AsmPrinter.cpp revision 693cfcc5b58cedcedd2701064ef6a17d13275b83
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/CodeGen/DwarfWriter.h"
24#include "llvm/Analysis/DebugInfo.h"
25#include "llvm/MC/MCContext.h"
26#include "llvm/MC/MCInst.h"
27#include "llvm/MC/MCSection.h"
28#include "llvm/MC/MCStreamer.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/FormattedStream.h"
32#include "llvm/Support/Mangler.h"
33#include "llvm/Target/TargetAsmInfo.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetLoweringObjectFile.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/SmallString.h"
41#include "llvm/ADT/StringExtras.h"
42#include <cerrno>
43using namespace llvm;
44
45static cl::opt<cl::boolOrDefault>
46AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
47           cl::init(cl::BOU_UNSET));
48
49char AsmPrinter::ID = 0;
50AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
51                       const TargetAsmInfo *T, bool VDef)
52  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
53    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
54
55    OutContext(*new MCContext()),
56    OutStreamer(*createAsmStreamer(OutContext, O)),
57
58    LastMI(0), LastFn(0), Counter(~0U),
59    PrevDLT(0, ~0U, ~0U) {
60  CurrentSection = 0;
61  DW = 0; MMI = 0;
62  switch (AsmVerbose) {
63  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
64  case cl::BOU_TRUE:  VerboseAsm = true;  break;
65  case cl::BOU_FALSE: VerboseAsm = false; break;
66  }
67}
68
69AsmPrinter::~AsmPrinter() {
70  for (gcp_iterator I = GCMetadataPrinters.begin(),
71                    E = GCMetadataPrinters.end(); I != E; ++I)
72    delete I->second;
73
74  delete &OutStreamer;
75  delete &OutContext;
76}
77
78TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
79  return TM.getTargetLowering()->getObjFileLowering();
80}
81
82/// SwitchToSection - Switch to the specified section of the executable if we
83/// are not already in it!  If "NS" is null, then this causes us to exit the
84/// current section and not reenter another one.  This is generally used for
85/// asmprinter hacks.
86///
87/// FIXME: Remove support for null sections.
88///
89void AsmPrinter::SwitchToSection(const MCSection *NS) {
90  // If we're already in this section, we're done.
91  if (CurrentSection == NS) return;
92
93  CurrentSection = NS;
94
95  if (NS != 0) {
96    // If section is named we need to switch into it via special '.section'
97    // directive and also append funky flags. Otherwise - section name is just
98    // some magic assembler directive.
99    if (!NS->isDirective()) {
100      SmallString<32> FlagsStr;
101
102      getObjFileLowering().getSectionFlagsAsString(NS->getKind(), FlagsStr);
103
104      O << TAI->getSwitchToSectionDirective()
105        << CurrentSection->getName() << FlagsStr.c_str();
106    } else {
107      O << CurrentSection->getName();
108    }
109    O << TAI->getDataSectionStartSuffix() << '\n';
110  }
111}
112
113void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
114  AU.setPreservesAll();
115  MachineFunctionPass::getAnalysisUsage(AU);
116  AU.addRequired<GCModuleInfo>();
117}
118
119bool AsmPrinter::doInitialization(Module &M) {
120  // Initialize TargetLoweringObjectFile.
121  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
122    .Initialize(OutContext, TM);
123
124  Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix(),
125                     TAI->getLinkerPrivateGlobalPrefix());
126
127  if (TAI->doesAllowQuotesInName())
128    Mang->setUseQuotes(true);
129
130  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
131  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
132
133  if (TAI->hasSingleParameterDotFile()) {
134    /* Very minimal debug info. It is ignored if we emit actual
135       debug info. If we don't, this at helps the user find where
136       a function came from. */
137    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
138  }
139
140  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
141    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
142      MP->beginAssembly(O, *this, *TAI);
143
144  if (!M.getModuleInlineAsm().empty())
145    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
146      << M.getModuleInlineAsm()
147      << '\n' << TAI->getCommentString()
148      << " End of file scope inline assembly\n";
149
150  SwitchToSection(0);   // Reset back to no section to close off sections.
151
152  if (TAI->doesSupportDebugInformation() ||
153      TAI->doesSupportExceptionHandling()) {
154    MMI = getAnalysisIfAvailable<MachineModuleInfo>();
155    if (MMI)
156      MMI->AnalyzeModule(M);
157    DW = getAnalysisIfAvailable<DwarfWriter>();
158    if (DW)
159      DW->BeginModule(&M, MMI, O, this, TAI);
160  }
161
162  return false;
163}
164
165bool AsmPrinter::doFinalization(Module &M) {
166  // Emit global variables.
167  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
168       I != E; ++I)
169    PrintGlobalVariable(I);
170
171  // Emit final debug information.
172  if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling())
173    DW->EndModule();
174
175  // If the target wants to know about weak references, print them all.
176  if (TAI->getWeakRefDirective()) {
177    // FIXME: This is not lazy, it would be nice to only print weak references
178    // to stuff that is actually used.  Note that doing so would require targets
179    // to notice uses in operands (due to constant exprs etc).  This should
180    // happen with the MC stuff eventually.
181    SwitchToSection(0);
182
183    // Print out module-level global variables here.
184    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
185         I != E; ++I) {
186      if (I->hasExternalWeakLinkage())
187        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
188    }
189
190    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
191      if (I->hasExternalWeakLinkage())
192        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
193    }
194  }
195
196  if (TAI->getSetDirective()) {
197    O << '\n';
198    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
199         I != E; ++I) {
200      std::string Name = Mang->getMangledName(I);
201
202      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
203      std::string Target = Mang->getMangledName(GV);
204
205      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
206        O << "\t.globl\t" << Name << '\n';
207      else if (I->hasWeakLinkage())
208        O << TAI->getWeakRefDirective() << Name << '\n';
209      else if (!I->hasLocalLinkage())
210        llvm_unreachable("Invalid alias linkage");
211
212      printVisibility(Name, I->getVisibility());
213
214      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
215    }
216  }
217
218  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
219  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
220  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
221    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
222      MP->finishAssembly(O, *this, *TAI);
223
224  // If we don't have any trampolines, then we don't require stack memory
225  // to be executable. Some targets have a directive to declare this.
226  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
227  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
228    if (TAI->getNonexecutableStackDirective())
229      O << TAI->getNonexecutableStackDirective() << '\n';
230
231  delete Mang; Mang = 0;
232  DW = 0; MMI = 0;
233
234  OutStreamer.Finish();
235  return false;
236}
237
238std::string
239AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const {
240  assert(MF && "No machine function?");
241  return Mang->getMangledName(MF->getFunction(), ".eh",
242                              TAI->is_EHSymbolPrivate());
243}
244
245void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
246  // What's my mangled name?
247  CurrentFnName = Mang->getMangledName(MF.getFunction());
248  IncrementFunctionNumber();
249}
250
251namespace {
252  // SectionCPs - Keep track the alignment, constpool entries per Section.
