AsmPrinter.cpp revision 60567624019d288f4fc733d44e7205c463a9bd75
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/Support/Mangler.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Target/TargetAsmInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34#include <cerrno>
35using namespace llvm;
36
37char AsmPrinter::ID = 0;
38AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
39                       const TargetAsmInfo *T)
40  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
41    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
42    IsInTextSection(false)
43{}
44
45AsmPrinter::~AsmPrinter() {
46  for (gcp_iterator I = GCMetadataPrinters.begin(),
47                    E = GCMetadataPrinters.end(); I != E; ++I)
48    delete I->second;
49}
50
51std::string AsmPrinter::getSectionForFunction(const Function &F) const {
52  return TAI->getTextSection();
53}
54
55
56/// SwitchToTextSection - Switch to the specified text section of the executable
57/// if we are not already in it!
58///
59void AsmPrinter::SwitchToTextSection(const char *NewSection,
60                                     const GlobalValue *GV) {
61  std::string NS;
62  if (GV && GV->hasSection())
63    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
64  else
65    NS = NewSection;
66
67  // If we're already in this section, we're done.
68  if (CurrentSection == NS) return;
69
70  // Close the current section, if applicable.
71  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
72    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
73
74  CurrentSection = NS;
75
76  if (!CurrentSection.empty())
77    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
78
79  IsInTextSection = true;
80}
81
82/// SwitchToDataSection - Switch to the specified data section of the executable
83/// if we are not already in it!
84///
85void AsmPrinter::SwitchToDataSection(const char *NewSection,
86                                     const GlobalValue *GV) {
87  std::string NS;
88  if (GV && GV->hasSection())
89    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
90  else
91    NS = NewSection;
92
93  // If we're already in this section, we're done.
94  if (CurrentSection == NS) return;
95
96  // Close the current section, if applicable.
97  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
98    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
99
100  CurrentSection = NS;
101
102  if (!CurrentSection.empty())
103    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
104
105  IsInTextSection = false;
106}
107
108
109void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
110  MachineFunctionPass::getAnalysisUsage(AU);
111  AU.addRequired<GCModuleInfo>();
112}
113
114bool AsmPrinter::doInitialization(Module &M) {
115  Mang = new Mangler(M, TAI->getGlobalPrefix());
116
117  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
118  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
119  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
120    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
121      MP->beginAssembly(O, *this, *TAI);
122
123  if (!M.getModuleInlineAsm().empty())
124    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
125      << M.getModuleInlineAsm()
126      << '\n' << TAI->getCommentString()
127      << " End of file scope inline assembly\n";
128
129  SwitchToDataSection("");   // Reset back to no section.
130
131  MMI = getAnalysisToUpdate<MachineModuleInfo>();
132  if (MMI) MMI->AnalyzeModule(M);
133
134  return false;
135}
136
137bool AsmPrinter::doFinalization(Module &M) {
138  if (TAI->getWeakRefDirective()) {
139    if (!ExtWeakSymbols.empty())
140      SwitchToDataSection("");
141
142    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
143         e = ExtWeakSymbols.end(); i != e; ++i) {
144      const GlobalValue *GV = *i;
145      std::string Name = Mang->getValueName(GV);
146      O << TAI->getWeakRefDirective() << Name << '\n';
147    }
148  }
149
150  if (TAI->getSetDirective()) {
151    if (!M.alias_empty())
152      SwitchToTextSection(TAI->getTextSection());
153
154    O << '\n';
155    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
156         I!=E; ++I) {
157      std::string Name = Mang->getValueName(I);
158      std::string Target;
159
160      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
161      Target = Mang->getValueName(GV);
162
163      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
164        O << "\t.globl\t" << Name << '\n';
165      else if (I->hasWeakLinkage())
166        O << TAI->getWeakRefDirective() << Name << '\n';
167      else if (!I->hasInternalLinkage())
168        assert(0 && "Invalid alias linkage");
169
170      if (I->hasHiddenVisibility()) {
171        if (const char *Directive = TAI->getHiddenDirective())
172          O << Directive << Name << '\n';
173      } else if (I->hasProtectedVisibility()) {
174        if (const char *Directive = TAI->getProtectedDirective())
175          O << Directive << Name << '\n';
176      }
177
178      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
179
180      // If the aliasee has external weak linkage it can be referenced only by
181      // alias itself. In this case it can be not in ExtWeakSymbols list. Emit
182      // weak reference in such case.
183      if (GV->hasExternalWeakLinkage()) {
184        if (TAI->getWeakRefDirective())
185          O << TAI->getWeakRefDirective() << Target << '\n';
186        else
187          O << "\t.globl\t" << Target << '\n';
188      }
189    }
190  }
191
192  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
193  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
194  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
195    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
196      MP->finishAssembly(O, *this, *TAI);
197
198  // If we don't have any trampolines, then we don't require stack memory
199  // to be executable. Some targets have a directive to declare this.
200  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
201  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
202    if (TAI->getNonexecutableStackDirective())
203      O << TAI->getNonexecutableStackDirective() << '\n';
204
205  delete Mang; Mang = 0;
206  return false;
207}
208
209std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
210  assert(MF && "No machine function?");
211  std::string Name = MF->getFunction()->getName();
212  if (Name.empty())
213    Name = Mang->getValueName(MF->getFunction());
214  return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix());
215}
216
217void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
218  // What's my mangled name?
219  CurrentFnName = Mang->getValueName(MF.getFunction());
220  IncrementFunctionNumber();
221}
222
223/// EmitConstantPool - Print to the current output stream assembly
224/// representations of the constants in the constant pool MCP. This is
225/// used to print out constants which have been "spilled to memory" by
226/// the code generator.
227///
228void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
229  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
230  if (CP.empty()) return;
231
232  // Some targets require 4-, 8-, and 16- byte constant literals to be placed
233  // in special sections.
