AsmPrinter.cpp revision 5f2801bd653f82927ddd7612cb149e78a8509ed4
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#define DEBUG_TYPE "asm-printer" 15#include "llvm/CodeGen/AsmPrinter.h" 16#include "DwarfDebug.h" 17#include "DwarfException.h" 18#include "llvm/ADT/SmallString.h" 19#include "llvm/ADT/Statistic.h" 20#include "llvm/Analysis/ConstantFolding.h" 21#include "llvm/Assembly/Writer.h" 22#include "llvm/CodeGen/GCMetadataPrinter.h" 23#include "llvm/CodeGen/MachineConstantPool.h" 24#include "llvm/CodeGen/MachineFrameInfo.h" 25#include "llvm/CodeGen/MachineFunction.h" 26#include "llvm/CodeGen/MachineJumpTableInfo.h" 27#include "llvm/CodeGen/MachineLoopInfo.h" 28#include "llvm/CodeGen/MachineModuleInfo.h" 29#include "llvm/DebugInfo.h" 30#include "llvm/IR/DataLayout.h" 31#include "llvm/IR/Module.h" 32#include "llvm/IR/Operator.h" 33#include "llvm/MC/MCAsmInfo.h" 34#include "llvm/MC/MCContext.h" 35#include "llvm/MC/MCExpr.h" 36#include "llvm/MC/MCInst.h" 37#include "llvm/MC/MCSection.h" 38#include "llvm/MC/MCStreamer.h" 39#include "llvm/MC/MCSymbol.h" 40#include "llvm/Support/ErrorHandling.h" 41#include "llvm/Support/Format.h" 42#include "llvm/Support/MathExtras.h" 43#include "llvm/Support/Timer.h" 44#include "llvm/Target/Mangler.h" 45#include "llvm/Target/TargetInstrInfo.h" 46#include "llvm/Target/TargetLowering.h" 47#include "llvm/Target/TargetLoweringObjectFile.h" 48#include "llvm/Target/TargetOptions.h" 49#include "llvm/Target/TargetRegisterInfo.h" 50using namespace llvm; 51 52static const char *DWARFGroupName = "DWARF Emission"; 53static const char *DbgTimerName = "DWARF Debug Writer"; 54static const char *EHTimerName = "DWARF Exception Writer"; 55 56STATISTIC(EmittedInsts, "Number of machine instrs printed"); 57 58char AsmPrinter::ID = 0; 59 60typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type; 61static gcp_map_type &getGCMap(void *&P) { 62 if (P == 0) 63 P = new gcp_map_type(); 64 return *(gcp_map_type*)P; 65} 66 67 68/// getGVAlignmentLog2 - Return the alignment to use for the specified global 69/// value in log2 form. This rounds up to the preferred alignment if possible 70/// and legal. 71static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, 72 unsigned InBits = 0) { 73 unsigned NumBits = 0; 74 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 75 NumBits = TD.getPreferredAlignmentLog(GVar); 76 77 // If InBits is specified, round it to it. 78 if (InBits > NumBits) 79 NumBits = InBits; 80 81 // If the GV has a specified alignment, take it into account. 82 if (GV->getAlignment() == 0) 83 return NumBits; 84 85 unsigned GVAlign = Log2_32(GV->getAlignment()); 86 87 // If the GVAlign is larger than NumBits, or if we are required to obey 88 // NumBits because the GV has an assigned section, obey it. 89 if (GVAlign > NumBits || GV->hasSection()) 90 NumBits = GVAlign; 91 return NumBits; 92} 93 94AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 95 : MachineFunctionPass(ID), 96 TM(tm), MAI(tm.getMCAsmInfo()), 97 OutContext(Streamer.getContext()), 98 OutStreamer(Streamer), 99 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { 100 DD = 0; DE = 0; MMI = 0; LI = 0; 101 CurrentFnSym = CurrentFnSymForSize = 0; 102 GCMetadataPrinters = 0; 103 VerboseAsm = Streamer.isVerboseAsm(); 104} 105 106AsmPrinter::~AsmPrinter() { 107 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized"); 108 109 if (GCMetadataPrinters != 0) { 110 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 111 112 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I) 113 delete I->second; 114 delete &GCMap; 115 GCMetadataPrinters = 0; 116 } 117 118 delete &OutStreamer; 119} 120 121/// getFunctionNumber - Return a unique ID for the current function. 122/// 123unsigned AsmPrinter::getFunctionNumber() const { 124 return MF->getFunctionNumber(); 125} 126 127const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 128 return TM.getTargetLowering()->getObjFileLowering(); 129} 130 131/// getDataLayout - Return information about data layout. 132const DataLayout &AsmPrinter::getDataLayout() const { 133 return *TM.getDataLayout(); 134} 135 136/// getCurrentSection() - Return the current section we are emitting to. 137const MCSection *AsmPrinter::getCurrentSection() const { 138 return OutStreamer.getCurrentSection(); 139} 140 141 142 143void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 144 AU.setPreservesAll(); 145 MachineFunctionPass::getAnalysisUsage(AU); 146 AU.addRequired<MachineModuleInfo>(); 147 AU.addRequired<GCModuleInfo>(); 148 if (isVerbose()) 149 AU.addRequired<MachineLoopInfo>(); 150} 151 152bool AsmPrinter::doInitialization(Module &M) { 153 OutStreamer.InitStreamer(); 154 155 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 156 MMI->AnalyzeModule(M); 157 158 // Initialize TargetLoweringObjectFile. 159 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 160 .Initialize(OutContext, TM); 161 162 Mang = new Mangler(OutContext, *TM.getDataLayout()); 163 164 // Allow the target to emit any magic that it wants at the start of the file. 165 EmitStartOfAsmFile(M); 166 167 // Very minimal debug info. It is ignored if we emit actual debug info. If we 168 // don't, this at least helps the user find where a global came from. 169 if (MAI->hasSingleParameterDotFile()) { 170 // .file "foo.c" 171 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 172 } 173 174 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 175 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 176 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 177 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 178 MP->beginAssembly(*this); 179 180 // Emit module-level inline asm if it exists. 181 if (!M.getModuleInlineAsm().empty()) { 182 OutStreamer.AddComment("Start of file scope inline assembly"); 183 OutStreamer.AddBlankLine(); 184 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 185 OutStreamer.AddComment("End of file scope inline assembly"); 186 OutStreamer.AddBlankLine(); 187 } 188 189 if (MAI->doesSupportDebugInformation()) 190 DD = new DwarfDebug(this, &M); 191 192 switch (MAI->getExceptionHandlingType()) { 193 case ExceptionHandling::None: 194 return false; 195 case ExceptionHandling::SjLj: 196 case ExceptionHandling::DwarfCFI: 197 DE = new DwarfCFIException(this); 198 return false; 199 case ExceptionHandling::ARM: 200 DE = new ARMException(this); 201 return false; 202 case ExceptionHandling::Win64: 203 DE = new Win64Exception(this); 204 return false; 205 } 206 207 llvm_unreachable("Unknown exception type."); 208} 209 210void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const { 211 switch ((GlobalValue::LinkageTypes)Linkage) { 212 case GlobalValue::CommonLinkage: 213 case GlobalValue::LinkOnceAnyLinkage: 214 case GlobalValue::LinkOnceODRLinkage: 215 case GlobalValue::LinkOnceODRAutoHideLinkage: 216 case GlobalValue::WeakAnyLinkage: 217 case GlobalValue::WeakODRLinkage: 218 case GlobalValue::LinkerPrivateWeakLinkage: 219 if (MAI->getWeakDefDirective() != 0) { 220 // .globl _foo 221 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 222 223 if ((GlobalValue::LinkageTypes)Linkage != 224 GlobalValue::LinkOnceODRAutoHideLinkage) 225 // .weak_definition _foo 226 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 227 else 228 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 229 } else if (MAI->getLinkOnceDirective() != 0) { 230 // .globl _foo 231 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 232 //NOTE: linkonce is handled by the section the symbol was assigned to. 233 } else { 234 // .weak _foo 235 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 236 } 237 break; 238 case GlobalValue::DLLExportLinkage: 239 case GlobalValue::AppendingLinkage: 240 // FIXME: appending linkage variables should go into a section of 241 // their name or something. For now, just emit them as external. 242 case GlobalValue::ExternalLinkage: 243 // If external or appending, declare as a global symbol. 244 // .globl _foo 245 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 246 break; 247 case GlobalValue::PrivateLinkage: 248 case GlobalValue::InternalLinkage: 249 case GlobalValue::LinkerPrivateLinkage: 250 break; 251 default: 252 llvm_unreachable("Unknown linkage type!"); 253 } 254} 255 256 257/// EmitGlobalVariable - Emit the specified global variable to the .s file. 258void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 259 if (GV->hasInitializer()) { 260 // Check to see if this is a special global used by LLVM, if so, emit it. 261 if (EmitSpecialLLVMGlobal(GV)) 262 return; 263 264 if (isVerbose()) { 265 WriteAsOperand(OutStreamer.GetCommentOS(), GV, 266 /*PrintType=*/false, GV->getParent()); 267 OutStreamer.GetCommentOS() << '\n'; 268 } 269 } 270 271 MCSymbol *GVSym = Mang->getSymbol(GV); 272 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 273 274 if (!GV->hasInitializer()) // External globals require no extra code. 275 return; 276 277 if (MAI->hasDotTypeDotSizeDirective()) 278 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 279 280 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 281 282 const DataLayout *TD = TM.getDataLayout(); 283 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType()); 284 285 // If the alignment is specified, we *must* obey it. Overaligning a global 286 // with a specified alignment is a prompt way to break globals emitted to 287 // sections and expected to be contiguous (e.g. ObjC metadata). 288 unsigned AlignLog = getGVAlignmentLog2(GV, *TD); 289 290 // Handle common and BSS local symbols (.lcomm). 291 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 292 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 293 unsigned Align = 1 << AlignLog; 294 295 // Handle common symbols. 