253  struct SectionCPs {
254    const MCSection *S;
255    unsigned Alignment;
256    SmallVector<unsigned, 4> CPEs;
257    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {};
258  };
259}
260
261/// EmitConstantPool - Print to the current output stream assembly
262/// representations of the constants in the constant pool MCP. This is
263/// used to print out constants which have been "spilled to memory" by
264/// the code generator.
265///
266void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
267  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
268  if (CP.empty()) return;
269
270  // Calculate sections for constant pool entries. We collect entries to go into
271  // the same section together to reduce amount of section switch statements.
272  SmallVector<SectionCPs, 4> CPSections;
273  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
274    const MachineConstantPoolEntry &CPE = CP[i];
275    unsigned Align = CPE.getAlignment();
276
277    SectionKind Kind;
278    switch (CPE.getRelocationInfo()) {
279    default: llvm_unreachable("Unknown section kind");
280    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
281    case 1:
282      Kind = SectionKind::getReadOnlyWithRelLocal();
283      break;
284    case 0:
285    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
286    case 4:  Kind = SectionKind::getMergeableConst4(); break;
287    case 8:  Kind = SectionKind::getMergeableConst8(); break;
288    case 16: Kind = SectionKind::getMergeableConst16();break;
289    default: Kind = SectionKind::getMergeableConst(); break;
290    }
291    }
292
293    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
294
295    // The number of sections are small, just do a linear search from the
296    // last section to the first.
297    bool Found = false;
298    unsigned SecIdx = CPSections.size();
299    while (SecIdx != 0) {
300      if (CPSections[--SecIdx].S == S) {
301        Found = true;
302        break;
303      }
304    }
305    if (!Found) {
306      SecIdx = CPSections.size();
307      CPSections.push_back(SectionCPs(S, Align));
308    }
309
310    if (Align > CPSections[SecIdx].Alignment)
311      CPSections[SecIdx].Alignment = Align;
312    CPSections[SecIdx].CPEs.push_back(i);
313  }
314
315  // Now print stuff into the calculated sections.
316  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
317    SwitchToSection(CPSections[i].S);
318    EmitAlignment(Log2_32(CPSections[i].Alignment));
319
320    unsigned Offset = 0;
321    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
322      unsigned CPI = CPSections[i].CPEs[j];
323      MachineConstantPoolEntry CPE = CP[CPI];
324
325      // Emit inter-object padding for alignment.
326      unsigned AlignMask = CPE.getAlignment() - 1;
327      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
328      EmitZeros(NewOffset - Offset);
329
330      const Type *Ty = CPE.getType();
331      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
332
333      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
334        << CPI << ":\t\t\t\t\t";
335      if (VerboseAsm) {
336        O << TAI->getCommentString() << ' ';
337        WriteTypeSymbolic(O, CPE.getType(), 0);
338      }
339      O << '\n';
340      if (CPE.isMachineConstantPoolEntry())
341        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
342      else
343        EmitGlobalConstant(CPE.Val.ConstVal);
344    }
345  }
346}
347
348/// EmitJumpTableInfo - Print assembly representations of the jump tables used
349/// by the current function to the current output stream.
350///
351void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
352                                   MachineFunction &MF) {
353  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
354  if (JT.empty()) return;
355
356  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
357
358  // Pick the directive to use to print the jump table entries, and switch to
359  // the appropriate section.
360  TargetLowering *LoweringInfo = TM.getTargetLowering();
361
362  const Function *F = MF.getFunction();
363  bool JTInDiffSection = false;
364  if (F->isWeakForLinker() ||
365      (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
366    // In PIC mode, we need to emit the jump table to the same section as the
367    // function body itself, otherwise the label differences won't make sense.
368    // We should also do if the section name is NULL or function is declared in
369    // discardable section.
370    SwitchToSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
371  } else {
372    // Otherwise, drop it in the readonly section.
373    const MCSection *ReadOnlySection =
374      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
375    SwitchToSection(ReadOnlySection);
376    JTInDiffSection = true;
377  }
378
379  EmitAlignment(Log2_32(MJTI->getAlignment()));
380
381  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
382    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
383
384    // If this jump table was deleted, ignore it.
385    if (JTBBs.empty()) continue;
386
387    // For PIC codegen, if possible we want to use the SetDirective to reduce
388    // the number of relocations the assembler will generate for the jump table.
389    // Set directives are all printed before the jump table itself.
390    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
391    if (TAI->getSetDirective() && IsPic)
392      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
393        if (EmittedSets.insert(JTBBs[ii]))
394          printPICJumpTableSetLabel(i, JTBBs[ii]);
395
396    // On some targets (e.g. darwin) we want to emit two consequtive labels
397    // before each jump table.  The first label is never referenced, but tells
398    // the assembler and linker the extents of the jump table object.  The
399    // second label is actually referenced by the code.
400    if (JTInDiffSection) {
401      if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
402        O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
403    }
404
405    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
406      << '_' << i << ":\n";
407
408    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
409      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
410      O << '\n';
411    }
412  }
413}
414
415void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
416                                        const MachineBasicBlock *MBB,
417                                        unsigned uid)  const {
418  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
419
420  // Use JumpTableDirective otherwise honor the entry size from the jump table
421  // info.
422  const char *JTEntryDirective = TAI->getJumpTableDirective();
423  bool HadJTEntryDirective = JTEntryDirective != NULL;
424  if (!HadJTEntryDirective) {
425    JTEntryDirective = MJTI->getEntrySize() == 4 ?
426      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
427  }
428
429  O << JTEntryDirective << ' ';
430
431  // If we have emitted set directives for the jump table entries, print
432  // them rather than the entries themselves.  If we're emitting PIC, then
433  // emit the table entries as differences between two text section labels.
434  // If we're emitting non-PIC code, then emit the entries as direct
435  // references to the target basic blocks.
436  if (IsPic) {
437    if (TAI->getSetDirective()) {
438      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
439        << '_' << uid << "_set_" << MBB->getNumber();
440    } else {
441      printBasicBlockLabel(MBB, false, false, false);
442      // If the arch uses custom Jump Table directives, don't calc relative to
443      // JT
444      if (!HadJTEntryDirective)
445        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
446          << getFunctionNumber() << '_' << uid;
447    }
448  } else {
449    printBasicBlockLabel(MBB, false, false, false);
450  }
451}
452
453
454/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
455/// special global used by LLVM.  If so, emit it and return true, otherwise
456/// do nothing and return false.
457bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
458  if (GV->getName() == "llvm.used") {
459    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
460      EmitLLVMUsedList(GV->getInitializer());
461    return true;
462  }
463
464  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
465  if (GV->getSection() == "llvm.metadata" ||
466      GV->hasAvailableExternallyLinkage())
467    return true;
468
469  if (!GV->hasAppendingLinkage()) return false;
470
471  assert(GV->hasInitializer() && "Not a special LLVM global!");
472
473  const TargetData *TD = TM.getTargetData();
474  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
475  if (GV->getName() == "llvm.global_ctors") {
476    SwitchToSection(getObjFileLowering().getStaticCtorSection());
477    EmitAlignment(Align, 0);
478    EmitXXStructorList(GV->getInitializer());
479    return true;
480  }
481
482  if (GV->getName() == "llvm.global_dtors") {
483    SwitchToSection(getObjFileLowering().getStaticDtorSection());
484    EmitAlignment(Align, 0);
485    EmitXXStructorList(GV->getInitializer());
486    return true;
487  }
488
489  return false;
490}
491
492/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
493/// global in the specified llvm.used list for which emitUsedDirectiveFor
494/// is true, as being used with this directive.
495void AsmPrinter::EmitLLVMUsedList(Constant *List) {
496  const char *Directive = TAI->getUsedDirective();
497
498  // Should be an array of 'i8*'.
499  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
500  if (InitList == 0) return;
501
502  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
503    const GlobalValue *GV =
504      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
505    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
506      O << Directive;
507      EmitConstantValueOnly(InitList->getOperand(i));
508      O << '\n';
509    }
510  }
511}
512
513/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
514/// function pointers, ignoring the init priority.
515void AsmPrinter::EmitXXStructorList(Constant *List) {
516  // Should be an array of '{ int, void ()* }' structs.  The first value is the
517  // init priority, which we ignore.
518  if (!isa<ConstantArray>(List)) return;
519  ConstantArray *InitList = cast<ConstantArray>(List);
520  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
521    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
522      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
523
524      if (CS->getOperand(1)->isNullValue())
525        return;  // Found a null terminator, exit printing.
526      // Emit the function pointer.
527      EmitGlobalConstant(CS->getOperand(1));
528    }
529}
530
531/// getGlobalLinkName - Returns the asm/link name of of the specified
532/// global variable.  Should be overridden by each target asm printer to
533/// generate the appropriate value.
534const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
535                                                 std::string &LinkName) const {
536  if (isa<Function>(GV)) {
537    LinkName += TAI->getFunctionAddrPrefix();
538    LinkName += Mang->getMangledName(GV);
539    LinkName += TAI->getFunctionAddrSuffix();
540  } else {
541    LinkName += TAI->getGlobalVarAddrPrefix();
542    LinkName += Mang->getMangledName(GV);
543    LinkName += TAI->getGlobalVarAddrSuffix();
544  }
545
546  return LinkName;
547}
548
549/// EmitExternalGlobal - Emit the external reference to a global variable.
550/// Should be overridden if an indirect reference should be used.
551void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
552  std::string GLN;
553  O << getGlobalLinkName(GV, GLN);
554}
555
556
557
558//===----------------------------------------------------------------------===//
559/// LEB 128 number encoding.
560
561/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
562/// representing an unsigned leb128 value.
563void AsmPrinter::PrintULEB128(unsigned Value) const {
564  char Buffer[20];
565  do {
566    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
567    Value >>= 7;
568    if (Value) Byte |= 0x80;
569    O << "0x" << utohex_buffer(Byte, Buffer+20);
570    if (Value) O << ", ";
571  } while (Value);
572}
573
574/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
575/// representing a signed leb128 value.
576void AsmPrinter::PrintSLEB128(int Value) const {
577  int Sign = Value >> (8 * sizeof(Value) - 1);
578  bool IsMore;
579  char Buffer[20];
580
581  do {
582    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
583    Value >>= 7;
584    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
585    if (IsMore) Byte |= 0x80;
586    O << "0x" << utohex_buffer(Byte, Buffer+20);
587    if (IsMore) O << ", ";
588  } while (IsMore);
589}
590
591//===--------------------------------------------------------------------===//
592// Emission and print routines
593//
594
595/// PrintHex - Print a value as a hexidecimal value.
596///
597void AsmPrinter::PrintHex(int Value) const {
598  char Buffer[20];
599  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
600}
601
602/// EOL - Print a newline character to asm stream.  If a comment is present
603/// then it will be printed first.  Comments should not contain '\n'.
604void AsmPrinter::EOL() const {
605  O << '\n';
606}
607
608void AsmPrinter::EOL(const std::string &Comment) const {
609  if (VerboseAsm && !Comment.empty()) {
610    O << '\t'
611      << TAI->getCommentString()
612      << ' '
613      << Comment;
614  }
615  O << '\n';
616}
617
618void AsmPrinter::EOL(const char* Comment) const {
619  if (VerboseAsm && *Comment) {
620    O << '\t'
621      << TAI->getCommentString()
622      << ' '
623      << Comment;
624  }
625  O << '\n';
626}
627
628/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
629/// unsigned leb128 value.
630void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
631  if (TAI->hasLEB128()) {
632    O << "\t.uleb128\t"
633      << Value;
634  } else {
635    O << TAI->getData8bitsDirective();
636    PrintULEB128(Value);
637  }
638}
639
640/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
641/// signed leb128 value.
642void AsmPrinter::EmitSLEB128Bytes(int Value) const {
643  if (TAI->hasLEB128()) {
644    O << "\t.sleb128\t"
645      << Value;
646  } else {
647    O << TAI->getData8bitsDirective();
648    PrintSLEB128(Value);
649  }
650}
651
652/// EmitInt8 - Emit a byte directive and value.
653///
654void AsmPrinter::EmitInt8(int Value) const {
655  O << TAI->getData8bitsDirective();
656  PrintHex(Value & 0xFF);
657}
658
659/// EmitInt16 - Emit a short directive and value.
660///
661void AsmPrinter::EmitInt16(int Value) const {
662  O << TAI->getData16bitsDirective();
663  PrintHex(Value & 0xFFFF);
664}
665
666/// EmitInt32 - Emit a long directive and value.
667///
668void AsmPrinter::EmitInt32(int Value) const {
669  O << TAI->getData32bitsDirective();
670  PrintHex(Value);
671}
672
673/// EmitInt64 - Emit a long long directive and value.
674///
675void AsmPrinter::EmitInt64(uint64_t Value) const {
676  if (TAI->getData64bitsDirective()) {
677    O << TAI->getData64bitsDirective();
678    PrintHex(Value);
679  } else {
680    if (TM.getTargetData()->isBigEndian()) {
681      EmitInt32(unsigned(Value >> 32)); O << '\n';
682      EmitInt32(unsigned(Value));
683    } else {
684      EmitInt32(unsigned(Value)); O << '\n';
685      EmitInt32(unsigned(Value >> 32));
686    }
687  }
688}
689
690/// toOctal - Convert the low order bits of X into an octal digit.
691///
692static inline char toOctal(int X) {
693  return (X&7)+'0';
694}
695
696/// printStringChar - Print a char, escaped if necessary.
