AsmPrinter.cpp revision 702ff96ff3157e0761d206cca2dc0a4c3e7c13a9
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "DwarfDebug.h"
17#include "DwarfException.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CodeGen/GCMetadataPrinter.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineJumpTableInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/DebugInfo.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/MC/MCContext.h"
35#include "llvm/MC/MCExpr.h"
36#include "llvm/MC/MCInst.h"
37#include "llvm/MC/MCSection.h"
38#include "llvm/MC/MCStreamer.h"
39#include "llvm/MC/MCSymbol.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/Format.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/Timer.h"
44#include "llvm/Target/Mangler.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetLowering.h"
47#include "llvm/Target/TargetLoweringObjectFile.h"
48#include "llvm/Target/TargetOptions.h"
49#include "llvm/Target/TargetRegisterInfo.h"
50using namespace llvm;
51
52static const char *DWARFGroupName = "DWARF Emission";
53static const char *DbgTimerName = "DWARF Debug Writer";
54static const char *EHTimerName = "DWARF Exception Writer";
55
56STATISTIC(EmittedInsts, "Number of machine instrs printed");
57
58char AsmPrinter::ID = 0;
59
60typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
61static gcp_map_type &getGCMap(void *&P) {
62  if (P == 0)
63    P = new gcp_map_type();
64  return *(gcp_map_type*)P;
65}
66
67
68/// getGVAlignmentLog2 - Return the alignment to use for the specified global
69/// value in log2 form.  This rounds up to the preferred alignment if possible
70/// and legal.
71static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
72                                   unsigned InBits = 0) {
73  unsigned NumBits = 0;
74  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
75    NumBits = TD.getPreferredAlignmentLog(GVar);
76
77  // If InBits is specified, round it to it.
78  if (InBits > NumBits)
79    NumBits = InBits;
80
81  // If the GV has a specified alignment, take it into account.
82  if (GV->getAlignment() == 0)
83    return NumBits;
84
85  unsigned GVAlign = Log2_32(GV->getAlignment());
86
87  // If the GVAlign is larger than NumBits, or if we are required to obey
88  // NumBits because the GV has an assigned section, obey it.
89  if (GVAlign > NumBits || GV->hasSection())
90    NumBits = GVAlign;
91  return NumBits;
92}
93
94AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
95  : MachineFunctionPass(ID),
96    TM(tm), MAI(tm.getMCAsmInfo()),
97    OutContext(Streamer.getContext()),
98    OutStreamer(Streamer),
99    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
100  DD = 0; DE = 0; MMI = 0; LI = 0;
101  CurrentFnSym = CurrentFnSymForSize = 0;
102  GCMetadataPrinters = 0;
103  VerboseAsm = Streamer.isVerboseAsm();
104}
105
106AsmPrinter::~AsmPrinter() {
107  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
108
109  if (GCMetadataPrinters != 0) {
110    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
111
112    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
113      delete I->second;
114    delete &GCMap;
115    GCMetadataPrinters = 0;
116  }
117
118  delete &OutStreamer;
119}
120
121/// getFunctionNumber - Return a unique ID for the current function.
122///
123unsigned AsmPrinter::getFunctionNumber() const {
124  return MF->getFunctionNumber();
125}
126
127const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
128  return TM.getTargetLowering()->getObjFileLowering();
129}
130
131/// getDataLayout - Return information about data layout.
132const DataLayout &AsmPrinter::getDataLayout() const {
133  return *TM.getDataLayout();
134}
135
136StringRef AsmPrinter::getTargetTriple() const {
137  return TM.getTargetTriple();
138}
139
140/// getCurrentSection() - Return the current section we are emitting to.
141const MCSection *AsmPrinter::getCurrentSection() const {
142  return OutStreamer.getCurrentSection().first;
143}
144
145
146
147void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
148  AU.setPreservesAll();
149  MachineFunctionPass::getAnalysisUsage(AU);
150  AU.addRequired<MachineModuleInfo>();
151  AU.addRequired<GCModuleInfo>();
152  if (isVerbose())
153    AU.addRequired<MachineLoopInfo>();
154}
155
156bool AsmPrinter::doInitialization(Module &M) {
157  OutStreamer.InitStreamer();
158
159  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
160  MMI->AnalyzeModule(M);
161
162  // Initialize TargetLoweringObjectFile.
163  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
164    .Initialize(OutContext, TM);
165
166  Mang = new Mangler(OutContext, &TM);
167
168  // Allow the target to emit any magic that it wants at the start of the file.
169  EmitStartOfAsmFile(M);
170
171  // Very minimal debug info. It is ignored if we emit actual debug info. If we
172  // don't, this at least helps the user find where a global came from.
173  if (MAI->hasSingleParameterDotFile()) {
174    // .file "foo.c"
175    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
176  }
177
178  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
179  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
180  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
181    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
182      MP->beginAssembly(*this);
183
184  // Emit module-level inline asm if it exists.
185  if (!M.getModuleInlineAsm().empty()) {
186    OutStreamer.AddComment("Start of file scope inline assembly");
187    OutStreamer.AddBlankLine();
188    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
189    OutStreamer.AddComment("End of file scope inline assembly");
190    OutStreamer.AddBlankLine();
191  }
192
193  if (MAI->doesSupportDebugInformation())
194    DD = new DwarfDebug(this, &M);
195
196  switch (MAI->getExceptionHandlingType()) {
197  case ExceptionHandling::None:
198    return false;
199  case ExceptionHandling::SjLj:
200  case ExceptionHandling::DwarfCFI:
201    DE = new DwarfCFIException(this);
202    return false;
203  case ExceptionHandling::ARM:
204    DE = new ARMException(this);
205    return false;
206  case ExceptionHandling::Win64:
207    DE = new Win64Exception(this);
208    return false;
209  }
210
211  llvm_unreachable("Unknown exception type.");
212}
213
214void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
215  switch ((GlobalValue::LinkageTypes)Linkage) {
216  case GlobalValue::CommonLinkage:
217  case GlobalValue::LinkOnceAnyLinkage:
218  case GlobalValue::LinkOnceODRLinkage:
219  case GlobalValue::LinkOnceODRAutoHideLinkage:
220  case GlobalValue::WeakAnyLinkage:
221  case GlobalValue::WeakODRLinkage:
222  case GlobalValue::LinkerPrivateWeakLinkage:
223    if (MAI->getWeakDefDirective() != 0) {
224      // .globl _foo
225      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
226
227      if ((GlobalValue::LinkageTypes)Linkage !=
228          GlobalValue::LinkOnceODRAutoHideLinkage)
229        // .weak_definition _foo
230        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
231      else
232        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
233    } else if (MAI->getLinkOnceDirective() != 0) {
234      // .globl _foo
235      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
236      //NOTE: linkonce is handled by the section the symbol was assigned to.
237    } else {
238      // .weak _foo
239      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
240    }
241    break;
242  case GlobalValue::DLLExportLinkage:
243  case GlobalValue::AppendingLinkage:
244    // FIXME: appending linkage variables should go into a section of
245    // their name or something.  For now, just emit them as external.
246  case GlobalValue::ExternalLinkage:
247    // If external or appending, declare as a global symbol.
248    // .globl _foo
249    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
250    break;
251  case GlobalValue::PrivateLinkage:
252  case GlobalValue::InternalLinkage:
253  case GlobalValue::LinkerPrivateLinkage:
254    break;
255  default:
256    llvm_unreachable("Unknown linkage type!");
257  }
258}
259
260
261/// EmitGlobalVariable - Emit the specified global variable to the .s file.
262void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
263  if (GV->hasInitializer()) {
264    // Check to see if this is a special global used by LLVM, if so, emit it.
265    if (EmitSpecialLLVMGlobal(GV))
266      return;
267
268    if (isVerbose()) {
269      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
270                     /*PrintType=*/false, GV->getParent());
271      OutStreamer.GetCommentOS() << '\n';
272    }
273  }
274
275  MCSymbol *GVSym = Mang->getSymbol(GV);
276  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
277
278  if (!GV->hasInitializer())   // External globals require no extra code.
279    return;
280
281  if (MAI->hasDotTypeDotSizeDirective())
282    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
283
284  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
285
286  const DataLayout *TD = TM.getDataLayout();
287  uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
288
289  // If the alignment is specified, we *must* obey it.  Overaligning a global
290  // with a specified alignment is a prompt way to break globals emitted to
291  // sections and expected to be contiguous (e.g. ObjC metadata).