296 if (GVKind.isCommon()) { 297 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 298 Align = 0; 299 300 // .comm _foo, 42, 4 301 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 302 return; 303 } 304 305 // Handle local BSS symbols. 306 if (MAI->hasMachoZeroFillDirective()) { 307 const MCSection *TheSection = 308 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 309 // .zerofill __DATA, __bss, _foo, 400, 5 310 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 311 return; 312 } 313 314 // Use .lcomm only if it supports user-specified alignment. 315 // Otherwise, while it would still be correct to use .lcomm in some 316 // cases (e.g. when Align == 1), the external assembler might enfore 317 // some -unknown- default alignment behavior, which could cause 318 // spurious differences between external and integrated assembler. 319 // Prefer to simply fall back to .local / .comm in this case. 320 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 321 // .lcomm _foo, 42 322 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 323 return; 324 } 325 326 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 327 Align = 0; 328 329 // .local _foo 330 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 331 // .comm _foo, 42, 4 332 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 333 return; 334 } 335 336 const MCSection *TheSection = 337 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 338 339 // Handle the zerofill directive on darwin, which is a special form of BSS 340 // emission. 341 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 342 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 343 344 // .globl _foo 345 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 346 // .zerofill __DATA, __common, _foo, 400, 5 347 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 348 return; 349 } 350 351 // Handle thread local data for mach-o which requires us to output an 352 // additional structure of data and mangle the original symbol so that we 353 // can reference it later. 354 // 355 // TODO: This should become an "emit thread local global" method on TLOF. 356 // All of this macho specific stuff should be sunk down into TLOFMachO and 357 // stuff like "TLSExtraDataSection" should no longer be part of the parent 358 // TLOF class. This will also make it more obvious that stuff like 359 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 360 // specific code. 361 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 362 // Emit the .tbss symbol 363 MCSymbol *MangSym = 364 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 365 366 if (GVKind.isThreadBSS()) 367 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 368 else if (GVKind.isThreadData()) { 369 OutStreamer.SwitchSection(TheSection); 370 371 EmitAlignment(AlignLog, GV); 372 OutStreamer.EmitLabel(MangSym); 373 374 EmitGlobalConstant(GV->getInitializer()); 375 } 376 377 OutStreamer.AddBlankLine(); 378 379 // Emit the variable struct for the runtime. 380 const MCSection *TLVSect 381 = getObjFileLowering().getTLSExtraDataSection(); 382 383 OutStreamer.SwitchSection(TLVSect); 384 // Emit the linkage here. 385 EmitLinkage(GV->getLinkage(), GVSym); 386 OutStreamer.EmitLabel(GVSym); 387 388 // Three pointers in size: 389 // - __tlv_bootstrap - used to make sure support exists 390 // - spare pointer, used when mapped by the runtime 391 // - pointer to mangled symbol above with initializer 392 unsigned PtrSize = TD->getPointerSizeInBits()/8; 393 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 394 PtrSize); 395 OutStreamer.EmitIntValue(0, PtrSize); 396 OutStreamer.EmitSymbolValue(MangSym, PtrSize); 397 398 OutStreamer.AddBlankLine(); 399 return; 400 } 401 402 OutStreamer.SwitchSection(TheSection); 403 404 EmitLinkage(GV->getLinkage(), GVSym); 405 EmitAlignment(AlignLog, GV); 406 407 OutStreamer.EmitLabel(GVSym); 408 409 EmitGlobalConstant(GV->getInitializer()); 410 411 if (MAI->hasDotTypeDotSizeDirective()) 412 // .size foo, 42 413 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 414 415 OutStreamer.AddBlankLine(); 416} 417 418/// EmitFunctionHeader - This method emits the header for the current 419/// function. 420void AsmPrinter::EmitFunctionHeader() { 421 // Print out constants referenced by the function 422 EmitConstantPool(); 423 424 // Print the 'header' of function. 425 const Function *F = MF->getFunction(); 426 427 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); 428 EmitVisibility(CurrentFnSym, F->getVisibility()); 429 430 EmitLinkage(F->getLinkage(), CurrentFnSym); 431 EmitAlignment(MF->getAlignment(), F); 432 433 if (MAI->hasDotTypeDotSizeDirective()) 434 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 435 436 if (isVerbose()) { 437 WriteAsOperand(OutStreamer.GetCommentOS(), F, 438 /*PrintType=*/false, F->getParent()); 439 OutStreamer.GetCommentOS() << '\n'; 440 } 441 442 // Emit the CurrentFnSym. This is a virtual function to allow targets to 443 // do their wild and crazy things as required. 444 EmitFunctionEntryLabel(); 445 446 // If the function had address-taken blocks that got deleted, then we have 447 // references to the dangling symbols. Emit them at the start of the function 448 // so that we don't get references to undefined symbols. 449 std::vector<MCSymbol*> DeadBlockSyms; 450 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 451 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 452 OutStreamer.AddComment("Address taken block that was later removed"); 453 OutStreamer.EmitLabel(DeadBlockSyms[i]); 454 } 455 456 // Add some workaround for linkonce linkage on Cygwin\MinGW. 457 if (MAI->getLinkOnceDirective() != 0 && 458 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) { 459 // FIXME: What is this? 460 MCSymbol *FakeStub = 461 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+ 462 CurrentFnSym->getName()); 463 OutStreamer.EmitLabel(FakeStub); 464 } 465 466 // Emit pre-function debug and/or EH information. 467 if (DE) { 468 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 469 DE->BeginFunction(MF); 470 } 471 if (DD) { 472 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 473 DD->beginFunction(MF); 474 } 475} 476 477/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 478/// function. This can be overridden by targets as required to do custom stuff. 479void AsmPrinter::EmitFunctionEntryLabel() { 480 // The function label could have already been emitted if two symbols end up 481 // conflicting due to asm renaming. Detect this and emit an error. 482 if (CurrentFnSym->isUndefined()) 483 return OutStreamer.EmitLabel(CurrentFnSym); 484 485 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 486 "' label emitted multiple times to assembly file"); 487} 488 489/// emitComments - Pretty-print comments for instructions. 490static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 491 const MachineFunction *MF = MI.getParent()->getParent(); 492 const TargetMachine &TM = MF->getTarget(); 493 494 // Check for spills and reloads 495 int FI; 496 497 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 498 499 // We assume a single instruction only has a spill or reload, not 500 // both. 501 const MachineMemOperand *MMO; 502 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 503 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 504 MMO = *MI.memoperands_begin(); 505 CommentOS << MMO->getSize() << "-byte Reload\n"; 506 } 507 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 508 if (FrameInfo->isSpillSlotObjectIndex(FI)) 509 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 510 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 511 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 512 MMO = *MI.memoperands_begin(); 513 CommentOS << MMO->getSize() << "-byte Spill\n"; 514 } 515 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 516 if (FrameInfo->isSpillSlotObjectIndex(FI)) 517 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 518 } 519 520 // Check for spill-induced copies 521 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 522 CommentOS << " Reload Reuse\n"; 523} 524 525/// emitImplicitDef - This method emits the specified machine instruction 526/// that is an implicit def. 527static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) { 528 unsigned RegNo = MI->getOperand(0).getReg(); 529 AP.OutStreamer.AddComment(Twine("implicit-def: ") + 530 AP.TM.getRegisterInfo()->getName(RegNo)); 531 AP.OutStreamer.AddBlankLine(); 532} 533 534static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 535 std::string Str = "kill:"; 536 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 537 const MachineOperand &Op = MI->getOperand(i); 538 assert(Op.isReg() && "KILL instruction must have only register operands"); 539 Str += ' '; 540 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 541 Str += (Op.isDef() ? "<def>" : "<kill>"); 542 } 543 AP.OutStreamer.AddComment(Str); 544 AP.OutStreamer.AddBlankLine(); 545} 546 547/// emitDebugValueComment - This method handles the target-independent form 548/// of DBG_VALUE, returning true if it was able to do so. A false return 549/// means the target will need to handle MI in EmitInstruction. 550static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 551 // This code handles only the 3-operand target-independent form. 552 if (MI->getNumOperands() != 3) 553 return false; 554 555 SmallString<128> Str; 556 raw_svector_ostream OS(Str); 557 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: "; 558 559 // cast away const; DIetc do not take const operands for some reason. 