697///
698static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
699  if (C == '"') {
700    O << "\\\"";
701  } else if (C == '\\') {
702    O << "\\\\";
703  } else if (isprint((unsigned char)C)) {
704    O << C;
705  } else {
706    switch(C) {
707    case '\b': O << "\\b"; break;
708    case '\f': O << "\\f"; break;
709    case '\n': O << "\\n"; break;
710    case '\r': O << "\\r"; break;
711    case '\t': O << "\\t"; break;
712    default:
713      O << '\\';
714      O << toOctal(C >> 6);
715      O << toOctal(C >> 3);
716      O << toOctal(C >> 0);
717      break;
718    }
719  }
720}
721
722/// EmitString - Emit a string with quotes and a null terminator.
723/// Special characters are emitted properly.
724/// \literal (Eg. '\t') \endliteral
725void AsmPrinter::EmitString(const std::string &String) const {
726  EmitString(String.c_str(), String.size());
727}
728
729void AsmPrinter::EmitString(const char *String, unsigned Size) const {
730  const char* AscizDirective = TAI->getAscizDirective();
731  if (AscizDirective)
732    O << AscizDirective;
733  else
734    O << TAI->getAsciiDirective();
735  O << '\"';
736  for (unsigned i = 0; i < Size; ++i)
737    printStringChar(O, String[i]);
738  if (AscizDirective)
739    O << '\"';
740  else
741    O << "\\0\"";
742}
743
744
745/// EmitFile - Emit a .file directive.
746void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
747  O << "\t.file\t" << Number << " \"";
748  for (unsigned i = 0, N = Name.size(); i < N; ++i)
749    printStringChar(O, Name[i]);
750  O << '\"';
751}
752
753
754//===----------------------------------------------------------------------===//
755
756// EmitAlignment - Emit an alignment directive to the specified power of
757// two boundary.  For example, if you pass in 3 here, you will get an 8
758// byte alignment.  If a global value is specified, and if that global has
759// an explicit alignment requested, it will unconditionally override the
760// alignment request.  However, if ForcedAlignBits is specified, this value
761// has final say: the ultimate alignment will be the max of ForcedAlignBits
762// and the alignment computed with NumBits and the global.
763//
764// The algorithm is:
765//     Align = NumBits;
766//     if (GV && GV->hasalignment) Align = GV->getalignment();
767//     Align = std::max(Align, ForcedAlignBits);
768//
769void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
770                               unsigned ForcedAlignBits,
771                               bool UseFillExpr) const {
772  if (GV && GV->getAlignment())
773    NumBits = Log2_32(GV->getAlignment());
774  NumBits = std::max(NumBits, ForcedAlignBits);
775
776  if (NumBits == 0) return;   // No need to emit alignment.
777  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
778  O << TAI->getAlignDirective() << NumBits;
779
780  if (CurrentSection && CurrentSection->getKind().isText())
781    if (unsigned FillValue = TAI->getTextAlignFillValue()) {
782      O << ',';
783      PrintHex(FillValue);
784    }
785  O << '\n';
786}
787
788/// PadToColumn - This gets called every time a tab is emitted.  If
789/// column padding is turned on, we replace the tab with the
790/// appropriate amount of padding.  If not, we replace the tab with a
791/// space, except for the first operand so that initial operands are
792/// always lined up by tabs.
793void AsmPrinter::PadToColumn(unsigned Operand) const {
794  if (TAI->getOperandColumn(Operand) > 0) {
795    O.PadToColumn(TAI->getOperandColumn(Operand), 1);
796  }
797  else {
798    if (Operand == 1) {
799      // Emit the tab after the mnemonic.
800      O << '\t';
801    }
802    else {
803      // Replace the tab with a space.
804      O << ' ';
805    }
806  }
807}
808
809/// EmitZeros - Emit a block of zeros.
810///
811void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
812  if (NumZeros) {
813    if (TAI->getZeroDirective()) {
814      O << TAI->getZeroDirective() << NumZeros;
815      if (TAI->getZeroDirectiveSuffix())
816        O << TAI->getZeroDirectiveSuffix();
817      O << '\n';
818    } else {
819      for (; NumZeros; --NumZeros)
820        O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
821    }
822  }
823}
824
825// Print out the specified constant, without a storage class.  Only the
826// constants valid in constant expressions can occur here.
827void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
828  if (CV->isNullValue() || isa<UndefValue>(CV))
829    O << '0';
830  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
831    O << CI->getZExtValue();
832  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
833    // This is a constant address for a global variable or function. Use the
834    // name of the variable or function as the address value, possibly
835    // decorating it with GlobalVarAddrPrefix/Suffix or
836    // FunctionAddrPrefix/Suffix (these all default to "" )
837    if (isa<Function>(GV)) {
838      O << TAI->getFunctionAddrPrefix()
839        << Mang->getMangledName(GV)
840        << TAI->getFunctionAddrSuffix();
841    } else {
842      O << TAI->getGlobalVarAddrPrefix()
843        << Mang->getMangledName(GV)
844        << TAI->getGlobalVarAddrSuffix();
845    }
846  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
847    const TargetData *TD = TM.getTargetData();
848    unsigned Opcode = CE->getOpcode();
849    switch (Opcode) {
850    case Instruction::Trunc:
851    case Instruction::ZExt:
852    case Instruction::SExt:
853    case Instruction::FPTrunc:
854    case Instruction::FPExt:
855    case Instruction::UIToFP:
856    case Instruction::SIToFP:
857    case Instruction::FPToUI:
858    case Instruction::FPToSI:
859      llvm_unreachable("FIXME: Don't support this constant cast expr");
860    case Instruction::GetElementPtr: {
861      // generate a symbolic expression for the byte address
862      const Constant *ptrVal = CE->getOperand(0);
863      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
864      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
865                                                idxVec.size())) {
866        // Truncate/sext the offset to the pointer size.
867        if (TD->getPointerSizeInBits() != 64) {
868          int SExtAmount = 64-TD->getPointerSizeInBits();
869          Offset = (Offset << SExtAmount) >> SExtAmount;
870        }
871
872        if (Offset)
873          O << '(';
874        EmitConstantValueOnly(ptrVal);
875        if (Offset > 0)
876          O << ") + " << Offset;
877        else if (Offset < 0)
878          O << ") - " << -Offset;
879      } else {
880        EmitConstantValueOnly(ptrVal);
881      }
882      break;
883    }
884    case Instruction::BitCast:
885      return EmitConstantValueOnly(CE->getOperand(0));
886
887    case Instruction::IntToPtr: {
888      // Handle casts to pointers by changing them into casts to the appropriate
889      // integer type.  This promotes constant folding and simplifies this code.
890      Constant *Op = CE->getOperand(0);
891      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
892      return EmitConstantValueOnly(Op);
893    }
894
895
896    case Instruction::PtrToInt: {
897      // Support only foldable casts to/from pointers that can be eliminated by
898      // changing the pointer to the appropriately sized integer type.
899      Constant *Op = CE->getOperand(0);
900      const Type *Ty = CE->getType();
901
902      // We can emit the pointer value into this slot if the slot is an
903      // integer slot greater or equal to the size of the pointer.
