AsmPrinter.cpp revision 702ff96ff3157e0761d206cca2dc0a4c3e7c13a9
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#define DEBUG_TYPE "asm-printer" 15#include "llvm/CodeGen/AsmPrinter.h" 16#include "DwarfDebug.h" 17#include "DwarfException.h" 18#include "llvm/ADT/SmallString.h" 19#include "llvm/ADT/Statistic.h" 20#include "llvm/Analysis/ConstantFolding.h" 21#include "llvm/Assembly/Writer.h" 22#include "llvm/CodeGen/GCMetadataPrinter.h" 23#include "llvm/CodeGen/MachineConstantPool.h" 24#include "llvm/CodeGen/MachineFrameInfo.h" 25#include "llvm/CodeGen/MachineFunction.h" 26#include "llvm/CodeGen/MachineJumpTableInfo.h" 27#include "llvm/CodeGen/MachineLoopInfo.h" 28#include "llvm/CodeGen/MachineModuleInfo.h" 29#include "llvm/DebugInfo.h" 30#include "llvm/IR/DataLayout.h" 31#include "llvm/IR/Module.h" 32#include "llvm/IR/Operator.h" 33#include "llvm/MC/MCAsmInfo.h" 34#include "llvm/MC/MCContext.h" 35#include "llvm/MC/MCExpr.h" 36#include "llvm/MC/MCInst.h" 37#include "llvm/MC/MCSection.h" 38#include "llvm/MC/MCStreamer.h" 39#include "llvm/MC/MCSymbol.h" 40#include "llvm/Support/ErrorHandling.h" 41#include "llvm/Support/Format.h" 42#include "llvm/Support/MathExtras.h" 43#include "llvm/Support/Timer.h" 44#include "llvm/Target/Mangler.h" 45#include "llvm/Target/TargetInstrInfo.h" 46#include "llvm/Target/TargetLowering.h" 47#include "llvm/Target/TargetLoweringObjectFile.h" 48#include "llvm/Target/TargetOptions.h" 49#include "llvm/Target/TargetRegisterInfo.h" 50using namespace llvm; 51 52static const char *DWARFGroupName = "DWARF Emission"; 53static const char *DbgTimerName = "DWARF Debug Writer"; 54static const char *EHTimerName = "DWARF Exception Writer"; 55 56STATISTIC(EmittedInsts, "Number of machine instrs printed"); 57 58char AsmPrinter::ID = 0; 59 60typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type; 61static gcp_map_type &getGCMap(void *&P) { 62 if (P == 0) 63 P = new gcp_map_type(); 64 return *(gcp_map_type*)P; 65} 66 67 68/// getGVAlignmentLog2 - Return the alignment to use for the specified global 69/// value in log2 form. This rounds up to the preferred alignment if possible 70/// and legal. 71static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, 72 unsigned InBits = 0) { 73 unsigned NumBits = 0; 74 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 75 NumBits = TD.getPreferredAlignmentLog(GVar); 76 77 // If InBits is specified, round it to it. 78 if (InBits > NumBits) 79 NumBits = InBits; 80 81 // If the GV has a specified alignment, take it into account. 82 if (GV->getAlignment() == 0) 83 return NumBits; 84 85 unsigned GVAlign = Log2_32(GV->getAlignment()); 86 87 // If the GVAlign is larger than NumBits, or if we are required to obey 88 // NumBits because the GV has an assigned section, obey it. 89 if (GVAlign > NumBits || GV->hasSection()) 90 NumBits = GVAlign; 91 return NumBits; 92} 93 94AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 95 : MachineFunctionPass(ID), 96 TM(tm), MAI(tm.getMCAsmInfo()), 97 OutContext(Streamer.getContext()), 98 OutStreamer(Streamer), 99 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { 100 DD = 0; DE = 0; MMI = 0; LI = 0; 101 CurrentFnSym = CurrentFnSymForSize = 0; 102 GCMetadataPrinters = 0; 103 VerboseAsm = Streamer.isVerboseAsm(); 104} 105 106AsmPrinter::~AsmPrinter() { 107 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized"); 108 109 if (GCMetadataPrinters != 0) { 110 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 111 112 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I) 113 delete I->second; 114 delete &GCMap; 115 GCMetadataPrinters = 0; 116 } 117 118 delete &OutStreamer; 119} 120 121/// getFunctionNumber - Return a unique ID for the current function. 122/// 123unsigned AsmPrinter::getFunctionNumber() const { 124 return MF->getFunctionNumber(); 125} 126 127const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 128 return TM.getTargetLowering()->getObjFileLowering(); 129} 130 131/// getDataLayout - Return information about data layout. 132const DataLayout &AsmPrinter::getDataLayout() const { 133 return *TM.getDataLayout(); 134} 135 136StringRef AsmPrinter::getTargetTriple() const { 137 return TM.getTargetTriple(); 138} 139 140/// getCurrentSection() - Return the current section we are emitting to. 141const MCSection *AsmPrinter::getCurrentSection() const { 142 return OutStreamer.getCurrentSection().first; 143} 144 145 146 147void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 148 AU.setPreservesAll(); 149 MachineFunctionPass::getAnalysisUsage(AU); 150 AU.addRequired<MachineModuleInfo>(); 151 AU.addRequired<GCModuleInfo>(); 152 if (isVerbose()) 153 AU.addRequired<MachineLoopInfo>(); 154} 155 156bool AsmPrinter::doInitialization(Module &M) { 157 OutStreamer.InitStreamer(); 158 159 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 160 MMI->AnalyzeModule(M); 161 162 // Initialize TargetLoweringObjectFile. 163 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 164 .Initialize(OutContext, TM); 165 166 Mang = new Mangler(OutContext, &TM); 167 168 // Allow the target to emit any magic that it wants at the start of the file. 169 EmitStartOfAsmFile(M); 170 171 // Very minimal debug info. It is ignored if we emit actual debug info. If we 172 // don't, this at least helps the user find where a global came from. 173 if (MAI->hasSingleParameterDotFile()) { 174 // .file "foo.c" 175 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 176 } 177 178 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 179 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 180 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 181 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 182 MP->beginAssembly(*this); 183 184 // Emit module-level inline asm if it exists. 185 if (!M.getModuleInlineAsm().empty()) { 186 OutStreamer.AddComment("Start of file scope inline assembly"); 187 OutStreamer.AddBlankLine(); 188 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 189 OutStreamer.AddComment("End of file scope inline assembly"); 190 OutStreamer.AddBlankLine(); 191 } 192 193 if (MAI->doesSupportDebugInformation()) 194 DD = new DwarfDebug(this, &M); 195 196 switch (MAI->getExceptionHandlingType()) { 197 case ExceptionHandling::None: 198 return false; 199 case ExceptionHandling::SjLj: 200 case ExceptionHandling::DwarfCFI: 201 DE = new DwarfCFIException(this); 202 return false; 203 case ExceptionHandling::ARM: 204 DE = new ARMException(this); 205 return false; 206 case ExceptionHandling::Win64: 207 DE = new Win64Exception(this); 208 return false; 209 } 210 211 llvm_unreachable("Unknown exception type."); 212} 213 214void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const { 215 switch ((GlobalValue::LinkageTypes)Linkage) { 216 case GlobalValue::CommonLinkage: 217 case GlobalValue::LinkOnceAnyLinkage: 218 case GlobalValue::LinkOnceODRLinkage: 219 case GlobalValue::LinkOnceODRAutoHideLinkage: 220 case GlobalValue::WeakAnyLinkage: 221 case GlobalValue::WeakODRLinkage: 222 case GlobalValue::LinkerPrivateWeakLinkage: 223 if (MAI->getWeakDefDirective() != 0) { 224 // .globl _foo 225 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 226 227 if ((GlobalValue::LinkageTypes)Linkage != 228 GlobalValue::LinkOnceODRAutoHideLinkage) 229 // .weak_definition _foo 230 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 231 else 232 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 233 } else if (MAI->getLinkOnceDirective() != 0) { 234 // .globl _foo 235 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 236 //NOTE: linkonce is handled by the section the symbol was assigned to. 237 } else { 238 // .weak _foo 239 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 240 } 241 break; 242 case GlobalValue::DLLExportLinkage: 243 case GlobalValue::AppendingLinkage: 244 // FIXME: appending linkage variables should go into a section of 245 // their name or something. For now, just emit them as external. 246 case GlobalValue::ExternalLinkage: 247 // If external or appending, declare as a global symbol. 248 // .globl _foo 249 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 250 break; 251 case GlobalValue::PrivateLinkage: 252 case GlobalValue::InternalLinkage: 253 case GlobalValue::LinkerPrivateLinkage: 254 break; 255 default: 256 llvm_unreachable("Unknown linkage type!"); 257 } 258} 259 260 261/// EmitGlobalVariable - Emit the specified global variable to the .s file. 262void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 263 if (GV->hasInitializer()) { 264 // Check to see if this is a special global used by LLVM, if so, emit it. 265 if (EmitSpecialLLVMGlobal(GV)) 266 return; 267 268 if (isVerbose()) { 269 WriteAsOperand(OutStreamer.GetCommentOS(), GV, 270 /*PrintType=*/false, GV->getParent()); 271 OutStreamer.GetCommentOS() << '\n'; 272 } 273 } 274 275 MCSymbol *GVSym = Mang->getSymbol(GV); 276 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 277 278 if (!GV->hasInitializer()) // External globals require no extra code. 279 return; 280 281 if (MAI->hasDotTypeDotSizeDirective()) 282 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 283 284 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 285 286 const DataLayout *TD = TM.getDataLayout(); 287 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType()); 288 289 // If the alignment is specified, we *must* obey it. Overaligning a global 290 // with a specified alignment is a prompt way to break globals emitted to 291 // sections and expected to be contiguous (e.g. ObjC metadata). 292 unsigned AlignLog = getGVAlignmentLog2(GV, *TD); 293 294 // Handle common and BSS local symbols (.lcomm). 295 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 296 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 297 unsigned Align = 1 << AlignLog; 298 299 // Handle common symbols. 