560 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata())); 561 if (V.getContext().isSubprogram()) 562 OS << DISubprogram(V.getContext()).getDisplayName() << ":"; 563 OS << V.getName() << " <- "; 564 565 // Register or immediate value. Register 0 means undef. 566 if (MI->getOperand(0).isFPImm()) { 567 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 568 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 569 OS << (double)APF.convertToFloat(); 570 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 571 OS << APF.convertToDouble(); 572 } else { 573 // There is no good way to print long double. Convert a copy to 574 // double. Ah well, it's only a comment. 575 bool ignored; 576 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 577 &ignored); 578 OS << "(long double) " << APF.convertToDouble(); 579 } 580 } else if (MI->getOperand(0).isImm()) { 581 OS << MI->getOperand(0).getImm(); 582 } else if (MI->getOperand(0).isCImm()) { 583 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 584 } else { 585 assert(MI->getOperand(0).isReg() && "Unknown operand type"); 586 if (MI->getOperand(0).getReg() == 0) { 587 // Suppress offset, it is not meaningful here. 588 OS << "undef"; 589 // NOTE: Want this comment at start of line, don't emit with AddComment. 590 AP.OutStreamer.EmitRawText(OS.str()); 591 return true; 592 } 593 OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg()); 594 } 595 596 OS << '+' << MI->getOperand(1).getImm(); 597 // NOTE: Want this comment at start of line, don't emit with AddComment. 598 AP.OutStreamer.EmitRawText(OS.str()); 599 return true; 600} 601 602AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 603 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 604 MF->getFunction()->needsUnwindTableEntry()) 605 return CFI_M_EH; 606 607 if (MMI->hasDebugInfo()) 608 return CFI_M_Debug; 609 610 return CFI_M_None; 611} 612 613bool AsmPrinter::needsSEHMoves() { 614 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 615 MF->getFunction()->needsUnwindTableEntry(); 616} 617 618bool AsmPrinter::needsRelocationsForDwarfStringPool() const { 619 return MAI->doesDwarfUseRelocationsAcrossSections(); 620} 621 622void AsmPrinter::emitPrologLabel(const MachineInstr &MI) { 623 MCSymbol *Label = MI.getOperand(0).getMCSymbol(); 624 625 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 626 return; 627 628 if (needsCFIMoves() == CFI_M_None) 629 return; 630 631 if (MMI->getCompactUnwindEncoding() != 0) 632 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 633 634 MachineModuleInfo &MMI = MF->getMMI(); 635 std::vector<MachineMove> &Moves = MMI.getFrameMoves(); 636 bool FoundOne = false; 637 (void)FoundOne; 638 for (std::vector<MachineMove>::iterator I = Moves.begin(), 639 E = Moves.end(); I != E; ++I) { 640 if (I->getLabel() == Label) { 641 EmitCFIFrameMove(*I); 642 FoundOne = true; 643 } 644 } 645 assert(FoundOne); 646} 647 648/// EmitFunctionBody - This method emits the body and trailer for a 649/// function. 650void AsmPrinter::EmitFunctionBody() { 651 // Emit target-specific gunk before the function body. 652 EmitFunctionBodyStart(); 653 654 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo(); 655 656 // Print out code for the function. 657 bool HasAnyRealCode = false; 658 const MachineInstr *LastMI = 0; 659 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 660 I != E; ++I) { 661 // Print a label for the basic block. 662 EmitBasicBlockStart(I); 663 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); 664 II != IE; ++II) { 665 LastMI = II; 666 667 // Print the assembly for the instruction. 668 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() && 669 !II->isDebugValue()) { 670 HasAnyRealCode = true; 671 ++EmittedInsts; 672 } 673 674 if (ShouldPrintDebugScopes) { 675 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 676 DD->beginInstruction(II); 677 } 678 679 if (isVerbose()) 680 emitComments(*II, OutStreamer.GetCommentOS()); 681 682 switch (II->getOpcode()) { 683 case TargetOpcode::PROLOG_LABEL: 684 emitPrologLabel(*II); 685 break; 686 687 case TargetOpcode::EH_LABEL: 688 case TargetOpcode::GC_LABEL: 689 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol()); 690 break; 691 case TargetOpcode::INLINEASM: 692 EmitInlineAsm(II); 693 break; 694 case TargetOpcode::DBG_VALUE: 695 if (isVerbose()) { 696 if (!emitDebugValueComment(II, *this)) 697 EmitInstruction(II); 698 } 699 break; 700 case TargetOpcode::IMPLICIT_DEF: 701 if (isVerbose()) emitImplicitDef(II, *this); 702 break; 703 case TargetOpcode::KILL: 704 if (isVerbose()) emitKill(II, *this); 705 break; 706 default: 707 if (!TM.hasMCUseLoc()) 708 MCLineEntry::Make(&OutStreamer, getCurrentSection()); 709 710 EmitInstruction(II); 711 break; 712 } 713 714 if (ShouldPrintDebugScopes) { 715 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 716 DD->endInstruction(II); 717 } 718 } 719 } 720 721 // If the last instruction was a prolog label, then we have a situation where 722 // we emitted a prolog but no function body. This results in the ending prolog 723 // label equaling the end of function label and an invalid "row" in the 724 // FDE. We need to emit a noop in this situation so that the FDE's rows are 725 // valid. 726 bool RequiresNoop = LastMI && LastMI->isPrologLabel(); 727 728 // If the function is empty and the object file uses .subsections_via_symbols, 729 // then we need to emit *something* to the function body to prevent the 730 // labels from collapsing together. Just emit a noop. 731 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 732 MCInst Noop; 733 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 734 if (Noop.getOpcode()) { 735 OutStreamer.AddComment("avoids zero-length function"); 736 OutStreamer.EmitInstruction(Noop); 737 } else // Target not mc-ized yet. 738 OutStreamer.EmitRawText(StringRef("\tnop\n")); 739 } 740 741 const Function *F = MF->getFunction(); 742 for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) { 743 const BasicBlock *BB = i; 744 if (!BB->hasAddressTaken()) 745 continue; 746 MCSymbol *Sym = GetBlockAddressSymbol(BB); 747 if (Sym->isDefined()) 748 continue; 749 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 750 OutStreamer.EmitLabel(Sym); 751 } 752 753 // Emit target-specific gunk after the function body. 754 EmitFunctionBodyEnd(); 755 756 // If the target wants a .size directive for the size of the function, emit 757 // it. 758 if (MAI->hasDotTypeDotSizeDirective()) { 759 // Create a symbol for the end of function, so we can get the size as 760 // difference between the function label and the temp label. 761 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 762 OutStreamer.EmitLabel(FnEndLabel); 763 764 const MCExpr *SizeExp = 765 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 766 MCSymbolRefExpr::Create(CurrentFnSymForSize, 767 OutContext), 768 OutContext); 769 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 770 } 771 772 // Emit post-function debug information. 773 if (DD) { 774 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 775 DD->endFunction(MF); 776 } 777 if (DE) { 778 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 779 DE->EndFunction(); 780 } 781 MMI->EndFunction(); 782 783 // Print out jump tables referenced by the function. 784 EmitJumpTableInfo(); 785 786 OutStreamer.AddBlankLine(); 787} 788 789/// getDebugValueLocation - Get location information encoded by DBG_VALUE 790/// operands. 791MachineLocation AsmPrinter:: 792getDebugValueLocation(const MachineInstr *MI) const { 793 // Target specific DBG_VALUE instructions are handled by each target. 794 return MachineLocation(); 795} 796 797/// EmitDwarfRegOp - Emit dwarf register operation. 798void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const { 799 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 800 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); 801 802 for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0; 803 ++SR) { 804 Reg = TRI->getDwarfRegNum(*SR, false); 805 // FIXME: Get the bit range this register uses of the superregister 806 // so that we can produce a DW_OP_bit_piece 807 } 808 809 // FIXME: Handle cases like a super register being encoded as 810 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33 811 812 // FIXME: We have no reasonable way of handling errors in here. The 813 // caller might be in the middle of an dwarf expression. We should 814 // probably assert that Reg >= 0 once debug info generation is more mature. 815 816 if (int Offset = MLoc.getOffset()) { 817 if (Reg < 32) { 818 OutStreamer.AddComment( 819 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); 820 EmitInt8(dwarf::DW_OP_breg0 + Reg); 821 } else { 822 OutStreamer.AddComment("DW_OP_bregx"); 823 EmitInt8(dwarf::DW_OP_bregx); 824 OutStreamer.AddComment(Twine(Reg)); 825 EmitULEB128(Reg); 826 } 827 EmitSLEB128(Offset); 828 } else { 829 if (Reg < 32) { 830 OutStreamer.AddComment( 831 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); 832 EmitInt8(dwarf::DW_OP_reg0 + Reg); 833 } else { 834 OutStreamer.AddComment("DW_OP_regx"); 835 EmitInt8(dwarf::DW_OP_regx); 836 OutStreamer.AddComment(Twine(Reg)); 837 EmitULEB128(Reg); 838 } 839 } 840 841 // FIXME: Produce a DW_OP_bit_piece if we used a superregister 842} 843 844bool AsmPrinter::doFinalization(Module &M) { 845 // Emit global variables. 846 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 847 I != E; ++I) 848 EmitGlobalVariable(I); 849 850 // Emit visibility info for declarations 851 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 852 const Function &F = *I; 853 if (!F.isDeclaration()) 854 continue; 855 GlobalValue::VisibilityTypes V = F.getVisibility(); 856 if (V == GlobalValue::DefaultVisibility) 857 continue; 858 859 MCSymbol *Name = Mang->getSymbol(&F); 860 EmitVisibility(Name, V, false); 861 } 862 863 // Emit module flags. 