292  unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
293
294  // Handle common and BSS local symbols (.lcomm).
295  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
296    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
297    unsigned Align = 1 << AlignLog;
298
299    // Handle common symbols.
300    if (GVKind.isCommon()) {
301      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
302        Align = 0;
303
304      // .comm _foo, 42, 4
305      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
306      return;
307    }
308
309    // Handle local BSS symbols.
310    if (MAI->hasMachoZeroFillDirective()) {
311      const MCSection *TheSection =
312        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
313      // .zerofill __DATA, __bss, _foo, 400, 5
314      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
315      return;
316    }
317
318    // Use .lcomm only if it supports user-specified alignment.
319    // Otherwise, while it would still be correct to use .lcomm in some
320    // cases (e.g. when Align == 1), the external assembler might enfore
321    // some -unknown- default alignment behavior, which could cause
322    // spurious differences between external and integrated assembler.
323    // Prefer to simply fall back to .local / .comm in this case.
324    if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
325      // .lcomm _foo, 42
326      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
327      return;
328    }
329
330    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
331      Align = 0;
332
333    // .local _foo
334    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
335    // .comm _foo, 42, 4
336    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
337    return;
338  }
339
340  const MCSection *TheSection =
341    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
342
343  // Handle the zerofill directive on darwin, which is a special form of BSS
344  // emission.
345  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
346    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
347
348    // .globl _foo
349    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
350    // .zerofill __DATA, __common, _foo, 400, 5
351    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
352    return;
353  }
354
355  // Handle thread local data for mach-o which requires us to output an
356  // additional structure of data and mangle the original symbol so that we
357  // can reference it later.
358  //
359  // TODO: This should become an "emit thread local global" method on TLOF.
360  // All of this macho specific stuff should be sunk down into TLOFMachO and
361  // stuff like "TLSExtraDataSection" should no longer be part of the parent
362  // TLOF class.  This will also make it more obvious that stuff like
363  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
364  // specific code.
365  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
366    // Emit the .tbss symbol
367    MCSymbol *MangSym =
368      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
369
370    if (GVKind.isThreadBSS())
371      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
372    else if (GVKind.isThreadData()) {
373      OutStreamer.SwitchSection(TheSection);
374
375      EmitAlignment(AlignLog, GV);
376      OutStreamer.EmitLabel(MangSym);
377
378      EmitGlobalConstant(GV->getInitializer());
379    }
380
381    OutStreamer.AddBlankLine();
382
383    // Emit the variable struct for the runtime.
384    const MCSection *TLVSect
385      = getObjFileLowering().getTLSExtraDataSection();
386
387    OutStreamer.SwitchSection(TLVSect);
388    // Emit the linkage here.
389    EmitLinkage(GV->getLinkage(), GVSym);
390    OutStreamer.EmitLabel(GVSym);
391
392    // Three pointers in size:
393    //   - __tlv_bootstrap - used to make sure support exists
394    //   - spare pointer, used when mapped by the runtime
395    //   - pointer to mangled symbol above with initializer
396    unsigned PtrSize = TD->getPointerSizeInBits()/8;
397    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
398				PtrSize);
399    OutStreamer.EmitIntValue(0, PtrSize);
400    OutStreamer.EmitSymbolValue(MangSym, PtrSize);
401
402    OutStreamer.AddBlankLine();
403    return;
404  }
405
406  OutStreamer.SwitchSection(TheSection);
407
408  EmitLinkage(GV->getLinkage(), GVSym);
409  EmitAlignment(AlignLog, GV);
410
411  OutStreamer.EmitLabel(GVSym);
412
413  EmitGlobalConstant(GV->getInitializer());
414
415  if (MAI->hasDotTypeDotSizeDirective())
416    // .size foo, 42
417    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
418
419  OutStreamer.AddBlankLine();
420}
421
422/// EmitFunctionHeader - This method emits the header for the current
423/// function.
424void AsmPrinter::EmitFunctionHeader() {
425  // Print out constants referenced by the function
426  EmitConstantPool();
427
428  // Print the 'header' of function.
429  const Function *F = MF->getFunction();
430
431  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
432  EmitVisibility(CurrentFnSym, F->getVisibility());
433
434  EmitLinkage(F->getLinkage(), CurrentFnSym);
435  EmitAlignment(MF->getAlignment(), F);
436
437  if (MAI->hasDotTypeDotSizeDirective())
438    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
439
440  if (isVerbose()) {
441    WriteAsOperand(OutStreamer.GetCommentOS(), F,
442                   /*PrintType=*/false, F->getParent());
443    OutStreamer.GetCommentOS() << '\n';
444  }
445
446  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
447  // do their wild and crazy things as required.
448  EmitFunctionEntryLabel();
449
450  // If the function had address-taken blocks that got deleted, then we have
451  // references to the dangling symbols.  Emit them at the start of the function
452  // so that we don't get references to undefined symbols.
453  std::vector<MCSymbol*> DeadBlockSyms;
454  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
455  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
456    OutStreamer.AddComment("Address taken block that was later removed");
457    OutStreamer.EmitLabel(DeadBlockSyms[i]);
458  }
459
460  // Add some workaround for linkonce linkage on Cygwin\MinGW.
461  if (MAI->getLinkOnceDirective() != 0 &&
462      (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
463    // FIXME: What is this?
464    MCSymbol *FakeStub =
465      OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
466                                   CurrentFnSym->getName());
467    OutStreamer.EmitLabel(FakeStub);
468  }
469
470  // Emit pre-function debug and/or EH information.
471  if (DE) {
472    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
473    DE->BeginFunction(MF);
474  }
475  if (DD) {
476    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
477    DD->beginFunction(MF);
478  }
479}
480
481/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
482/// function.  This can be overridden by targets as required to do custom stuff.
483void AsmPrinter::EmitFunctionEntryLabel() {
484  // The function label could have already been emitted if two symbols end up
485  // conflicting due to asm renaming.  Detect this and emit an error.
486  if (CurrentFnSym->isUndefined())
487    return OutStreamer.EmitLabel(CurrentFnSym);
488
489  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
490                     "' label emitted multiple times to assembly file");
491}
492
493/// emitComments - Pretty-print comments for instructions.
494static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
495  const MachineFunction *MF = MI.getParent()->getParent();
496  const TargetMachine &TM = MF->getTarget();
497
498  // Check for spills and reloads
499  int FI;
500
501  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
502
503  // We assume a single instruction only has a spill or reload, not
504  // both.
505  const MachineMemOperand *MMO;
506  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
507    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
508      MMO = *MI.memoperands_begin();
509      CommentOS << MMO->getSize() << "-byte Reload\n";
510    }
511  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
512    if (FrameInfo->isSpillSlotObjectIndex(FI))
513      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
514  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
515    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
516      MMO = *MI.memoperands_begin();
517      CommentOS << MMO->getSize() << "-byte Spill\n";
518    }
519  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
520    if (FrameInfo->isSpillSlotObjectIndex(FI))
521      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
522  }
523
524  // Check for spill-induced copies
525  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
526    CommentOS << " Reload Reuse\n";
527}
528
529/// emitImplicitDef - This method emits the specified machine instruction
530/// that is an implicit def.
531static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
532  unsigned RegNo = MI->getOperand(0).getReg();
533  AP.OutStreamer.AddComment(Twine("implicit-def: ") +
534                            AP.TM.getRegisterInfo()->getName(RegNo));
535  AP.OutStreamer.AddBlankLine();
536}
537
538static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
539  std::string Str = "kill:";
540  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
541    const MachineOperand &Op = MI->getOperand(i);
542    assert(Op.isReg() && "KILL instruction must have only register operands");
543    Str += ' ';
544    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
545    Str += (Op.isDef() ? "<def>" : "<kill>");
546  }
547  AP.OutStreamer.AddComment(Str);
548  AP.OutStreamer.AddBlankLine();
549}
550
551/// emitDebugValueComment - This method handles the target-independent form
552/// of DBG_VALUE, returning true if it was able to do so.  A false return
553/// means the target will need to handle MI in EmitInstruction.
554static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
555  // This code handles only the 3-operand target-independent form.
556  if (MI->getNumOperands() != 3)
557    return false;
558
559  SmallString<128> Str;
560  raw_svector_ostream OS(Str);
561  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
562
563  // cast away const; DIetc do not take const operands for some reason.