300 if (GVKind.isCommon()) { 301 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 302 Align = 0; 303 304 // .comm _foo, 42, 4 305 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 306 return; 307 } 308 309 // Handle local BSS symbols. 310 if (MAI->hasMachoZeroFillDirective()) { 311 const MCSection *TheSection = 312 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 313 // .zerofill __DATA, __bss, _foo, 400, 5 314 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 315 return; 316 } 317 318 // Use .lcomm only if it supports user-specified alignment. 319 // Otherwise, while it would still be correct to use .lcomm in some 320 // cases (e.g. when Align == 1), the external assembler might enfore 321 // some -unknown- default alignment behavior, which could cause 322 // spurious differences between external and integrated assembler. 323 // Prefer to simply fall back to .local / .comm in this case. 324 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 325 // .lcomm _foo, 42 326 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 327 return; 328 } 329 330 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 331 Align = 0; 332 333 // .local _foo 334 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 335 // .comm _foo, 42, 4 336 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 337 return; 338 } 339 340 const MCSection *TheSection = 341 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 342 343 // Handle the zerofill directive on darwin, which is a special form of BSS 344 // emission. 345 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 346 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 347 348 // .globl _foo 349 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 350 // .zerofill __DATA, __common, _foo, 400, 5 351 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 352 return; 353 } 354 355 // Handle thread local data for mach-o which requires us to output an 356 // additional structure of data and mangle the original symbol so that we 357 // can reference it later. 358 // 359 // TODO: This should become an "emit thread local global" method on TLOF. 360 // All of this macho specific stuff should be sunk down into TLOFMachO and 361 // stuff like "TLSExtraDataSection" should no longer be part of the parent 362 // TLOF class. This will also make it more obvious that stuff like 363 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 364 // specific code. 365 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 366 // Emit the .tbss symbol 367 MCSymbol *MangSym = 368 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 369 370 if (GVKind.isThreadBSS()) 371 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 372 else if (GVKind.isThreadData()) { 373 OutStreamer.SwitchSection(TheSection); 374 375 EmitAlignment(AlignLog, GV); 376 OutStreamer.EmitLabel(MangSym); 377 378 EmitGlobalConstant(GV->getInitializer()); 379 } 380 381 OutStreamer.AddBlankLine(); 382 383 // Emit the variable struct for the runtime. 384 const MCSection *TLVSect 385 = getObjFileLowering().getTLSExtraDataSection(); 386 387 OutStreamer.SwitchSection(TLVSect); 388 // Emit the linkage here. 389 EmitLinkage(GV->getLinkage(), GVSym); 390 OutStreamer.EmitLabel(GVSym); 391 392 // Three pointers in size: 393 // - __tlv_bootstrap - used to make sure support exists 394 // - spare pointer, used when mapped by the runtime 395 // - pointer to mangled symbol above with initializer 396 unsigned PtrSize = TD->getPointerSizeInBits()/8; 397 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 398 PtrSize); 399 OutStreamer.EmitIntValue(0, PtrSize); 400 OutStreamer.EmitSymbolValue(MangSym, PtrSize); 401 402 OutStreamer.AddBlankLine(); 403 return; 404 } 405 406 OutStreamer.SwitchSection(TheSection); 407 408 EmitLinkage(GV->getLinkage(), GVSym); 409 EmitAlignment(AlignLog, GV); 410 411 OutStreamer.EmitLabel(GVSym); 412 413 EmitGlobalConstant(GV->getInitializer()); 414 415 if (MAI->hasDotTypeDotSizeDirective()) 416 // .size foo, 42 417 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 418 419 OutStreamer.AddBlankLine(); 420} 421 422/// EmitFunctionHeader - This method emits the header for the current 423/// function. 424void AsmPrinter::EmitFunctionHeader() { 425 // Print out constants referenced by the function 426 EmitConstantPool(); 427 428 // Print the 'header' of function. 429 const Function *F = MF->getFunction(); 430 431 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); 432 EmitVisibility(CurrentFnSym, F->getVisibility()); 433 434 EmitLinkage(F->getLinkage(), CurrentFnSym); 435 EmitAlignment(MF->getAlignment(), F); 436 437 if (MAI->hasDotTypeDotSizeDirective()) 438 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 439 440 if (isVerbose()) { 441 WriteAsOperand(OutStreamer.GetCommentOS(), F, 442 /*PrintType=*/false, F->getParent()); 443 OutStreamer.GetCommentOS() << '\n'; 444 } 445 446 // Emit the CurrentFnSym. This is a virtual function to allow targets to 447 // do their wild and crazy things as required. 448 EmitFunctionEntryLabel(); 449 450 // If the function had address-taken blocks that got deleted, then we have 451 // references to the dangling symbols. Emit them at the start of the function 452 // so that we don't get references to undefined symbols. 453 std::vector<MCSymbol*> DeadBlockSyms; 454 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 455 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 456 OutStreamer.AddComment("Address taken block that was later removed"); 457 OutStreamer.EmitLabel(DeadBlockSyms[i]); 458 } 459 460 // Add some workaround for linkonce linkage on Cygwin\MinGW. 461 if (MAI->getLinkOnceDirective() != 0 && 462 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) { 463 // FIXME: What is this? 464 MCSymbol *FakeStub = 465 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+ 466 CurrentFnSym->getName()); 467 OutStreamer.EmitLabel(FakeStub); 468 } 469 470 // Emit pre-function debug and/or EH information. 471 if (DE) { 472 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 473 DE->BeginFunction(MF); 474 } 475 if (DD) { 476 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 477 DD->beginFunction(MF); 478 } 479} 480 481/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 482/// function. This can be overridden by targets as required to do custom stuff. 483void AsmPrinter::EmitFunctionEntryLabel() { 484 // The function label could have already been emitted if two symbols end up 485 // conflicting due to asm renaming. Detect this and emit an error. 486 if (CurrentFnSym->isUndefined()) 487 return OutStreamer.EmitLabel(CurrentFnSym); 488 489 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 490 "' label emitted multiple times to assembly file"); 491} 492 493/// emitComments - Pretty-print comments for instructions. 494static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 495 const MachineFunction *MF = MI.getParent()->getParent(); 496 const TargetMachine &TM = MF->getTarget(); 497 498 // Check for spills and reloads 499 int FI; 500 501 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 502 503 // We assume a single instruction only has a spill or reload, not 504 // both. 505 const MachineMemOperand *MMO; 506 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 507 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 508 MMO = *MI.memoperands_begin(); 509 CommentOS << MMO->getSize() << "-byte Reload\n"; 510 } 511 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 512 if (FrameInfo->isSpillSlotObjectIndex(FI)) 513 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 514 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 515 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 516 MMO = *MI.memoperands_begin(); 517 CommentOS << MMO->getSize() << "-byte Spill\n"; 518 } 519 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 520 if (FrameInfo->isSpillSlotObjectIndex(FI)) 521 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 522 } 523 524 // Check for spill-induced copies 525 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 526 CommentOS << " Reload Reuse\n"; 527} 528 529/// emitImplicitDef - This method emits the specified machine instruction 530/// that is an implicit def. 531static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) { 532 unsigned RegNo = MI->getOperand(0).getReg(); 533 AP.OutStreamer.AddComment(Twine("implicit-def: ") + 534 AP.TM.getRegisterInfo()->getName(RegNo)); 535 AP.OutStreamer.AddBlankLine(); 536} 537 538static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 539 std::string Str = "kill:"; 540 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 541 const MachineOperand &Op = MI->getOperand(i); 542 assert(Op.isReg() && "KILL instruction must have only register operands"); 543 Str += ' '; 544 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 545 Str += (Op.isDef() ? "<def>" : "<kill>"); 546 } 547 AP.OutStreamer.AddComment(Str); 548 AP.OutStreamer.AddBlankLine(); 549} 550 551/// emitDebugValueComment - This method handles the target-independent form 552/// of DBG_VALUE, returning true if it was able to do so. A false return 553/// means the target will need to handle MI in EmitInstruction. 554static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 555 // This code handles only the 3-operand target-independent form. 556 if (MI->getNumOperands() != 3) 557 return false; 558 559 SmallString<128> Str; 560 raw_svector_ostream OS(Str); 561 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: "; 562 563 // cast away const; DIetc do not take const operands for some reason. 564 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata())); 565 if (V.getContext().isSubprogram()) { 566 StringRef Name = DISubprogram(V.getContext()).getDisplayName(); 567 if (!Name.empty()) 568 OS << Name << ":"; 569 } 570 OS << V.getName() << " <- "; 571 572 // Register or immediate value. Register 0 means undef. 