864 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 865 M.getModuleFlagsMetadata(ModuleFlags); 866 if (!ModuleFlags.empty()) 867 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM); 868 869 // Finalize debug and EH information. 870 if (DE) { 871 { 872 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 873 DE->EndModule(); 874 } 875 delete DE; DE = 0; 876 } 877 if (DD) { 878 { 879 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 880 DD->endModule(); 881 } 882 delete DD; DD = 0; 883 } 884 885 // If the target wants to know about weak references, print them all. 886 if (MAI->getWeakRefDirective()) { 887 // FIXME: This is not lazy, it would be nice to only print weak references 888 // to stuff that is actually used. Note that doing so would require targets 889 // to notice uses in operands (due to constant exprs etc). This should 890 // happen with the MC stuff eventually. 891 892 // Print out module-level global variables here. 893 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 894 I != E; ++I) { 895 if (!I->hasExternalWeakLinkage()) continue; 896 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 897 } 898 899 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 900 if (!I->hasExternalWeakLinkage()) continue; 901 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 902 } 903 } 904 905 if (MAI->hasSetDirective()) { 906 OutStreamer.AddBlankLine(); 907 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 908 I != E; ++I) { 909 MCSymbol *Name = Mang->getSymbol(I); 910 911 const GlobalValue *GV = I->getAliasedGlobal(); 912 MCSymbol *Target = Mang->getSymbol(GV); 913 914 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 915 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 916 else if (I->hasWeakLinkage()) 917 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 918 else 919 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 920 921 EmitVisibility(Name, I->getVisibility()); 922 923 // Emit the directives as assignments aka .set: 924 OutStreamer.EmitAssignment(Name, 925 MCSymbolRefExpr::Create(Target, OutContext)); 926 } 927 } 928 929 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 930 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 931 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 932 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 933 MP->finishAssembly(*this); 934 935 // If we don't have any trampolines, then we don't require stack memory 936 // to be executable. Some targets have a directive to declare this. 937 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 938 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 939 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 940 OutStreamer.SwitchSection(S); 941 942 // Allow the target to emit any magic that it wants at the end of the file, 943 // after everything else has gone out. 944 EmitEndOfAsmFile(M); 945 946 delete Mang; Mang = 0; 947 MMI = 0; 948 949 OutStreamer.Finish(); 950 OutStreamer.reset(); 951 952 return false; 953} 954 955void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 956 this->MF = &MF; 957 // Get the function symbol. 958 CurrentFnSym = Mang->getSymbol(MF.getFunction()); 959 CurrentFnSymForSize = CurrentFnSym; 960 961 if (isVerbose()) 962 LI = &getAnalysis<MachineLoopInfo>(); 963} 964 965namespace { 966 // SectionCPs - Keep track the alignment, constpool entries per Section. 967 struct SectionCPs { 968 const MCSection *S; 969 unsigned Alignment; 970 SmallVector<unsigned, 4> CPEs; 971 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 972 }; 973} 974 975/// EmitConstantPool - Print to the current output stream assembly 976/// representations of the constants in the constant pool MCP. This is 977/// used to print out constants which have been "spilled to memory" by 978/// the code generator. 979/// 980void AsmPrinter::EmitConstantPool() { 981 const MachineConstantPool *MCP = MF->getConstantPool(); 982 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 983 if (CP.empty()) return; 984 985 // Calculate sections for constant pool entries. We collect entries to go into 986 // the same section together to reduce amount of section switch statements. 987 SmallVector<SectionCPs, 4> CPSections; 988 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 989 const MachineConstantPoolEntry &CPE = CP[i]; 990 unsigned Align = CPE.getAlignment(); 991 992 SectionKind Kind; 993 switch (CPE.getRelocationInfo()) { 994 default: llvm_unreachable("Unknown section kind"); 995 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 996 case 1: 997 Kind = SectionKind::getReadOnlyWithRelLocal(); 998 break; 999 case 0: 1000 switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) { 1001 case 4: Kind = SectionKind::getMergeableConst4(); break; 1002 case 8: Kind = SectionKind::getMergeableConst8(); break; 1003 case 16: Kind = SectionKind::getMergeableConst16();break; 1004 default: Kind = SectionKind::getMergeableConst(); break; 1005 } 1006 } 1007 1008 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 1009 1010 // The number of sections are small, just do a linear search from the 1011 // last section to the first. 1012 bool Found = false; 1013 unsigned SecIdx = CPSections.size(); 1014 while (SecIdx != 0) { 1015 if (CPSections[--SecIdx].S == S) { 1016 Found = true; 1017 break; 1018 } 1019 } 1020 if (!Found) { 1021 SecIdx = CPSections.size(); 1022 CPSections.push_back(SectionCPs(S, Align)); 1023 } 1024 1025 if (Align > CPSections[SecIdx].Alignment) 1026 CPSections[SecIdx].Alignment = Align; 1027 CPSections[SecIdx].CPEs.push_back(i); 1028 } 1029 1030 // Now print stuff into the calculated sections. 1031 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1032 OutStreamer.SwitchSection(CPSections[i].S); 1033 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1034 1035 unsigned Offset = 0; 1036 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1037 unsigned CPI = CPSections[i].CPEs[j]; 1038 MachineConstantPoolEntry CPE = CP[CPI]; 1039 1040 // Emit inter-object padding for alignment. 1041 unsigned AlignMask = CPE.getAlignment() - 1; 1042 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1043 OutStreamer.EmitZeros(NewOffset - Offset); 1044 1045 Type *Ty = CPE.getType(); 1046 Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty); 1047 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1048 1049 if (CPE.isMachineConstantPoolEntry()) 1050 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1051 else 1052 EmitGlobalConstant(CPE.Val.ConstVal); 1053 } 1054 } 1055} 1056 1057/// EmitJumpTableInfo - Print assembly representations of the jump tables used 1058/// by the current function to the current output stream. 1059/// 1060void AsmPrinter::EmitJumpTableInfo() { 1061 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1062 if (MJTI == 0) return; 1063 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1064 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1065 if (JT.empty()) return; 1066 1067 // Pick the directive to use to print the jump table entries, and switch to 1068 // the appropriate section. 1069 const Function *F = MF->getFunction(); 1070 bool JTInDiffSection = false; 1071 if (// In PIC mode, we need to emit the jump table to the same section as the 1072 // function body itself, otherwise the label differences won't make sense. 1073 // FIXME: Need a better predicate for this: what about custom entries? 1074 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1075 // We should also do if the section name is NULL or function is declared 1076 // in discardable section 1077 // FIXME: this isn't the right predicate, should be based on the MCSection 1078 // for the function. 1079 F->isWeakForLinker()) { 1080 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); 1081 } else { 1082 // Otherwise, drop it in the readonly section. 1083 const MCSection *ReadOnlySection = 1084 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1085 OutStreamer.SwitchSection(ReadOnlySection); 1086 JTInDiffSection = true; 1087 } 1088 1089 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout()))); 1090 1091 // Jump tables in code sections are marked with a data_region directive 1092 // where that's supported. 1093 if (!JTInDiffSection) 1094 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 1095 1096 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1097 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1098 1099 // If this jump table was deleted, ignore it. 1100 if (JTBBs.empty()) continue; 1101 1102 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1103 // .set directive for each unique entry. This reduces the number of 1104 // relocations the assembler will generate for the jump table. 1105 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1106 MAI->hasSetDirective()) { 1107 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1108 const TargetLowering *TLI = TM.getTargetLowering(); 1109 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1110 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1111 const MachineBasicBlock *MBB = JTBBs[ii]; 1112 if (!EmittedSets.insert(MBB)) continue; 1113 1114 // .set LJTSet, LBB32-base 1115 const MCExpr *LHS = 1116 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1117 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1118 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1119 } 1120 } 1121 1122 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1123 // before each jump table. The first label is never referenced, but tells 1124 // the assembler and linker the extents of the jump table object. The 1125 // second label is actually referenced by the code. 1126 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) 1127 // FIXME: This doesn't have to have any specific name, just any randomly 1128 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1129 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1130 1131 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1132 1133 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1134 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1135 } 1136 if (!JTInDiffSection) 1137 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1138} 1139 1140/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1141/// current stream. 