564  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
565  if (V.getContext().isSubprogram()) {
566    StringRef Name = DISubprogram(V.getContext()).getDisplayName();
567    if (!Name.empty())
568      OS << Name << ":";
569  }
570  OS << V.getName() << " <- ";
571
572  // Register or immediate value. Register 0 means undef.
573  if (MI->getOperand(0).isFPImm()) {
574    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
575    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
576      OS << (double)APF.convertToFloat();
577    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
578      OS << APF.convertToDouble();
579    } else {
580      // There is no good way to print long double.  Convert a copy to
581      // double.  Ah well, it's only a comment.
582      bool ignored;
583      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
584                  &ignored);
585      OS << "(long double) " << APF.convertToDouble();
586    }
587  } else if (MI->getOperand(0).isImm()) {
588    OS << MI->getOperand(0).getImm();
589  } else if (MI->getOperand(0).isCImm()) {
590    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
591  } else {
592    assert(MI->getOperand(0).isReg() && "Unknown operand type");
593    if (MI->getOperand(0).getReg() == 0) {
594      // Suppress offset, it is not meaningful here.
595      OS << "undef";
596      // NOTE: Want this comment at start of line, don't emit with AddComment.
597      AP.OutStreamer.EmitRawText(OS.str());
598      return true;
599    }
600    OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
601  }
602
603  OS << '+' << MI->getOperand(1).getImm();
604  // NOTE: Want this comment at start of line, don't emit with AddComment.
605  AP.OutStreamer.EmitRawText(OS.str());
606  return true;
607}
608
609AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
610  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
611      MF->getFunction()->needsUnwindTableEntry())
612    return CFI_M_EH;
613
614  if (MMI->hasDebugInfo())
615    return CFI_M_Debug;
616
617  return CFI_M_None;
618}
619
620bool AsmPrinter::needsSEHMoves() {
621  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
622    MF->getFunction()->needsUnwindTableEntry();
623}
624
625bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
626  return MAI->doesDwarfUseRelocationsAcrossSections();
627}
628
629void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
630  MCSymbol *Label = MI.getOperand(0).getMCSymbol();
631
632  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
633    return;
634
635  if (needsCFIMoves() == CFI_M_None)
636    return;
637
638  if (MMI->getCompactUnwindEncoding() != 0)
639    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
640
641  MachineModuleInfo &MMI = MF->getMMI();
642  std::vector<MCCFIInstruction> Instructions = MMI.getFrameInstructions();
643  bool FoundOne = false;
644  (void)FoundOne;
645  for (std::vector<MCCFIInstruction>::iterator I = Instructions.begin(),
646         E = Instructions.end(); I != E; ++I) {
647    if (I->getLabel() == Label) {
648      emitCFIInstruction(*I);
649      FoundOne = true;
650    }
651  }
652  assert(FoundOne);
653}
654
655/// EmitFunctionBody - This method emits the body and trailer for a
656/// function.
657void AsmPrinter::EmitFunctionBody() {
658  // Emit target-specific gunk before the function body.
659  EmitFunctionBodyStart();
660
661  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
662
663  // Print out code for the function.
664  bool HasAnyRealCode = false;
665  const MachineInstr *LastMI = 0;
666  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
667       I != E; ++I) {
668    // Print a label for the basic block.
669    EmitBasicBlockStart(I);
670    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
671         II != IE; ++II) {
672      LastMI = II;
673
674      // Print the assembly for the instruction.
675      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
676          !II->isDebugValue()) {
677        HasAnyRealCode = true;
678        ++EmittedInsts;
679      }
680
681      if (ShouldPrintDebugScopes) {
682        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
683        DD->beginInstruction(II);
684      }
685
686      if (isVerbose())
687        emitComments(*II, OutStreamer.GetCommentOS());
688
689      switch (II->getOpcode()) {
690      case TargetOpcode::PROLOG_LABEL:
691        emitPrologLabel(*II);
692        break;
693
694      case TargetOpcode::EH_LABEL:
695      case TargetOpcode::GC_LABEL:
696        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
697        break;
698      case TargetOpcode::INLINEASM:
699        EmitInlineAsm(II);
700        break;
701      case TargetOpcode::DBG_VALUE:
702        if (isVerbose()) {
703          if (!emitDebugValueComment(II, *this))
704            EmitInstruction(II);
705        }
706        break;
707      case TargetOpcode::IMPLICIT_DEF:
708        if (isVerbose()) emitImplicitDef(II, *this);
709        break;
710      case TargetOpcode::KILL:
711        if (isVerbose()) emitKill(II, *this);
712        break;
713      default:
714        if (!TM.hasMCUseLoc())
715          MCLineEntry::Make(&OutStreamer, getCurrentSection());
716
717        EmitInstruction(II);
718        break;
719      }
720
721      if (ShouldPrintDebugScopes) {
722        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
723        DD->endInstruction(II);
724      }
725    }
726  }
727
728  // If the last instruction was a prolog label, then we have a situation where
729  // we emitted a prolog but no function body. This results in the ending prolog
730  // label equaling the end of function label and an invalid "row" in the
731  // FDE. We need to emit a noop in this situation so that the FDE's rows are
732  // valid.
733  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
734
735  // If the function is empty and the object file uses .subsections_via_symbols,
736  // then we need to emit *something* to the function body to prevent the
737  // labels from collapsing together.  Just emit a noop.
738  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
739    MCInst Noop;
740    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
741    if (Noop.getOpcode()) {
742      OutStreamer.AddComment("avoids zero-length function");
743      OutStreamer.EmitInstruction(Noop);
744    } else  // Target not mc-ized yet.
745      OutStreamer.EmitRawText(StringRef("\tnop\n"));
746  }
747
748  const Function *F = MF->getFunction();
749  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
750    const BasicBlock *BB = i;
751    if (!BB->hasAddressTaken())
752      continue;
753    MCSymbol *Sym = GetBlockAddressSymbol(BB);
754    if (Sym->isDefined())
755      continue;
756    OutStreamer.AddComment("Address of block that was removed by CodeGen");
757    OutStreamer.EmitLabel(Sym);
758  }
759
760  // Emit target-specific gunk after the function body.
761  EmitFunctionBodyEnd();
762
763  // If the target wants a .size directive for the size of the function, emit
764  // it.
765  if (MAI->hasDotTypeDotSizeDirective()) {
766    // Create a symbol for the end of function, so we can get the size as
767    // difference between the function label and the temp label.
768    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
769    OutStreamer.EmitLabel(FnEndLabel);
770
771    const MCExpr *SizeExp =
772      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
773                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
774                                                      OutContext),
775                              OutContext);
776    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
777  }
778
779  // Emit post-function debug information.
780  if (DD) {
781    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
782    DD->endFunction(MF);
783  }
784  if (DE) {
785    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
786    DE->EndFunction();
787  }
788  MMI->EndFunction();
789
790  // Print out jump tables referenced by the function.
791  EmitJumpTableInfo();
792
793  OutStreamer.AddBlankLine();
794}
795
796/// getDebugValueLocation - Get location information encoded by DBG_VALUE
797/// operands.
798MachineLocation AsmPrinter::
799getDebugValueLocation(const MachineInstr *MI) const {
800  // Target specific DBG_VALUE instructions are handled by each target.
801  return MachineLocation();
802}
803
804/// EmitDwarfRegOp - Emit dwarf register operation.
805void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
806  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
807  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
808
809  for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
810       ++SR) {
811    Reg = TRI->getDwarfRegNum(*SR, false);
812    // FIXME: Get the bit range this register uses of the superregister
813    // so that we can produce a DW_OP_bit_piece
814  }
815
816  // FIXME: Handle cases like a super register being encoded as
817  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
818
819  // FIXME: We have no reasonable way of handling errors in here. The
820  // caller might be in the middle of an dwarf expression. We should
821  // probably assert that Reg >= 0 once debug info generation is more mature.
822
823  if (MLoc.isIndirect()) {
824    if (Reg < 32) {
825      OutStreamer.AddComment(
826        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
827      EmitInt8(dwarf::DW_OP_breg0 + Reg);
828    } else {
829      OutStreamer.AddComment("DW_OP_bregx");
830      EmitInt8(dwarf::DW_OP_bregx);
831      OutStreamer.AddComment(Twine(Reg));
832      EmitULEB128(Reg);
833    }
834    EmitSLEB128(MLoc.getOffset());
835  } else {
836    if (Reg < 32) {
837      OutStreamer.AddComment(
838        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
839      EmitInt8(dwarf::DW_OP_reg0 + Reg);
840    } else {
841      OutStreamer.AddComment("DW_OP_regx");
842      EmitInt8(dwarf::DW_OP_regx);
843      OutStreamer.AddComment(Twine(Reg));
844      EmitULEB128(Reg);
845    }
846  }
847
848  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
849}
850
851bool AsmPrinter::doFinalization(Module &M) {
852  // Emit global variables.