904      if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
905        return EmitConstantValueOnly(Op);
906
907      O << "((";
908      EmitConstantValueOnly(Op);
909      APInt ptrMask =
910        APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
911
912      SmallString<40> S;
913      ptrMask.toStringUnsigned(S);
914      O << ") & " << S.c_str() << ')';
915      break;
916    }
917    case Instruction::Add:
918    case Instruction::Sub:
919    case Instruction::And:
920    case Instruction::Or:
921    case Instruction::Xor:
922      O << '(';
923      EmitConstantValueOnly(CE->getOperand(0));
924      O << ')';
925      switch (Opcode) {
926      case Instruction::Add:
927       O << " + ";
928       break;
929      case Instruction::Sub:
930       O << " - ";
931       break;
932      case Instruction::And:
933       O << " & ";
934       break;
935      case Instruction::Or:
936       O << " | ";
937       break;
938      case Instruction::Xor:
939       O << " ^ ";
940       break;
941      default:
942       break;
943      }
944      O << '(';
945      EmitConstantValueOnly(CE->getOperand(1));
946      O << ')';
947      break;
948    default:
949      llvm_unreachable("Unsupported operator!");
950    }
951  } else {
952    llvm_unreachable("Unknown constant value!");
953  }
954}
955
956/// printAsCString - Print the specified array as a C compatible string, only if
957/// the predicate isString is true.
958///
959static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
960                           unsigned LastElt) {
961  assert(CVA->isString() && "Array is not string compatible!");
962
963  O << '\"';
964  for (unsigned i = 0; i != LastElt; ++i) {
965    unsigned char C =
966        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
967    printStringChar(O, C);
968  }
969  O << '\"';
970}
971
972/// EmitString - Emit a zero-byte-terminated string constant.
973///
974void AsmPrinter::EmitString(const ConstantArray *CVA) const {
975  unsigned NumElts = CVA->getNumOperands();
976  if (TAI->getAscizDirective() && NumElts &&
977      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
978    O << TAI->getAscizDirective();
979    printAsCString(O, CVA, NumElts-1);
980  } else {
981    O << TAI->getAsciiDirective();
982    printAsCString(O, CVA, NumElts);
983  }
984  O << '\n';
985}
986
987void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
988                                         unsigned AddrSpace) {
989  if (CVA->isString()) {
990    EmitString(CVA);
991  } else { // Not a string.  Print the values in successive locations
992    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
993      EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
994  }
995}
996
997void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
998  const VectorType *PTy = CP->getType();
999
1000  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
1001    EmitGlobalConstant(CP->getOperand(I));
1002}
1003
1004void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
1005                                          unsigned AddrSpace) {
1006  // Print the fields in successive locations. Pad to align if needed!
1007  const TargetData *TD = TM.getTargetData();
1008  unsigned Size = TD->getTypeAllocSize(CVS->getType());
1009  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
1010  uint64_t sizeSoFar = 0;
1011  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
1012    const Constant* field = CVS->getOperand(i);
1013
1014    // Check if padding is needed and insert one or more 0s.
1015    uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
1016    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1017                        - cvsLayout->getElementOffset(i)) - fieldSize;
1018    sizeSoFar += fieldSize + padSize;
1019
1020    // Now print the actual field value.
1021    EmitGlobalConstant(field, AddrSpace);
1022
1023    // Insert padding - this may include padding to increase the size of the
1024    // current field up to the ABI size (if the struct is not packed) as well
1025    // as padding to ensure that the next field starts at the right offset.
1026    EmitZeros(padSize, AddrSpace);
1027  }
1028  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1029         "Layout of constant struct may be incorrect!");
1030}
1031
1032void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1033                                      unsigned AddrSpace) {
1034  // FP Constants are printed as integer constants to avoid losing
1035  // precision...
1036  const TargetData *TD = TM.getTargetData();
1037  if (CFP->getType() == Type::DoubleTy) {
1038    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1039    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1040    if (TAI->getData64bitsDirective(AddrSpace)) {
1041      O << TAI->getData64bitsDirective(AddrSpace) << i;
1042      if (VerboseAsm)
1043        O << '\t' << TAI->getCommentString() << " double value: " << Val;
1044      O << '\n';
1045    } else if (TD->isBigEndian()) {
1046      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1047      if (VerboseAsm)
1048        O << '\t' << TAI->getCommentString()
1049          << " double most significant word " << Val;
1050      O << '\n';
1051      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1052      if (VerboseAsm)
1053        O << '\t' << TAI->getCommentString()
1054          << " double least significant word " << Val;
1055      O << '\n';
1056    } else {
1057      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1058      if (VerboseAsm)
1059        O << '\t' << TAI->getCommentString()
1060          << " double least significant word " << Val;
1061      O << '\n';
1062      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1063      if (VerboseAsm)
1064        O << '\t' << TAI->getCommentString()
1065          << " double most significant word " << Val;
1066      O << '\n';
1067    }
1068    return;
1069  } else if (CFP->getType() == Type::FloatTy) {
1070    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1071    O << TAI->getData32bitsDirective(AddrSpace)
1072      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1073    if (VerboseAsm)
1074      O << '\t' << TAI->getCommentString() << " float " << Val;
1075    O << '\n';
1076    return;
1077  } else if (CFP->getType() == Type::X86_FP80Ty) {
1078    // all long double variants are printed as hex
1079    // api needed to prevent premature destruction
1080    APInt api = CFP->getValueAPF().bitcastToAPInt();
1081    const uint64_t *p = api.getRawData();
1082    // Convert to double so we can print the approximate val as a comment.
