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1596 << getFunctionNumber() << '_' << uid << '_' << uid2 1597 << "_set_" << MBB->getNumber() << ','; 1598 printBasicBlockLabel(MBB, false, false, false); 1599 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1600 << '_' << uid << '_' << uid2 << '\n'; 1601} 1602 1603/// printDataDirective - This method prints the asm directive for the 1604/// specified type. 1605void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { 1606 const TargetData *TD = TM.getTargetData(); 1607 switch (type->getTypeID()) { 1608 case Type::IntegerTyID: { 1609 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1610 if (BitWidth <= 8) 1611 O << TAI->getData8bitsDirective(AddrSpace); 1612 else if (BitWidth <= 16) 1613 O << TAI->getData16bitsDirective(AddrSpace); 1614 else if (BitWidth <= 32) 1615 O << TAI->getData32bitsDirective(AddrSpace); 1616 else if (BitWidth <= 64) { 1617 assert(TAI->getData64bitsDirective(AddrSpace) && 1618 "Target cannot handle 64-bit constant exprs!"); 1619 O << TAI->getData64bitsDirective(AddrSpace); 1620 } else { 1621 assert(0 && "Target cannot handle given data directive width!"); 1622 } 1623 break; 1624 } 1625 case Type::PointerTyID: 1626 if (TD->getPointerSize() == 8) { 1627 assert(TAI->getData64bitsDirective(AddrSpace) && 1628 "Target cannot handle 64-bit pointer exprs!"); 1629 O << TAI->getData64bitsDirective(AddrSpace); 1630 } else if (TD->getPointerSize() == 2) { 1631 O << TAI->getData16bitsDirective(AddrSpace); 1632 } else if (TD->getPointerSize() == 1) { 1633 O << TAI->getData8bitsDirective(AddrSpace); 1634 } else { 1635 O << TAI->getData32bitsDirective(AddrSpace); 1636 } 1637 break; 1638 case Type::FloatTyID: case Type::DoubleTyID: 1639 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1640 assert (0 && "Should have already output floating point constant."); 1641 default: 1642 assert (0 && "Can't handle printing this type of thing"); 1643 break; 1644 } 1645} 1646 1647void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix, 1648 const char *Prefix) { 1649 if (Name[0]=='\"') 1650 O << '\"'; 1651 O << TAI->getPrivateGlobalPrefix(); 1652 if (Prefix) O << Prefix; 1653 if (Name[0]=='\"') 1654 O << '\"'; 1655 if (Name[0]=='\"') 1656 O << Name[1]; 1657 else 1658 O << Name; 1659 O << Suffix; 1660 if (Name[0]=='\"') 1661 O << '\"'; 1662} 1663 1664void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) { 1665 printSuffixedName(Name.c_str(), Suffix); 1666} 1667 1668void AsmPrinter::printVisibility(const std::string& Name, 1669 unsigned Visibility) const { 1670 if (Visibility == GlobalValue::HiddenVisibility) { 1671 if (const char *Directive = TAI->getHiddenDirective()) 1672 O << Directive << Name << '\n'; 1673 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1674 if (const char *Directive = TAI->getProtectedDirective()) 1675 O << Directive << Name << '\n'; 1676 } 1677} 1678 1679void AsmPrinter::printOffset(int64_t Offset) const { 1680 if (Offset > 0) 1681 O << '+' << Offset; 1682 else if (Offset < 0) 1683 O << Offset; 1684} 1685 1686GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1687 if (!S->usesMetadata()) 1688 return 0; 1689 1690 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1691 if (GCPI != GCMetadataPrinters.end()) 1692 return GCPI->second; 1693 1694 const char *Name = S->getName().c_str(); 1695 1696 for (GCMetadataPrinterRegistry::iterator 1697 I = GCMetadataPrinterRegistry::begin(), 1698 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1699 if (strcmp(Name, I->getName()) == 0) { 1700 GCMetadataPrinter *GMP = I->instantiate(); 1701 GMP->S = S; 1702 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1703 return GMP; 1704 } 1705 1706 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1707 abort(); 1708} 1709