573 if (MI->getOperand(0).isFPImm()) { 574 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 575 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 576 OS << (double)APF.convertToFloat(); 577 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 578 OS << APF.convertToDouble(); 579 } else { 580 // There is no good way to print long double. Convert a copy to 581 // double. Ah well, it's only a comment. 582 bool ignored; 583 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 584 &ignored); 585 OS << "(long double) " << APF.convertToDouble(); 586 } 587 } else if (MI->getOperand(0).isImm()) { 588 OS << MI->getOperand(0).getImm(); 589 } else if (MI->getOperand(0).isCImm()) { 590 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 591 } else { 592 assert(MI->getOperand(0).isReg() && "Unknown operand type"); 593 if (MI->getOperand(0).getReg() == 0) { 594 // Suppress offset, it is not meaningful here. 595 OS << "undef"; 596 // NOTE: Want this comment at start of line, don't emit with AddComment. 597 AP.OutStreamer.EmitRawText(OS.str()); 598 return true; 599 } 600 OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg()); 601 } 602 603 OS << '+' << MI->getOperand(1).getImm(); 604 // NOTE: Want this comment at start of line, don't emit with AddComment. 605 AP.OutStreamer.EmitRawText(OS.str()); 606 return true; 607} 608 609AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 610 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 611 MF->getFunction()->needsUnwindTableEntry()) 612 return CFI_M_EH; 613 614 if (MMI->hasDebugInfo()) 615 return CFI_M_Debug; 616 617 return CFI_M_None; 618} 619 620bool AsmPrinter::needsSEHMoves() { 621 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 622 MF->getFunction()->needsUnwindTableEntry(); 623} 624 625bool AsmPrinter::needsRelocationsForDwarfStringPool() const { 626 return MAI->doesDwarfUseRelocationsAcrossSections(); 627} 628 629void AsmPrinter::emitPrologLabel(const MachineInstr &MI) { 630 MCSymbol *Label = MI.getOperand(0).getMCSymbol(); 631 632 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 633 return; 634 635 if (needsCFIMoves() == CFI_M_None) 636 return; 637 638 if (MMI->getCompactUnwindEncoding() != 0) 639 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 640 641 MachineModuleInfo &MMI = MF->getMMI(); 642 std::vector<MCCFIInstruction> Instructions = MMI.getFrameInstructions(); 643 bool FoundOne = false; 644 (void)FoundOne; 645 for (std::vector<MCCFIInstruction>::iterator I = Instructions.begin(), 646 E = Instructions.end(); I != E; ++I) { 647 if (I->getLabel() == Label) { 648 emitCFIInstruction(*I); 649 FoundOne = true; 650 } 651 } 652 assert(FoundOne); 653} 654 655/// EmitFunctionBody - This method emits the body and trailer for a 656/// function. 657void AsmPrinter::EmitFunctionBody() { 658 // Emit target-specific gunk before the function body. 659 EmitFunctionBodyStart(); 660 661 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo(); 662 663 // Print out code for the function. 664 bool HasAnyRealCode = false; 665 const MachineInstr *LastMI = 0; 666 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 667 I != E; ++I) { 668 // Print a label for the basic block. 669 EmitBasicBlockStart(I); 670 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); 671 II != IE; ++II) { 672 LastMI = II; 673 674 // Print the assembly for the instruction. 675 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() && 676 !II->isDebugValue()) { 677 HasAnyRealCode = true; 678 ++EmittedInsts; 679 } 680 681 if (ShouldPrintDebugScopes) { 682 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 683 DD->beginInstruction(II); 684 } 685 686 if (isVerbose()) 687 emitComments(*II, OutStreamer.GetCommentOS()); 688 689 switch (II->getOpcode()) { 690 case TargetOpcode::PROLOG_LABEL: 691 emitPrologLabel(*II); 692 break; 693 694 case TargetOpcode::EH_LABEL: 695 case TargetOpcode::GC_LABEL: 696 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol()); 697 break; 698 case TargetOpcode::INLINEASM: 699 EmitInlineAsm(II); 700 break; 701 case TargetOpcode::DBG_VALUE: 702 if (isVerbose()) { 703 if (!emitDebugValueComment(II, *this)) 704 EmitInstruction(II); 705 } 706 break; 707 case TargetOpcode::IMPLICIT_DEF: 708 if (isVerbose()) emitImplicitDef(II, *this); 709 break; 710 case TargetOpcode::KILL: 711 if (isVerbose()) emitKill(II, *this); 712 break; 713 default: 714 if (!TM.hasMCUseLoc()) 715 MCLineEntry::Make(&OutStreamer, getCurrentSection()); 716 717 EmitInstruction(II); 718 break; 719 } 720 721 if (ShouldPrintDebugScopes) { 722 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 723 DD->endInstruction(II); 724 } 725 } 726 } 727 728 // If the last instruction was a prolog label, then we have a situation where 729 // we emitted a prolog but no function body. This results in the ending prolog 730 // label equaling the end of function label and an invalid "row" in the 731 // FDE. We need to emit a noop in this situation so that the FDE's rows are 732 // valid. 733 bool RequiresNoop = LastMI && LastMI->isPrologLabel(); 734 735 // If the function is empty and the object file uses .subsections_via_symbols, 736 // then we need to emit *something* to the function body to prevent the 737 // labels from collapsing together. Just emit a noop. 738 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 739 MCInst Noop; 740 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 741 if (Noop.getOpcode()) { 742 OutStreamer.AddComment("avoids zero-length function"); 743 OutStreamer.EmitInstruction(Noop); 744 } else // Target not mc-ized yet. 745 OutStreamer.EmitRawText(StringRef("\tnop\n")); 746 } 747 748 const Function *F = MF->getFunction(); 749 for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) { 750 const BasicBlock *BB = i; 751 if (!BB->hasAddressTaken()) 752 continue; 753 MCSymbol *Sym = GetBlockAddressSymbol(BB); 754 if (Sym->isDefined()) 755 continue; 756 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 757 OutStreamer.EmitLabel(Sym); 758 } 759 760 // Emit target-specific gunk after the function body. 761 EmitFunctionBodyEnd(); 762 763 // If the target wants a .size directive for the size of the function, emit 764 // it. 765 if (MAI->hasDotTypeDotSizeDirective()) { 766 // Create a symbol for the end of function, so we can get the size as 767 // difference between the function label and the temp label. 768 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 769 OutStreamer.EmitLabel(FnEndLabel); 770 771 const MCExpr *SizeExp = 772 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 773 MCSymbolRefExpr::Create(CurrentFnSymForSize, 774 OutContext), 775 OutContext); 776 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 777 } 778 779 // Emit post-function debug information. 780 if (DD) { 781 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 782 DD->endFunction(MF); 783 } 784 if (DE) { 785 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 786 DE->EndFunction(); 787 } 788 MMI->EndFunction(); 789 790 // Print out jump tables referenced by the function. 791 EmitJumpTableInfo(); 792 793 OutStreamer.AddBlankLine(); 794} 795 796/// getDebugValueLocation - Get location information encoded by DBG_VALUE 797/// operands. 798MachineLocation AsmPrinter:: 799getDebugValueLocation(const MachineInstr *MI) const { 800 // Target specific DBG_VALUE instructions are handled by each target. 801 return MachineLocation(); 802} 803 804/// EmitDwarfRegOp - Emit dwarf register operation. 805void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const { 806 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 807 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); 808 809 for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0; 810 ++SR) { 811 Reg = TRI->getDwarfRegNum(*SR, false); 812 // FIXME: Get the bit range this register uses of the superregister 813 // so that we can produce a DW_OP_bit_piece 814 } 815 816 // FIXME: Handle cases like a super register being encoded as 817 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33 818 819 // FIXME: We have no reasonable way of handling errors in here. The 820 // caller might be in the middle of an dwarf expression. We should 821 // probably assert that Reg >= 0 once debug info generation is more mature. 822 823 if (MLoc.isIndirect()) { 824 if (Reg < 32) { 825 OutStreamer.AddComment( 826 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); 827 EmitInt8(dwarf::DW_OP_breg0 + Reg); 828 } else { 829 OutStreamer.AddComment("DW_OP_bregx"); 830 EmitInt8(dwarf::DW_OP_bregx); 831 OutStreamer.AddComment(Twine(Reg)); 832 EmitULEB128(Reg); 833 } 834 EmitSLEB128(MLoc.getOffset()); 835 } else { 836 if (Reg < 32) { 837 OutStreamer.AddComment( 838 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); 839 EmitInt8(dwarf::DW_OP_reg0 + Reg); 840 } else { 841 OutStreamer.AddComment("DW_OP_regx"); 842 EmitInt8(dwarf::DW_OP_regx); 843 OutStreamer.AddComment(Twine(Reg)); 844 EmitULEB128(Reg); 845 } 846 } 847 848 // FIXME: Produce a DW_OP_bit_piece if we used a superregister 849} 850 851bool AsmPrinter::doFinalization(Module &M) { 852 // Emit global variables. 853 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 854 I != E; ++I) 855 EmitGlobalVariable(I); 856 857 // Emit visibility info for declarations 858 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 859 const Function &F = *I; 860 if (!F.isDeclaration()) 861 continue; 862 GlobalValue::VisibilityTypes V = F.getVisibility(); 863 if (V == GlobalValue::DefaultVisibility) 864 continue; 865 866 MCSymbol *Name = Mang->getSymbol(&F); 867 EmitVisibility(Name, V, false); 868 } 869 870 // Emit module flags. 871 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 872 M.getModuleFlagsMetadata(ModuleFlags); 873 if (!ModuleFlags.empty()) 874 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM); 875 876 // Finalize debug and EH information. 