1083    APFloat DoubleVal = CFP->getValueAPF();
1084    bool ignored;
1085    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1086                      &ignored);
1087    if (TD->isBigEndian()) {
1088      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1089      if (VerboseAsm)
1090        O << '\t' << TAI->getCommentString()
1091          << " long double most significant halfword of ~"
1092          << DoubleVal.convertToDouble();
1093      O << '\n';
1094      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1095      if (VerboseAsm)
1096        O << '\t' << TAI->getCommentString() << " long double next halfword";
1097      O << '\n';
1098      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1099      if (VerboseAsm)
1100        O << '\t' << TAI->getCommentString() << " long double next halfword";
1101      O << '\n';
1102      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1103      if (VerboseAsm)
1104        O << '\t' << TAI->getCommentString() << " long double next halfword";
1105      O << '\n';
1106      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1107      if (VerboseAsm)
1108        O << '\t' << TAI->getCommentString()
1109          << " long double least significant halfword";
1110      O << '\n';
1111     } else {
1112      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1113      if (VerboseAsm)
1114        O << '\t' << TAI->getCommentString()
1115          << " long double least significant halfword of ~"
1116          << DoubleVal.convertToDouble();
1117      O << '\n';
1118      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1119      if (VerboseAsm)
1120        O << '\t' << TAI->getCommentString()
1121          << " long double next halfword";
1122      O << '\n';
1123      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1124      if (VerboseAsm)
1125        O << '\t' << TAI->getCommentString()
1126          << " long double next halfword";
1127      O << '\n';
1128      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1129      if (VerboseAsm)
1130        O << '\t' << TAI->getCommentString()
1131          << " long double next halfword";
1132      O << '\n';
1133      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1134      if (VerboseAsm)
1135        O << '\t' << TAI->getCommentString()
1136          << " long double most significant halfword";
1137      O << '\n';
1138    }
1139    EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) -
1140              TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
1141    return;
1142  } else if (CFP->getType() == Type::PPC_FP128Ty) {
1143    // all long double variants are printed as hex
1144    // api needed to prevent premature destruction
1145    APInt api = CFP->getValueAPF().bitcastToAPInt();
1146    const uint64_t *p = api.getRawData();
1147    if (TD->isBigEndian()) {
1148      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1149      if (VerboseAsm)
1150        O << '\t' << TAI->getCommentString()
1151          << " long double most significant word";
1152      O << '\n';
1153      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1154      if (VerboseAsm)
1155        O << '\t' << TAI->getCommentString()
1156        << " long double next word";
1157      O << '\n';
1158      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1159      if (VerboseAsm)
1160        O << '\t' << TAI->getCommentString()
1161          << " long double next word";
1162      O << '\n';
1163      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1164      if (VerboseAsm)
1165        O << '\t' << TAI->getCommentString()
1166          << " long double least significant word";
1167      O << '\n';
1168     } else {
1169      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1170      if (VerboseAsm)
1171        O << '\t' << TAI->getCommentString()
1172          << " long double least significant word";
1173      O << '\n';
1174      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1175      if (VerboseAsm)
1176        O << '\t' << TAI->getCommentString()
1177          << " long double next word";
1178      O << '\n';
1179      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1180      if (VerboseAsm)
1181        O << '\t' << TAI->getCommentString()
1182          << " long double next word";
1183      O << '\n';
1184      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1185      if (VerboseAsm)
1186        O << '\t' << TAI->getCommentString()
1187          << " long double most significant word";
1188      O << '\n';
1189    }
1190    return;
1191  } else llvm_unreachable("Floating point constant type not handled");
1192}
1193
1194void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1195                                            unsigned AddrSpace) {
1196  const TargetData *TD = TM.getTargetData();
1197  unsigned BitWidth = CI->getBitWidth();
1198  assert(isPowerOf2_32(BitWidth) &&
1199         "Non-power-of-2-sized integers not handled!");
1200
1201  // We don't expect assemblers to support integer data directives
1202  // for more than 64 bits, so we emit the data in at most 64-bit
1203  // quantities at a time.
1204  const uint64_t *RawData = CI->getValue().getRawData();
1205  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1206    uint64_t Val;
1207    if (TD->isBigEndian())
1208      Val = RawData[e - i - 1];
1209    else
1210      Val = RawData[i];
1211
1212    if (TAI->getData64bitsDirective(AddrSpace))
1213      O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1214    else if (TD->isBigEndian()) {
1215      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1216      if (VerboseAsm)
1217        O << '\t' << TAI->getCommentString()
1218          << " Double-word most significant word " << Val;
1219      O << '\n';
1220      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1221      if (VerboseAsm)
1222        O << '\t' << TAI->getCommentString()
1223          << " Double-word least significant word " << Val;
1224      O << '\n';
1225    } else {
1226      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1227      if (VerboseAsm)
1228        O << '\t' << TAI->getCommentString()
1229          << " Double-word least significant word " << Val;
1230      O << '\n';
1231      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1232      if (VerboseAsm)
1233        O << '\t' << TAI->getCommentString()
1234          << " Double-word most significant word " << Val;
1235      O << '\n';
1236    }
1237  }
1238}
1239
1240/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1241void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1242  const TargetData *TD = TM.getTargetData();
1243  const Type *type = CV->getType();
1244  unsigned Size = TD->getTypeAllocSize(type);
1245
1246  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1247    EmitZeros(Size, AddrSpace);
1248    return;
1249  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1250    EmitGlobalConstantArray(CVA , AddrSpace);
1251    return;
1252  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1253    EmitGlobalConstantStruct(CVS, AddrSpace);
1254    return;
1255  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1256    EmitGlobalConstantFP(CFP, AddrSpace);
1257    return;
1258  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1259    // Small integers are handled below; large integers are handled here.
1260    if (Size > 4) {
1261      EmitGlobalConstantLargeInt(CI, AddrSpace);
1262      return;
1263    }
1264  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1265    EmitGlobalConstantVector(CP);
1266    return;
1267  }
1268
1269  printDataDirective(type, AddrSpace);
1270  EmitConstantValueOnly(CV);
1271  if (VerboseAsm) {
1272    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1273      SmallString<40> S;
1274      CI->getValue().toStringUnsigned(S, 16);
1275      O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1276    }
1277  }
1278  O << '\n';
1279}
1280
1281void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1282  // Target doesn't support this yet!
1283  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1284}
1285
1286/// PrintSpecial - Print information related to the specified machine instr
1287/// that is independent of the operand, and may be independent of the instr
1288/// itself.  This can be useful for portably encoding the comment character
1289/// or other bits of target-specific knowledge into the asmstrings.  The
1290/// syntax used is ${:comment}.  Targets can override this to add support
1291/// for their own strange codes.
1292void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1293  if (!strcmp(Code, "private")) {
1294    O << TAI->getPrivateGlobalPrefix();
1295  } else if (!strcmp(Code, "comment")) {
1296    if (VerboseAsm)
1297      O << TAI->getCommentString();
1298  } else if (!strcmp(Code, "uid")) {
1299    // Comparing the address of MI isn't sufficient, because machineinstrs may
1300    // be allocated to the same address across functions.
1301    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1302
1303    // If this is a new LastFn instruction, bump the counter.
1304    if (LastMI != MI || LastFn != ThisF) {
1305      ++Counter;
1306      LastMI = MI;
1307      LastFn = ThisF;
1308    }
1309    O << Counter;
1310  } else {
1311    std::string msg;
1312    raw_string_ostream Msg(msg);
1313    Msg << "Unknown special formatter '" << Code
1314         << "' for machine instr: " << *MI;
1315    llvm_report_error(Msg.str());
1316  }
1317}
1318
1319/// processDebugLoc - Processes the debug information of each machine
1320/// instruction's DebugLoc.
1321void AsmPrinter::processDebugLoc(DebugLoc DL) {
1322  if (!TAI || !DW)
1323    return;
1324
1325  if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
1326    if (!DL.isUnknown()) {
1327      DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1328
1329      if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT)
1330        printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1331                                        DICompileUnit(CurDLT.CompileUnit)));
1332
1333      PrevDLT = CurDLT;
1334    }
1335  }
1336}
1337
1338/// printInlineAsm - This method formats and prints the specified machine
1339/// instruction that is an inline asm.
