AsmPrinter.cpp revision 60567624019d288f4fc733d44e7205c463a9bd75
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineJumpTableInfo.h" 22#include "llvm/CodeGen/MachineModuleInfo.h" 23#include "llvm/Support/Mangler.h" 24#include "llvm/Support/raw_ostream.h" 25#include "llvm/Target/TargetAsmInfo.h" 26#include "llvm/Target/TargetData.h" 27#include "llvm/Target/TargetLowering.h" 28#include "llvm/Target/TargetMachine.h" 29#include "llvm/Target/TargetOptions.h" 30#include "llvm/Target/TargetRegisterInfo.h" 31#include "llvm/ADT/SmallPtrSet.h" 32#include "llvm/ADT/SmallString.h" 33#include "llvm/ADT/StringExtras.h" 34#include <cerrno> 35using namespace llvm; 36 37char AsmPrinter::ID = 0; 38AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm, 39 const TargetAsmInfo *T) 40 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 41 TM(tm), TAI(T), TRI(tm.getRegisterInfo()), 42 IsInTextSection(false) 43{} 44 45AsmPrinter::~AsmPrinter() { 46 for (gcp_iterator I = GCMetadataPrinters.begin(), 47 E = GCMetadataPrinters.end(); I != E; ++I) 48 delete I->second; 49} 50 51std::string AsmPrinter::getSectionForFunction(const Function &F) const { 52 return TAI->getTextSection(); 53} 54 55 56/// SwitchToTextSection - Switch to the specified text section of the executable 57/// if we are not already in it! 58/// 59void AsmPrinter::SwitchToTextSection(const char *NewSection, 60 const GlobalValue *GV) { 61 std::string NS; 62 if (GV && GV->hasSection()) 63 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 64 else 65 NS = NewSection; 66 67 // If we're already in this section, we're done. 68 if (CurrentSection == NS) return; 69 70 // Close the current section, if applicable. 71 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 72 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 73 74 CurrentSection = NS; 75 76 if (!CurrentSection.empty()) 77 O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n'; 78 79 IsInTextSection = true; 80} 81 82/// SwitchToDataSection - Switch to the specified data section of the executable 83/// if we are not already in it! 84/// 85void AsmPrinter::SwitchToDataSection(const char *NewSection, 86 const GlobalValue *GV) { 87 std::string NS; 88 if (GV && GV->hasSection()) 89 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 90 else 91 NS = NewSection; 92 93 // If we're already in this section, we're done. 94 if (CurrentSection == NS) return; 95 96 // Close the current section, if applicable. 97 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 98 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 99 100 CurrentSection = NS; 101 102 if (!CurrentSection.empty()) 103 O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n'; 104 105 IsInTextSection = false; 106} 107 108 109void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 110 MachineFunctionPass::getAnalysisUsage(AU); 111 AU.addRequired<GCModuleInfo>(); 112} 113 114bool AsmPrinter::doInitialization(Module &M) { 115 Mang = new Mangler(M, TAI->getGlobalPrefix()); 116 117 GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>(); 118 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 119 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 120 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 121 MP->beginAssembly(O, *this, *TAI); 122 123 if (!M.getModuleInlineAsm().empty()) 124 O << TAI->getCommentString() << " Start of file scope inline assembly\n" 125 << M.getModuleInlineAsm() 126 << '\n' << TAI->getCommentString() 127 << " End of file scope inline assembly\n"; 128 129 SwitchToDataSection(""); // Reset back to no section. 130 131 MMI = getAnalysisToUpdate<MachineModuleInfo>(); 132 if (MMI) MMI->AnalyzeModule(M); 133 134 return false; 135} 136 137bool AsmPrinter::doFinalization(Module &M) { 138 if (TAI->getWeakRefDirective()) { 139 if (!ExtWeakSymbols.empty()) 140 SwitchToDataSection(""); 141 142 for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(), 143 e = ExtWeakSymbols.end(); i != e; ++i) { 144 const GlobalValue *GV = *i; 145 std::string Name = Mang->getValueName(GV); 146 O << TAI->getWeakRefDirective() << Name << '\n'; 147 } 148 } 149 150 if (TAI->getSetDirective()) { 151 if (!M.alias_empty()) 152 SwitchToTextSection(TAI->getTextSection()); 153 154 O << '\n'; 155 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 156 I!=E; ++I) { 157 std::string Name = Mang->getValueName(I); 158 std::string Target; 159 160 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 161 Target = Mang->getValueName(GV); 162 163 if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) 164 O << "\t.globl\t" << Name << '\n'; 165 else if (I->hasWeakLinkage()) 166 O << TAI->getWeakRefDirective() << Name << '\n'; 167 else if (!I->hasInternalLinkage()) 168 assert(0 && "Invalid alias linkage"); 169 170 if (I->hasHiddenVisibility()) { 171 if (const char *Directive = TAI->getHiddenDirective()) 172 O << Directive << Name << '\n'; 173 } else if (I->hasProtectedVisibility()) { 174 if (const char *Directive = TAI->getProtectedDirective()) 175 O << Directive << Name << '\n'; 176 } 177 178 O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 179 180 // If the aliasee has external weak linkage it can be referenced only by 181 // alias itself. In this case it can be not in ExtWeakSymbols list. Emit 182 // weak reference in such case. 183 if (GV->hasExternalWeakLinkage()) { 184 if (TAI->getWeakRefDirective()) 185 O << TAI->getWeakRefDirective() << Target << '\n'; 186 else 187 O << "\t.globl\t" << Target << '\n'; 188 } 189 } 190 } 191 192 GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>(); 193 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 194 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 195 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 196 MP->finishAssembly(O, *this, *TAI); 197 198 // If we don't have any trampolines, then we don't require stack memory 199 // to be executable. Some targets have a directive to declare this. 200 Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 201 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 202 if (TAI->getNonexecutableStackDirective()) 203 O << TAI->getNonexecutableStackDirective() << '\n'; 204 205 delete Mang; Mang = 0; 206 return false; 207} 208 209std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) { 210 assert(MF && "No machine function?"); 211 std::string Name = MF->getFunction()->getName(); 212 if (Name.empty()) 213 Name = Mang->getValueName(MF->getFunction()); 214 return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix()); 215} 216 217void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 218 // What's my mangled name? 219 CurrentFnName = Mang->getValueName(MF.getFunction()); 220 IncrementFunctionNumber(); 221} 222 223/// EmitConstantPool - Print to the current output stream assembly 224/// representations of the constants in the constant pool MCP. This is 225/// used to print out constants which have been "spilled to memory" by 226/// the code generator. 