877 if (DE) { 878 { 879 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 880 DE->EndModule(); 881 } 882 delete DE; DE = 0; 883 } 884 if (DD) { 885 { 886 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 887 DD->endModule(); 888 } 889 delete DD; DD = 0; 890 } 891 892 // If the target wants to know about weak references, print them all. 893 if (MAI->getWeakRefDirective()) { 894 // FIXME: This is not lazy, it would be nice to only print weak references 895 // to stuff that is actually used. Note that doing so would require targets 896 // to notice uses in operands (due to constant exprs etc). This should 897 // happen with the MC stuff eventually. 898 899 // Print out module-level global variables here. 900 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 901 I != E; ++I) { 902 if (!I->hasExternalWeakLinkage()) continue; 903 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 904 } 905 906 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 907 if (!I->hasExternalWeakLinkage()) continue; 908 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 909 } 910 } 911 912 if (MAI->hasSetDirective()) { 913 OutStreamer.AddBlankLine(); 914 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 915 I != E; ++I) { 916 MCSymbol *Name = Mang->getSymbol(I); 917 918 const GlobalValue *GV = I->getAliasedGlobal(); 919 MCSymbol *Target = Mang->getSymbol(GV); 920 921 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 922 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 923 else if (I->hasWeakLinkage()) 924 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 925 else 926 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 927 928 EmitVisibility(Name, I->getVisibility()); 929 930 // Emit the directives as assignments aka .set: 931 OutStreamer.EmitAssignment(Name, 932 MCSymbolRefExpr::Create(Target, OutContext)); 933 } 934 } 935 936 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 937 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 938 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 939 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 940 MP->finishAssembly(*this); 941 942 // If we don't have any trampolines, then we don't require stack memory 943 // to be executable. Some targets have a directive to declare this. 944 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 945 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 946 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 947 OutStreamer.SwitchSection(S); 948 949 // Allow the target to emit any magic that it wants at the end of the file, 950 // after everything else has gone out. 951 EmitEndOfAsmFile(M); 952 953 delete Mang; Mang = 0; 954 MMI = 0; 955 956 OutStreamer.Finish(); 957 OutStreamer.reset(); 958 959 return false; 960} 961 962void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 963 this->MF = &MF; 964 // Get the function symbol. 965 CurrentFnSym = Mang->getSymbol(MF.getFunction()); 966 CurrentFnSymForSize = CurrentFnSym; 967 968 if (isVerbose()) 969 LI = &getAnalysis<MachineLoopInfo>(); 970} 971 972namespace { 973 // SectionCPs - Keep track the alignment, constpool entries per Section. 974 struct SectionCPs { 975 const MCSection *S; 976 unsigned Alignment; 977 SmallVector<unsigned, 4> CPEs; 978 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 979 }; 980} 981 982/// EmitConstantPool - Print to the current output stream assembly 983/// representations of the constants in the constant pool MCP. This is 984/// used to print out constants which have been "spilled to memory" by 985/// the code generator. 986/// 987void AsmPrinter::EmitConstantPool() { 988 const MachineConstantPool *MCP = MF->getConstantPool(); 989 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 990 if (CP.empty()) return; 991 992 // Calculate sections for constant pool entries. We collect entries to go into 993 // the same section together to reduce amount of section switch statements. 994 SmallVector<SectionCPs, 4> CPSections; 995 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 996 const MachineConstantPoolEntry &CPE = CP[i]; 997 unsigned Align = CPE.getAlignment(); 998 999 SectionKind Kind; 1000 switch (CPE.getRelocationInfo()) { 1001 default: llvm_unreachable("Unknown section kind"); 1002 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 1003 case 1: 1004 Kind = SectionKind::getReadOnlyWithRelLocal(); 1005 break; 1006 case 0: 1007 switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) { 1008 case 4: Kind = SectionKind::getMergeableConst4(); break; 1009 case 8: Kind = SectionKind::getMergeableConst8(); break; 1010 case 16: Kind = SectionKind::getMergeableConst16();break; 1011 default: Kind = SectionKind::getMergeableConst(); break; 1012 } 1013 } 1014 1015 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 1016 1017 // The number of sections are small, just do a linear search from the 1018 // last section to the first. 1019 bool Found = false; 1020 unsigned SecIdx = CPSections.size(); 1021 while (SecIdx != 0) { 1022 if (CPSections[--SecIdx].S == S) { 1023 Found = true; 1024 break; 1025 } 1026 } 1027 if (!Found) { 1028 SecIdx = CPSections.size(); 1029 CPSections.push_back(SectionCPs(S, Align)); 1030 } 1031 1032 if (Align > CPSections[SecIdx].Alignment) 1033 CPSections[SecIdx].Alignment = Align; 1034 CPSections[SecIdx].CPEs.push_back(i); 1035 } 1036 1037 // Now print stuff into the calculated sections. 1038 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1039 OutStreamer.SwitchSection(CPSections[i].S); 1040 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1041 1042 unsigned Offset = 0; 1043 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1044 unsigned CPI = CPSections[i].CPEs[j]; 1045 MachineConstantPoolEntry CPE = CP[CPI]; 1046 1047 // Emit inter-object padding for alignment. 1048 unsigned AlignMask = CPE.getAlignment() - 1; 1049 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1050 OutStreamer.EmitZeros(NewOffset - Offset); 1051 1052 Type *Ty = CPE.getType(); 1053 Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty); 1054 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1055 1056 if (CPE.isMachineConstantPoolEntry()) 1057 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1058 else 1059 EmitGlobalConstant(CPE.Val.ConstVal); 1060 } 1061 } 1062} 1063 1064/// EmitJumpTableInfo - Print assembly representations of the jump tables used 1065/// by the current function to the current output stream. 1066/// 1067void AsmPrinter::EmitJumpTableInfo() { 1068 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1069 if (MJTI == 0) return; 1070 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1071 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1072 if (JT.empty()) return; 1073 1074 // Pick the directive to use to print the jump table entries, and switch to 1075 // the appropriate section. 1076 const Function *F = MF->getFunction(); 1077 bool JTInDiffSection = false; 1078 if (// In PIC mode, we need to emit the jump table to the same section as the 1079 // function body itself, otherwise the label differences won't make sense. 1080 // FIXME: Need a better predicate for this: what about custom entries? 1081 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1082 // We should also do if the section name is NULL or function is declared 1083 // in discardable section 1084 // FIXME: this isn't the right predicate, should be based on the MCSection 1085 // for the function. 1086 F->isWeakForLinker()) { 1087 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); 1088 } else { 1089 // Otherwise, drop it in the readonly section. 1090 const MCSection *ReadOnlySection = 1091 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1092 OutStreamer.SwitchSection(ReadOnlySection); 1093 JTInDiffSection = true; 1094 } 1095 1096 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout()))); 1097 1098 // Jump tables in code sections are marked with a data_region directive 1099 // where that's supported. 1100 if (!JTInDiffSection) 1101 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 1102 1103 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1104 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1105 1106 // If this jump table was deleted, ignore it. 1107 if (JTBBs.empty()) continue; 1108 1109 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1110 // .set directive for each unique entry. This reduces the number of 1111 // relocations the assembler will generate for the jump table. 1112 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1113 MAI->hasSetDirective()) { 1114 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1115 const TargetLowering *TLI = TM.getTargetLowering(); 1116 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1117 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1118 const MachineBasicBlock *MBB = JTBBs[ii]; 1119 if (!EmittedSets.insert(MBB)) continue; 1120 1121 // .set LJTSet, LBB32-base 1122 const MCExpr *LHS = 1123 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1124 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1125 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1126 } 1127 } 1128 1129 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1130 // before each jump table. The first label is never referenced, but tells 1131 // the assembler and linker the extents of the jump table object. The 1132 // second label is actually referenced by the code. 1133 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) 1134 // FIXME: This doesn't have to have any specific name, just any randomly 1135 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1136 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1137 1138 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1139 1140 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1141 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1142 } 1143 if (!JTInDiffSection) 1144 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1145} 1146 1147/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1148/// current stream. 