234  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > FourByteCPs;
235  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > EightByteCPs;
236  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > SixteenByteCPs;
237  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > OtherCPs;
238  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > TargetCPs;
239  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
240    MachineConstantPoolEntry CPE = CP[i];
241    const Type *Ty = CPE.getType();
242    if (TAI->getFourByteConstantSection() &&
243        TM.getTargetData()->getABITypeSize(Ty) == 4)
244      FourByteCPs.push_back(std::make_pair(CPE, i));
245    else if (TAI->getEightByteConstantSection() &&
246             TM.getTargetData()->getABITypeSize(Ty) == 8)
247      EightByteCPs.push_back(std::make_pair(CPE, i));
248    else if (TAI->getSixteenByteConstantSection() &&
249             TM.getTargetData()->getABITypeSize(Ty) == 16)
250      SixteenByteCPs.push_back(std::make_pair(CPE, i));
251    else
252      OtherCPs.push_back(std::make_pair(CPE, i));
253  }
254
255  unsigned Alignment = MCP->getConstantPoolAlignment();
256  EmitConstantPool(Alignment, TAI->getFourByteConstantSection(), FourByteCPs);
257  EmitConstantPool(Alignment, TAI->getEightByteConstantSection(), EightByteCPs);
258  EmitConstantPool(Alignment, TAI->getSixteenByteConstantSection(),
259                   SixteenByteCPs);
260  EmitConstantPool(Alignment, TAI->getConstantPoolSection(), OtherCPs);
261}
262
263void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section,
264               std::vector<std::pair<MachineConstantPoolEntry,unsigned> > &CP) {
265  if (CP.empty()) return;
266
267  SwitchToDataSection(Section);
268  EmitAlignment(Alignment);
269  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
270    O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
271      << CP[i].second << ":\t\t\t\t\t";
272    // O << TAI->getCommentString() << ' ' <<
273    //      WriteTypeSymbolic(O, CP[i].first.getType(), 0);
274    O << '\n';
275    if (CP[i].first.isMachineConstantPoolEntry())
276      EmitMachineConstantPoolValue(CP[i].first.Val.MachineCPVal);
277     else
278      EmitGlobalConstant(CP[i].first.Val.ConstVal);
279    if (i != e-1) {
280      const Type *Ty = CP[i].first.getType();
281      unsigned EntSize =
282        TM.getTargetData()->getABITypeSize(Ty);
283      unsigned ValEnd = CP[i].first.getOffset() + EntSize;
284      // Emit inter-object padding for alignment.
285      EmitZeros(CP[i+1].first.getOffset()-ValEnd);
286    }
287  }
288}
289
290/// EmitJumpTableInfo - Print assembly representations of the jump tables used
291/// by the current function to the current output stream.
292///
293void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
294                                   MachineFunction &MF) {
295  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
296  if (JT.empty()) return;
297
298  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
299
300  // Pick the directive to use to print the jump table entries, and switch to
301  // the appropriate section.
302  TargetLowering *LoweringInfo = TM.getTargetLowering();
303
304  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
305  const Function *F = MF.getFunction();
306  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
307  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
308     !JumpTableDataSection ||
309      SectionFlags & SectionFlags::Linkonce) {
310    // In PIC mode, we need to emit the jump table to the same section as the
311    // function body itself, otherwise the label differences won't make sense.
312    // We should also do if the section name is NULL or function is declared in
313    // discardable section.
314    SwitchToTextSection(getSectionForFunction(*F).c_str(), F);
315  } else {
316    SwitchToDataSection(JumpTableDataSection);
317  }
318
319  EmitAlignment(Log2_32(MJTI->getAlignment()));
320
321  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
322    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
323
324    // If this jump table was deleted, ignore it.
325    if (JTBBs.empty()) continue;
326
327    // For PIC codegen, if possible we want to use the SetDirective to reduce
328    // the number of relocations the assembler will generate for the jump table.
329    // Set directives are all printed before the jump table itself.
330    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
331    if (TAI->getSetDirective() && IsPic)
332      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
333        if (EmittedSets.insert(JTBBs[ii]))
334          printPICJumpTableSetLabel(i, JTBBs[ii]);
335
336    // On some targets (e.g. darwin) we want to emit two consequtive labels
337    // before each jump table.  The first label is never referenced, but tells
338    // the assembler and linker the extents of the jump table object.  The
339    // second label is actually referenced by the code.
340    if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
341      O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
342
343    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
344      << '_' << i << ":\n";
345
346    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
347      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
348      O << '\n';
349    }
350  }
351}
352
353void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
354                                        const MachineBasicBlock *MBB,
355                                        unsigned uid)  const {
356  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
357
358  // Use JumpTableDirective otherwise honor the entry size from the jump table
359  // info.
360  const char *JTEntryDirective = TAI->getJumpTableDirective();
361  bool HadJTEntryDirective = JTEntryDirective != NULL;
362  if (!HadJTEntryDirective) {
363    JTEntryDirective = MJTI->getEntrySize() == 4 ?
364      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
365  }
366
367  O << JTEntryDirective << ' ';
368
369  // If we have emitted set directives for the jump table entries, print
370  // them rather than the entries themselves.  If we're emitting PIC, then
371  // emit the table entries as differences between two text section labels.
372  // If we're emitting non-PIC code, then emit the entries as direct
373  // references to the target basic blocks.
374  if (IsPic) {
375    if (TAI->getSetDirective()) {
376      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
377        << '_' << uid << "_set_" << MBB->getNumber();
378    } else {
379      printBasicBlockLabel(MBB, false, false, false);
380      // If the arch uses custom Jump Table directives, don't calc relative to
381      // JT
382      if (!HadJTEntryDirective)
383        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
384          << getFunctionNumber() << '_' << uid;
385    }
386  } else {
387    printBasicBlockLabel(MBB, false, false, false);
388  }
389}
390
391
392/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
393/// special global used by LLVM.  If so, emit it and return true, otherwise
394/// do nothing and return false.
395bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
396  if (GV->getName() == "llvm.used") {
397    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
398      EmitLLVMUsedList(GV->getInitializer());
399    return true;
400  }
401
402  // Ignore debug and non-emitted data.