853  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
854       I != E; ++I)
855    EmitGlobalVariable(I);
856
857  // Emit visibility info for declarations
858  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
859    const Function &F = *I;
860    if (!F.isDeclaration())
861      continue;
862    GlobalValue::VisibilityTypes V = F.getVisibility();
863    if (V == GlobalValue::DefaultVisibility)
864      continue;
865
866    MCSymbol *Name = Mang->getSymbol(&F);
867    EmitVisibility(Name, V, false);
868  }
869
870  // Emit module flags.
871  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
872  M.getModuleFlagsMetadata(ModuleFlags);
873  if (!ModuleFlags.empty())
874    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
875
876  // Finalize debug and EH information.
877  if (DE) {
878    {
879      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
880      DE->EndModule();
881    }
882    delete DE; DE = 0;
883  }
884  if (DD) {
885    {
886      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
887      DD->endModule();
888    }
889    delete DD; DD = 0;
890  }
891
892  // If the target wants to know about weak references, print them all.
893  if (MAI->getWeakRefDirective()) {
894    // FIXME: This is not lazy, it would be nice to only print weak references
895    // to stuff that is actually used.  Note that doing so would require targets
896    // to notice uses in operands (due to constant exprs etc).  This should
897    // happen with the MC stuff eventually.
898
899    // Print out module-level global variables here.
900    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
901         I != E; ++I) {
902      if (!I->hasExternalWeakLinkage()) continue;
903      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
904    }
905
906    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
907      if (!I->hasExternalWeakLinkage()) continue;
908      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
909    }
910  }
911
912  if (MAI->hasSetDirective()) {
913    OutStreamer.AddBlankLine();
914    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
915         I != E; ++I) {
916      MCSymbol *Name = Mang->getSymbol(I);
917
918      const GlobalValue *GV = I->getAliasedGlobal();
919      MCSymbol *Target = Mang->getSymbol(GV);
920
921      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
922        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
923      else if (I->hasWeakLinkage())
924        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
925      else
926        assert(I->hasLocalLinkage() && "Invalid alias linkage");
927
928      EmitVisibility(Name, I->getVisibility());
929
930      // Emit the directives as assignments aka .set:
931      OutStreamer.EmitAssignment(Name,
932                                 MCSymbolRefExpr::Create(Target, OutContext));
933    }
934  }
935
936  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
937  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
938  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
939    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
940      MP->finishAssembly(*this);
941
942  // If we don't have any trampolines, then we don't require stack memory
943  // to be executable. Some targets have a directive to declare this.
944  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
945  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
946    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
947      OutStreamer.SwitchSection(S);
948
949  // Allow the target to emit any magic that it wants at the end of the file,
950  // after everything else has gone out.
951  EmitEndOfAsmFile(M);
952
953  delete Mang; Mang = 0;
954  MMI = 0;
955
956  OutStreamer.Finish();
957  OutStreamer.reset();
958
959  return false;
960}
961
962void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
963  this->MF = &MF;
964  // Get the function symbol.
965  CurrentFnSym = Mang->getSymbol(MF.getFunction());
966  CurrentFnSymForSize = CurrentFnSym;
967
968  if (isVerbose())
969    LI = &getAnalysis<MachineLoopInfo>();
970}
971
972namespace {
973  // SectionCPs - Keep track the alignment, constpool entries per Section.
974  struct SectionCPs {
975    const MCSection *S;
976    unsigned Alignment;
977    SmallVector<unsigned, 4> CPEs;
978    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
979  };
980}
981
982/// EmitConstantPool - Print to the current output stream assembly
983/// representations of the constants in the constant pool MCP. This is
984/// used to print out constants which have been "spilled to memory" by
985/// the code generator.
986///
987void AsmPrinter::EmitConstantPool() {
988  const MachineConstantPool *MCP = MF->getConstantPool();
989  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
990  if (CP.empty()) return;
991
992  // Calculate sections for constant pool entries. We collect entries to go into
993  // the same section together to reduce amount of section switch statements.
994  SmallVector<SectionCPs, 4> CPSections;
995  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
996    const MachineConstantPoolEntry &CPE = CP[i];
997    unsigned Align = CPE.getAlignment();
998
999    SectionKind Kind;
1000    switch (CPE.getRelocationInfo()) {
1001    default: llvm_unreachable("Unknown section kind");
1002    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
1003    case 1:
1004      Kind = SectionKind::getReadOnlyWithRelLocal();
1005      break;
1006    case 0:
1007    switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
1008    case 4:  Kind = SectionKind::getMergeableConst4(); break;
1009    case 8:  Kind = SectionKind::getMergeableConst8(); break;
1010    case 16: Kind = SectionKind::getMergeableConst16();break;
1011    default: Kind = SectionKind::getMergeableConst(); break;
1012    }
1013    }
1014
1015    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1016
1017    // The number of sections are small, just do a linear search from the
1018    // last section to the first.
1019    bool Found = false;
1020    unsigned SecIdx = CPSections.size();
1021    while (SecIdx != 0) {
1022      if (CPSections[--SecIdx].S == S) {
1023        Found = true;
1024        break;
1025      }
1026    }
1027    if (!Found) {
1028      SecIdx = CPSections.size();
1029      CPSections.push_back(SectionCPs(S, Align));
1030    }
1031
1032    if (Align > CPSections[SecIdx].Alignment)
1033      CPSections[SecIdx].Alignment = Align;
1034    CPSections[SecIdx].CPEs.push_back(i);
1035  }
1036
1037  // Now print stuff into the calculated sections.
1038  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1039    OutStreamer.SwitchSection(CPSections[i].S);
1040    EmitAlignment(Log2_32(CPSections[i].Alignment));
1041
1042    unsigned Offset = 0;
1043    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1044      unsigned CPI = CPSections[i].CPEs[j];
1045      MachineConstantPoolEntry CPE = CP[CPI];
1046
1047      // Emit inter-object padding for alignment.
1048      unsigned AlignMask = CPE.getAlignment() - 1;
1049      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1050      OutStreamer.EmitZeros(NewOffset - Offset);
1051
1052      Type *Ty = CPE.getType();
1053      Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
1054      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1055
1056      if (CPE.isMachineConstantPoolEntry())
1057        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1058      else
1059        EmitGlobalConstant(CPE.Val.ConstVal);
1060    }
1061  }
1062}
1063
1064/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1065/// by the current function to the current output stream.
1066///
1067void AsmPrinter::EmitJumpTableInfo() {
1068  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1069  if (MJTI == 0) return;
1070  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1071  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1072  if (JT.empty()) return;
1073
1074  // Pick the directive to use to print the jump table entries, and switch to
1075  // the appropriate section.
1076  const Function *F = MF->getFunction();
1077  bool JTInDiffSection = false;
1078  if (// In PIC mode, we need to emit the jump table to the same section as the
1079      // function body itself, otherwise the label differences won't make sense.
1080      // FIXME: Need a better predicate for this: what about custom entries?
1081      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1082      // We should also do if the section name is NULL or function is declared
1083      // in discardable section
1084      // FIXME: this isn't the right predicate, should be based on the MCSection
1085      // for the function.
1086      F->isWeakForLinker()) {
1087    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1088  } else {
1089    // Otherwise, drop it in the readonly section.
1090    const MCSection *ReadOnlySection =
1091      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1092    OutStreamer.SwitchSection(ReadOnlySection);
1093    JTInDiffSection = true;
1094  }
1095
1096  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
1097
1098  // Jump tables in code sections are marked with a data_region directive
1099  // where that's supported.
1100  if (!JTInDiffSection)
1101    OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1102
1103  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1104    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1105
1106    // If this jump table was deleted, ignore it.
1107    if (JTBBs.empty()) continue;
1108
1109    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1110    // .set directive for each unique entry.  This reduces the number of
1111    // relocations the assembler will generate for the jump table.