1149void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1150 const MachineBasicBlock *MBB, 1151 unsigned UID) const { 1152 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1153 const MCExpr *Value = 0; 1154 switch (MJTI->getEntryKind()) { 1155 case MachineJumpTableInfo::EK_Inline: 1156 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1157 case MachineJumpTableInfo::EK_Custom32: 1158 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1159 OutContext); 1160 break; 1161 case MachineJumpTableInfo::EK_BlockAddress: 1162 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1163 // .word LBB123 1164 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1165 break; 1166 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1167 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1168 // with a relocation as gp-relative, e.g.: 1169 // .gprel32 LBB123 1170 MCSymbol *MBBSym = MBB->getSymbol(); 1171 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1172 return; 1173 } 1174 1175 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1176 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1177 // with a relocation as gp-relative, e.g.: 1178 // .gpdword LBB123 1179 MCSymbol *MBBSym = MBB->getSymbol(); 1180 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1181 return; 1182 } 1183 1184 case MachineJumpTableInfo::EK_LabelDifference32: { 1185 // EK_LabelDifference32 - Each entry is the address of the block minus 1186 // the address of the jump table. This is used for PIC jump tables where 1187 // gprel32 is not supported. e.g.: 1188 // .word LBB123 - LJTI1_2 1189 // If the .set directive is supported, this is emitted as: 1190 // .set L4_5_set_123, LBB123 - LJTI1_2 1191 // .word L4_5_set_123 1192 1193 // If we have emitted set directives for the jump table entries, print 1194 // them rather than the entries themselves. If we're emitting PIC, then 1195 // emit the table entries as differences between two text section labels. 1196 if (MAI->hasSetDirective()) { 1197 // If we used .set, reference the .set's symbol. 1198 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1199 OutContext); 1200 break; 1201 } 1202 // Otherwise, use the difference as the jump table entry. 1203 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1204 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1205 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1206 break; 1207 } 1208 } 1209 1210 assert(Value && "Unknown entry kind!"); 1211 1212 unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout()); 1213 OutStreamer.EmitValue(Value, EntrySize); 1214} 1215 1216 1217/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1218/// special global used by LLVM. If so, emit it and return true, otherwise 1219/// do nothing and return false. 1220bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1221 if (GV->getName() == "llvm.used") { 1222 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1223 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1224 return true; 1225 } 1226 1227 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1228 if (GV->getSection() == "llvm.metadata" || 1229 GV->hasAvailableExternallyLinkage()) 1230 return true; 1231 1232 if (!GV->hasAppendingLinkage()) return false; 1233 1234 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1235 1236 if (GV->getName() == "llvm.global_ctors") { 1237 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1238 1239 if (TM.getRelocationModel() == Reloc::Static && 1240 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1241 StringRef Sym(".constructors_used"); 1242 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1243 MCSA_Reference); 1244 } 1245 return true; 1246 } 1247 1248 if (GV->getName() == "llvm.global_dtors") { 1249 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1250 1251 if (TM.getRelocationModel() == Reloc::Static && 1252 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1253 StringRef Sym(".destructors_used"); 1254 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1255 MCSA_Reference); 1256 } 1257 return true; 1258 } 1259 1260 return false; 1261} 1262 1263/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1264/// global in the specified llvm.used list for which emitUsedDirectiveFor 1265/// is true, as being used with this directive. 1266void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1267 // Should be an array of 'i8*'. 1268 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1269 const GlobalValue *GV = 1270 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1271 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) 1272 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip); 1273 } 1274} 1275 1276typedef std::pair<unsigned, Constant*> Structor; 1277 1278static bool priority_order(const Structor& lhs, const Structor& rhs) { 1279 return lhs.first < rhs.first; 1280} 1281 1282/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1283/// priority. 1284void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1285 // Should be an array of '{ int, void ()* }' structs. The first value is the 1286 // init priority. 1287 if (!isa<ConstantArray>(List)) return; 1288 1289 // Sanity check the structors list. 1290 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1291 if (!InitList) return; // Not an array! 1292 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1293 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs! 1294 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1295 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1296 1297 // Gather the structors in a form that's convenient for sorting by priority. 1298 SmallVector<Structor, 8> Structors; 1299 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1300 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 1301 if (!CS) continue; // Malformed. 1302 if (CS->getOperand(1)->isNullValue()) 1303 break; // Found a null terminator, skip the rest. 1304 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1305 if (!Priority) continue; // Malformed. 1306 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535), 1307 CS->getOperand(1))); 1308 } 1309 1310 // Emit the function pointers in the target-specific order 1311 const DataLayout *TD = TM.getDataLayout(); 1312 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 1313 std::stable_sort(Structors.begin(), Structors.end(), priority_order); 1314 for (unsigned i = 0, e = Structors.size(); i != e; ++i) { 1315 const MCSection *OutputSection = 1316 (isCtor ? 1317 getObjFileLowering().getStaticCtorSection(Structors[i].first) : 1318 getObjFileLowering().getStaticDtorSection(Structors[i].first)); 1319 OutStreamer.SwitchSection(OutputSection); 1320 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1321 EmitAlignment(Align); 1322 EmitXXStructor(Structors[i].second); 1323 } 1324} 1325 1326//===--------------------------------------------------------------------===// 1327// Emission and print routines 1328// 1329 1330/// EmitInt8 - Emit a byte directive and value. 1331/// 1332void AsmPrinter::EmitInt8(int Value) const { 1333 OutStreamer.EmitIntValue(Value, 1); 1334} 1335 1336/// EmitInt16 - Emit a short directive and value. 1337/// 1338void AsmPrinter::EmitInt16(int Value) const { 1339 OutStreamer.EmitIntValue(Value, 2); 1340} 1341 1342/// EmitInt32 - Emit a long directive and value. 1343/// 1344void AsmPrinter::EmitInt32(int Value) const { 1345 OutStreamer.EmitIntValue(Value, 4); 1346} 1347 1348/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1349/// in bytes of the directive is specified by Size and Hi/Lo specify the 1350/// labels. This implicitly uses .set if it is available. 1351void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1352 unsigned Size) const { 1353 // Get the Hi-Lo expression. 1354 const MCExpr *Diff = 1355 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1356 MCSymbolRefExpr::Create(Lo, OutContext), 1357 OutContext); 1358 1359 if (!MAI->hasSetDirective()) { 1360 OutStreamer.EmitValue(Diff, Size); 1361 return; 1362 } 1363 1364 // Otherwise, emit with .set (aka assignment). 1365 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1366 OutStreamer.EmitAssignment(SetLabel, Diff); 1367 OutStreamer.EmitSymbolValue(SetLabel, Size); 1368} 1369 1370/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1371/// where the size in bytes of the directive is specified by Size and Hi/Lo 1372/// specify the labels. This implicitly uses .set if it is available. 1373void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1374 const MCSymbol *Lo, unsigned Size) 1375 const { 1376 1377 // Emit Hi+Offset - Lo 1378 // Get the Hi+Offset expression. 1379 const MCExpr *Plus = 1380 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1381 MCConstantExpr::Create(Offset, OutContext), 1382 OutContext); 1383 1384 // Get the Hi+Offset-Lo expression. 1385 const MCExpr *Diff = 1386 MCBinaryExpr::CreateSub(Plus, 1387 MCSymbolRefExpr::Create(Lo, OutContext), 1388 OutContext); 1389 1390 if (!MAI->hasSetDirective()) 1391 OutStreamer.EmitValue(Diff, 4); 1392 else { 1393 // Otherwise, emit with .set (aka assignment). 1394 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1395 OutStreamer.EmitAssignment(SetLabel, Diff); 1396 OutStreamer.EmitSymbolValue(SetLabel, 4); 1397 } 1398} 1399 1400/// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1401/// where the size in bytes of the directive is specified by Size and Label 1402/// specifies the label. This implicitly uses .set if it is available. 1403void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1404 unsigned Size) 1405 const { 1406 1407 // Emit Label+Offset (or just Label if Offset is zero) 1408 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1409 if (Offset) 1410 Expr = MCBinaryExpr::CreateAdd(Expr, 1411 MCConstantExpr::Create(Offset, OutContext), 1412 OutContext); 1413 1414 OutStreamer.EmitValue(Expr, Size); 1415} 1416 1417 1418//===----------------------------------------------------------------------===// 1419 1420// EmitAlignment - Emit an alignment directive to the specified power of 1421// two boundary. For example, if you pass in 3 here, you will get an 8 1422// byte alignment. If a global value is specified, and if that global has 1423// an explicit alignment requested, it will override the alignment request 1424// if required for correctness. 