1142void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1143 const MachineBasicBlock *MBB, 1144 unsigned UID) const { 1145 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1146 const MCExpr *Value = 0; 1147 switch (MJTI->getEntryKind()) { 1148 case MachineJumpTableInfo::EK_Inline: 1149 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1150 case MachineJumpTableInfo::EK_Custom32: 1151 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1152 OutContext); 1153 break; 1154 case MachineJumpTableInfo::EK_BlockAddress: 1155 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1156 // .word LBB123 1157 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1158 break; 1159 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1160 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1161 // with a relocation as gp-relative, e.g.: 1162 // .gprel32 LBB123 1163 MCSymbol *MBBSym = MBB->getSymbol(); 1164 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1165 return; 1166 } 1167 1168 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1169 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1170 // with a relocation as gp-relative, e.g.: 1171 // .gpdword LBB123 1172 MCSymbol *MBBSym = MBB->getSymbol(); 1173 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1174 return; 1175 } 1176 1177 case MachineJumpTableInfo::EK_LabelDifference32: { 1178 // EK_LabelDifference32 - Each entry is the address of the block minus 1179 // the address of the jump table. This is used for PIC jump tables where 1180 // gprel32 is not supported. e.g.: 1181 // .word LBB123 - LJTI1_2 1182 // If the .set directive is supported, this is emitted as: 1183 // .set L4_5_set_123, LBB123 - LJTI1_2 1184 // .word L4_5_set_123 1185 1186 // If we have emitted set directives for the jump table entries, print 1187 // them rather than the entries themselves. If we're emitting PIC, then 1188 // emit the table entries as differences between two text section labels. 1189 if (MAI->hasSetDirective()) { 1190 // If we used .set, reference the .set's symbol. 1191 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1192 OutContext); 1193 break; 1194 } 1195 // Otherwise, use the difference as the jump table entry. 1196 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1197 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1198 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1199 break; 1200 } 1201 } 1202 1203 assert(Value && "Unknown entry kind!"); 1204 1205 unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout()); 1206 OutStreamer.EmitValue(Value, EntrySize); 1207} 1208 1209 1210/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1211/// special global used by LLVM. If so, emit it and return true, otherwise 1212/// do nothing and return false. 1213bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1214 if (GV->getName() == "llvm.used") { 1215 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1216 EmitLLVMUsedList(GV->getInitializer()); 1217 return true; 1218 } 1219 1220 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1221 if (GV->getSection() == "llvm.metadata" || 1222 GV->hasAvailableExternallyLinkage()) 1223 return true; 1224 1225 if (!GV->hasAppendingLinkage()) return false; 1226 1227 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1228 1229 if (GV->getName() == "llvm.global_ctors") { 1230 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1231 1232 if (TM.getRelocationModel() == Reloc::Static && 1233 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1234 StringRef Sym(".constructors_used"); 1235 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1236 MCSA_Reference); 1237 } 1238 return true; 1239 } 1240 1241 if (GV->getName() == "llvm.global_dtors") { 1242 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1243 1244 if (TM.getRelocationModel() == Reloc::Static && 1245 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1246 StringRef Sym(".destructors_used"); 1247 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1248 MCSA_Reference); 1249 } 1250 return true; 1251 } 1252 1253 return false; 1254} 1255 1256/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1257/// global in the specified llvm.used list for which emitUsedDirectiveFor 1258/// is true, as being used with this directive. 1259void AsmPrinter::EmitLLVMUsedList(const Constant *List) { 1260 // Should be an array of 'i8*'. 1261 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1262 if (InitList == 0) return; 1263 1264 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1265 const GlobalValue *GV = 1266 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1267 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) 1268 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip); 1269 } 1270} 1271 1272typedef std::pair<unsigned, Constant*> Structor; 1273 1274static bool priority_order(const Structor& lhs, const Structor& rhs) { 1275 return lhs.first < rhs.first; 1276} 1277 1278/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1279/// priority. 1280void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1281 // Should be an array of '{ int, void ()* }' structs. The first value is the 1282 // init priority. 1283 if (!isa<ConstantArray>(List)) return; 1284 1285 // Sanity check the structors list. 1286 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1287 if (!InitList) return; // Not an array! 1288 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1289 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs! 1290 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1291 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1292 1293 // Gather the structors in a form that's convenient for sorting by priority. 1294 SmallVector<Structor, 8> Structors; 1295 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1296 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 1297 if (!CS) continue; // Malformed. 1298 if (CS->getOperand(1)->isNullValue()) 1299 break; // Found a null terminator, skip the rest. 1300 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1301 if (!Priority) continue; // Malformed. 1302 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535), 1303 CS->getOperand(1))); 1304 } 1305 1306 // Emit the function pointers in the target-specific order 1307 const DataLayout *TD = TM.getDataLayout(); 1308 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 1309 std::stable_sort(Structors.begin(), Structors.end(), priority_order); 1310 for (unsigned i = 0, e = Structors.size(); i != e; ++i) { 1311 const MCSection *OutputSection = 1312 (isCtor ? 1313 getObjFileLowering().getStaticCtorSection(Structors[i].first) : 1314 getObjFileLowering().getStaticDtorSection(Structors[i].first)); 1315 OutStreamer.SwitchSection(OutputSection); 1316 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1317 EmitAlignment(Align); 1318 EmitXXStructor(Structors[i].second); 1319 } 1320} 1321 1322//===--------------------------------------------------------------------===// 1323// Emission and print routines 1324// 1325 1326/// EmitInt8 - Emit a byte directive and value. 1327/// 1328void AsmPrinter::EmitInt8(int Value) const { 1329 OutStreamer.EmitIntValue(Value, 1); 1330} 1331 1332/// EmitInt16 - Emit a short directive and value. 1333/// 1334void AsmPrinter::EmitInt16(int Value) const { 1335 OutStreamer.EmitIntValue(Value, 2); 1336} 1337 1338/// EmitInt32 - Emit a long directive and value. 1339/// 1340void AsmPrinter::EmitInt32(int Value) const { 1341 OutStreamer.EmitIntValue(Value, 4); 1342} 1343 1344/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1345/// in bytes of the directive is specified by Size and Hi/Lo specify the 1346/// labels. This implicitly uses .set if it is available. 1347void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1348 unsigned Size) const { 1349 // Get the Hi-Lo expression. 1350 const MCExpr *Diff = 1351 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1352 MCSymbolRefExpr::Create(Lo, OutContext), 1353 OutContext); 1354 1355 if (!MAI->hasSetDirective()) { 1356 OutStreamer.EmitValue(Diff, Size); 1357 return; 1358 } 1359 1360 // Otherwise, emit with .set (aka assignment). 1361 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1362 OutStreamer.EmitAssignment(SetLabel, Diff); 1363 OutStreamer.EmitSymbolValue(SetLabel, Size); 1364} 1365 1366/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1367/// where the size in bytes of the directive is specified by Size and Hi/Lo 1368/// specify the labels. This implicitly uses .set if it is available. 1369void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1370 const MCSymbol *Lo, unsigned Size) 1371 const { 1372 1373 // Emit Hi+Offset - Lo 1374 // Get the Hi+Offset expression. 1375 const MCExpr *Plus = 1376 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1377 MCConstantExpr::Create(Offset, OutContext), 1378 OutContext); 1379 1380 // Get the Hi+Offset-Lo expression. 1381 const MCExpr *Diff = 1382 MCBinaryExpr::CreateSub(Plus, 1383 MCSymbolRefExpr::Create(Lo, OutContext), 1384 OutContext); 1385 1386 if (!MAI->hasSetDirective()) 1387 OutStreamer.EmitValue(Diff, 4); 1388 else { 1389 // Otherwise, emit with .set (aka assignment). 