227/// 228void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 229 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 230 if (CP.empty()) return; 231 232 // Some targets require 4-, 8-, and 16- byte constant literals to be placed 233 // in special sections. 234 std::vector<std::pair<MachineConstantPoolEntry,unsigned> > FourByteCPs; 235 std::vector<std::pair<MachineConstantPoolEntry,unsigned> > EightByteCPs; 236 std::vector<std::pair<MachineConstantPoolEntry,unsigned> > SixteenByteCPs; 237 std::vector<std::pair<MachineConstantPoolEntry,unsigned> > OtherCPs; 238 std::vector<std::pair<MachineConstantPoolEntry,unsigned> > TargetCPs; 239 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 240 MachineConstantPoolEntry CPE = CP[i]; 241 const Type *Ty = CPE.getType(); 242 if (TAI->getFourByteConstantSection() && 243 TM.getTargetData()->getABITypeSize(Ty) == 4) 244 FourByteCPs.push_back(std::make_pair(CPE, i)); 245 else if (TAI->getEightByteConstantSection() && 246 TM.getTargetData()->getABITypeSize(Ty) == 8) 247 EightByteCPs.push_back(std::make_pair(CPE, i)); 248 else if (TAI->getSixteenByteConstantSection() && 249 TM.getTargetData()->getABITypeSize(Ty) == 16) 250 SixteenByteCPs.push_back(std::make_pair(CPE, i)); 251 else 252 OtherCPs.push_back(std::make_pair(CPE, i)); 253 } 254 255 unsigned Alignment = MCP->getConstantPoolAlignment(); 256 EmitConstantPool(Alignment, TAI->getFourByteConstantSection(), FourByteCPs); 257 EmitConstantPool(Alignment, TAI->getEightByteConstantSection(), EightByteCPs); 258 EmitConstantPool(Alignment, TAI->getSixteenByteConstantSection(), 259 SixteenByteCPs); 260 EmitConstantPool(Alignment, TAI->getConstantPoolSection(), OtherCPs); 261} 262 263void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section, 264 std::vector<std::pair<MachineConstantPoolEntry,unsigned> > &CP) { 265 if (CP.empty()) return; 266 267 SwitchToDataSection(Section); 268 EmitAlignment(Alignment); 269 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 270 O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 271 << CP[i].second << ":\t\t\t\t\t"; 272 // O << TAI->getCommentString() << ' ' << 273 // WriteTypeSymbolic(O, CP[i].first.getType(), 0); 274 O << '\n'; 275 if (CP[i].first.isMachineConstantPoolEntry()) 276 EmitMachineConstantPoolValue(CP[i].first.Val.MachineCPVal); 277 else 278 EmitGlobalConstant(CP[i].first.Val.ConstVal); 279 if (i != e-1) { 280 const Type *Ty = CP[i].first.getType(); 281 unsigned EntSize = 282 TM.getTargetData()->getABITypeSize(Ty); 283 unsigned ValEnd = CP[i].first.getOffset() + EntSize; 284 // Emit inter-object padding for alignment. 285 EmitZeros(CP[i+1].first.getOffset()-ValEnd); 286 } 287 } 288} 289 290/// EmitJumpTableInfo - Print assembly representations of the jump tables used 291/// by the current function to the current output stream. 292/// 293void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 294 MachineFunction &MF) { 295 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 296 if (JT.empty()) return; 297 298 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 299 300 // Pick the directive to use to print the jump table entries, and switch to 301 // the appropriate section. 302 TargetLowering *LoweringInfo = TM.getTargetLowering(); 303 304 const char* JumpTableDataSection = TAI->getJumpTableDataSection(); 305 const Function *F = MF.getFunction(); 306 unsigned SectionFlags = TAI->SectionFlagsForGlobal(F); 307 if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) || 308 !JumpTableDataSection || 309 SectionFlags & SectionFlags::Linkonce) { 310 // In PIC mode, we need to emit the jump table to the same section as the 311 // function body itself, otherwise the label differences won't make sense. 312 // We should also do if the section name is NULL or function is declared in 313 // discardable section. 314 SwitchToTextSection(getSectionForFunction(*F).c_str(), F); 315 } else { 316 SwitchToDataSection(JumpTableDataSection); 317 } 318 319 EmitAlignment(Log2_32(MJTI->getAlignment())); 320 321 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 322 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 323 324 // If this jump table was deleted, ignore it. 325 if (JTBBs.empty()) continue; 326 327 // For PIC codegen, if possible we want to use the SetDirective to reduce 328 // the number of relocations the assembler will generate for the jump table. 329 // Set directives are all printed before the jump table itself. 330 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 331 if (TAI->getSetDirective() && IsPic) 332 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 333 if (EmittedSets.insert(JTBBs[ii])) 334 printPICJumpTableSetLabel(i, JTBBs[ii]); 335 336 // On some targets (e.g. darwin) we want to emit two consequtive labels 337 // before each jump table. The first label is never referenced, but tells 338 // the assembler and linker the extents of the jump table object. The 339 // second label is actually referenced by the code. 340 if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) 341 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 342 343 O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 344 << '_' << i << ":\n"; 345 346 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 347 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 348 O << '\n'; 349 } 350 } 351} 352 353void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 354 const MachineBasicBlock *MBB, 355 unsigned uid) const { 356 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 357 358 // Use JumpTableDirective otherwise honor the entry size from the jump table 359 // info. 360 const char *JTEntryDirective = TAI->getJumpTableDirective(); 361 bool HadJTEntryDirective = JTEntryDirective != NULL; 362 if (!HadJTEntryDirective) { 363 JTEntryDirective = MJTI->getEntrySize() == 4 ? 364 TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); 365 } 366 367 O << JTEntryDirective << ' '; 368 369 // If we have emitted set directives for the jump table entries, print 370 // them rather than the entries themselves. If we're emitting PIC, then 371 // emit the table entries as differences between two text section labels. 