403  if (GV->getSection() == "llvm.metadata") return true;
404
405  if (!GV->hasAppendingLinkage()) return false;
406
407  assert(GV->hasInitializer() && "Not a special LLVM global!");
408
409  const TargetData *TD = TM.getTargetData();
410  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
411  if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
412    SwitchToDataSection(TAI->getStaticCtorsSection());
413    EmitAlignment(Align, 0);
414    EmitXXStructorList(GV->getInitializer());
415    return true;
416  }
417
418  if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
419    SwitchToDataSection(TAI->getStaticDtorsSection());
420    EmitAlignment(Align, 0);
421    EmitXXStructorList(GV->getInitializer());
422    return true;
423  }
424
425  return false;
426}
427
428/// findGlobalValue - if CV is an expression equivalent to a single
429/// global value, return that value.
430const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
431  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
432    return GV;
433  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
434    const TargetData *TD = TM.getTargetData();
435    unsigned Opcode = CE->getOpcode();
436    switch (Opcode) {
437    case Instruction::GetElementPtr: {
438      const Constant *ptrVal = CE->getOperand(0);
439      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
440      if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
441        return 0;
442      return findGlobalValue(ptrVal);
443    }
444    case Instruction::BitCast:
445      return findGlobalValue(CE->getOperand(0));
446    default:
447      return 0;
448    }
449  }
450  return 0;
451}
452
453/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
454/// global in the specified llvm.used list for which emitUsedDirectiveFor
455/// is true, as being used with this directive.
456
457void AsmPrinter::EmitLLVMUsedList(Constant *List) {
458  const char *Directive = TAI->getUsedDirective();
459
460  // Should be an array of 'sbyte*'.
461  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
462  if (InitList == 0) return;
463
464  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
465    const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
466    if (TAI->emitUsedDirectiveFor(GV, Mang)) {
467      O << Directive;
468      EmitConstantValueOnly(InitList->getOperand(i));
469      O << '\n';
470    }
471  }
472}
473
474/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
475/// function pointers, ignoring the init priority.
476void AsmPrinter::EmitXXStructorList(Constant *List) {
477  // Should be an array of '{ int, void ()* }' structs.  The first value is the
478  // init priority, which we ignore.
479  if (!isa<ConstantArray>(List)) return;
480  ConstantArray *InitList = cast<ConstantArray>(List);
481  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
482    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
483      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
484
485      if (CS->getOperand(1)->isNullValue())
486        return;  // Found a null terminator, exit printing.
487      // Emit the function pointer.
488      EmitGlobalConstant(CS->getOperand(1));
489    }
490}
491
492/// getGlobalLinkName - Returns the asm/link name of of the specified
493/// global variable.  Should be overridden by each target asm printer to
494/// generate the appropriate value.
495const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
496  std::string LinkName;
497
498  if (isa<Function>(GV)) {
499    LinkName += TAI->getFunctionAddrPrefix();
500    LinkName += Mang->getValueName(GV);
501    LinkName += TAI->getFunctionAddrSuffix();
502  } else {
503    LinkName += TAI->getGlobalVarAddrPrefix();
504    LinkName += Mang->getValueName(GV);
505    LinkName += TAI->getGlobalVarAddrSuffix();
506  }
507
508  return LinkName;
509}
510
511/// EmitExternalGlobal - Emit the external reference to a global variable.
512/// Should be overridden if an indirect reference should be used.
513void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
514  O << getGlobalLinkName(GV);
515}
516
517
518
519//===----------------------------------------------------------------------===//
520/// LEB 128 number encoding.
521
522/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
523/// representing an unsigned leb128 value.
524void AsmPrinter::PrintULEB128(unsigned Value) const {
525  do {
526    unsigned Byte = Value & 0x7f;
527    Value >>= 7;
528    if (Value) Byte |= 0x80;
529    O << "0x" <<  utohexstr(Byte);
530    if (Value) O << ", ";
531  } while (Value);
532}
533
534/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
535/// representing a signed leb128 value.
536void AsmPrinter::PrintSLEB128(int Value) const {
537  int Sign = Value >> (8 * sizeof(Value) - 1);
538  bool IsMore;
539
540  do {
541    unsigned Byte = Value & 0x7f;
542    Value >>= 7;
543    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
544    if (IsMore) Byte |= 0x80;
545    O << "0x" << utohexstr(Byte);
546    if (IsMore) O << ", ";
547  } while (IsMore);
548}
549
550//===--------------------------------------------------------------------===//
551// Emission and print routines
552//
553
554/// PrintHex - Print a value as a hexidecimal value.
555///
556void AsmPrinter::PrintHex(int Value) const {
557  O << "0x" << utohexstr(static_cast<unsigned>(Value));
558}
559
560/// EOL - Print a newline character to asm stream.  If a comment is present
561/// then it will be printed first.  Comments should not contain '\n'.
562void AsmPrinter::EOL() const {
563  O << '\n';
564}
565
566void AsmPrinter::EOL(const std::string &Comment) const {
567  if (VerboseAsm && !Comment.empty()) {
568    O << '\t'
569      << TAI->getCommentString()
570      << ' '
571      << Comment;
572  }
573  O << '\n';
574}
575
576void AsmPrinter::EOL(const char* Comment) const {
577  if (VerboseAsm && *Comment) {
578    O << '\t'
579      << TAI->getCommentString()
580      << ' '
581      << Comment;
582  }
583  O << '\n';
584}
585
586/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
587/// unsigned leb128 value.
588void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
589  if (TAI->hasLEB128()) {
590    O << "\t.uleb128\t"
591      << Value;
592  } else {
593    O << TAI->getData8bitsDirective();
594    PrintULEB128(Value);
595  }
596}
597
598/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
599/// signed leb128 value.
600void AsmPrinter::EmitSLEB128Bytes(int Value) const {
601  if (TAI->hasLEB128()) {
602    O << "\t.sleb128\t"
603      << Value;
604  } else {
605    O << TAI->getData8bitsDirective();
606    PrintSLEB128(Value);
607  }
608}
609
610/// EmitInt8 - Emit a byte directive and value.
611///
612void AsmPrinter::EmitInt8(int Value) const {
613  O << TAI->getData8bitsDirective();
614  PrintHex(Value & 0xFF);
615}
616
617/// EmitInt16 - Emit a short directive and value.
618///
619void AsmPrinter::EmitInt16(int Value) const {
620  O << TAI->getData16bitsDirective();
621  PrintHex(Value & 0xFFFF);
622}
623
624/// EmitInt32 - Emit a long directive and value.