1425// 1426void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { 1427 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits); 1428 1429 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1430 1431 if (getCurrentSection()->getKind().isText()) 1432 OutStreamer.EmitCodeAlignment(1 << NumBits); 1433 else 1434 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); 1435} 1436 1437//===----------------------------------------------------------------------===// 1438// Constant emission. 1439//===----------------------------------------------------------------------===// 1440 1441/// lowerConstant - Lower the specified LLVM Constant to an MCExpr. 1442/// 1443static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) { 1444 MCContext &Ctx = AP.OutContext; 1445 1446 if (CV->isNullValue() || isa<UndefValue>(CV)) 1447 return MCConstantExpr::Create(0, Ctx); 1448 1449 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1450 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1451 1452 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1453 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); 1454 1455 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1456 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1457 1458 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1459 if (CE == 0) { 1460 llvm_unreachable("Unknown constant value to lower!"); 1461 } 1462 1463 switch (CE->getOpcode()) { 1464 default: 1465 // If the code isn't optimized, there may be outstanding folding 1466 // opportunities. Attempt to fold the expression using DataLayout as a 1467 // last resort before giving up. 1468 if (Constant *C = 1469 ConstantFoldConstantExpression(CE, AP.TM.getDataLayout())) 1470 if (C != CE) 1471 return lowerConstant(C, AP); 1472 1473 // Otherwise report the problem to the user. 1474 { 1475 std::string S; 1476 raw_string_ostream OS(S); 1477 OS << "Unsupported expression in static initializer: "; 1478 WriteAsOperand(OS, CE, /*PrintType=*/false, 1479 !AP.MF ? 0 : AP.MF->getFunction()->getParent()); 1480 report_fatal_error(OS.str()); 1481 } 1482 case Instruction::GetElementPtr: { 1483 const DataLayout &TD = *AP.TM.getDataLayout(); 1484 // Generate a symbolic expression for the byte address 1485 APInt OffsetAI(TD.getPointerSizeInBits(), 0); 1486 cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI); 1487 1488 const MCExpr *Base = lowerConstant(CE->getOperand(0), AP); 1489 if (!OffsetAI) 1490 return Base; 1491 1492 int64_t Offset = OffsetAI.getSExtValue(); 1493 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1494 Ctx); 1495 } 1496 1497 case Instruction::Trunc: 1498 // We emit the value and depend on the assembler to truncate the generated 1499 // expression properly. This is important for differences between 1500 // blockaddress labels. Since the two labels are in the same function, it 1501 // is reasonable to treat their delta as a 32-bit value. 1502 // FALL THROUGH. 1503 case Instruction::BitCast: 1504 return lowerConstant(CE->getOperand(0), AP); 1505 1506 case Instruction::IntToPtr: { 1507 const DataLayout &TD = *AP.TM.getDataLayout(); 1508 // Handle casts to pointers by changing them into casts to the appropriate 1509 // integer type. This promotes constant folding and simplifies this code. 1510 Constant *Op = CE->getOperand(0); 1511 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), 1512 false/*ZExt*/); 1513 return lowerConstant(Op, AP); 1514 } 1515 1516 case Instruction::PtrToInt: { 1517 const DataLayout &TD = *AP.TM.getDataLayout(); 1518 // Support only foldable casts to/from pointers that can be eliminated by 1519 // changing the pointer to the appropriately sized integer type. 1520 Constant *Op = CE->getOperand(0); 1521 Type *Ty = CE->getType(); 1522 1523 const MCExpr *OpExpr = lowerConstant(Op, AP); 1524 1525 // We can emit the pointer value into this slot if the slot is an 1526 // integer slot equal to the size of the pointer. 1527 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) 1528 return OpExpr; 1529 1530 // Otherwise the pointer is smaller than the resultant integer, mask off 1531 // the high bits so we are sure to get a proper truncation if the input is 1532 // a constant expr. 1533 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); 1534 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1535 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1536 } 1537 1538 // The MC library also has a right-shift operator, but it isn't consistently 1539 // signed or unsigned between different targets. 1540 case Instruction::Add: 1541 case Instruction::Sub: 1542 case Instruction::Mul: 1543 case Instruction::SDiv: 1544 case Instruction::SRem: 1545 case Instruction::Shl: 1546 case Instruction::And: 1547 case Instruction::Or: 1548 case Instruction::Xor: { 1549 const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP); 1550 const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP); 1551 switch (CE->getOpcode()) { 1552 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1553 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1554 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1555 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1556 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1557 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1558 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1559 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1560 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1561 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1562 } 1563 } 1564 } 1565} 1566 1567static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace, 1568 AsmPrinter &AP); 1569 1570/// isRepeatedByteSequence - Determine whether the given value is 1571/// composed of a repeated sequence of identical bytes and return the 1572/// byte value. If it is not a repeated sequence, return -1. 1573static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1574 StringRef Data = V->getRawDataValues(); 1575 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1576 char C = Data[0]; 1577 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1578 if (Data[i] != C) return -1; 1579 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1580} 1581 1582 1583/// isRepeatedByteSequence - Determine whether the given value is 1584/// composed of a repeated sequence of identical bytes and return the 1585/// byte value. If it is not a repeated sequence, return -1. 1586static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1587 1588 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1589 if (CI->getBitWidth() > 64) return -1; 1590 1591 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType()); 1592 uint64_t Value = CI->getZExtValue(); 1593 1594 // Make sure the constant is at least 8 bits long and has a power 1595 // of 2 bit width. This guarantees the constant bit width is 1596 // always a multiple of 8 bits, avoiding issues with padding out 1597 // to Size and other such corner cases. 1598 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1599 1600 uint8_t Byte = static_cast<uint8_t>(Value); 1601 1602 for (unsigned i = 1; i < Size; ++i) { 1603 Value >>= 8; 1604 if (static_cast<uint8_t>(Value) != Byte) return -1; 1605 } 1606 return Byte; 1607 } 1608 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1609 // Make sure all array elements are sequences of the same repeated 1610 // byte. 1611 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1612 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1613 if (Byte == -1) return -1; 1614 1615 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1616 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1617 if (ThisByte == -1) return -1; 1618 if (Byte != ThisByte) return -1; 1619 } 1620 return Byte; 1621 } 1622 1623 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1624 return isRepeatedByteSequence(CDS); 1625 1626 return -1; 1627} 1628 1629static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1630 unsigned AddrSpace,AsmPrinter &AP){ 1631 1632 // See if we can aggregate this into a .fill, if so, emit it as such. 1633 int Value = isRepeatedByteSequence(CDS, AP.TM); 1634 if (Value != -1) { 1635 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType()); 1636 // Don't emit a 1-byte object as a .fill. 1637 if (Bytes > 1) 1638 return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1639 } 1640 1641 // If this can be emitted with .ascii/.asciz, emit it as such. 1642 if (CDS->isString()) 1643 return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace); 1644 1645 // Otherwise, emit the values in successive locations. 1646 unsigned ElementByteSize = CDS->getElementByteSize(); 1647 if (isa<IntegerType>(CDS->getElementType())) { 1648 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1649 if (AP.isVerbose()) 1650 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1651 CDS->getElementAsInteger(i)); 1652 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1653 ElementByteSize, AddrSpace); 1654 } 1655 } else if (ElementByteSize == 4) { 1656 // FP Constants are printed as integer constants to avoid losing 1657 // precision. 