372 // If we're emitting non-PIC code, then emit the entries as direct 373 // references to the target basic blocks. 374 if (IsPic) { 375 if (TAI->getSetDirective()) { 376 O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() 377 << '_' << uid << "_set_" << MBB->getNumber(); 378 } else { 379 printBasicBlockLabel(MBB, false, false, false); 380 // If the arch uses custom Jump Table directives, don't calc relative to 381 // JT 382 if (!HadJTEntryDirective) 383 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" 384 << getFunctionNumber() << '_' << uid; 385 } 386 } else { 387 printBasicBlockLabel(MBB, false, false, false); 388 } 389} 390 391 392/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 393/// special global used by LLVM. If so, emit it and return true, otherwise 394/// do nothing and return false. 395bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 396 if (GV->getName() == "llvm.used") { 397 if (TAI->getUsedDirective() != 0) // No need to emit this at all. 398 EmitLLVMUsedList(GV->getInitializer()); 399 return true; 400 } 401 402 // Ignore debug and non-emitted data. 403 if (GV->getSection() == "llvm.metadata") return true; 404 405 if (!GV->hasAppendingLinkage()) return false; 406 407 assert(GV->hasInitializer() && "Not a special LLVM global!"); 408 409 const TargetData *TD = TM.getTargetData(); 410 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 411 if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) { 412 SwitchToDataSection(TAI->getStaticCtorsSection()); 413 EmitAlignment(Align, 0); 414 EmitXXStructorList(GV->getInitializer()); 415 return true; 416 } 417 418 if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) { 419 SwitchToDataSection(TAI->getStaticDtorsSection()); 420 EmitAlignment(Align, 0); 421 EmitXXStructorList(GV->getInitializer()); 422 return true; 423 } 424 425 return false; 426} 427 428/// findGlobalValue - if CV is an expression equivalent to a single 429/// global value, return that value. 430const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) { 431 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 432 return GV; 433 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 434 const TargetData *TD = TM.getTargetData(); 435 unsigned Opcode = CE->getOpcode(); 436 switch (Opcode) { 437 case Instruction::GetElementPtr: { 438 const Constant *ptrVal = CE->getOperand(0); 439 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 440 if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size())) 441 return 0; 442 return findGlobalValue(ptrVal); 443 } 444 case Instruction::BitCast: 445 return findGlobalValue(CE->getOperand(0)); 446 default: 447 return 0; 448 } 449 } 450 return 0; 451} 452 453/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each 454/// global in the specified llvm.used list for which emitUsedDirectiveFor 455/// is true, as being used with this directive. 456 457void AsmPrinter::EmitLLVMUsedList(Constant *List) { 458 const char *Directive = TAI->getUsedDirective(); 459 460 // Should be an array of 'sbyte*'. 461 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 462 if (InitList == 0) return; 463 464 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 465 const GlobalValue *GV = findGlobalValue(InitList->getOperand(i)); 466 if (TAI->emitUsedDirectiveFor(GV, Mang)) { 467 O << Directive; 468 EmitConstantValueOnly(InitList->getOperand(i)); 469 O << '\n'; 470 } 471 } 472} 473 474/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 475/// function pointers, ignoring the init priority. 476void AsmPrinter::EmitXXStructorList(Constant *List) { 477 // Should be an array of '{ int, void ()* }' structs. The first value is the 478 // init priority, which we ignore. 479 if (!isa<ConstantArray>(List)) return; 480 ConstantArray *InitList = cast<ConstantArray>(List); 481 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 482 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 483 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 484 485 if (CS->getOperand(1)->isNullValue()) 486 return; // Found a null terminator, exit printing. 487 // Emit the function pointer. 488 EmitGlobalConstant(CS->getOperand(1)); 489 } 490} 491 492/// getGlobalLinkName - Returns the asm/link name of of the specified 493/// global variable. Should be overridden by each target asm printer to 494/// generate the appropriate value. 495const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{ 496 std::string LinkName; 497 498 if (isa<Function>(GV)) { 499 LinkName += TAI->getFunctionAddrPrefix(); 500 LinkName += Mang->getValueName(GV); 501 LinkName += TAI->getFunctionAddrSuffix(); 502 } else { 503 LinkName += TAI->getGlobalVarAddrPrefix(); 504 LinkName += Mang->getValueName(GV); 505 LinkName += TAI->getGlobalVarAddrSuffix(); 506 } 507 508 return LinkName; 509} 510 511/// EmitExternalGlobal - Emit the external reference to a global variable. 512/// Should be overridden if an indirect reference should be used. 513void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { 514 O << getGlobalLinkName(GV); 515} 516 517 518 519//===----------------------------------------------------------------------===// 520/// LEB 128 number encoding. 521 522/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) 523/// representing an unsigned leb128 value. 524void AsmPrinter::PrintULEB128(unsigned Value) const { 525 do { 526 unsigned Byte = Value & 0x7f; 527 Value >>= 7; 528 if (Value) Byte |= 0x80; 529 O << "0x" << utohexstr(Byte); 530 if (Value) O << ", "; 531 } while (Value); 532} 533 534/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) 535/// representing a signed leb128 value. 536void AsmPrinter::PrintSLEB128(int Value) const { 537 int Sign = Value >> (8 * sizeof(Value) - 1); 538 bool IsMore; 539 540 do { 541 unsigned Byte = Value & 0x7f; 542 Value >>= 7; 543 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 544 if (IsMore) Byte |= 0x80; 545 O << "0x" << utohexstr(Byte); 546 if (IsMore) O << ", "; 547 } while (IsMore); 548} 549 550//===--------------------------------------------------------------------===// 551// Emission and print routines 552// 553 554/// PrintHex - Print a value as a hexidecimal value. 555/// 556void AsmPrinter::PrintHex(int Value) const { 557 O << "0x" << utohexstr(static_cast<unsigned>(Value)); 558} 559 560/// EOL - Print a newline character to asm stream. If a comment is present 561/// then it will be printed first. Comments should not contain '\n'. 