1390 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1391 OutStreamer.EmitAssignment(SetLabel, Diff); 1392 OutStreamer.EmitSymbolValue(SetLabel, 4); 1393 } 1394} 1395 1396/// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1397/// where the size in bytes of the directive is specified by Size and Label 1398/// specifies the label. This implicitly uses .set if it is available. 1399void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1400 unsigned Size) 1401 const { 1402 1403 // Emit Label+Offset (or just Label if Offset is zero) 1404 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1405 if (Offset) 1406 Expr = MCBinaryExpr::CreateAdd(Expr, 1407 MCConstantExpr::Create(Offset, OutContext), 1408 OutContext); 1409 1410 OutStreamer.EmitValue(Expr, Size); 1411} 1412 1413 1414//===----------------------------------------------------------------------===// 1415 1416// EmitAlignment - Emit an alignment directive to the specified power of 1417// two boundary. For example, if you pass in 3 here, you will get an 8 1418// byte alignment. If a global value is specified, and if that global has 1419// an explicit alignment requested, it will override the alignment request 1420// if required for correctness. 1421// 1422void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { 1423 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits); 1424 1425 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1426 1427 if (getCurrentSection()->getKind().isText()) 1428 OutStreamer.EmitCodeAlignment(1 << NumBits); 1429 else 1430 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); 1431} 1432 1433//===----------------------------------------------------------------------===// 1434// Constant emission. 1435//===----------------------------------------------------------------------===// 1436 1437/// lowerConstant - Lower the specified LLVM Constant to an MCExpr. 1438/// 1439static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) { 1440 MCContext &Ctx = AP.OutContext; 1441 1442 if (CV->isNullValue() || isa<UndefValue>(CV)) 1443 return MCConstantExpr::Create(0, Ctx); 1444 1445 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1446 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1447 1448 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1449 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); 1450 1451 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1452 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1453 1454 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1455 if (CE == 0) { 1456 llvm_unreachable("Unknown constant value to lower!"); 1457 } 1458 1459 switch (CE->getOpcode()) { 1460 default: 1461 // If the code isn't optimized, there may be outstanding folding 1462 // opportunities. Attempt to fold the expression using DataLayout as a 1463 // last resort before giving up. 1464 if (Constant *C = 1465 ConstantFoldConstantExpression(CE, AP.TM.getDataLayout())) 1466 if (C != CE) 1467 return lowerConstant(C, AP); 1468 1469 // Otherwise report the problem to the user. 1470 { 1471 std::string S; 1472 raw_string_ostream OS(S); 1473 OS << "Unsupported expression in static initializer: "; 1474 WriteAsOperand(OS, CE, /*PrintType=*/false, 1475 !AP.MF ? 0 : AP.MF->getFunction()->getParent()); 1476 report_fatal_error(OS.str()); 1477 } 1478 case Instruction::GetElementPtr: { 1479 const DataLayout &TD = *AP.TM.getDataLayout(); 1480 // Generate a symbolic expression for the byte address 1481 APInt OffsetAI(TD.getPointerSizeInBits(), 0); 1482 cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI); 1483 1484 const MCExpr *Base = lowerConstant(CE->getOperand(0), AP); 1485 if (!OffsetAI) 1486 return Base; 1487 1488 int64_t Offset = OffsetAI.getSExtValue(); 1489 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1490 Ctx); 1491 } 1492 1493 case Instruction::Trunc: 1494 // We emit the value and depend on the assembler to truncate the generated 1495 // expression properly. This is important for differences between 1496 // blockaddress labels. Since the two labels are in the same function, it 1497 // is reasonable to treat their delta as a 32-bit value. 1498 // FALL THROUGH. 1499 case Instruction::BitCast: 1500 return lowerConstant(CE->getOperand(0), AP); 1501 1502 case Instruction::IntToPtr: { 1503 const DataLayout &TD = *AP.TM.getDataLayout(); 1504 // Handle casts to pointers by changing them into casts to the appropriate 1505 // integer type. This promotes constant folding and simplifies this code. 1506 Constant *Op = CE->getOperand(0); 1507 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), 1508 false/*ZExt*/); 1509 return lowerConstant(Op, AP); 1510 } 1511 1512 case Instruction::PtrToInt: { 1513 const DataLayout &TD = *AP.TM.getDataLayout(); 1514 // Support only foldable casts to/from pointers that can be eliminated by 1515 // changing the pointer to the appropriately sized integer type. 1516 Constant *Op = CE->getOperand(0); 1517 Type *Ty = CE->getType(); 1518 1519 const MCExpr *OpExpr = lowerConstant(Op, AP); 1520 1521 // We can emit the pointer value into this slot if the slot is an 1522 // integer slot equal to the size of the pointer. 1523 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) 1524 return OpExpr; 1525 1526 // Otherwise the pointer is smaller than the resultant integer, mask off 1527 // the high bits so we are sure to get a proper truncation if the input is 1528 // a constant expr. 1529 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); 1530 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1531 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1532 } 1533 1534 // The MC library also has a right-shift operator, but it isn't consistently 1535 // signed or unsigned between different targets. 1536 case Instruction::Add: 1537 case Instruction::Sub: 1538 case Instruction::Mul: 1539 case Instruction::SDiv: 1540 case Instruction::SRem: 1541 case Instruction::Shl: 1542 case Instruction::And: 1543 case Instruction::Or: 1544 case Instruction::Xor: { 1545 const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP); 1546 const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP); 1547 switch (CE->getOpcode()) { 1548 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1549 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1550 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1551 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1552 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1553 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1554 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1555 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1556 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1557 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1558 } 1559 } 1560 } 1561} 1562 1563static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace, 1564 AsmPrinter &AP); 1565 1566/// isRepeatedByteSequence - Determine whether the given value is 1567/// composed of a repeated sequence of identical bytes and return the 1568/// byte value. If it is not a repeated sequence, return -1. 1569static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1570 StringRef Data = V->getRawDataValues(); 1571 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1572 char C = Data[0]; 1573 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1574 if (Data[i] != C) return -1; 1575 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1576} 1577 1578 1579/// isRepeatedByteSequence - Determine whether the given value is 1580/// composed of a repeated sequence of identical bytes and return the 1581/// byte value. If it is not a repeated sequence, return -1. 1582static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1583 1584 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1585 if (CI->getBitWidth() > 64) return -1; 1586 1587 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType()); 1588 uint64_t Value = CI->getZExtValue(); 1589 1590 // Make sure the constant is at least 8 bits long and has a power 1591 // of 2 bit width. This guarantees the constant bit width is 1592 // always a multiple of 8 bits, avoiding issues with padding out 1593 // to Size and other such corner cases. 1594 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1595 1596 uint8_t Byte = static_cast<uint8_t>(Value); 1597 1598 for (unsigned i = 1; i < Size; ++i) { 1599 Value >>= 8; 1600 if (static_cast<uint8_t>(Value) != Byte) return -1; 1601 } 1602 return Byte; 1603 } 1604 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1605 // Make sure all array elements are sequences of the same repeated 1606 // byte. 1607 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1608 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1609 if (Byte == -1) return -1; 1610 1611 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1612 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1613 if (ThisByte == -1) return -1; 1614 if (Byte != ThisByte) return -1; 1615 } 1616 return Byte; 1617 } 1618 1619 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1620 return isRepeatedByteSequence(CDS); 1621 1622 return -1; 1623} 1624 1625static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1626 unsigned AddrSpace,AsmPrinter &AP){ 1627 1628 // See if we can aggregate this into a .fill, if so, emit it as such. 1629 int Value = isRepeatedByteSequence(CDS, AP.TM); 1630 if (Value != -1) { 1631 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType()); 1632 // Don't emit a 1-byte object as a .fill. 1633 if (Bytes > 1) 1634 return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1635 } 1636 1637 // If this can be emitted with .ascii/.asciz, emit it as such. 1638 if (CDS->isString()) 1639 return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace); 1640 1641 // Otherwise, emit the values in successive locations. 