1112    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1113        MAI->hasSetDirective()) {
1114      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1115      const TargetLowering *TLI = TM.getTargetLowering();
1116      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1117      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1118        const MachineBasicBlock *MBB = JTBBs[ii];
1119        if (!EmittedSets.insert(MBB)) continue;
1120
1121        // .set LJTSet, LBB32-base
1122        const MCExpr *LHS =
1123          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1124        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1125                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1126      }
1127    }
1128
1129    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1130    // before each jump table.  The first label is never referenced, but tells
1131    // the assembler and linker the extents of the jump table object.  The
1132    // second label is actually referenced by the code.
1133    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1134      // FIXME: This doesn't have to have any specific name, just any randomly
1135      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1136      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1137
1138    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1139
1140    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1141      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1142  }
1143  if (!JTInDiffSection)
1144    OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1145}
1146
1147/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1148/// current stream.
1149void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1150                                    const MachineBasicBlock *MBB,
1151                                    unsigned UID) const {
1152  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1153  const MCExpr *Value = 0;
1154  switch (MJTI->getEntryKind()) {
1155  case MachineJumpTableInfo::EK_Inline:
1156    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1157  case MachineJumpTableInfo::EK_Custom32:
1158    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1159                                                              OutContext);
1160    break;
1161  case MachineJumpTableInfo::EK_BlockAddress:
1162    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1163    //     .word LBB123
1164    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1165    break;
1166  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1167    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1168    // with a relocation as gp-relative, e.g.:
1169    //     .gprel32 LBB123
1170    MCSymbol *MBBSym = MBB->getSymbol();
1171    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1172    return;
1173  }
1174
1175  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1176    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1177    // with a relocation as gp-relative, e.g.:
1178    //     .gpdword LBB123
1179    MCSymbol *MBBSym = MBB->getSymbol();
1180    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1181    return;
1182  }
1183
1184  case MachineJumpTableInfo::EK_LabelDifference32: {
1185    // EK_LabelDifference32 - Each entry is the address of the block minus
1186    // the address of the jump table.  This is used for PIC jump tables where
1187    // gprel32 is not supported.  e.g.:
1188    //      .word LBB123 - LJTI1_2
1189    // If the .set directive is supported, this is emitted as:
1190    //      .set L4_5_set_123, LBB123 - LJTI1_2
1191    //      .word L4_5_set_123
1192
1193    // If we have emitted set directives for the jump table entries, print
1194    // them rather than the entries themselves.  If we're emitting PIC, then
1195    // emit the table entries as differences between two text section labels.
1196    if (MAI->hasSetDirective()) {
1197      // If we used .set, reference the .set's symbol.
1198      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1199                                      OutContext);
1200      break;
1201    }
1202    // Otherwise, use the difference as the jump table entry.
1203    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1204    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1205    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1206    break;
1207  }
1208  }
1209
1210  assert(Value && "Unknown entry kind!");
1211
1212  unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
1213  OutStreamer.EmitValue(Value, EntrySize);
1214}
1215
1216
1217/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1218/// special global used by LLVM.  If so, emit it and return true, otherwise
1219/// do nothing and return false.
1220bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1221  if (GV->getName() == "llvm.used") {
1222    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1223      EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1224    return true;
1225  }
1226
1227  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1228  if (GV->getSection() == "llvm.metadata" ||
1229      GV->hasAvailableExternallyLinkage())
1230    return true;
1231
1232  if (!GV->hasAppendingLinkage()) return false;
1233
1234  assert(GV->hasInitializer() && "Not a special LLVM global!");
1235
1236  if (GV->getName() == "llvm.global_ctors") {
1237    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1238
1239    if (TM.getRelocationModel() == Reloc::Static &&
1240        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1241      StringRef Sym(".constructors_used");
1242      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1243                                      MCSA_Reference);
1244    }
1245    return true;
1246  }
1247
1248  if (GV->getName() == "llvm.global_dtors") {
1249    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1250
1251    if (TM.getRelocationModel() == Reloc::Static &&
1252        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1253      StringRef Sym(".destructors_used");
1254      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1255                                      MCSA_Reference);
1256    }
1257    return true;
1258  }
1259
1260  return false;
1261}
1262
1263/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1264/// global in the specified llvm.used list for which emitUsedDirectiveFor
1265/// is true, as being used with this directive.
1266void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1267  // Should be an array of 'i8*'.
1268  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1269    const GlobalValue *GV =
1270      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1271    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1272      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1273  }
1274}
1275
1276typedef std::pair<unsigned, Constant*> Structor;
1277
1278static bool priority_order(const Structor& lhs, const Structor& rhs) {
1279  return lhs.first < rhs.first;
1280}
1281
1282/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1283/// priority.
1284void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1285  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1286  // init priority.
1287  if (!isa<ConstantArray>(List)) return;
1288
1289  // Sanity check the structors list.
1290  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1291  if (!InitList) return; // Not an array!
1292  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1293  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1294  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1295      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1296
1297  // Gather the structors in a form that's convenient for sorting by priority.
1298  SmallVector<Structor, 8> Structors;
1299  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1300    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1301    if (!CS) continue; // Malformed.
1302    if (CS->getOperand(1)->isNullValue())
1303      break;  // Found a null terminator, skip the rest.
1304    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1305    if (!Priority) continue; // Malformed.
1306    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1307                                       CS->getOperand(1)));
1308  }
1309
1310  // Emit the function pointers in the target-specific order
1311  const DataLayout *TD = TM.getDataLayout();
1312  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1313  std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1314  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1315    const MCSection *OutputSection =
1316      (isCtor ?
1317       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1318       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1319    OutStreamer.SwitchSection(OutputSection);
1320    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1321      EmitAlignment(Align);
1322    EmitXXStructor(Structors[i].second);
1323  }
1324}
1325
1326//===--------------------------------------------------------------------===//
1327// Emission and print routines
1328//
1329
1330/// EmitInt8 - Emit a byte directive and value.
1331///
1332void AsmPrinter::EmitInt8(int Value) const {
1333  OutStreamer.EmitIntValue(Value, 1);
1334}
1335
1336/// EmitInt16 - Emit a short directive and value.
1337///
1338void AsmPrinter::EmitInt16(int Value) const {
1339  OutStreamer.EmitIntValue(Value, 2);
1340}
1341
1342/// EmitInt32 - Emit a long directive and value.
1343///
1344void AsmPrinter::EmitInt32(int Value) const {
1345  OutStreamer.EmitIntValue(Value, 4);
1346}
1347
1348/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1349/// in bytes of the directive is specified by Size and Hi/Lo specify the
1350/// labels.  This implicitly uses .set if it is available.
1351void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1352                                     unsigned Size) const {
1353  // Get the Hi-Lo expression.
1354  const MCExpr *Diff =
1355    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1356                            MCSymbolRefExpr::Create(Lo, OutContext),
1357                            OutContext);
1358
1359  if (!MAI->hasSetDirective()) {
1360    OutStreamer.EmitValue(Diff, Size);
1361    return;
1362  }
1363
1364  // Otherwise, emit with .set (aka assignment).
1365  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1366  OutStreamer.EmitAssignment(SetLabel, Diff);
1367  OutStreamer.EmitSymbolValue(SetLabel, Size);
1368}
1369
1370/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1371/// where the size in bytes of the directive is specified by Size and Hi/Lo
1372/// specify the labels.  This implicitly uses .set if it is available.
1373void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1374                                           const MCSymbol *Lo, unsigned Size)
1375  const {
1376
1377  // Emit Hi+Offset - Lo
1378  // Get the Hi+Offset expression.
1379  const MCExpr *Plus =
1380    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1381                            MCConstantExpr::Create(Offset, OutContext),
1382                            OutContext);
1383
1384  // Get the Hi+Offset-Lo expression.
1385  const MCExpr *Diff =
1386    MCBinaryExpr::CreateSub(Plus,
1387                            MCSymbolRefExpr::Create(Lo, OutContext),
1388                            OutContext);
1389
1390  if (!MAI->hasSetDirective())
1391    OutStreamer.EmitValue(Diff, 4);
1392  else {
1393    // Otherwise, emit with .set (aka assignment).
1394    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1395    OutStreamer.EmitAssignment(SetLabel, Diff);
1396    OutStreamer.EmitSymbolValue(SetLabel, 4);
1397  }
1398}
1399
1400/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1401/// where the size in bytes of the directive is specified by Size and Label
1402/// specifies the label.  This implicitly uses .set if it is available.