1340void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1341  unsigned NumOperands = MI->getNumOperands();
1342
1343  // Count the number of register definitions.
1344  unsigned NumDefs = 0;
1345  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1346       ++NumDefs)
1347    assert(NumDefs != NumOperands-1 && "No asm string?");
1348
1349  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1350
1351  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1352  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1353
1354  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1355  // These are useful to see where empty asm's wound up.
1356  if (AsmStr[0] == 0) {
1357    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1358    return;
1359  }
1360
1361  O << TAI->getInlineAsmStart() << "\n\t";
1362
1363  // The variant of the current asmprinter.
1364  int AsmPrinterVariant = TAI->getAssemblerDialect();
1365
1366  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1367  const char *LastEmitted = AsmStr; // One past the last character emitted.
1368
1369  while (*LastEmitted) {
1370    switch (*LastEmitted) {
1371    default: {
1372      // Not a special case, emit the string section literally.
1373      const char *LiteralEnd = LastEmitted+1;
1374      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1375             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1376        ++LiteralEnd;
1377      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1378        O.write(LastEmitted, LiteralEnd-LastEmitted);
1379      LastEmitted = LiteralEnd;
1380      break;
1381    }
1382    case '\n':
1383      ++LastEmitted;   // Consume newline character.
1384      O << '\n';       // Indent code with newline.
1385      break;
1386    case '$': {
1387      ++LastEmitted;   // Consume '$' character.
1388      bool Done = true;
1389
1390      // Handle escapes.
1391      switch (*LastEmitted) {
1392      default: Done = false; break;
1393      case '$':     // $$ -> $
1394        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1395          O << '$';
1396        ++LastEmitted;  // Consume second '$' character.
1397        break;
1398      case '(':             // $( -> same as GCC's { character.
1399        ++LastEmitted;      // Consume '(' character.
1400        if (CurVariant != -1) {
1401          llvm_report_error("Nested variants found in inline asm string: '"
1402                            + std::string(AsmStr) + "'");
1403        }
1404        CurVariant = 0;     // We're in the first variant now.
1405        break;
1406      case '|':
1407        ++LastEmitted;  // consume '|' character.
1408        if (CurVariant == -1)
1409          O << '|';       // this is gcc's behavior for | outside a variant
1410        else
1411          ++CurVariant;   // We're in the next variant.
1412        break;
1413      case ')':         // $) -> same as GCC's } char.
1414        ++LastEmitted;  // consume ')' character.
1415        if (CurVariant == -1)
1416          O << '}';     // this is gcc's behavior for } outside a variant
1417        else
1418          CurVariant = -1;
1419        break;
1420      }
1421      if (Done) break;
1422
1423      bool HasCurlyBraces = false;
1424      if (*LastEmitted == '{') {     // ${variable}
1425        ++LastEmitted;               // Consume '{' character.
1426        HasCurlyBraces = true;
1427      }
1428
1429      // If we have ${:foo}, then this is not a real operand reference, it is a
1430      // "magic" string reference, just like in .td files.  Arrange to call
1431      // PrintSpecial.
1432      if (HasCurlyBraces && *LastEmitted == ':') {
1433        ++LastEmitted;
1434        const char *StrStart = LastEmitted;
1435        const char *StrEnd = strchr(StrStart, '}');
1436        if (StrEnd == 0) {
1437          llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1438                            + std::string(AsmStr) + "'");
1439        }
1440
1441        std::string Val(StrStart, StrEnd);
1442        PrintSpecial(MI, Val.c_str());
1443        LastEmitted = StrEnd+1;
1444        break;
1445      }
1446
1447      const char *IDStart = LastEmitted;
1448      char *IDEnd;
1449      errno = 0;
1450      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1451      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1452        llvm_report_error("Bad $ operand number in inline asm string: '"
1453                          + std::string(AsmStr) + "'");
1454      }
1455      LastEmitted = IDEnd;
1456
1457      char Modifier[2] = { 0, 0 };
1458
1459      if (HasCurlyBraces) {
1460        // If we have curly braces, check for a modifier character.  This
1461        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1462        if (*LastEmitted == ':') {
1463          ++LastEmitted;    // Consume ':' character.
1464          if (*LastEmitted == 0) {
1465            llvm_report_error("Bad ${:} expression in inline asm string: '"
1466                              + std::string(AsmStr) + "'");
1467          }
1468
1469          Modifier[0] = *LastEmitted;
1470          ++LastEmitted;    // Consume modifier character.
1471        }
1472
1473        if (*LastEmitted != '}') {
1474          llvm_report_error("Bad ${} expression in inline asm string: '"
1475                            + std::string(AsmStr) + "'");
1476        }
1477        ++LastEmitted;    // Consume '}' character.
1478      }
1479
1480      if ((unsigned)Val >= NumOperands-1) {
1481        llvm_report_error("Invalid $ operand number in inline asm string: '"
1482                          + std::string(AsmStr) + "'");
1483      }
1484
1485      // Okay, we finally have a value number.  Ask the target to print this
1486      // operand!
1487      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1488        unsigned OpNo = 1;
1489
1490        bool Error = false;
1491
1492        // Scan to find the machine operand number for the operand.
1493        for (; Val; --Val) {
1494          if (OpNo >= MI->getNumOperands()) break;
1495          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1496          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1497        }
1498
1499        if (OpNo >= MI->getNumOperands()) {
1500          Error = true;
1501        } else {
1502          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1503          ++OpNo;  // Skip over the ID number.
1504
1505          if (Modifier[0]=='l')  // labels are target independent
1506            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1507                                 false, false, false);
1508          else {
1509            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1510            if ((OpFlags & 7) == 4) {
1511              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1512                                                Modifier[0] ? Modifier : 0);
1513            } else {
1514              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1515                                          Modifier[0] ? Modifier : 0);
1516            }
1517          }
1518        }
1519        if (Error) {
1520          std::string msg;
1521          raw_string_ostream Msg(msg);
1522          Msg << "Invalid operand found in inline asm: '"
1523               << AsmStr << "'\n";
1524          MI->print(Msg);
1525          llvm_report_error(Msg.str());
1526        }
1527      }
1528      break;
1529    }
1530    }
1531  }
1532  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1533}
1534
1535/// printImplicitDef - This method prints the specified machine instruction
1536/// that is an implicit def.
1537void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1538  if (VerboseAsm)
1539    O << '\t' << TAI->getCommentString() << " implicit-def: "
1540      << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1541}
1542
1543/// printLabel - This method prints a local label used by debug and
1544/// exception handling tables.
1545void AsmPrinter::printLabel(const MachineInstr *MI) const {
1546  printLabel(MI->getOperand(0).getImm());
1547}
1548
1549void AsmPrinter::printLabel(unsigned Id) const {
1550  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1551}
1552
1553/// printDeclare - This method prints a local variable declaration used by
1554/// debug tables.
1555/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1556/// entry into dwarf table.