1642 unsigned ElementByteSize = CDS->getElementByteSize(); 1643 if (isa<IntegerType>(CDS->getElementType())) { 1644 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1645 if (AP.isVerbose()) 1646 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1647 CDS->getElementAsInteger(i)); 1648 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1649 ElementByteSize, AddrSpace); 1650 } 1651 } else if (ElementByteSize == 4) { 1652 // FP Constants are printed as integer constants to avoid losing 1653 // precision. 1654 assert(CDS->getElementType()->isFloatTy()); 1655 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1656 union { 1657 float F; 1658 uint32_t I; 1659 }; 1660 1661 F = CDS->getElementAsFloat(i); 1662 if (AP.isVerbose()) 1663 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1664 AP.OutStreamer.EmitIntValue(I, 4, AddrSpace); 1665 } 1666 } else { 1667 assert(CDS->getElementType()->isDoubleTy()); 1668 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1669 union { 1670 double F; 1671 uint64_t I; 1672 }; 1673 1674 F = CDS->getElementAsDouble(i); 1675 if (AP.isVerbose()) 1676 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1677 AP.OutStreamer.EmitIntValue(I, 8, AddrSpace); 1678 } 1679 } 1680 1681 const DataLayout &TD = *AP.TM.getDataLayout(); 1682 unsigned Size = TD.getTypeAllocSize(CDS->getType()); 1683 unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) * 1684 CDS->getNumElements(); 1685 if (unsigned Padding = Size - EmittedSize) 1686 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1687 1688} 1689 1690static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace, 1691 AsmPrinter &AP) { 1692 // See if we can aggregate some values. Make sure it can be 1693 // represented as a series of bytes of the constant value. 1694 int Value = isRepeatedByteSequence(CA, AP.TM); 1695 1696 if (Value != -1) { 1697 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType()); 1698 AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1699 } 1700 else { 1701 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1702 emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP); 1703 } 1704} 1705 1706static void emitGlobalConstantVector(const ConstantVector *CV, 1707 unsigned AddrSpace, AsmPrinter &AP) { 1708 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1709 emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP); 1710 1711 const DataLayout &TD = *AP.TM.getDataLayout(); 1712 unsigned Size = TD.getTypeAllocSize(CV->getType()); 1713 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) * 1714 CV->getType()->getNumElements(); 1715 if (unsigned Padding = Size - EmittedSize) 1716 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1717} 1718 1719static void emitGlobalConstantStruct(const ConstantStruct *CS, 1720 unsigned AddrSpace, AsmPrinter &AP) { 1721 // Print the fields in successive locations. Pad to align if needed! 1722 const DataLayout *TD = AP.TM.getDataLayout(); 1723 unsigned Size = TD->getTypeAllocSize(CS->getType()); 1724 const StructLayout *Layout = TD->getStructLayout(CS->getType()); 1725 uint64_t SizeSoFar = 0; 1726 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1727 const Constant *Field = CS->getOperand(i); 1728 1729 // Check if padding is needed and insert one or more 0s. 1730 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType()); 1731 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1732 - Layout->getElementOffset(i)) - FieldSize; 1733 SizeSoFar += FieldSize + PadSize; 1734 1735 // Now print the actual field value. 1736 emitGlobalConstantImpl(Field, AddrSpace, AP); 1737 1738 // Insert padding - this may include padding to increase the size of the 1739 // current field up to the ABI size (if the struct is not packed) as well 1740 // as padding to ensure that the next field starts at the right offset. 1741 AP.OutStreamer.EmitZeros(PadSize, AddrSpace); 1742 } 1743 assert(SizeSoFar == Layout->getSizeInBytes() && 1744 "Layout of constant struct may be incorrect!"); 1745} 1746 1747static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace, 1748 AsmPrinter &AP) { 1749 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1750 1751 // First print a comment with what we think the original floating-point value 1752 // should have been. 1753 if (AP.isVerbose()) { 1754 SmallString<8> StrVal; 1755 CFP->getValueAPF().toString(StrVal); 1756 1757 CFP->getType()->print(AP.OutStreamer.GetCommentOS()); 1758 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n'; 1759 } 1760 1761 // Now iterate through the APInt chunks, emitting them in endian-correct 1762 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1763 // floats). 1764 unsigned NumBytes = API.getBitWidth() / 8; 1765 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1766 const uint64_t *p = API.getRawData(); 1767 1768 // PPC's long double has odd notions of endianness compared to how LLVM 1769 // handles it: p[0] goes first for *big* endian on PPC. 1770 if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) { 1771 int Chunk = API.getNumWords() - 1; 1772 1773 if (TrailingBytes) 1774 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes, AddrSpace); 1775 1776 for (; Chunk >= 0; --Chunk) 1777 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t), AddrSpace); 1778 } else { 1779 unsigned Chunk; 1780 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1781 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t), AddrSpace); 1782 1783 if (TrailingBytes) 1784 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes, AddrSpace); 1785 } 1786 1787 // Emit the tail padding for the long double. 1788 const DataLayout &TD = *AP.TM.getDataLayout(); 1789 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - 1790 TD.getTypeStoreSize(CFP->getType()), AddrSpace); 1791} 1792 1793static void emitGlobalConstantLargeInt(const ConstantInt *CI, 1794 unsigned AddrSpace, AsmPrinter &AP) { 1795 const DataLayout *TD = AP.TM.getDataLayout(); 1796 unsigned BitWidth = CI->getBitWidth(); 1797 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); 1798 1799 // We don't expect assemblers to support integer data directives 1800 // for more than 64 bits, so we emit the data in at most 64-bit 1801 // quantities at a time. 1802 const uint64_t *RawData = CI->getValue().getRawData(); 1803 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1804 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1805 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1806 } 1807} 1808 1809static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace, 1810 AsmPrinter &AP) { 1811 const DataLayout *TD = AP.TM.getDataLayout(); 1812 uint64_t Size = TD->getTypeAllocSize(CV->getType()); 1813 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 1814 return AP.OutStreamer.EmitZeros(Size, AddrSpace); 1815 1816 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1817 switch (Size) { 1818 case 1: 1819 case 2: 1820 case 4: 1821 case 8: 1822 if (AP.isVerbose()) 1823 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1824 CI->getZExtValue()); 1825 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace); 1826 return; 1827 default: 1828 emitGlobalConstantLargeInt(CI, AddrSpace, AP); 1829 return; 1830 } 1831 } 1832 1833 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1834 return emitGlobalConstantFP(CFP, AddrSpace, AP); 1835 1836 if (isa<ConstantPointerNull>(CV)) { 1837 AP.OutStreamer.EmitIntValue(0, Size, AddrSpace); 1838 return; 1839 } 1840 1841 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 1842 return emitGlobalConstantDataSequential(CDS, AddrSpace, AP); 1843 1844 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1845 return emitGlobalConstantArray(CVA, AddrSpace, AP); 1846 1847 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1848 return emitGlobalConstantStruct(CVS, AddrSpace, AP); 1849 1850 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 1851 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 1852 // vectors). 1853 if (CE->getOpcode() == Instruction::BitCast) 1854 return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP); 1855 1856 if (Size > 8) { 1857 // If the constant expression's size is greater than 64-bits, then we have 1858 // to emit the value in chunks. Try to constant fold the value and emit it 1859 // that way. 1860 Constant *New = ConstantFoldConstantExpression(CE, TD); 1861 if (New && New != CE) 1862 return emitGlobalConstantImpl(New, AddrSpace, AP); 1863 } 1864 } 1865 1866 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1867 return emitGlobalConstantVector(V, AddrSpace, AP); 1868 1869 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 1870 // thread the streamer with EmitValue. 1871 AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace); 1872} 1873 1874/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1875void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1876 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType()); 1877 if (Size) 1878 emitGlobalConstantImpl(CV, AddrSpace, *this); 1879 else if (MAI->hasSubsectionsViaSymbols()) { 1880 // If the global has zero size, emit a single byte so that two labels don't 1881 // look like they are at the same location. 1882 OutStreamer.EmitIntValue(0, 1, AddrSpace); 1883 } 1884} 1885 1886void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1887 // Target doesn't support this yet! 1888 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1889} 1890 1891void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 1892 if (Offset > 0) 1893 OS << '+' << Offset; 1894 else if (Offset < 0) 1895 OS << Offset; 1896} 1897 1898//===----------------------------------------------------------------------===// 1899// Symbol Lowering Routines. 