1403void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1404                                      unsigned Size)
1405  const {
1406
1407  // Emit Label+Offset (or just Label if Offset is zero)
1408  const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1409  if (Offset)
1410    Expr = MCBinaryExpr::CreateAdd(Expr,
1411                                   MCConstantExpr::Create(Offset, OutContext),
1412                                   OutContext);
1413
1414  OutStreamer.EmitValue(Expr, Size);
1415}
1416
1417
1418//===----------------------------------------------------------------------===//
1419
1420// EmitAlignment - Emit an alignment directive to the specified power of
1421// two boundary.  For example, if you pass in 3 here, you will get an 8
1422// byte alignment.  If a global value is specified, and if that global has
1423// an explicit alignment requested, it will override the alignment request
1424// if required for correctness.
1425//
1426void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1427  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
1428
1429  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1430
1431  if (getCurrentSection()->getKind().isText())
1432    OutStreamer.EmitCodeAlignment(1 << NumBits);
1433  else
1434    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1435}
1436
1437//===----------------------------------------------------------------------===//
1438// Constant emission.
1439//===----------------------------------------------------------------------===//
1440
1441/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1442///
1443static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1444  MCContext &Ctx = AP.OutContext;
1445
1446  if (CV->isNullValue() || isa<UndefValue>(CV))
1447    return MCConstantExpr::Create(0, Ctx);
1448
1449  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1450    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1451
1452  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1453    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1454
1455  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1456    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1457
1458  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1459  if (CE == 0) {
1460    llvm_unreachable("Unknown constant value to lower!");
1461  }
1462
1463  switch (CE->getOpcode()) {
1464  default:
1465    // If the code isn't optimized, there may be outstanding folding
1466    // opportunities. Attempt to fold the expression using DataLayout as a
1467    // last resort before giving up.
1468    if (Constant *C =
1469          ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
1470      if (C != CE)
1471        return lowerConstant(C, AP);
1472
1473    // Otherwise report the problem to the user.
1474    {
1475      std::string S;
1476      raw_string_ostream OS(S);
1477      OS << "Unsupported expression in static initializer: ";
1478      WriteAsOperand(OS, CE, /*PrintType=*/false,
1479                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1480      report_fatal_error(OS.str());
1481    }
1482  case Instruction::GetElementPtr: {
1483    const DataLayout &TD = *AP.TM.getDataLayout();
1484    // Generate a symbolic expression for the byte address
1485    APInt OffsetAI(TD.getPointerSizeInBits(), 0);
1486    cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
1487
1488    const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1489    if (!OffsetAI)
1490      return Base;
1491
1492    int64_t Offset = OffsetAI.getSExtValue();
1493    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1494                                   Ctx);
1495  }
1496
1497  case Instruction::Trunc:
1498    // We emit the value and depend on the assembler to truncate the generated
1499    // expression properly.  This is important for differences between
1500    // blockaddress labels.  Since the two labels are in the same function, it
1501    // is reasonable to treat their delta as a 32-bit value.
1502    // FALL THROUGH.
1503  case Instruction::BitCast:
1504    return lowerConstant(CE->getOperand(0), AP);
1505
1506  case Instruction::IntToPtr: {
1507    const DataLayout &TD = *AP.TM.getDataLayout();
1508    // Handle casts to pointers by changing them into casts to the appropriate
1509    // integer type.  This promotes constant folding and simplifies this code.
1510    Constant *Op = CE->getOperand(0);
1511    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1512                                      false/*ZExt*/);
1513    return lowerConstant(Op, AP);
1514  }
1515
1516  case Instruction::PtrToInt: {
1517    const DataLayout &TD = *AP.TM.getDataLayout();
1518    // Support only foldable casts to/from pointers that can be eliminated by
1519    // changing the pointer to the appropriately sized integer type.
1520    Constant *Op = CE->getOperand(0);
1521    Type *Ty = CE->getType();
1522
1523    const MCExpr *OpExpr = lowerConstant(Op, AP);
1524
1525    // We can emit the pointer value into this slot if the slot is an
1526    // integer slot equal to the size of the pointer.
1527    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1528      return OpExpr;
1529
1530    // Otherwise the pointer is smaller than the resultant integer, mask off
1531    // the high bits so we are sure to get a proper truncation if the input is
1532    // a constant expr.
1533    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1534    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1535    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1536  }
1537
1538  // The MC library also has a right-shift operator, but it isn't consistently
1539  // signed or unsigned between different targets.
1540  case Instruction::Add:
1541  case Instruction::Sub:
1542  case Instruction::Mul:
1543  case Instruction::SDiv:
1544  case Instruction::SRem:
1545  case Instruction::Shl:
1546  case Instruction::And:
1547  case Instruction::Or:
1548  case Instruction::Xor: {
1549    const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1550    const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1551    switch (CE->getOpcode()) {
1552    default: llvm_unreachable("Unknown binary operator constant cast expr");
1553    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1554    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1555    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1556    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1557    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1558    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1559    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1560    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1561    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1562    }
1563  }
1564  }
1565}
1566
1567static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1568                                   AsmPrinter &AP);
1569
1570/// isRepeatedByteSequence - Determine whether the given value is
1571/// composed of a repeated sequence of identical bytes and return the
1572/// byte value.  If it is not a repeated sequence, return -1.
1573static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1574  StringRef Data = V->getRawDataValues();
1575  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1576  char C = Data[0];
1577  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1578    if (Data[i] != C) return -1;
1579  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1580}
1581
1582
1583/// isRepeatedByteSequence - Determine whether the given value is
1584/// composed of a repeated sequence of identical bytes and return the
1585/// byte value.  If it is not a repeated sequence, return -1.
1586static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1587
1588  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1589    if (CI->getBitWidth() > 64) return -1;
1590
1591    uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
1592    uint64_t Value = CI->getZExtValue();
1593
1594    // Make sure the constant is at least 8 bits long and has a power
1595    // of 2 bit width.  This guarantees the constant bit width is
1596    // always a multiple of 8 bits, avoiding issues with padding out
1597    // to Size and other such corner cases.
1598    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1599
1600    uint8_t Byte = static_cast<uint8_t>(Value);
1601
1602    for (unsigned i = 1; i < Size; ++i) {
1603      Value >>= 8;
1604      if (static_cast<uint8_t>(Value) != Byte) return -1;
1605    }
1606    return Byte;
1607  }
1608  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1609    // Make sure all array elements are sequences of the same repeated
1610    // byte.
1611    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1612    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1613    if (Byte == -1) return -1;
1614
1615    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1616      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1617      if (ThisByte == -1) return -1;
1618      if (Byte != ThisByte) return -1;
1619    }
1620    return Byte;
1621  }
1622
1623  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1624    return isRepeatedByteSequence(CDS);
1625
1626  return -1;
1627}
1628
1629static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1630                                             unsigned AddrSpace,AsmPrinter &AP){
1631
1632  // See if we can aggregate this into a .fill, if so, emit it as such.
1633  int Value = isRepeatedByteSequence(CDS, AP.TM);
1634  if (Value != -1) {
1635    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
1636    // Don't emit a 1-byte object as a .fill.
1637    if (Bytes > 1)
1638      return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1639  }
1640
1641  // If this can be emitted with .ascii/.asciz, emit it as such.
1642  if (CDS->isString())
1643    return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1644
1645  // Otherwise, emit the values in successive locations.
1646  unsigned ElementByteSize = CDS->getElementByteSize();
1647  if (isa<IntegerType>(CDS->getElementType())) {
1648    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1649      if (AP.isVerbose())
1650        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1651                                                CDS->getElementAsInteger(i));
1652      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1653                                  ElementByteSize, AddrSpace);
1654    }
1655  } else if (ElementByteSize == 4) {
1656    // FP Constants are printed as integer constants to avoid losing
1657    // precision.
1658    assert(CDS->getElementType()->isFloatTy());
1659    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1660      union {
1661        float F;
1662        uint32_t I;
1663      };
1664
1665      F = CDS->getElementAsFloat(i);
1666      if (AP.isVerbose())
1667        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1668      AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1669    }
1670  } else {
1671    assert(CDS->getElementType()->isDoubleTy());
1672    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1673      union {
1674        double F;
1675        uint64_t I;
1676      };
1677
1678      F = CDS->getElementAsDouble(i);
1679      if (AP.isVerbose())
1680        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1681      AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1682    }
1683  }
1684
1685  const DataLayout &TD = *AP.TM.getDataLayout();
1686  unsigned Size = TD.getTypeAllocSize(CDS->getType());
1687  unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1688                        CDS->getNumElements();
1689  if (unsigned Padding = Size - EmittedSize)
1690    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1691
1692}
1693
1694static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1695                                    AsmPrinter &AP) {
1696  // See if we can aggregate some values.  Make sure it can be
1697  // represented as a series of bytes of the constant value.