1557void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1558  unsigned FI = MI->getOperand(0).getIndex();
1559  GlobalValue *GV = MI->getOperand(1).getGlobal();
1560  DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI);
1561}
1562
1563/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1564/// instruction, using the specified assembler variant.  Targets should
1565/// overried this to format as appropriate.
1566bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1567                                 unsigned AsmVariant, const char *ExtraCode) {
1568  // Target doesn't support this yet!
1569  return true;
1570}
1571
1572bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1573                                       unsigned AsmVariant,
1574                                       const char *ExtraCode) {
1575  // Target doesn't support this yet!
1576  return true;
1577}
1578
1579/// printBasicBlockLabel - This method prints the label for the specified
1580/// MachineBasicBlock
1581void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1582                                      bool printAlign,
1583                                      bool printColon,
1584                                      bool printComment) const {
1585  if (printAlign) {
1586    unsigned Align = MBB->getAlignment();
1587    if (Align)
1588      EmitAlignment(Log2_32(Align));
1589  }
1590
1591  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1592    << MBB->getNumber();
1593  if (printColon)
1594    O << ':';
1595  if (printComment && MBB->getBasicBlock())
1596    O << '\t' << TAI->getCommentString() << ' '
1597      << MBB->getBasicBlock()->getNameStr();
1598}
1599
1600/// printPICJumpTableSetLabel - This method prints a set label for the
1601/// specified MachineBasicBlock for a jumptable entry.
1602void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1603                                           const MachineBasicBlock *MBB) const {
1604  if (!TAI->getSetDirective())
1605    return;
1606
1607  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1608    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1609  printBasicBlockLabel(MBB, false, false, false);
1610  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1611    << '_' << uid << '\n';
1612}
1613
1614void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1615                                           const MachineBasicBlock *MBB) const {
1616  if (!TAI->getSetDirective())
1617    return;
1618
1619  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1620    << getFunctionNumber() << '_' << uid << '_' << uid2
1621    << "_set_" << MBB->getNumber() << ',';
1622  printBasicBlockLabel(MBB, false, false, false);
1623  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1624    << '_' << uid << '_' << uid2 << '\n';
1625}
1626
1627/// printDataDirective - This method prints the asm directive for the
1628/// specified type.
1629void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1630  const TargetData *TD = TM.getTargetData();
1631  switch (type->getTypeID()) {
1632  case Type::FloatTyID: case Type::DoubleTyID:
1633  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1634    assert(0 && "Should have already output floating point constant.");
1635  default:
1636    assert(0 && "Can't handle printing this type of thing");
1637  case Type::IntegerTyID: {
1638    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1639    if (BitWidth <= 8)
1640      O << TAI->getData8bitsDirective(AddrSpace);
1641    else if (BitWidth <= 16)
1642      O << TAI->getData16bitsDirective(AddrSpace);
1643    else if (BitWidth <= 32)
1644      O << TAI->getData32bitsDirective(AddrSpace);
1645    else if (BitWidth <= 64) {
1646      assert(TAI->getData64bitsDirective(AddrSpace) &&
1647             "Target cannot handle 64-bit constant exprs!");
1648      O << TAI->getData64bitsDirective(AddrSpace);
1649    } else {
1650      llvm_unreachable("Target cannot handle given data directive width!");
1651    }
1652    break;
1653  }
1654  case Type::PointerTyID:
1655    if (TD->getPointerSize() == 8) {
1656      assert(TAI->getData64bitsDirective(AddrSpace) &&
1657             "Target cannot handle 64-bit pointer exprs!");
1658      O << TAI->getData64bitsDirective(AddrSpace);
1659    } else if (TD->getPointerSize() == 2) {
1660      O << TAI->getData16bitsDirective(AddrSpace);
1661    } else if (TD->getPointerSize() == 1) {
1662      O << TAI->getData8bitsDirective(AddrSpace);
1663    } else {
1664      O << TAI->getData32bitsDirective(AddrSpace);
1665    }
1666    break;
1667  }
1668}
1669
1670void AsmPrinter::printVisibility(const std::string& Name,
1671                                 unsigned Visibility) const {
1672  if (Visibility == GlobalValue::HiddenVisibility) {
1673    if (const char *Directive = TAI->getHiddenDirective())
1674      O << Directive << Name << '\n';
1675  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1676    if (const char *Directive = TAI->getProtectedDirective())
1677      O << Directive << Name << '\n';
1678  }
1679}
1680
1681void AsmPrinter::printOffset(int64_t Offset) const {
1682  if (Offset > 0)
1683    O << '+' << Offset;
1684  else if (Offset < 0)
1685    O << Offset;
1686}
1687
1688GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1689  if (!S->usesMetadata())
1690    return 0;
1691
1692  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1693  if (GCPI != GCMetadataPrinters.end())
1694    return GCPI->second;
1695
1696  const char *Name = S->getName().c_str();
1697
1698  for (GCMetadataPrinterRegistry::iterator
1699         I = GCMetadataPrinterRegistry::begin(),
1700         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1701    if (strcmp(Name, I->getName()) == 0) {
1702      GCMetadataPrinter *GMP = I->instantiate();
1703      GMP->S = S;
1704      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1705      return GMP;
1706    }
1707
1708  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1709  llvm_unreachable(0);
1710}
1711
1712/// EmitComments - Pretty-print comments for instructions
1713void AsmPrinter::EmitComments(const MachineInstr &MI) const
1714{
1715  if (VerboseAsm) {
1716    if (!MI.getDebugLoc().isUnknown()) {
1717      DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1718
1719      // Print source line info
1720      O.PadToColumn(TAI->getCommentColumn(), 1);
1721      O << TAI->getCommentString() << " SrcLine ";
1722      if (DLT.CompileUnit->hasInitializer()) {
1723        Constant *Name = DLT.CompileUnit->getInitializer();
1724        if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1725          if (NameString->isString()) {
1726            O << NameString->getAsString() << " ";
1727          }
1728      }
1729      O << DLT.Line;
1730      if (DLT.Col != 0)
1731        O << ":" << DLT.Col;
1732    }
1733  }
1734}
1735
1736/// EmitComments - Pretty-print comments for instructions
1737void AsmPrinter::EmitComments(const MCInst &MI) const
1738{
1739  if (VerboseAsm) {
1740    if (!MI.getDebugLoc().isUnknown()) {
1741      DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1742
1743      // Print source line info
1744      O.PadToColumn(TAI->getCommentColumn(), 1);
1745      O << TAI->getCommentString() << " SrcLine ";
1746      if (DLT.CompileUnit->hasInitializer()) {
1747        Constant *Name = DLT.CompileUnit->getInitializer();
1748        if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1749          if (NameString->isString()) {
1750            O << NameString->getAsString() << " ";
1751          }
1752      }
1753      O << DLT.Line;
1754      if (DLT.Col != 0)
1755        O << ":" << DLT.Col;
1756    }
1757  }
1758}
1759