1900//===----------------------------------------------------------------------===// 1901 1902/// GetTempSymbol - Return the MCSymbol corresponding to the assembler 1903/// temporary label with the specified stem and unique ID. 1904MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const { 1905 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) + 1906 Name + Twine(ID)); 1907} 1908 1909/// GetTempSymbol - Return an assembler temporary label with the specified 1910/// stem. 1911MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const { 1912 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+ 1913 Name); 1914} 1915 1916 1917MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 1918 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 1919} 1920 1921MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 1922 return MMI->getAddrLabelSymbol(BB); 1923} 1924 1925/// GetCPISymbol - Return the symbol for the specified constant pool entry. 1926MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 1927 return OutContext.GetOrCreateSymbol 1928 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 1929 + "_" + Twine(CPID)); 1930} 1931 1932/// GetJTISymbol - Return the symbol for the specified jump table entry. 1933MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 1934 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 1935} 1936 1937/// GetJTSetSymbol - Return the symbol for the specified jump table .set 1938/// FIXME: privatize to AsmPrinter. 1939MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 1940 return OutContext.GetOrCreateSymbol 1941 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 1942 Twine(UID) + "_set_" + Twine(MBBID)); 1943} 1944 1945/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with 1946/// global value name as its base, with the specified suffix, and where the 1947/// symbol is forced to have private linkage if ForcePrivate is true. 1948MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, 1949 StringRef Suffix, 1950 bool ForcePrivate) const { 1951 SmallString<60> NameStr; 1952 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); 1953 NameStr.append(Suffix.begin(), Suffix.end()); 1954 return OutContext.GetOrCreateSymbol(NameStr.str()); 1955} 1956 1957/// GetExternalSymbolSymbol - Return the MCSymbol for the specified 1958/// ExternalSymbol. 1959MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 1960 SmallString<60> NameStr; 1961 Mang->getNameWithPrefix(NameStr, Sym); 1962 return OutContext.GetOrCreateSymbol(NameStr.str()); 1963} 1964 1965 1966 1967/// PrintParentLoopComment - Print comments about parent loops of this one. 1968static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 1969 unsigned FunctionNumber) { 1970 if (Loop == 0) return; 1971 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 1972 OS.indent(Loop->getLoopDepth()*2) 1973 << "Parent Loop BB" << FunctionNumber << "_" 1974 << Loop->getHeader()->getNumber() 1975 << " Depth=" << Loop->getLoopDepth() << '\n'; 1976} 1977 1978 1979/// PrintChildLoopComment - Print comments about child loops within 1980/// the loop for this basic block, with nesting. 1981static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 1982 unsigned FunctionNumber) { 1983 // Add child loop information 1984 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ 1985 OS.indent((*CL)->getLoopDepth()*2) 1986 << "Child Loop BB" << FunctionNumber << "_" 1987 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() 1988 << '\n'; 1989 PrintChildLoopComment(OS, *CL, FunctionNumber); 1990 } 1991} 1992 1993/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 1994static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 1995 const MachineLoopInfo *LI, 1996 const AsmPrinter &AP) { 1997 // Add loop depth information 1998 const MachineLoop *Loop = LI->getLoopFor(&MBB); 1999 if (Loop == 0) return; 2000 2001 MachineBasicBlock *Header = Loop->getHeader(); 2002 assert(Header && "No header for loop"); 2003 2004 // If this block is not a loop header, just print out what is the loop header 2005 // and return. 2006 if (Header != &MBB) { 2007 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2008 Twine(AP.getFunctionNumber())+"_" + 2009 Twine(Loop->getHeader()->getNumber())+ 2010 " Depth="+Twine(Loop->getLoopDepth())); 2011 return; 2012 } 2013 2014 // Otherwise, it is a loop header. Print out information about child and 2015 // parent loops. 2016 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2017 2018 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2019 2020 OS << "=>"; 2021 OS.indent(Loop->getLoopDepth()*2-2); 2022 2023 OS << "This "; 2024 if (Loop->empty()) 2025 OS << "Inner "; 2026 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2027 2028 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2029} 2030 2031 2032/// EmitBasicBlockStart - This method prints the label for the specified 2033/// MachineBasicBlock, an alignment (if present) and a comment describing 2034/// it if appropriate. 2035void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 2036 // Emit an alignment directive for this block, if needed. 2037 if (unsigned Align = MBB->getAlignment()) 2038 EmitAlignment(Align); 2039 2040 // If the block has its address taken, emit any labels that were used to 2041 // reference the block. It is possible that there is more than one label 2042 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2043 // the references were generated. 2044 if (MBB->hasAddressTaken()) { 2045 const BasicBlock *BB = MBB->getBasicBlock(); 2046 if (isVerbose()) 2047 OutStreamer.AddComment("Block address taken"); 2048 2049 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); 2050 2051 for (unsigned i = 0, e = Syms.size(); i != e; ++i) 2052 OutStreamer.EmitLabel(Syms[i]); 2053 } 2054 2055 // Print some verbose block comments. 2056 if (isVerbose()) { 2057 if (const BasicBlock *BB = MBB->getBasicBlock()) 2058 if (BB->hasName()) 2059 OutStreamer.AddComment("%" + BB->getName()); 2060 emitBasicBlockLoopComments(*MBB, LI, *this); 2061 } 2062 2063 // Print the main label for the block. 2064 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { 2065 if (isVerbose() && OutStreamer.hasRawTextSupport()) { 2066 // NOTE: Want this comment at start of line, don't emit with AddComment. 2067 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" + 2068 Twine(MBB->getNumber()) + ":"); 2069 } 2070 } else { 2071 OutStreamer.EmitLabel(MBB->getSymbol()); 2072 } 2073} 2074 2075void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2076 bool IsDefinition) const { 2077 MCSymbolAttr Attr = MCSA_Invalid; 2078 2079 switch (Visibility) { 2080 default: break; 2081 case GlobalValue::HiddenVisibility: 2082 if (IsDefinition) 2083 Attr = MAI->getHiddenVisibilityAttr(); 2084 else 2085 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2086 break; 2087 case GlobalValue::ProtectedVisibility: 2088 Attr = MAI->getProtectedVisibilityAttr(); 2089 break; 2090 } 2091 2092 if (Attr != MCSA_Invalid) 2093 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2094} 2095 2096/// isBlockOnlyReachableByFallthough - Return true if the basic block has 2097/// exactly one predecessor and the control transfer mechanism between 2098/// the predecessor and this block is a fall-through. 2099bool AsmPrinter:: 2100isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2101 // If this is a landing pad, it isn't a fall through. If it has no preds, 2102 // then nothing falls through to it. 2103 if (MBB->isLandingPad() || MBB->pred_empty()) 2104 return false; 2105 2106 // If there isn't exactly one predecessor, it can't be a fall through. 2107 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 2108 ++PI2; 2109 if (PI2 != MBB->pred_end()) 2110 return false; 2111 2112 // The predecessor has to be immediately before this block. 2113 MachineBasicBlock *Pred = *PI; 2114 2115 if (!Pred->isLayoutSuccessor(MBB)) 2116 return false; 2117 2118 // If the block is completely empty, then it definitely does fall through. 2119 if (Pred->empty()) 2120 return true; 2121 2122 // Check the terminators in the previous blocks 2123 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(), 2124 IE = Pred->end(); II != IE; ++II) { 2125 MachineInstr &MI = *II; 2126 2127 // If it is not a simple branch, we are in a table somewhere. 2128 if (!MI.isBranch() || MI.isIndirectBranch()) 2129 return false; 2130 2131 // If we are the operands of one of the branches, this is not 2132 // a fall through. 2133 for (MachineInstr::mop_iterator OI = MI.operands_begin(), 2134 OE = MI.operands_end(); OI != OE; ++OI) { 2135 const MachineOperand& OP = *OI; 2136 if (OP.isJTI()) 2137 return false; 2138 if (OP.isMBB() && OP.getMBB() == MBB) 2139 return false; 2140 } 2141 } 2142 2143 return true; 2144} 2145 2146 2147 2148GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 2149 if (!S->usesMetadata()) 2150 return 0; 2151 2152 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2153 gcp_map_type::iterator GCPI = GCMap.find(S); 2154 if (GCPI != GCMap.end()) 2155 return GCPI->second; 2156 2157 const char *Name = S->getName().c_str(); 2158 2159 for (GCMetadataPrinterRegistry::iterator 2160 I = GCMetadataPrinterRegistry::begin(), 2161 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2162 if (strcmp(Name, I->getName()) == 0) { 2163 GCMetadataPrinter *GMP = I->instantiate(); 2164 GMP->S = S; 2165 GCMap.insert(std::make_pair(S, GMP)); 2166 return GMP; 2167 } 2168 2169 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2170} 2171