625///
626void AsmPrinter::EmitInt32(int Value) const {
627  O << TAI->getData32bitsDirective();
628  PrintHex(Value);
629}
630
631/// EmitInt64 - Emit a long long directive and value.
632///
633void AsmPrinter::EmitInt64(uint64_t Value) const {
634  if (TAI->getData64bitsDirective()) {
635    O << TAI->getData64bitsDirective();
636    PrintHex(Value);
637  } else {
638    if (TM.getTargetData()->isBigEndian()) {
639      EmitInt32(unsigned(Value >> 32)); O << '\n';
640      EmitInt32(unsigned(Value));
641    } else {
642      EmitInt32(unsigned(Value)); O << '\n';
643      EmitInt32(unsigned(Value >> 32));
644    }
645  }
646}
647
648/// toOctal - Convert the low order bits of X into an octal digit.
649///
650static inline char toOctal(int X) {
651  return (X&7)+'0';
652}
653
654/// printStringChar - Print a char, escaped if necessary.
655///
656static void printStringChar(raw_ostream &O, char C) {
657  if (C == '"') {
658    O << "\\\"";
659  } else if (C == '\\') {
660    O << "\\\\";
661  } else if (isprint(C)) {
662    O << C;
663  } else {
664    switch(C) {
665    case '\b': O << "\\b"; break;
666    case '\f': O << "\\f"; break;
667    case '\n': O << "\\n"; break;
668    case '\r': O << "\\r"; break;
669    case '\t': O << "\\t"; break;
670    default:
671      O << '\\';
672      O << toOctal(C >> 6);
673      O << toOctal(C >> 3);
674      O << toOctal(C >> 0);
675      break;
676    }
677  }
678}
679
680/// EmitString - Emit a string with quotes and a null terminator.
681/// Special characters are emitted properly.
682/// \literal (Eg. '\t') \endliteral
683void AsmPrinter::EmitString(const std::string &String) const {
684  const char* AscizDirective = TAI->getAscizDirective();
685  if (AscizDirective)
686    O << AscizDirective;
687  else
688    O << TAI->getAsciiDirective();
689  O << '\"';
690  for (unsigned i = 0, N = String.size(); i < N; ++i) {
691    unsigned char C = String[i];
692    printStringChar(O, C);
693  }
694  if (AscizDirective)
695    O << '\"';
696  else
697    O << "\\0\"";
698}
699
700
701/// EmitFile - Emit a .file directive.
702void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
703  O << "\t.file\t" << Number << " \"";
704  for (unsigned i = 0, N = Name.size(); i < N; ++i) {
705    unsigned char C = Name[i];
706    printStringChar(O, C);
707  }
708  O << '\"';
709}
710
711
712//===----------------------------------------------------------------------===//
713
714// EmitAlignment - Emit an alignment directive to the specified power of
715// two boundary.  For example, if you pass in 3 here, you will get an 8
716// byte alignment.  If a global value is specified, and if that global has
717// an explicit alignment requested, it will unconditionally override the
718// alignment request.  However, if ForcedAlignBits is specified, this value
719// has final say: the ultimate alignment will be the max of ForcedAlignBits
720// and the alignment computed with NumBits and the global.
721//
722// The algorithm is:
723//     Align = NumBits;
724//     if (GV && GV->hasalignment) Align = GV->getalignment();
725//     Align = std::max(Align, ForcedAlignBits);
726//
727void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
728                               unsigned ForcedAlignBits,
729                               bool UseFillExpr) const {
730  if (GV && GV->getAlignment())
731    NumBits = Log2_32(GV->getAlignment());
732  NumBits = std::max(NumBits, ForcedAlignBits);
733
734  if (NumBits == 0) return;   // No need to emit alignment.
735  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
736  O << TAI->getAlignDirective() << NumBits;
737
738  unsigned FillValue = TAI->getTextAlignFillValue();
739  UseFillExpr &= IsInTextSection && FillValue;
740  if (UseFillExpr) O << ",0x" << utohexstr(FillValue);
741  O << '\n';
742}
743
744
745/// EmitZeros - Emit a block of zeros.
746///
747void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
748  if (NumZeros) {
749    if (TAI->getZeroDirective()) {
750      O << TAI->getZeroDirective() << NumZeros;
751      if (TAI->getZeroDirectiveSuffix())
752        O << TAI->getZeroDirectiveSuffix();
753      O << '\n';
754    } else {
755      for (; NumZeros; --NumZeros)
756        O << TAI->getData8bitsDirective() << "0\n";
757    }
758  }
759}
760
761// Print out the specified constant, without a storage class.  Only the
762// constants valid in constant expressions can occur here.
763void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
764  if (CV->isNullValue() || isa<UndefValue>(CV))
765    O << '0';
766  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
767    O << CI->getZExtValue();
768  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
769    // This is a constant address for a global variable or function. Use the
770    // name of the variable or function as the address value, possibly
771    // decorating it with GlobalVarAddrPrefix/Suffix or
772    // FunctionAddrPrefix/Suffix (these all default to "" )
773    if (isa<Function>(GV)) {
774      O << TAI->getFunctionAddrPrefix()
775        << Mang->getValueName(GV)
776        << TAI->getFunctionAddrSuffix();
777    } else {
778      O << TAI->getGlobalVarAddrPrefix()
779        << Mang->getValueName(GV)
780        << TAI->getGlobalVarAddrSuffix();
781    }
782  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
783    const TargetData *TD = TM.getTargetData();
784    unsigned Opcode = CE->getOpcode();
785    switch (Opcode) {
786    case Instruction::GetElementPtr: {
787      // generate a symbolic expression for the byte address
788      const Constant *ptrVal = CE->getOperand(0);
789      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
790      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
791                                                idxVec.size())) {
792        if (Offset)
793          O << '(';
794        EmitConstantValueOnly(ptrVal);
795        if (Offset > 0)
796          O << ") + " << Offset;
797        else if (Offset < 0)
798          O << ") - " << -Offset;
799      } else {
800        EmitConstantValueOnly(ptrVal);
801      }
802      break;
803    }
804    case Instruction::Trunc:
805    case Instruction::ZExt:
806    case Instruction::SExt:
807    case Instruction::FPTrunc:
808    case Instruction::FPExt:
809    case Instruction::UIToFP:
810    case Instruction::SIToFP:
811    case Instruction::FPToUI:
812    case Instruction::FPToSI:
813      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
814      break;
815    case Instruction::BitCast:
816      return EmitConstantValueOnly(CE->getOperand(0));
817
818    case Instruction::IntToPtr: {
819      // Handle casts to pointers by changing them into casts to the appropriate
820      // integer type.  This promotes constant folding and simplifies this code.