562void AsmPrinter::EOL() const { 563 O << '\n'; 564} 565 566void AsmPrinter::EOL(const std::string &Comment) const { 567 if (VerboseAsm && !Comment.empty()) { 568 O << '\t' 569 << TAI->getCommentString() 570 << ' ' 571 << Comment; 572 } 573 O << '\n'; 574} 575 576void AsmPrinter::EOL(const char* Comment) const { 577 if (VerboseAsm && *Comment) { 578 O << '\t' 579 << TAI->getCommentString() 580 << ' ' 581 << Comment; 582 } 583 O << '\n'; 584} 585 586/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 587/// unsigned leb128 value. 588void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 589 if (TAI->hasLEB128()) { 590 O << "\t.uleb128\t" 591 << Value; 592 } else { 593 O << TAI->getData8bitsDirective(); 594 PrintULEB128(Value); 595 } 596} 597 598/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 599/// signed leb128 value. 600void AsmPrinter::EmitSLEB128Bytes(int Value) const { 601 if (TAI->hasLEB128()) { 602 O << "\t.sleb128\t" 603 << Value; 604 } else { 605 O << TAI->getData8bitsDirective(); 606 PrintSLEB128(Value); 607 } 608} 609 610/// EmitInt8 - Emit a byte directive and value. 611/// 612void AsmPrinter::EmitInt8(int Value) const { 613 O << TAI->getData8bitsDirective(); 614 PrintHex(Value & 0xFF); 615} 616 617/// EmitInt16 - Emit a short directive and value. 618/// 619void AsmPrinter::EmitInt16(int Value) const { 620 O << TAI->getData16bitsDirective(); 621 PrintHex(Value & 0xFFFF); 622} 623 624/// EmitInt32 - Emit a long directive and value. 625/// 626void AsmPrinter::EmitInt32(int Value) const { 627 O << TAI->getData32bitsDirective(); 628 PrintHex(Value); 629} 630 631/// EmitInt64 - Emit a long long directive and value. 632/// 633void AsmPrinter::EmitInt64(uint64_t Value) const { 634 if (TAI->getData64bitsDirective()) { 635 O << TAI->getData64bitsDirective(); 636 PrintHex(Value); 637 } else { 638 if (TM.getTargetData()->isBigEndian()) { 639 EmitInt32(unsigned(Value >> 32)); O << '\n'; 640 EmitInt32(unsigned(Value)); 641 } else { 642 EmitInt32(unsigned(Value)); O << '\n'; 643 EmitInt32(unsigned(Value >> 32)); 644 } 645 } 646} 647 648/// toOctal - Convert the low order bits of X into an octal digit. 649/// 650static inline char toOctal(int X) { 651 return (X&7)+'0'; 652} 653 654/// printStringChar - Print a char, escaped if necessary. 655/// 656static void printStringChar(raw_ostream &O, char C) { 657 if (C == '"') { 658 O << "\\\""; 659 } else if (C == '\\') { 660 O << "\\\\"; 661 } else if (isprint(C)) { 662 O << C; 663 } else { 664 switch(C) { 665 case '\b': O << "\\b"; break; 666 case '\f': O << "\\f"; break; 667 case '\n': O << "\\n"; break; 668 case '\r': O << "\\r"; break; 669 case '\t': O << "\\t"; break; 670 default: 671 O << '\\'; 672 O << toOctal(C >> 6); 673 O << toOctal(C >> 3); 674 O << toOctal(C >> 0); 675 break; 676 } 677 } 678} 679 680/// EmitString - Emit a string with quotes and a null terminator. 681/// Special characters are emitted properly. 682/// \literal (Eg. '\t') \endliteral 683void AsmPrinter::EmitString(const std::string &String) const { 684 const char* AscizDirective = TAI->getAscizDirective(); 685 if (AscizDirective) 686 O << AscizDirective; 687 else 688 O << TAI->getAsciiDirective(); 689 O << '\"'; 690 for (unsigned i = 0, N = String.size(); i < N; ++i) { 691 unsigned char C = String[i]; 692 printStringChar(O, C); 693 } 694 if (AscizDirective) 695 O << '\"'; 696 else 697 O << "\\0\""; 698} 699 700 701/// EmitFile - Emit a .file directive. 702void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 703 O << "\t.file\t" << Number << " \""; 704 for (unsigned i = 0, N = Name.size(); i < N; ++i) { 705 unsigned char C = Name[i]; 706 printStringChar(O, C); 707 } 708 O << '\"'; 709} 710 711 712//===----------------------------------------------------------------------===// 713 714// EmitAlignment - Emit an alignment directive to the specified power of 715// two boundary. For example, if you pass in 3 here, you will get an 8 716// byte alignment. If a global value is specified, and if that global has 717// an explicit alignment requested, it will unconditionally override the 718// alignment request. However, if ForcedAlignBits is specified, this value 719// has final say: the ultimate alignment will be the max of ForcedAlignBits 720// and the alignment computed with NumBits and the global. 721// 722// The algorithm is: 723// Align = NumBits; 724// if (GV && GV->hasalignment) Align = GV->getalignment(); 725// Align = std::max(Align, ForcedAlignBits); 726// 727void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 728 unsigned ForcedAlignBits, 729 bool UseFillExpr) const { 730 if (GV && GV->getAlignment()) 731 NumBits = Log2_32(GV->getAlignment()); 732 NumBits = std::max(NumBits, ForcedAlignBits); 733 734 if (NumBits == 0) return; // No need to emit alignment. 735 if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; 736 O << TAI->getAlignDirective() << NumBits; 737 738 unsigned FillValue = TAI->getTextAlignFillValue(); 739 UseFillExpr &= IsInTextSection && FillValue; 740 if (UseFillExpr) O << ",0x" << utohexstr(FillValue); 741 O << '\n'; 742} 743 744 745/// EmitZeros - Emit a block of zeros. 746/// 747void AsmPrinter::EmitZeros(uint64_t NumZeros) const { 748 if (NumZeros) { 749 if (TAI->getZeroDirective()) { 750 O << TAI->getZeroDirective() << NumZeros; 751 if (TAI->getZeroDirectiveSuffix()) 752 O << TAI->getZeroDirectiveSuffix(); 753 O << '\n'; 754 } else { 755 for (; NumZeros; --NumZeros) 756 O << TAI->getData8bitsDirective() << "0\n"; 757 } 758 } 759} 760 761// Print out the specified constant, without a storage class. Only the 762// constants valid in constant expressions can occur here. 763void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 764 if (CV->isNullValue() || isa<UndefValue>(CV)) 765 O << '0'; 766 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 767 O << CI->getZExtValue(); 768 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 769 // This is a constant address for a global variable or function. Use the 770 // name of the variable or function as the address value, possibly 771 // decorating it with GlobalVarAddrPrefix/Suffix or 772 // FunctionAddrPrefix/Suffix (these all default to "" ) 773 if (isa<Function>(GV)) { 774 O << TAI->getFunctionAddrPrefix() 775 << Mang->getValueName(GV) 776 << TAI->getFunctionAddrSuffix(); 777 } else { 778 O << TAI->getGlobalVarAddrPrefix() 779 << Mang->getValueName(GV) 780 << TAI->getGlobalVarAddrSuffix(); 781 } 782 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 783 const TargetData *TD = TM.getTargetData(); 784 unsigned Opcode = CE->getOpcode(); 785 switch (Opcode) { 786 case