1658 assert(CDS->getElementType()->isFloatTy()); 1659 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1660 union { 1661 float F; 1662 uint32_t I; 1663 }; 1664 1665 F = CDS->getElementAsFloat(i); 1666 if (AP.isVerbose()) 1667 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1668 AP.OutStreamer.EmitIntValue(I, 4, AddrSpace); 1669 } 1670 } else { 1671 assert(CDS->getElementType()->isDoubleTy()); 1672 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1673 union { 1674 double F; 1675 uint64_t I; 1676 }; 1677 1678 F = CDS->getElementAsDouble(i); 1679 if (AP.isVerbose()) 1680 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1681 AP.OutStreamer.EmitIntValue(I, 8, AddrSpace); 1682 } 1683 } 1684 1685 const DataLayout &TD = *AP.TM.getDataLayout(); 1686 unsigned Size = TD.getTypeAllocSize(CDS->getType()); 1687 unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) * 1688 CDS->getNumElements(); 1689 if (unsigned Padding = Size - EmittedSize) 1690 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1691 1692} 1693 1694static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace, 1695 AsmPrinter &AP) { 1696 // See if we can aggregate some values. Make sure it can be 1697 // represented as a series of bytes of the constant value. 1698 int Value = isRepeatedByteSequence(CA, AP.TM); 1699 1700 if (Value != -1) { 1701 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType()); 1702 AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1703 } 1704 else { 1705 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1706 emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP); 1707 } 1708} 1709 1710static void emitGlobalConstantVector(const ConstantVector *CV, 1711 unsigned AddrSpace, AsmPrinter &AP) { 1712 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1713 emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP); 1714 1715 const DataLayout &TD = *AP.TM.getDataLayout(); 1716 unsigned Size = TD.getTypeAllocSize(CV->getType()); 1717 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) * 1718 CV->getType()->getNumElements(); 1719 if (unsigned Padding = Size - EmittedSize) 1720 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1721} 1722 1723static void emitGlobalConstantStruct(const ConstantStruct *CS, 1724 unsigned AddrSpace, AsmPrinter &AP) { 1725 // Print the fields in successive locations. Pad to align if needed! 1726 const DataLayout *TD = AP.TM.getDataLayout(); 1727 unsigned Size = TD->getTypeAllocSize(CS->getType()); 1728 const StructLayout *Layout = TD->getStructLayout(CS->getType()); 1729 uint64_t SizeSoFar = 0; 1730 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1731 const Constant *Field = CS->getOperand(i); 1732 1733 // Check if padding is needed and insert one or more 0s. 1734 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType()); 1735 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1736 - Layout->getElementOffset(i)) - FieldSize; 1737 SizeSoFar += FieldSize + PadSize; 1738 1739 // Now print the actual field value. 1740 emitGlobalConstantImpl(Field, AddrSpace, AP); 1741 1742 // Insert padding - this may include padding to increase the size of the 1743 // current field up to the ABI size (if the struct is not packed) as well 1744 // as padding to ensure that the next field starts at the right offset. 1745 AP.OutStreamer.EmitZeros(PadSize, AddrSpace); 1746 } 1747 assert(SizeSoFar == Layout->getSizeInBytes() && 1748 "Layout of constant struct may be incorrect!"); 1749} 1750 1751static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace, 1752 AsmPrinter &AP) { 1753 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1754 1755 // First print a comment with what we think the original floating-point value 1756 // should have been. 1757 if (AP.isVerbose()) { 1758 SmallString<8> StrVal; 1759 CFP->getValueAPF().toString(StrVal); 1760 1761 CFP->getType()->print(AP.OutStreamer.GetCommentOS()); 1762 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n'; 1763 } 1764 1765 // Now iterate through the APInt chunks, emitting them in endian-correct 1766 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1767 // floats). 1768 unsigned NumBytes = API.getBitWidth() / 8; 1769 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1770 const uint64_t *p = API.getRawData(); 1771 1772 // PPC's long double has odd notions of endianness compared to how LLVM 1773 // handles it: p[0] goes first for *big* endian on PPC. 1774 if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) { 1775 int Chunk = API.getNumWords() - 1; 1776 1777 if (TrailingBytes) 1778 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes, AddrSpace); 1779 1780 for (; Chunk >= 0; --Chunk) 1781 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t), AddrSpace); 1782 } else { 1783 unsigned Chunk; 1784 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1785 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t), AddrSpace); 1786 1787 if (TrailingBytes) 1788 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes, AddrSpace); 1789 } 1790 1791 // Emit the tail padding for the long double. 1792 const DataLayout &TD = *AP.TM.getDataLayout(); 1793 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - 1794 TD.getTypeStoreSize(CFP->getType()), AddrSpace); 1795} 1796 1797static void emitGlobalConstantLargeInt(const ConstantInt *CI, 1798 unsigned AddrSpace, AsmPrinter &AP) { 1799 const DataLayout *TD = AP.TM.getDataLayout(); 1800 unsigned BitWidth = CI->getBitWidth(); 1801 1802 // Copy the value as we may massage the layout for constants whose bit width 1803 // is not a multiple of 64-bits. 1804 APInt Realigned(CI->getValue()); 1805 uint64_t ExtraBits = 0; 1806 unsigned ExtraBitsSize = BitWidth & 63; 1807 1808 if (ExtraBitsSize) { 1809 // The bit width of the data is not a multiple of 64-bits. 1810 // The extra bits are expected to be at the end of the chunk of the memory. 1811 // Little endian: 1812 // * Nothing to be done, just record the extra bits to emit. 1813 // Big endian: 1814 // * Record the extra bits to emit. 1815 // * Realign the raw data to emit the chunks of 64-bits. 1816 if (TD->isBigEndian()) { 1817 // Basically the structure of the raw data is a chunk of 64-bits cells: 1818 // 0 1 BitWidth / 64 1819 // [chunk1][chunk2] ... [chunkN]. 1820 // The most significant chunk is chunkN and it should be emitted first. 1821 // However, due to the alignment issue chunkN contains useless bits. 1822 // Realign the chunks so that they contain only useless information: 1823 // ExtraBits 0 1 (BitWidth / 64) - 1 1824 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 1825 ExtraBits = Realigned.getRawData()[0] & 1826 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 1827 Realigned = Realigned.lshr(ExtraBitsSize); 1828 } else 1829 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 1830 } 1831 1832 // We don't expect assemblers to support integer data directives 1833 // for more than 64 bits, so we emit the data in at most 64-bit 1834 // quantities at a time. 1835 const uint64_t *RawData = Realigned.getRawData(); 1836 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1837 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1838 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1839 } 1840 1841 if (ExtraBitsSize) { 1842 // Emit the extra bits after the 64-bits chunks. 1843 1844 // Emit a directive that fills the expected size. 1845 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType()); 1846 Size -= (BitWidth / 64) * 8; 1847 assert(Size && Size * 8 >= ExtraBitsSize && 1848 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 1849 == ExtraBits && "Directive too small for extra bits."); 1850 AP.OutStreamer.EmitIntValue(ExtraBits, Size, AddrSpace); 1851 } 1852} 1853 1854static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace, 1855 AsmPrinter &AP) { 1856 const DataLayout *TD = AP.TM.getDataLayout(); 1857 uint64_t Size = TD->getTypeAllocSize(CV->getType()); 1858 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 1859 return AP.OutStreamer.EmitZeros(Size, AddrSpace); 1860 1861 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1862 switch (Size) { 1863 case 1: 1864 case 2: 1865 case 4: 1866 case 8: 1867 if (AP.isVerbose()) 1868 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1869 CI->getZExtValue()); 1870 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace); 1871 return; 1872 default: 1873 emitGlobalConstantLargeInt(CI, AddrSpace, AP); 1874 return; 1875 } 1876 } 1877 1878 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1879 return emitGlobalConstantFP(CFP, AddrSpace, AP); 1880 1881 if (isa<ConstantPointerNull>(CV)) { 1882 AP.OutStreamer.EmitIntValue(0, Size, AddrSpace); 1883 return; 1884 } 1885 1886 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 1887 return emitGlobalConstantDataSequential(CDS, AddrSpace, AP); 1888 1889 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1890 return emitGlobalConstantArray(CVA, AddrSpace, AP); 1891 1892 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1893 return emitGlobalConstantStruct(CVS, AddrSpace, AP); 1894 1895 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 1896 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 1897 // vectors). 1898 if (CE->getOpcode() == Instruction::BitCast) 1899 return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP); 1900 1901 if (Size > 8) { 1902 // If the constant expression's size is greater than 64-bits, then we have 1903 // to emit the value in chunks. Try to constant fold the value and emit it 1904 // that way. 1905 Constant *New = ConstantFoldConstantExpression(CE, TD); 1906 if (New && New != CE) 1907 return emitGlobalConstantImpl(New, AddrSpace, AP); 1908 } 1909 } 1910 1911 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1912 return emitGlobalConstantVector(V, AddrSpace, AP); 1913 1914 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 1915 // thread the streamer with EmitValue. 1916 AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace); 1917} 1918 1919/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1920void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1921 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType()); 1922 if (Size) 1923 emitGlobalConstantImpl(CV, AddrSpace, *this); 1924 else if (MAI->hasSubsectionsViaSymbols()) { 1925 // If the global has zero size, emit a single byte so that two labels don't 1926 // look like they are at the same location. 