821      Constant *Op = CE->getOperand(0);
822      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
823      return EmitConstantValueOnly(Op);
824    }
825
826
827    case Instruction::PtrToInt: {
828      // Support only foldable casts to/from pointers that can be eliminated by
829      // changing the pointer to the appropriately sized integer type.
830      Constant *Op = CE->getOperand(0);
831      const Type *Ty = CE->getType();
832
833      // We can emit the pointer value into this slot if the slot is an
834      // integer slot greater or equal to the size of the pointer.
835      if (TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType()))
836        return EmitConstantValueOnly(Op);
837
838      O << "((";
839      EmitConstantValueOnly(Op);
840      APInt ptrMask = APInt::getAllOnesValue(TD->getABITypeSizeInBits(Ty));
841
842      SmallString<40> S;
843      ptrMask.toStringUnsigned(S);
844      O << ") & " << S.c_str() << ')';
845      break;
846    }
847    case Instruction::Add:
848    case Instruction::Sub:
849    case Instruction::And:
850    case Instruction::Or:
851    case Instruction::Xor:
852      O << '(';
853      EmitConstantValueOnly(CE->getOperand(0));
854      O << ')';
855      switch (Opcode) {
856      case Instruction::Add:
857       O << " + ";
858       break;
859      case Instruction::Sub:
860       O << " - ";
861       break;
862      case Instruction::And:
863       O << " & ";
864       break;
865      case Instruction::Or:
866       O << " | ";
867       break;
868      case Instruction::Xor:
869       O << " ^ ";
870       break;
871      default:
872       break;
873      }
874      O << '(';
875      EmitConstantValueOnly(CE->getOperand(1));
876      O << ')';
877      break;
878    default:
879      assert(0 && "Unsupported operator!");
880    }
881  } else {
882    assert(0 && "Unknown constant value!");
883  }
884}
885
886/// printAsCString - Print the specified array as a C compatible string, only if
887/// the predicate isString is true.
888///
889static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
890                           unsigned LastElt) {
891  assert(CVA->isString() && "Array is not string compatible!");
892
893  O << '\"';
894  for (unsigned i = 0; i != LastElt; ++i) {
895    unsigned char C =
896        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
897    printStringChar(O, C);
898  }
899  O << '\"';
900}
901
902/// EmitString - Emit a zero-byte-terminated string constant.
903///
904void AsmPrinter::EmitString(const ConstantArray *CVA) const {
905  unsigned NumElts = CVA->getNumOperands();
906  if (TAI->getAscizDirective() && NumElts &&
907      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
908    O << TAI->getAscizDirective();
909    printAsCString(O, CVA, NumElts-1);
910  } else {
911    O << TAI->getAsciiDirective();
912    printAsCString(O, CVA, NumElts);
913  }
914  O << '\n';
915}
916
917/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
918void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
919  const TargetData *TD = TM.getTargetData();
920  unsigned Size = TD->getABITypeSize(CV->getType());
921
922  if (CV->isNullValue() || isa<UndefValue>(CV)) {
923    EmitZeros(Size);
924    return;
925  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
926    if (CVA->isString()) {
927      EmitString(CVA);
928    } else { // Not a string.  Print the values in successive locations
929      for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
930        EmitGlobalConstant(CVA->getOperand(i));
931    }
932    return;
933  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
934    // Print the fields in successive locations. Pad to align if needed!
935    const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
936    uint64_t sizeSoFar = 0;
937    for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
938      const Constant* field = CVS->getOperand(i);
939
940      // Check if padding is needed and insert one or more 0s.
941      uint64_t fieldSize = TD->getABITypeSize(field->getType());
942      uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
943                          - cvsLayout->getElementOffset(i)) - fieldSize;
944      sizeSoFar += fieldSize + padSize;
945
946      // Now print the actual field value.
947      EmitGlobalConstant(field);
948
949      // Insert padding - this may include padding to increase the size of the
950      // current field up to the ABI size (if the struct is not packed) as well
951      // as padding to ensure that the next field starts at the right offset.
952      EmitZeros(padSize);
953    }
954    assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
955           "Layout of constant struct may be incorrect!");
956    return;
957  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
958    // FP Constants are printed as integer constants to avoid losing
959    // precision...