Instruction::GetElementPtr: { 787 // generate a symbolic expression for the byte address 788 const Constant *ptrVal = CE->getOperand(0); 789 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 790 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 791 idxVec.size())) { 792 if (Offset) 793 O << '('; 794 EmitConstantValueOnly(ptrVal); 795 if (Offset > 0) 796 O << ") + " << Offset; 797 else if (Offset < 0) 798 O << ") - " << -Offset; 799 } else { 800 EmitConstantValueOnly(ptrVal); 801 } 802 break; 803 } 804 case Instruction::Trunc: 805 case Instruction::ZExt: 806 case Instruction::SExt: 807 case Instruction::FPTrunc: 808 case Instruction::FPExt: 809 case Instruction::UIToFP: 810 case Instruction::SIToFP: 811 case Instruction::FPToUI: 812 case Instruction::FPToSI: 813 assert(0 && "FIXME: Don't yet support this kind of constant cast expr"); 814 break; 815 case Instruction::BitCast: 816 return EmitConstantValueOnly(CE->getOperand(0)); 817 818 case Instruction::IntToPtr: { 819 // Handle casts to pointers by changing them into casts to the appropriate 820 // integer type. This promotes constant folding and simplifies this code. 821 Constant *Op = CE->getOperand(0); 822 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/); 823 return EmitConstantValueOnly(Op); 824 } 825 826 827 case Instruction::PtrToInt: { 828 // Support only foldable casts to/from pointers that can be eliminated by 829 // changing the pointer to the appropriately sized integer type. 830 Constant *Op = CE->getOperand(0); 831 const Type *Ty = CE->getType(); 832 833 // We can emit the pointer value into this slot if the slot is an 834 // integer slot greater or equal to the size of the pointer. 835 if (TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType())) 836 return EmitConstantValueOnly(Op); 837 838 O << "(("; 839 EmitConstantValueOnly(Op); 840 APInt ptrMask = APInt::getAllOnesValue(TD->getABITypeSizeInBits(Ty)); 841 842 SmallString<40> S; 843 ptrMask.toStringUnsigned(S); 844 O << ") & " << S.c_str() << ')'; 845 break; 846 } 847 case Instruction::Add: 848 case Instruction::Sub: 849 case Instruction::And: 850 case Instruction::Or: 851 case Instruction::Xor: 852 O << '('; 853 EmitConstantValueOnly(CE->getOperand(0)); 854 O << ')'; 855 switch (Opcode) { 856 case Instruction::Add: 857 O << " + "; 858 break; 859 case Instruction::Sub: 860 O << " - "; 861 break; 862 case Instruction::And: 863 O << " & "; 864 break; 865 case Instruction::Or: 866 O << " | "; 867 break; 868 case Instruction::Xor: 869 O << " ^ "; 870 break; 871 default: 872 break; 873 } 874 O << '('; 875 EmitConstantValueOnly(CE->getOperand(1)); 876 O << ')'; 877 break; 878 default: 879 assert(0 && "Unsupported operator!"); 880 } 881 } else { 882 assert(0 && "Unknown constant value!"); 883 } 884} 885 886/// printAsCString - Print the specified array as a C compatible string, only if 887/// the predicate isString is true. 888/// 889static void printAsCString(raw_ostream &O, const ConstantArray *CVA, 890 unsigned LastElt) { 891 assert(CVA->isString() && "Array is not string compatible!"); 892 893 O << '\"'; 894 for (unsigned i = 0; i != LastElt; ++i) { 895 unsigned char C = 896 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 897 printStringChar(O, C); 898 } 899 O << '\"'; 900} 901 902/// EmitString - Emit a zero-byte-terminated string constant. 903/// 904void AsmPrinter::EmitString(const ConstantArray *CVA) const { 905 unsigned NumElts = CVA->getNumOperands(); 906 if (TAI->getAscizDirective() && NumElts && 907 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 908 O << TAI->getAscizDirective(); 909 printAsCString(O, CVA, NumElts-1); 910 } else { 911 O << TAI->getAsciiDirective(); 912 printAsCString(O, CVA, NumElts); 913 } 914 O << '\n'; 915} 916 917/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 918void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 919 const TargetData *TD = TM.getTargetData(); 920 unsigned Size = TD->getABITypeSize(CV->getType()); 921 922 if (CV->isNullValue() || isa<UndefValue>(CV)) { 923 EmitZeros(Size); 924 return; 925 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 926 if (CVA->isString()) { 927 EmitString(CVA); 928 } else { // Not a string. Print the values in successive locations 929 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 930 EmitGlobalConstant(CVA->getOperand(i)); 931 } 932 return; 933 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 934 // Print the fields in successive locations. Pad to align if needed! 935 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 936 uint64_t sizeSoFar = 0; 937 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 938 const Constant* field = CVS->getOperand(i); 939 940 // Check if padding is needed and insert one or more 0s. 941 uint64_t fieldSize = TD->getABITypeSize(field->getType()); 942 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 943 - cvsLayout->getElementOffset(i)) - fieldSize; 944 sizeSoFar += fieldSize + padSize; 945 946 // Now print the actual field value. 947 EmitGlobalConstant(field); 948 949 // Insert padding - this may include padding to increase the size of the 950 // current field up to the ABI size (if the struct is not packed) as well 951 // as padding to ensure that the next field starts at the right offset. 952 EmitZeros(padSize); 953 } 954 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 955 "Layout of constant struct may be incorrect!"); 956 return; 957 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 958 // FP Constants are printed as integer constants to avoid losing 959 // precision... 