1698  int Value = isRepeatedByteSequence(CA, AP.TM);
1699
1700  if (Value != -1) {
1701    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
1702    AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1703  }
1704  else {
1705    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1706      emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1707  }
1708}
1709
1710static void emitGlobalConstantVector(const ConstantVector *CV,
1711                                     unsigned AddrSpace, AsmPrinter &AP) {
1712  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1713    emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1714
1715  const DataLayout &TD = *AP.TM.getDataLayout();
1716  unsigned Size = TD.getTypeAllocSize(CV->getType());
1717  unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1718                         CV->getType()->getNumElements();
1719  if (unsigned Padding = Size - EmittedSize)
1720    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1721}
1722
1723static void emitGlobalConstantStruct(const ConstantStruct *CS,
1724                                     unsigned AddrSpace, AsmPrinter &AP) {
1725  // Print the fields in successive locations. Pad to align if needed!
1726  const DataLayout *TD = AP.TM.getDataLayout();
1727  unsigned Size = TD->getTypeAllocSize(CS->getType());
1728  const StructLayout *Layout = TD->getStructLayout(CS->getType());
1729  uint64_t SizeSoFar = 0;
1730  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1731    const Constant *Field = CS->getOperand(i);
1732
1733    // Check if padding is needed and insert one or more 0s.
1734    uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1735    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1736                        - Layout->getElementOffset(i)) - FieldSize;
1737    SizeSoFar += FieldSize + PadSize;
1738
1739    // Now print the actual field value.
1740    emitGlobalConstantImpl(Field, AddrSpace, AP);
1741
1742    // Insert padding - this may include padding to increase the size of the
1743    // current field up to the ABI size (if the struct is not packed) as well
1744    // as padding to ensure that the next field starts at the right offset.
1745    AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1746  }
1747  assert(SizeSoFar == Layout->getSizeInBytes() &&
1748         "Layout of constant struct may be incorrect!");
1749}
1750
1751static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1752                                 AsmPrinter &AP) {
1753  APInt API = CFP->getValueAPF().bitcastToAPInt();
1754
1755  // First print a comment with what we think the original floating-point value
1756  // should have been.
1757  if (AP.isVerbose()) {
1758    SmallString<8> StrVal;
1759    CFP->getValueAPF().toString(StrVal);
1760
1761    CFP->getType()->print(AP.OutStreamer.GetCommentOS());
1762    AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
1763  }
1764
1765  // Now iterate through the APInt chunks, emitting them in endian-correct
1766  // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
1767  // floats).
1768  unsigned NumBytes = API.getBitWidth() / 8;
1769  unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
1770  const uint64_t *p = API.getRawData();
1771
1772  // PPC's long double has odd notions of endianness compared to how LLVM
1773  // handles it: p[0] goes first for *big* endian on PPC.
1774  if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) {
1775    int Chunk = API.getNumWords() - 1;
1776
1777    if (TrailingBytes)
1778      AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes, AddrSpace);
1779
1780    for (; Chunk >= 0; --Chunk)
1781      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t), AddrSpace);
1782  } else {
1783    unsigned Chunk;
1784    for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
1785      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t), AddrSpace);
1786
1787    if (TrailingBytes)
1788      AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes, AddrSpace);
1789  }
1790
1791  // Emit the tail padding for the long double.
1792  const DataLayout &TD = *AP.TM.getDataLayout();
1793  AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1794                           TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1795}
1796
1797static void emitGlobalConstantLargeInt(const ConstantInt *CI,
1798                                       unsigned AddrSpace, AsmPrinter &AP) {
1799  const DataLayout *TD = AP.TM.getDataLayout();
1800  unsigned BitWidth = CI->getBitWidth();
1801
1802  // Copy the value as we may massage the layout for constants whose bit width
1803  // is not a multiple of 64-bits.
1804  APInt Realigned(CI->getValue());
1805  uint64_t ExtraBits = 0;
1806  unsigned ExtraBitsSize = BitWidth & 63;
1807
1808  if (ExtraBitsSize) {
1809    // The bit width of the data is not a multiple of 64-bits.
1810    // The extra bits are expected to be at the end of the chunk of the memory.
1811    // Little endian:
1812    // * Nothing to be done, just record the extra bits to emit.
1813    // Big endian:
1814    // * Record the extra bits to emit.
1815    // * Realign the raw data to emit the chunks of 64-bits.
1816    if (TD->isBigEndian()) {
1817      // Basically the structure of the raw data is a chunk of 64-bits cells:
1818      //    0        1         BitWidth / 64
1819      // [chunk1][chunk2] ... [chunkN].
1820      // The most significant chunk is chunkN and it should be emitted first.
1821      // However, due to the alignment issue chunkN contains useless bits.
1822      // Realign the chunks so that they contain only useless information:
1823      // ExtraBits     0       1       (BitWidth / 64) - 1
1824      //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
1825      ExtraBits = Realigned.getRawData()[0] &
1826        (((uint64_t)-1) >> (64 - ExtraBitsSize));
1827      Realigned = Realigned.lshr(ExtraBitsSize);
1828    } else
1829      ExtraBits = Realigned.getRawData()[BitWidth / 64];
1830  }
1831
1832  // We don't expect assemblers to support integer data directives
1833  // for more than 64 bits, so we emit the data in at most 64-bit
1834  // quantities at a time.
1835  const uint64_t *RawData = Realigned.getRawData();
1836  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1837    uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1838    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1839  }
1840
1841  if (ExtraBitsSize) {
1842    // Emit the extra bits after the 64-bits chunks.
1843
1844    // Emit a directive that fills the expected size.
1845    uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType());
1846    Size -= (BitWidth / 64) * 8;
1847    assert(Size && Size * 8 >= ExtraBitsSize &&
1848           (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
1849           == ExtraBits && "Directive too small for extra bits.");
1850    AP.OutStreamer.EmitIntValue(ExtraBits, Size, AddrSpace);
1851  }
1852}
1853
1854static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1855                                   AsmPrinter &AP) {
1856  const DataLayout *TD = AP.TM.getDataLayout();
1857  uint64_t Size = TD->getTypeAllocSize(CV->getType());
1858  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1859    return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1860
1861  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1862    switch (Size) {
1863    case 1:
1864    case 2:
1865    case 4:
1866    case 8:
1867      if (AP.isVerbose())
1868        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1869                                                CI->getZExtValue());
1870      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1871      return;
1872    default:
1873      emitGlobalConstantLargeInt(CI, AddrSpace, AP);
1874      return;
1875    }
1876  }
1877
1878  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1879    return emitGlobalConstantFP(CFP, AddrSpace, AP);
1880
1881  if (isa<ConstantPointerNull>(CV)) {
1882    AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1883    return;
1884  }
1885
1886  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1887    return emitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1888
1889  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1890    return emitGlobalConstantArray(CVA, AddrSpace, AP);
1891
1892  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1893    return emitGlobalConstantStruct(CVS, AddrSpace, AP);
1894
1895  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1896    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1897    // vectors).
1898    if (CE->getOpcode() == Instruction::BitCast)
1899      return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1900
1901    if (Size > 8) {
1902      // If the constant expression's size is greater than 64-bits, then we have
1903      // to emit the value in chunks. Try to constant fold the value and emit it
1904      // that way.
1905      Constant *New = ConstantFoldConstantExpression(CE, TD);
1906      if (New && New != CE)
1907        return emitGlobalConstantImpl(New, AddrSpace, AP);
1908    }
1909  }
1910
1911  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1912    return emitGlobalConstantVector(V, AddrSpace, AP);
1913
1914  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1915  // thread the streamer with EmitValue.
1916  AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace);
1917}
1918
1919/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1920void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1921  uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
1922  if (Size)
1923    emitGlobalConstantImpl(CV, AddrSpace, *this);
1924  else if (MAI->hasSubsectionsViaSymbols()) {
1925    // If the global has zero size, emit a single byte so that two labels don't
1926    // look like they are at the same location.
1927    OutStreamer.EmitIntValue(0, 1, AddrSpace);
1928  }
1929}
1930
1931void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1932  // Target doesn't support this yet!