1927 OutStreamer.EmitIntValue(0, 1, AddrSpace); 1928 } 1929} 1930 1931void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1932 // Target doesn't support this yet! 1933 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1934} 1935 1936void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 1937 if (Offset > 0) 1938 OS << '+' << Offset; 1939 else if (Offset < 0) 1940 OS << Offset; 1941} 1942 1943//===----------------------------------------------------------------------===// 1944// Symbol Lowering Routines. 1945//===----------------------------------------------------------------------===// 1946 1947/// GetTempSymbol - Return the MCSymbol corresponding to the assembler 1948/// temporary label with the specified stem and unique ID. 1949MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const { 1950 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) + 1951 Name + Twine(ID)); 1952} 1953 1954/// GetTempSymbol - Return an assembler temporary label with the specified 1955/// stem. 1956MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const { 1957 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+ 1958 Name); 1959} 1960 1961 1962MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 1963 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 1964} 1965 1966MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 1967 return MMI->getAddrLabelSymbol(BB); 1968} 1969 1970/// GetCPISymbol - Return the symbol for the specified constant pool entry. 1971MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 1972 return OutContext.GetOrCreateSymbol 1973 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 1974 + "_" + Twine(CPID)); 1975} 1976 1977/// GetJTISymbol - Return the symbol for the specified jump table entry. 1978MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 1979 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 1980} 1981 1982/// GetJTSetSymbol - Return the symbol for the specified jump table .set 1983/// FIXME: privatize to AsmPrinter. 1984MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 1985 return OutContext.GetOrCreateSymbol 1986 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 1987 Twine(UID) + "_set_" + Twine(MBBID)); 1988} 1989 1990/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with 1991/// global value name as its base, with the specified suffix, and where the 1992/// symbol is forced to have private linkage if ForcePrivate is true. 1993MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, 1994 StringRef Suffix, 1995 bool ForcePrivate) const { 1996 SmallString<60> NameStr; 1997 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); 1998 NameStr.append(Suffix.begin(), Suffix.end()); 1999 return OutContext.GetOrCreateSymbol(NameStr.str()); 2000} 2001 2002/// GetExternalSymbolSymbol - Return the MCSymbol for the specified 2003/// ExternalSymbol. 2004MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2005 SmallString<60> NameStr; 2006 Mang->getNameWithPrefix(NameStr, Sym); 2007 return OutContext.GetOrCreateSymbol(NameStr.str()); 2008} 2009 2010 2011 2012/// PrintParentLoopComment - Print comments about parent loops of this one. 2013static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2014 unsigned FunctionNumber) { 2015 if (Loop == 0) return; 2016 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2017 OS.indent(Loop->getLoopDepth()*2) 2018 << "Parent Loop BB" << FunctionNumber << "_" 2019 << Loop->getHeader()->getNumber() 2020 << " Depth=" << Loop->getLoopDepth() << '\n'; 2021} 2022 2023 2024/// PrintChildLoopComment - Print comments about child loops within 2025/// the loop for this basic block, with nesting. 2026static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2027 unsigned FunctionNumber) { 2028 // Add child loop information 2029 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ 2030 OS.indent((*CL)->getLoopDepth()*2) 2031 << "Child Loop BB" << FunctionNumber << "_" 2032 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() 2033 << '\n'; 2034 PrintChildLoopComment(OS, *CL, FunctionNumber); 2035 } 2036} 2037 2038/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2039static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2040 const MachineLoopInfo *LI, 2041 const AsmPrinter &AP) { 2042 // Add loop depth information 2043 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2044 if (Loop == 0) return; 2045 2046 MachineBasicBlock *Header = Loop->getHeader(); 2047 assert(Header && "No header for loop"); 2048 2049 // If this block is not a loop header, just print out what is the loop header 2050 // and return. 2051 if (Header != &MBB) { 2052 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2053 Twine(AP.getFunctionNumber())+"_" + 2054 Twine(Loop->getHeader()->getNumber())+ 2055 " Depth="+Twine(Loop->getLoopDepth())); 2056 return; 2057 } 2058 2059 // Otherwise, it is a loop header. Print out information about child and 2060 // parent loops. 2061 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2062 2063 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2064 2065 OS << "=>"; 2066 OS.indent(Loop->getLoopDepth()*2-2); 2067 2068 OS << "This "; 2069 if (Loop->empty()) 2070 OS << "Inner "; 2071 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2072 2073 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2074} 2075 2076 2077/// EmitBasicBlockStart - This method prints the label for the specified 2078/// MachineBasicBlock, an alignment (if present) and a comment describing 2079/// it if appropriate. 2080void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 2081 // Emit an alignment directive for this block, if needed. 2082 if (unsigned Align = MBB->getAlignment()) 2083 EmitAlignment(Align); 2084 2085 // If the block has its address taken, emit any labels that were used to 2086 // reference the block. It is possible that there is more than one label 2087 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2088 // the references were generated. 2089 if (MBB->hasAddressTaken()) { 2090 const BasicBlock *BB = MBB->getBasicBlock(); 2091 if (isVerbose()) 2092 OutStreamer.AddComment("Block address taken"); 2093 2094 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); 2095 2096 for (unsigned i = 0, e = Syms.size(); i != e; ++i) 2097 OutStreamer.EmitLabel(Syms[i]); 2098 } 2099 2100 // Print some verbose block comments. 2101 if (isVerbose()) { 2102 if (const BasicBlock *BB = MBB->getBasicBlock()) 2103 if (BB->hasName()) 2104 OutStreamer.AddComment("%" + BB->getName()); 2105 emitBasicBlockLoopComments(*MBB, LI, *this); 2106 } 2107 2108 // Print the main label for the block. 2109 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { 2110 if (isVerbose() && OutStreamer.hasRawTextSupport()) { 2111 // NOTE: Want this comment at start of line, don't emit with AddComment. 2112 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" + 2113 Twine(MBB->getNumber()) + ":"); 2114 } 2115 } else { 2116 OutStreamer.EmitLabel(MBB->getSymbol()); 2117 } 2118} 2119 2120void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2121 bool IsDefinition) const { 2122 MCSymbolAttr Attr = MCSA_Invalid; 2123 2124 switch (Visibility) { 2125 default: break; 2126 case GlobalValue::HiddenVisibility: 2127 if (IsDefinition) 2128 Attr = MAI->getHiddenVisibilityAttr(); 2129 else 2130 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2131 break; 2132 case GlobalValue::ProtectedVisibility: 2133 Attr = MAI->getProtectedVisibilityAttr(); 2134 break; 2135 } 2136 2137 if (Attr != MCSA_Invalid) 2138 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2139} 2140 2141/// isBlockOnlyReachableByFallthough - Return true if the basic block has 2142/// exactly one predecessor and the control transfer mechanism between 2143/// the predecessor and this block is a fall-through. 2144bool AsmPrinter:: 2145isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2146 // If this is a landing pad, it isn't a fall through. If it has no preds, 2147 // then nothing falls through to it. 2148 if (MBB->isLandingPad() || MBB->pred_empty()) 2149 return false; 2150 2151 // If there isn't exactly one predecessor, it can't be a fall through. 2152 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 2153 ++PI2; 2154 if (PI2 != MBB->pred_end()) 2155 return false; 2156 2157 // The predecessor has to be immediately before this block. 2158 MachineBasicBlock *Pred = *PI; 2159 2160 if (!Pred->isLayoutSuccessor(MBB)) 2161 return false; 2162 2163 // If the block is completely empty, then it definitely does fall through. 2164 if (Pred->empty()) 2165 return true; 2166 2167 // Check the terminators in the previous blocks 2168 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(), 2169 IE = Pred->end(); II != IE; ++II) { 2170 MachineInstr &MI = *II; 2171 2172 // If it is not a simple branch, we are in a table somewhere. 2173 if (!MI.isBranch() || MI.isIndirectBranch()) 2174 return false; 2175 2176 // If we are the operands of one of the branches, this is not 2177 // a fall through. 2178 for (MachineInstr::mop_iterator OI = MI.operands_begin(), 2179 OE = MI.operands_end(); OI != OE; ++OI) { 2180 const MachineOperand& OP = *OI; 2181 if (OP.isJTI()) 2182 return false; 2183 if (OP.isMBB() && OP.getMBB() == MBB) 2184 return false; 2185 } 2186 } 2187 2188 return true; 2189} 2190 2191 2192 2193GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 2194 if (!S->usesMetadata()) 2195 return 0; 2196 2197 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2198 gcp_map_type::iterator GCPI = GCMap.find(S); 2199 if (GCPI != GCMap.end()) 2200 return GCPI->second; 2201 2202 const char *Name = S->getName().c_str(); 2203 2204 for (GCMetadataPrinterRegistry::iterator 2205 I = GCMetadataPrinterRegistry::begin(), 2206 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2207 if (strcmp(Name, I->getName()) == 0) { 2208 GCMetadataPrinter *GMP = I->instantiate(); 2209 GMP->S = S; 2210 GCMap.insert(std::make_pair(S, GMP)); 2211 return GMP; 2212 } 2213 2214 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2215} 2216