960 if (CFP->getType() == Type::DoubleTy) { 961 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 962 uint64_t i = CFP->getValueAPF().convertToAPInt().getZExtValue(); 963 if (TAI->getData64bitsDirective()) 964 O << TAI->getData64bitsDirective() << i << '\t' 965 << TAI->getCommentString() << " double value: " << Val << '\n'; 966 else if (TD->isBigEndian()) { 967 O << TAI->getData32bitsDirective() << unsigned(i >> 32) 968 << '\t' << TAI->getCommentString() 969 << " double most significant word " << Val << '\n'; 970 O << TAI->getData32bitsDirective() << unsigned(i) 971 << '\t' << TAI->getCommentString() 972 << " double least significant word " << Val << '\n'; 973 } else { 974 O << TAI->getData32bitsDirective() << unsigned(i) 975 << '\t' << TAI->getCommentString() 976 << " double least significant word " << Val << '\n'; 977 O << TAI->getData32bitsDirective() << unsigned(i >> 32) 978 << '\t' << TAI->getCommentString() 979 << " double most significant word " << Val << '\n'; 980 } 981 return; 982 } else if (CFP->getType() == Type::FloatTy) { 983 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 984 O << TAI->getData32bitsDirective() 985 << CFP->getValueAPF().convertToAPInt().getZExtValue() 986 << '\t' << TAI->getCommentString() << " float " << Val << '\n'; 987 return; 988 } else if (CFP->getType() == Type::X86_FP80Ty) { 989 // all long double variants are printed as hex 990 // api needed to prevent premature destruction 991 APInt api = CFP->getValueAPF().convertToAPInt(); 992 const uint64_t *p = api.getRawData(); 993 APFloat DoubleVal = CFP->getValueAPF(); 994 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven); 995 if (TD->isBigEndian()) { 996 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48) 997 << '\t' << TAI->getCommentString() 998 << " long double most significant halfword of ~" 999 << DoubleVal.convertToDouble() << '\n'; 1000 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32) 1001 << '\t' << TAI->getCommentString() 1002 << " long double next halfword\n"; 1003 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16) 1004 << '\t' << TAI->getCommentString() 1005 << " long double next halfword\n"; 1006 O << TAI->getData16bitsDirective() << uint16_t(p[0]) 1007 << '\t' << TAI->getCommentString() 1008 << " long double next halfword\n"; 1009 O << TAI->getData16bitsDirective() << uint16_t(p[1]) 1010 << '\t' << TAI->getCommentString() 1011 << " long double least significant halfword\n"; 1012 } else { 1013 O << TAI->getData16bitsDirective() << uint16_t(p[1]) 1014 << '\t' << TAI->getCommentString() 1015 << " long double least significant halfword of ~" 1016 << DoubleVal.convertToDouble() << '\n'; 1017 O << TAI->getData16bitsDirective() << uint16_t(p[0]) 1018 << '\t' << TAI->getCommentString() 1019 << " long double next halfword\n"; 1020 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16) 1021 << '\t' << TAI->getCommentString() 1022 << " long double next halfword\n"; 1023 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32) 1024 << '\t' << TAI->getCommentString() 1025 << " long double next halfword\n"; 1026 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48) 1027 << '\t' << TAI->getCommentString() 1028 << " long double most significant halfword\n"; 1029 } 1030 EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty)); 1031 return; 1032 } else if (CFP->getType() == Type::PPC_FP128Ty) { 1033 // all long double variants are printed as hex 1034 // api needed to prevent premature destruction 1035 APInt api = CFP->getValueAPF().convertToAPInt(); 1036 const uint64_t *p = api.getRawData(); 1037 if (TD->isBigEndian()) { 1038 O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32) 1039 << '\t' << TAI->getCommentString() 1040 << " long double most significant word\n"; 1041 O << TAI->getData32bitsDirective() << uint32_t(p[0]) 1042 << '\t' << TAI->getCommentString() 1043 << " long double next word\n"; 1044 O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32) 1045 << '\t' << TAI->getCommentString() 1046 << " long double next word\n"; 1047 O << TAI->getData32bitsDirective() << uint32_t(p[1]) 1048 << '\t' << TAI->getCommentString() 1049 << " long double least significant word\n"; 1050 } else { 1051 O << TAI->getData32bitsDirective() << uint32_t(p[1]) 1052 << '\t' << TAI->getCommentString() 1053 << " long double least significant word\n"; 1054 O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32) 1055 << '\t' << TAI->getCommentString() 1056 << " long double next word\n"; 1057 O << TAI->getData32bitsDirective() << uint32_t(p[0]) 1058 << '\t' << TAI->getCommentString() 1059 << " long double next word\n"; 1060 O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32) 1061 << '\t' << TAI->getCommentString() 1062 << " long double most significant word\n"; 1063 } 1064 return; 1065 } else assert(0 && "Floating point constant type not handled"); 1066 } else if (CV->getType()->isInteger() && 1067 cast<IntegerType>(CV->getType())->getBitWidth() >= 64) { 1068 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1069 unsigned BitWidth = CI->getBitWidth(); 1070 assert(isPowerOf2_32(BitWidth) && 1071 "Non-power-of-2-sized integers not handled!"); 1072 1073 // We don't expect assemblers to support integer data directives 1074 // for more than 64 bits, so we emit the data in at most 64-bit 1075 // quantities at a time. 1076 const uint64_t *RawData = CI->getValue().getRawData(); 1077 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1078 uint64_t Val; 1079 if (TD->isBigEndian()) 1080 Val = RawData[e - i - 1]; 1081 else 1082 Val = RawData[i]; 1083 1084 if (TAI->getData64bitsDirective()) 1085 O << TAI->getData64bitsDirective() << Val << '\n'; 1086 else if (TD->isBigEndian()) { 1087 O << TAI->getData32bitsDirective() << unsigned(Val >> 32) 1088 << '\t' << TAI->getCommentString() 1089 << " Double-word most significant word " << Val << '\n'; 1090 O << TAI->getData32bitsDirective() << unsigned(Val) 1091 << '\t' << TAI->getCommentString() 1092 << " Double-word least significant word " << Val << '\n'; 1093 } else { 1094 O << TAI->getData32bitsDirective() << unsigned(Val) 1095 << '\t' << TAI->getCommentString() 1096 << " Double-word least significant word " << Val << '\n'; 1097 O << TAI->getData32bitsDirective() << unsigned(Val >> 32) 1098 << '\t' << TAI->getCommentString() 1099 << " Double-word most significant word " << Val << '\n'; 1100 } 1101 } 1102 return; 1103 } 1104 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1105 const VectorType *PTy = CP->getType(); 1106 1107 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 1108 EmitGlobalConstant(CP->getOperand(I)); 1109 1110 return; 1111 } 1112 1113 const Type *type = CV->getType(); 1114 printDataDirective(type); 1115 EmitConstantValueOnly(CV); 1116 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1117 SmallString<40> S; 1118 CI->getValue().toStringUnsigned(S, 16); 1119 O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str(); 1120 } 1121 O << '\n'; 1122} 1123 1124void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1125 // Target doesn't support this yet! 1126 abort(); 1127} 1128 1129/// PrintSpecial - Print information related to the specified machine instr 1130/// that is independent of the operand, and may be independent of the instr 1131/// itself. This can be useful for portably encoding the comment character 1132/// or other bits of target-specific knowledge into the asmstrings. The 1133/// syntax used is ${:comment}. Targets can override this to add support 1134/// for their own strange codes. 