1933  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1934}
1935
1936void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1937  if (Offset > 0)
1938    OS << '+' << Offset;
1939  else if (Offset < 0)
1940    OS << Offset;
1941}
1942
1943//===----------------------------------------------------------------------===//
1944// Symbol Lowering Routines.
1945//===----------------------------------------------------------------------===//
1946
1947/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1948/// temporary label with the specified stem and unique ID.
1949MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1950  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1951                                      Name + Twine(ID));
1952}
1953
1954/// GetTempSymbol - Return an assembler temporary label with the specified
1955/// stem.
1956MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1957  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1958                                      Name);
1959}
1960
1961
1962MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1963  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1964}
1965
1966MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1967  return MMI->getAddrLabelSymbol(BB);
1968}
1969
1970/// GetCPISymbol - Return the symbol for the specified constant pool entry.
1971MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1972  return OutContext.GetOrCreateSymbol
1973    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1974     + "_" + Twine(CPID));
1975}
1976
1977/// GetJTISymbol - Return the symbol for the specified jump table entry.
1978MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1979  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1980}
1981
1982/// GetJTSetSymbol - Return the symbol for the specified jump table .set
1983/// FIXME: privatize to AsmPrinter.
1984MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1985  return OutContext.GetOrCreateSymbol
1986  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1987   Twine(UID) + "_set_" + Twine(MBBID));
1988}
1989
1990/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1991/// global value name as its base, with the specified suffix, and where the
1992/// symbol is forced to have private linkage if ForcePrivate is true.
1993MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1994                                                   StringRef Suffix,
1995                                                   bool ForcePrivate) const {
1996  SmallString<60> NameStr;
1997  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1998  NameStr.append(Suffix.begin(), Suffix.end());
1999  return OutContext.GetOrCreateSymbol(NameStr.str());
2000}
2001
2002/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2003/// ExternalSymbol.
2004MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2005  SmallString<60> NameStr;
2006  Mang->getNameWithPrefix(NameStr, Sym);
2007  return OutContext.GetOrCreateSymbol(NameStr.str());
2008}
2009
2010
2011
2012/// PrintParentLoopComment - Print comments about parent loops of this one.
2013static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2014                                   unsigned FunctionNumber) {
2015  if (Loop == 0) return;
2016  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2017  OS.indent(Loop->getLoopDepth()*2)
2018    << "Parent Loop BB" << FunctionNumber << "_"
2019    << Loop->getHeader()->getNumber()
2020    << " Depth=" << Loop->getLoopDepth() << '\n';
2021}
2022
2023
2024/// PrintChildLoopComment - Print comments about child loops within
2025/// the loop for this basic block, with nesting.
2026static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2027                                  unsigned FunctionNumber) {
2028  // Add child loop information
2029  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2030    OS.indent((*CL)->getLoopDepth()*2)
2031      << "Child Loop BB" << FunctionNumber << "_"
2032      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2033      << '\n';
2034    PrintChildLoopComment(OS, *CL, FunctionNumber);
2035  }
2036}
2037
2038/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2039static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2040                                       const MachineLoopInfo *LI,
2041                                       const AsmPrinter &AP) {
2042  // Add loop depth information
2043  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2044  if (Loop == 0) return;
2045
2046  MachineBasicBlock *Header = Loop->getHeader();
2047  assert(Header && "No header for loop");
2048
2049  // If this block is not a loop header, just print out what is the loop header
2050  // and return.
2051  if (Header != &MBB) {
2052    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2053                              Twine(AP.getFunctionNumber())+"_" +
2054                              Twine(Loop->getHeader()->getNumber())+
2055                              " Depth="+Twine(Loop->getLoopDepth()));
2056    return;
2057  }
2058
2059  // Otherwise, it is a loop header.  Print out information about child and
2060  // parent loops.
2061  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2062
2063  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2064
2065  OS << "=>";
2066  OS.indent(Loop->getLoopDepth()*2-2);
2067
2068  OS << "This ";
2069  if (Loop->empty())
2070    OS << "Inner ";
2071  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2072
2073  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2074}
2075
2076
2077/// EmitBasicBlockStart - This method prints the label for the specified
2078/// MachineBasicBlock, an alignment (if present) and a comment describing
2079/// it if appropriate.
2080void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2081  // Emit an alignment directive for this block, if needed.
2082  if (unsigned Align = MBB->getAlignment())
2083    EmitAlignment(Align);
2084
2085  // If the block has its address taken, emit any labels that were used to
2086  // reference the block.  It is possible that there is more than one label
2087  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2088  // the references were generated.
2089  if (MBB->hasAddressTaken()) {
2090    const BasicBlock *BB = MBB->getBasicBlock();
2091    if (isVerbose())
2092      OutStreamer.AddComment("Block address taken");
2093
2094    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2095
2096    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2097      OutStreamer.EmitLabel(Syms[i]);
2098  }
2099
2100  // Print some verbose block comments.
2101  if (isVerbose()) {
2102    if (const BasicBlock *BB = MBB->getBasicBlock())
2103      if (BB->hasName())
2104        OutStreamer.AddComment("%" + BB->getName());
2105    emitBasicBlockLoopComments(*MBB, LI, *this);
2106  }
2107
2108  // Print the main label for the block.
2109  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2110    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2111      // NOTE: Want this comment at start of line, don't emit with AddComment.
2112      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2113                              Twine(MBB->getNumber()) + ":");
2114    }
2115  } else {
2116    OutStreamer.EmitLabel(MBB->getSymbol());
2117  }
2118}
2119
2120void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2121                                bool IsDefinition) const {
2122  MCSymbolAttr Attr = MCSA_Invalid;
2123
2124  switch (Visibility) {
2125  default: break;
2126  case GlobalValue::HiddenVisibility:
2127    if (IsDefinition)
2128      Attr = MAI->getHiddenVisibilityAttr();
2129    else
2130      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2131    break;
2132  case GlobalValue::ProtectedVisibility:
2133    Attr = MAI->getProtectedVisibilityAttr();
2134    break;
2135  }
2136
2137  if (Attr != MCSA_Invalid)
2138    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2139}
2140
2141/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2142/// exactly one predecessor and the control transfer mechanism between
2143/// the predecessor and this block is a fall-through.
2144bool AsmPrinter::
2145isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2146  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2147  // then nothing falls through to it.
2148  if (MBB->isLandingPad() || MBB->pred_empty())
2149    return false;
2150
2151  // If there isn't exactly one predecessor, it can't be a fall through.
2152  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2153  ++PI2;
2154  if (PI2 != MBB->pred_end())
2155    return false;
2156
2157  // The predecessor has to be immediately before this block.
2158  MachineBasicBlock *Pred = *PI;
2159
2160  if (!Pred->isLayoutSuccessor(MBB))
2161    return false;
2162
2163  // If the block is completely empty, then it definitely does fall through.
2164  if (Pred->empty())
2165    return true;
2166
2167  // Check the terminators in the previous blocks
2168  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2169         IE = Pred->end(); II != IE; ++II) {
2170    MachineInstr &MI = *II;
2171
2172    // If it is not a simple branch, we are in a table somewhere.
2173    if (!MI.isBranch() || MI.isIndirectBranch())
2174      return false;
2175
2176    // If we are the operands of one of the branches, this is not
2177    // a fall through.
2178    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2179           OE = MI.operands_end(); OI != OE; ++OI) {
2180      const MachineOperand& OP = *OI;
2181      if (OP.isJTI())
2182        return false;
2183      if (OP.isMBB() && OP.getMBB() == MBB)
2184        return false;
2185    }
2186  }
2187
2188  return true;
2189}
2190
2191
2192
2193GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2194  if (!S->usesMetadata())
2195    return 0;
2196
2197  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2198  gcp_map_type::iterator GCPI = GCMap.find(S);
2199  if (GCPI != GCMap.end())
2200    return GCPI->second;
2201
2202  const char *Name = S->getName().c_str();
2203
2204  for (GCMetadataPrinterRegistry::iterator
2205         I = GCMetadataPrinterRegistry::begin(),
2206         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2207    if (strcmp(Name, I->getName()) == 0) {
2208      GCMetadataPrinter *GMP = I->instantiate();
2209      GMP->S = S;
2210      GCMap.insert(std::make_pair(S, GMP));
2211      return GMP;
2212    }
2213
2214  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2215}
2216