960    if (CFP->getType() == Type::DoubleTy) {
961      double Val = CFP->getValueAPF().convertToDouble();  // for comment only
962      uint64_t i = CFP->getValueAPF().convertToAPInt().getZExtValue();
963      if (TAI->getData64bitsDirective())
964        O << TAI->getData64bitsDirective() << i << '\t'
965          << TAI->getCommentString() << " double value: " << Val << '\n';
966      else if (TD->isBigEndian()) {
967        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
968          << '\t' << TAI->getCommentString()
969          << " double most significant word " << Val << '\n';
970        O << TAI->getData32bitsDirective() << unsigned(i)
971          << '\t' << TAI->getCommentString()
972          << " double least significant word " << Val << '\n';
973      } else {
974        O << TAI->getData32bitsDirective() << unsigned(i)
975          << '\t' << TAI->getCommentString()
976          << " double least significant word " << Val << '\n';
977        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
978          << '\t' << TAI->getCommentString()
979          << " double most significant word " << Val << '\n';
980      }
981      return;
982    } else if (CFP->getType() == Type::FloatTy) {
983      float Val = CFP->getValueAPF().convertToFloat();  // for comment only
984      O << TAI->getData32bitsDirective()
985        << CFP->getValueAPF().convertToAPInt().getZExtValue()
986        << '\t' << TAI->getCommentString() << " float " << Val << '\n';
987      return;
988    } else if (CFP->getType() == Type::X86_FP80Ty) {
989      // all long double variants are printed as hex
990      // api needed to prevent premature destruction
991      APInt api = CFP->getValueAPF().convertToAPInt();
992      const uint64_t *p = api.getRawData();
993      APFloat DoubleVal = CFP->getValueAPF();
994      DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
995      if (TD->isBigEndian()) {
996        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
997          << '\t' << TAI->getCommentString()
998          << " long double most significant halfword of ~"
999          << DoubleVal.convertToDouble() << '\n';
1000        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1001          << '\t' << TAI->getCommentString()
1002          << " long double next halfword\n";
1003        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1004          << '\t' << TAI->getCommentString()
1005          << " long double next halfword\n";
1006        O << TAI->getData16bitsDirective() << uint16_t(p[0])
1007          << '\t' << TAI->getCommentString()
1008          << " long double next halfword\n";
1009        O << TAI->getData16bitsDirective() << uint16_t(p[1])
1010          << '\t' << TAI->getCommentString()
1011          << " long double least significant halfword\n";
1012       } else {
1013        O << TAI->getData16bitsDirective() << uint16_t(p[1])
1014          << '\t' << TAI->getCommentString()
1015          << " long double least significant halfword of ~"
1016          << DoubleVal.convertToDouble() << '\n';
1017        O << TAI->getData16bitsDirective() << uint16_t(p[0])
1018          << '\t' << TAI->getCommentString()
1019          << " long double next halfword\n";
1020        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1021          << '\t' << TAI->getCommentString()
1022          << " long double next halfword\n";
1023        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1024          << '\t' << TAI->getCommentString()
1025          << " long double next halfword\n";
1026        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1027          << '\t' << TAI->getCommentString()
1028          << " long double most significant halfword\n";
1029      }
1030      EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty));
1031      return;
1032    } else if (CFP->getType() == Type::PPC_FP128Ty) {
1033      // all long double variants are printed as hex
1034      // api needed to prevent premature destruction
1035      APInt api = CFP->getValueAPF().convertToAPInt();
1036      const uint64_t *p = api.getRawData();
1037      if (TD->isBigEndian()) {
1038        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1039          << '\t' << TAI->getCommentString()
1040          << " long double most significant word\n";
1041        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1042          << '\t' << TAI->getCommentString()
1043          << " long double next word\n";
1044        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1045          << '\t' << TAI->getCommentString()
1046          << " long double next word\n";
1047        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1048          << '\t' << TAI->getCommentString()
1049          << " long double least significant word\n";
1050       } else {
1051        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1052          << '\t' << TAI->getCommentString()
1053          << " long double least significant word\n";
1054        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1055          << '\t' << TAI->getCommentString()
1056          << " long double next word\n";
1057        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1058          << '\t' << TAI->getCommentString()
1059          << " long double next word\n";
1060        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1061          << '\t' << TAI->getCommentString()
1062          << " long double most significant word\n";
1063      }
1064      return;
1065    } else assert(0 && "Floating point constant type not handled");
1066  } else if (CV->getType()->isInteger() &&
1067             cast<IntegerType>(CV->getType())->getBitWidth() >= 64) {
1068    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1069      unsigned BitWidth = CI->getBitWidth();
1070      assert(isPowerOf2_32(BitWidth) &&
1071             "Non-power-of-2-sized integers not handled!");
1072
1073      // We don't expect assemblers to support integer data directives
1074      // for more than 64 bits, so we emit the data in at most 64-bit
1075      // quantities at a time.
1076      const uint64_t *RawData = CI->getValue().getRawData();
1077      for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1078        uint64_t Val;
1079        if (TD->isBigEndian())
1080          Val = RawData[e - i - 1];
1081        else
1082          Val = RawData[i];
1083
1084        if (TAI->getData64bitsDirective())
1085          O << TAI->getData64bitsDirective() << Val << '\n';
1086        else if (TD->isBigEndian()) {
1087          O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1088            << '\t' << TAI->getCommentString()
1089            << " Double-word most significant word " << Val << '\n';
1090          O << TAI->getData32bitsDirective() << unsigned(Val)
1091            << '\t' << TAI->getCommentString()
1092            << " Double-word least significant word " << Val << '\n';
1093        } else {
1094          O << TAI->getData32bitsDirective() << unsigned(Val)
1095            << '\t' << TAI->getCommentString()
1096            << " Double-word least significant word " << Val << '\n';
1097          O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1098            << '\t' << TAI->getCommentString()
1099            << " Double-word most significant word " << Val << '\n';
1100        }
1101      }
1102      return;
1103    }
1104  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1105    const VectorType *PTy = CP->getType();
1106
1107    for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
1108      EmitGlobalConstant(CP->getOperand(I));
1109
1110    return;
1111  }
1112
1113  const Type *type = CV->getType();
1114  printDataDirective(type);
1115  EmitConstantValueOnly(CV);
1116  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1117    SmallString<40> S;
1118    CI->getValue().toStringUnsigned(S, 16);
1119    O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1120  }
1121  O << '\n';
1122}
1123
1124void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1125  // Target doesn't support this yet!
1126  abort();
1127}
1128
1129/// PrintSpecial - Print information related to the specified machine instr
1130/// that is independent of the operand, and may be independent of the instr
1131/// itself.  This can be useful for portably encoding the comment character
1132/// or other bits of target-specific knowledge into the asmstrings.  The
1133/// syntax used is ${:comment}.  Targets can override this to add support
1134/// for their own strange codes.
1135void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
1136  if (!strcmp(Code, "private")) {
1137    O << TAI->getPrivateGlobalPrefix();
1138  } else if (!strcmp(Code, "comment")) {
1139    O << TAI->getCommentString();
1140  } else if (!strcmp(Code, "uid")) {
1141    // Assign a unique ID to this machine instruction.
1142    static const MachineInstr *LastMI = 0;
1143    static const Function *F = 0;
1144    static unsigned Counter = 0U-1;
1145
1146    // Comparing the address of MI isn't sufficient, because machineinstrs may
1147    // be allocated to the same address across functions.
1148    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1149
1150    // If this is a new machine instruction, bump the counter.