1135void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) { 1136 if (!strcmp(Code, "private")) { 1137 O << TAI->getPrivateGlobalPrefix(); 1138 } else if (!strcmp(Code, "comment")) { 1139 O << TAI->getCommentString(); 1140 } else if (!strcmp(Code, "uid")) { 1141 // Assign a unique ID to this machine instruction. 1142 static const MachineInstr *LastMI = 0; 1143 static const Function *F = 0; 1144 static unsigned Counter = 0U-1; 1145 1146 // Comparing the address of MI isn't sufficient, because machineinstrs may 1147 // be allocated to the same address across functions. 1148 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1149 1150 // If this is a new machine instruction, bump the counter. 1151 if (LastMI != MI || F != ThisF) { 1152 ++Counter; 1153 LastMI = MI; 1154 F = ThisF; 1155 } 1156 O << Counter; 1157 } else { 1158 cerr << "Unknown special formatter '" << Code 1159 << "' for machine instr: " << *MI; 1160 exit(1); 1161 } 1162} 1163 1164 1165/// printInlineAsm - This method formats and prints the specified machine 1166/// instruction that is an inline asm. 1167void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1168 unsigned NumOperands = MI->getNumOperands(); 1169 1170 // Count the number of register definitions. 1171 unsigned NumDefs = 0; 1172 for (; MI->getOperand(NumDefs).isRegister() && MI->getOperand(NumDefs).isDef(); 1173 ++NumDefs) 1174 assert(NumDefs != NumOperands-1 && "No asm string?"); 1175 1176 assert(MI->getOperand(NumDefs).isExternalSymbol() && "No asm string?"); 1177 1178 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1179 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1180 1181 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1182 // These are useful to see where empty asm's wound up. 1183 if (AsmStr[0] == 0) { 1184 O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1185 return; 1186 } 1187 1188 O << TAI->getInlineAsmStart() << "\n\t"; 1189 1190 // The variant of the current asmprinter. 1191 int AsmPrinterVariant = TAI->getAssemblerDialect(); 1192 1193 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1194 const char *LastEmitted = AsmStr; // One past the last character emitted. 1195 1196 while (*LastEmitted) { 1197 switch (*LastEmitted) { 1198 default: { 1199 // Not a special case, emit the string section literally. 1200 const char *LiteralEnd = LastEmitted+1; 1201 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1202 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1203 ++LiteralEnd; 1204 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1205 O.write(LastEmitted, LiteralEnd-LastEmitted); 1206 LastEmitted = LiteralEnd; 1207 break; 1208 } 1209 case '\n': 1210 ++LastEmitted; // Consume newline character. 1211 O << '\n'; // Indent code with newline. 1212 break; 1213 case '$': { 1214 ++LastEmitted; // Consume '$' character. 1215 bool Done = true; 1216 1217 // Handle escapes. 1218 switch (*LastEmitted) { 1219 default: Done = false; break; 1220 case '$': // $$ -> $ 1221 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1222 O << '$'; 1223 ++LastEmitted; // Consume second '$' character. 1224 break; 1225 case '(': // $( -> same as GCC's { character. 1226 ++LastEmitted; // Consume '(' character. 1227 if (CurVariant != -1) { 1228 cerr << "Nested variants found in inline asm string: '" 1229 << AsmStr << "'\n"; 1230 exit(1); 1231 } 1232 CurVariant = 0; // We're in the first variant now. 1233 break; 1234 case '|': 1235 ++LastEmitted; // consume '|' character. 1236 if (CurVariant == -1) { 1237 cerr << "Found '|' character outside of variant in inline asm " 1238 << "string: '" << AsmStr << "'\n"; 1239 exit(1); 1240 } 1241 ++CurVariant; // We're in the next variant. 1242 break; 1243 case ')': // $) -> same as GCC's } char. 1244 ++LastEmitted; // consume ')' character. 1245 if (CurVariant == -1) { 1246 cerr << "Found '}' character outside of variant in inline asm " 1247 << "string: '" << AsmStr << "'\n"; 1248 exit(1); 1249 } 1250 CurVariant = -1; 1251 break; 1252 } 1253 if (Done) break; 1254 1255 bool HasCurlyBraces = false; 1256 if (*LastEmitted == '{') { // ${variable} 1257 ++LastEmitted; // Consume '{' character. 1258 HasCurlyBraces = true; 1259 } 1260 1261 const char *IDStart = LastEmitted; 1262 char *IDEnd; 1263 errno = 0; 1264 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1265 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1266 cerr << "Bad $ operand number in inline asm string: '" 1267 << AsmStr << "'\n"; 1268 exit(1); 1269 } 1270 LastEmitted = IDEnd; 1271 1272 char Modifier[2] = { 0, 0 }; 1273 1274 if (HasCurlyBraces) { 1275 // If we have curly braces, check for a modifier character. This 1276 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1277 if (*LastEmitted == ':') { 1278 ++LastEmitted; // Consume ':' character. 1279 if (*LastEmitted == 0) { 1280 cerr << "Bad ${:} expression in inline asm string: '" 1281 << AsmStr << "'\n"; 1282 exit(1); 1283 } 1284 1285 Modifier[0] = *LastEmitted; 1286 ++LastEmitted; // Consume modifier character. 1287 } 1288 1289 if (*LastEmitted != '}') { 1290 cerr << "Bad ${} expression in inline asm string: '" 1291 << AsmStr << "'\n"; 1292 exit(1); 1293 } 1294 ++LastEmitted; // Consume '}' character. 1295 } 1296 1297 if ((unsigned)Val >= NumOperands-1) { 1298 cerr << "Invalid $ operand number in inline asm string: '" 1299 << AsmStr << "'\n"; 1300 exit(1); 1301 } 1302 1303 // Okay, we finally have a value number. Ask the target to print this 1304 // operand! 1305 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1306 unsigned OpNo = 1; 1307 1308 bool Error = false; 1309 1310 // Scan to find the machine operand number for the operand. 1311 for (; Val; --Val) { 1312 if (OpNo >= MI->getNumOperands()) break; 1313 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1314 OpNo += (OpFlags >> 3) + 1; 1315 } 1316 1317 if (OpNo >= MI->getNumOperands()) { 1318 Error = true; 1319 } else { 1320 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1321 ++OpNo; // Skip over the ID number. 1322 1323 if (Modifier[0]=='l') // labels are target independent 1324 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), 1325 false, false, false); 1326 else { 1327 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1328 if ((OpFlags & 7) == 4 /*ADDR MODE*/) { 1329 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1330 Modifier[0] ? Modifier : 0); 1331 } else { 1332 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1333 Modifier[0] ? Modifier : 0); 1334 } 1335 } 1336 } 1337 if (Error) { 1338 cerr << "Invalid operand found in inline asm: '" 1339 << AsmStr << "'\n"; 1340 MI->dump(); 1341 exit(1); 1342 } 1343 } 1344 break; 1345 } 1346 } 1347 } 1348 O << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1349} 1350 1351/// printImplicitDef - This method prints the specified machine instruction 1352/// that is an implicit def. 1353void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1354 O << '\t' << TAI->getCommentString() << " implicit-def: " 1355 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; 1356} 1357 1358/// printLabel - This method prints a local label used by debug and 1359/// exception handling tables. 1360void AsmPrinter::printLabel(const MachineInstr *MI) const { 1361 printLabel(MI->getOperand(0).getImm()); 1362} 1363 1364void AsmPrinter::printLabel(unsigned Id) const { 1365 O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; 1366} 1367 1368/// printDeclare - This method prints a local variable declaration used by 1369/// debug tables. 1370/// FIXME: It doesn't really print anything rather it inserts a DebugVariable 1371/// entry into dwarf table. 1372void AsmPrinter::printDeclare(const MachineInstr *MI) const { 1373 int FI = MI->getOperand(0).getIndex(); 1374 GlobalValue *GV = MI->getOperand(1).getGlobal(); 1375 MMI->RecordVariable(GV, FI); 1376} 1377 1378/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1379/// instruction, using the specified assembler variant. Targets should 1380/// overried this to format as appropriate. 1381bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1382 unsigned AsmVariant, const char *ExtraCode) { 1383 // Target doesn't support this yet! 1384 return true; 1385} 1386 1387bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1388 unsigned AsmVariant, 1389 const char *ExtraCode) { 1390 // Target doesn't support this yet! 1391 return true; 1392} 1393 1394/// printBasicBlockLabel - This method prints the label for the specified 1395/// MachineBasicBlock 1396void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, 1397 bool printAlign, 1398 bool printColon, 1399 bool printComment) const { 1400 if (printAlign) { 1401 unsigned Align = MBB->getAlignment(); 1402 if (Align) 1403 EmitAlignment(Log2_32(Align)); 1404 } 1405 1406 O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' 1407 << MBB->getNumber(); 1408 if (printColon) 1409 O << ':'; 1410 if (printComment && MBB->getBasicBlock()) 1411 O << '\t' << TAI->getCommentString() << ' ' 1412 << MBB->getBasicBlock()->getNameStart(); 1413} 1414 1415/// printPICJumpTableSetLabel - This method prints a set label for the 1416/// specified MachineBasicBlock for a jumptable entry. 1417void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1418 const MachineBasicBlock *MBB) const { 1419 if (!TAI->getSetDirective()) 1420 return; 1421 1422 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1423 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1424 printBasicBlockLabel(MBB, false, false, false); 1425 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1426 << '_' << uid << '\n'; 1427} 1428 1429void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1430 const MachineBasicBlock *MBB) const { 1431 if (!TAI->getSetDirective()) 1432 return; 1433 1434 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1435 << getFunctionNumber() << '_' << uid << '_' << uid2 1436 << "_set_" << MBB->getNumber() << ','; 1437 printBasicBlockLabel(MBB, false, false, false); 1438 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1439 << '_' << uid << '_' << uid2 << '\n'; 1440} 1441 1442/// printDataDirective - This method prints the asm directive for the 1443/// specified type. 1444void AsmPrinter::printDataDirective(const Type *type) { 1445 const TargetData *TD = TM.getTargetData(); 1446 switch (type->getTypeID()) { 1447 case Type::IntegerTyID: { 1448 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1449 if (BitWidth <= 8) 1450 O << TAI->getData8bitsDirective(); 1451 else if (BitWidth <= 16) 1452 O << TAI->getData16bitsDirective(); 1453 else if (BitWidth <= 32) 1454 O << TAI->getData32bitsDirective(); 1455 else if (BitWidth <= 64) { 1456 assert(TAI->getData64bitsDirective() && 1457 "Target cannot handle 64-bit constant exprs!"); 1458 O << TAI->getData64bitsDirective(); 1459 } else { 1460 assert(0 && "Target cannot handle given data directive width!"); 1461 } 1462 break; 1463 } 1464 case Type::PointerTyID: 1465 if (TD->getPointerSize() == 8) { 1466 assert(TAI->getData64bitsDirective() && 1467 "Target cannot handle 64-bit pointer exprs!"); 1468 O << TAI->getData64bitsDirective(); 1469 } else { 1470 O << TAI->getData32bitsDirective(); 1471 } 1472 break; 1473 case Type::FloatTyID: case Type::DoubleTyID: 1474 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1475 assert (0 && "Should have already output floating point constant."); 1476 default: 1477 assert (0 && "Can't handle printing this type of thing"); 1478 break; 1479 } 1480} 1481 1482void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix, 1483 const char *Prefix) { 1484 if (Name[0]=='\"') 1485 O << '\"'; 1486 O << TAI->getPrivateGlobalPrefix(); 1487 if (Prefix) O << Prefix; 1488 if (Name[0]=='\"') 1489 O << '\"'; 1490 if (Name[0]=='\"') 1491 O << Name[1]; 1492 else 1493 O << Name; 1494 O << Suffix; 1495 if (Name[0]=='\"') 1496 O << '\"'; 1497} 1498 1499void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) { 1500 printSuffixedName(Name.c_str(), Suffix); 1501} 1502 1503void AsmPrinter::printVisibility(const std::string& Name, 1504 unsigned Visibility) const { 1505 if (Visibility == GlobalValue::HiddenVisibility) { 1506 if (const char *Directive = TAI->getHiddenDirective()) 1507 O << Directive << Name << '\n'; 1508 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1509 if (const char *Directive = TAI->getProtectedDirective()) 1510 O << Directive << Name << '\n'; 1511 } 1512} 1513 1514GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1515 if (!S->usesMetadata()) 1516 return 0; 1517 1518 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1519 if (GCPI != GCMetadataPrinters.end()) 1520 return GCPI->second; 1521 1522 const char *Name = S->getName().c_str(); 1523 1524 for (GCMetadataPrinterRegistry::iterator 1525 I = GCMetadataPrinterRegistry::begin(), 1526 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1527 if (strcmp(Name, I->getName()) == 0) { 1528 GCMetadataPrinter *GMP = I->instantiate(); 1529 GMP->S = S; 1530 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1531 return GMP; 1532 } 1533 1534 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1535 abort(); 1536} 1537