1151    if (LastMI != MI || F != ThisF) {
1152      ++Counter;
1153      LastMI = MI;
1154      F = ThisF;
1155    }
1156    O << Counter;
1157  } else {
1158    cerr << "Unknown special formatter '" << Code
1159         << "' for machine instr: " << *MI;
1160    exit(1);
1161  }
1162}
1163
1164
1165/// printInlineAsm - This method formats and prints the specified machine
1166/// instruction that is an inline asm.
1167void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1168  unsigned NumOperands = MI->getNumOperands();
1169
1170  // Count the number of register definitions.
1171  unsigned NumDefs = 0;
1172  for (; MI->getOperand(NumDefs).isRegister() && MI->getOperand(NumDefs).isDef();
1173       ++NumDefs)
1174    assert(NumDefs != NumOperands-1 && "No asm string?");
1175
1176  assert(MI->getOperand(NumDefs).isExternalSymbol() && "No asm string?");
1177
1178  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1179  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1180
1181  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1182  // These are useful to see where empty asm's wound up.
1183  if (AsmStr[0] == 0) {
1184    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1185    return;
1186  }
1187
1188  O << TAI->getInlineAsmStart() << "\n\t";
1189
1190  // The variant of the current asmprinter.
1191  int AsmPrinterVariant = TAI->getAssemblerDialect();
1192
1193  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1194  const char *LastEmitted = AsmStr; // One past the last character emitted.
1195
1196  while (*LastEmitted) {
1197    switch (*LastEmitted) {
1198    default: {
1199      // Not a special case, emit the string section literally.
1200      const char *LiteralEnd = LastEmitted+1;
1201      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1202             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1203        ++LiteralEnd;
1204      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1205        O.write(LastEmitted, LiteralEnd-LastEmitted);
1206      LastEmitted = LiteralEnd;
1207      break;
1208    }
1209    case '\n':
1210      ++LastEmitted;   // Consume newline character.
1211      O << '\n';       // Indent code with newline.
1212      break;
1213    case '$': {
1214      ++LastEmitted;   // Consume '$' character.
1215      bool Done = true;
1216
1217      // Handle escapes.
1218      switch (*LastEmitted) {
1219      default: Done = false; break;
1220      case '$':     // $$ -> $
1221        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1222          O << '$';
1223        ++LastEmitted;  // Consume second '$' character.
1224        break;
1225      case '(':             // $( -> same as GCC's { character.
1226        ++LastEmitted;      // Consume '(' character.
1227        if (CurVariant != -1) {
1228          cerr << "Nested variants found in inline asm string: '"
1229               << AsmStr << "'\n";
1230          exit(1);
1231        }
1232        CurVariant = 0;     // We're in the first variant now.
1233        break;
1234      case '|':
1235        ++LastEmitted;  // consume '|' character.
1236        if (CurVariant == -1) {
1237          cerr << "Found '|' character outside of variant in inline asm "
1238               << "string: '" << AsmStr << "'\n";
1239          exit(1);
1240        }
1241        ++CurVariant;   // We're in the next variant.
1242        break;
1243      case ')':         // $) -> same as GCC's } char.
1244        ++LastEmitted;  // consume ')' character.
1245        if (CurVariant == -1) {
1246          cerr << "Found '}' character outside of variant in inline asm "
1247               << "string: '" << AsmStr << "'\n";
1248          exit(1);
1249        }
1250        CurVariant = -1;
1251        break;
1252      }
1253      if (Done) break;
1254
1255      bool HasCurlyBraces = false;
1256      if (*LastEmitted == '{') {     // ${variable}
1257        ++LastEmitted;               // Consume '{' character.
1258        HasCurlyBraces = true;
1259      }
1260
1261      const char *IDStart = LastEmitted;
1262      char *IDEnd;
1263      errno = 0;
1264      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1265      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1266        cerr << "Bad $ operand number in inline asm string: '"
1267             << AsmStr << "'\n";
1268        exit(1);
1269      }
1270      LastEmitted = IDEnd;
1271
1272      char Modifier[2] = { 0, 0 };
1273
1274      if (HasCurlyBraces) {
1275        // If we have curly braces, check for a modifier character.  This
1276        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1277        if (*LastEmitted == ':') {
1278          ++LastEmitted;    // Consume ':' character.
1279          if (*LastEmitted == 0) {
1280            cerr << "Bad ${:} expression in inline asm string: '"
1281                 << AsmStr << "'\n";
1282            exit(1);
1283          }
1284
1285          Modifier[0] = *LastEmitted;
1286          ++LastEmitted;    // Consume modifier character.
1287        }
1288
1289        if (*LastEmitted != '}') {
1290          cerr << "Bad ${} expression in inline asm string: '"
1291               << AsmStr << "'\n";
1292          exit(1);
1293        }
1294        ++LastEmitted;    // Consume '}' character.
1295      }
1296
1297      if ((unsigned)Val >= NumOperands-1) {
1298        cerr << "Invalid $ operand number in inline asm string: '"
1299             << AsmStr << "'\n";
1300        exit(1);
1301      }
1302
1303      // Okay, we finally have a value number.  Ask the target to print this
1304      // operand!
1305      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1306        unsigned OpNo = 1;
1307
1308        bool Error = false;
1309
1310        // Scan to find the machine operand number for the operand.
1311        for (; Val; --Val) {
1312          if (OpNo >= MI->getNumOperands()) break;
1313          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1314          OpNo += (OpFlags >> 3) + 1;
1315        }
1316
1317        if (OpNo >= MI->getNumOperands()) {
1318          Error = true;
1319        } else {
1320          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1321          ++OpNo;  // Skip over the ID number.
1322
1323          if (Modifier[0]=='l')  // labels are target independent
1324            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1325                                 false, false, false);
1326          else {
1327            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1328            if ((OpFlags & 7) == 4 /*ADDR MODE*/) {
1329              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1330                                                Modifier[0] ? Modifier : 0);
1331            } else {
1332              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1333                                          Modifier[0] ? Modifier : 0);
1334            }
1335          }
1336        }
1337        if (Error) {
1338          cerr << "Invalid operand found in inline asm: '"
1339               << AsmStr << "'\n";
1340          MI->dump();
1341          exit(1);
1342        }
1343      }
1344      break;
1345    }
1346    }
1347  }
1348  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1349}
1350
1351/// printImplicitDef - This method prints the specified machine instruction
1352/// that is an implicit def.
1353void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1354  O << '\t' << TAI->getCommentString() << " implicit-def: "
1355    << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1356}
1357
1358/// printLabel - This method prints a local label used by debug and
1359/// exception handling tables.
1360void AsmPrinter::printLabel(const MachineInstr *MI) const {
1361  printLabel(MI->getOperand(0).getImm());
1362}
1363
1364void AsmPrinter::printLabel(unsigned Id) const {
1365  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1366}
1367
1368/// printDeclare - This method prints a local variable declaration used by
1369/// debug tables.
1370/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1371/// entry into dwarf table.
1372void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1373  int FI = MI->getOperand(0).getIndex();
1374  GlobalValue *GV = MI->getOperand(1).getGlobal();
1375  MMI->RecordVariable(GV, FI);
1376}
1377
1378/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1379/// instruction, using the specified assembler variant.  Targets should
1380/// overried this to format as appropriate.
1381bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1382                                 unsigned AsmVariant, const char *ExtraCode) {
1383  // Target doesn't support this yet!
1384  return true;
1385}
1386
1387bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1388                                       unsigned AsmVariant,
1389                                       const char *ExtraCode) {
1390  // Target doesn't support this yet!
1391  return true;
1392}
1393
1394/// printBasicBlockLabel - This method prints the label for the specified
1395/// MachineBasicBlock
1396void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1397                                      bool printAlign,
1398                                      bool printColon,
1399                                      bool printComment) const {
1400  if (printAlign) {
1401    unsigned Align = MBB->getAlignment();
1402    if (Align)
1403      EmitAlignment(Log2_32(Align));
1404  }
1405
1406  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1407    << MBB->getNumber();
1408  if (printColon)
1409    O << ':';
1410  if (printComment && MBB->getBasicBlock())
1411    O << '\t' << TAI->getCommentString() << ' '
1412      << MBB->getBasicBlock()->getNameStart();
1413}
1414
1415/// printPICJumpTableSetLabel - This method prints a set label for the
1416/// specified MachineBasicBlock for a jumptable entry.
1417void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1418                                           const MachineBasicBlock *MBB) const {
1419  if (!TAI->getSetDirective())
1420    return;
1421
1422  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1423    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1424  printBasicBlockLabel(MBB, false, false, false);
1425  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1426    << '_' << uid << '\n';
1427}
1428
1429void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1430                                           const MachineBasicBlock *MBB) const {
1431  if (!TAI->getSetDirective())
1432    return;
1433
1434  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1435    << getFunctionNumber() << '_' << uid << '_' << uid2
1436    << "_set_" << MBB->getNumber() << ',';
1437  printBasicBlockLabel(MBB, false, false, false);
1438  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1439    << '_' << uid << '_' << uid2 << '\n';
1440}
1441
1442/// printDataDirective - This method prints the asm directive for the
1443/// specified type.
1444void AsmPrinter::printDataDirective(const Type *type) {
1445  const TargetData *TD = TM.getTargetData();
1446  switch (type->getTypeID()) {
1447  case Type::IntegerTyID: {
1448    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1449    if (BitWidth <= 8)
1450      O << TAI->getData8bitsDirective();
1451    else if (BitWidth <= 16)
1452      O << TAI->getData16bitsDirective();
1453    else if (BitWidth <= 32)
1454      O << TAI->getData32bitsDirective();
1455    else if (BitWidth <= 64) {
1456      assert(TAI->getData64bitsDirective() &&
1457             "Target cannot handle 64-bit constant exprs!");
1458      O << TAI->getData64bitsDirective();
1459    } else {
1460      assert(0 && "Target cannot handle given data directive width!");
1461    }
1462    break;
1463  }
1464  case Type::PointerTyID:
1465    if (TD->getPointerSize() == 8) {
1466      assert(TAI->getData64bitsDirective() &&
1467             "Target cannot handle 64-bit pointer exprs!");
1468      O << TAI->getData64bitsDirective();
1469    } else {
1470      O << TAI->getData32bitsDirective();
1471    }
1472    break;
1473  case Type::FloatTyID: case Type::DoubleTyID:
1474  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1475    assert (0 && "Should have already output floating point constant.");
1476  default:
1477    assert (0 && "Can't handle printing this type of thing");
1478    break;
1479  }
1480}
1481
1482void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1483                                   const char *Prefix) {
1484  if (Name[0]=='\"')
1485    O << '\"';
1486  O << TAI->getPrivateGlobalPrefix();
1487  if (Prefix) O << Prefix;
1488  if (Name[0]=='\"')
1489    O << '\"';
1490  if (Name[0]=='\"')
1491    O << Name[1];
1492  else
1493    O << Name;
1494  O << Suffix;
1495  if (Name[0]=='\"')
1496    O << '\"';
1497}
1498
1499void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1500  printSuffixedName(Name.c_str(), Suffix);
1501}
1502
1503void AsmPrinter::printVisibility(const std::string& Name,
1504                                 unsigned Visibility) const {
1505  if (Visibility == GlobalValue::HiddenVisibility) {
1506    if (const char *Directive = TAI->getHiddenDirective())
1507      O << Directive << Name << '\n';
1508  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1509    if (const char *Directive = TAI->getProtectedDirective())
1510      O << Directive << Name << '\n';
1511  }
1512}
1513
1514GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1515  if (!S->usesMetadata())
1516    return 0;
1517
1518  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1519  if (GCPI != GCMetadataPrinters.end())
1520    return GCPI->second;
1521
1522  const char *Name = S->getName().c_str();
1523
1524  for (GCMetadataPrinterRegistry::iterator
1525         I = GCMetadataPrinterRegistry::begin(),
1526         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1527    if (strcmp(Name, I->getName()) == 0) {
1528      GCMetadataPrinter *GMP = I->instantiate();
1529      GMP->S = S;
1530      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1531      return GMP;
1532    }
1533
1534  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1535  abort();
1536}
1537