AsmPrinter.cpp revision 75bdd29b81a79ff8dd3a6d6629cb7d42b48da45d
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/CodeGen/DwarfWriter.h"
24#include "llvm/Analysis/DebugInfo.h"
25#include "llvm/MC/MCContext.h"
26#include "llvm/MC/MCInst.h"
27#include "llvm/MC/MCSection.h"
28#include "llvm/MC/MCStreamer.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/FormattedStream.h"
32#include "llvm/Support/Mangler.h"
33#include "llvm/Target/TargetAsmInfo.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetLoweringObjectFile.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/SmallString.h"
41#include "llvm/ADT/StringExtras.h"
42#include <cerrno>
43using namespace llvm;
44
45static cl::opt<cl::boolOrDefault>
46AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
47           cl::init(cl::BOU_UNSET));
48
49char AsmPrinter::ID = 0;
50AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
51                       const TargetAsmInfo *T, bool VDef)
52  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
53    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
54
55    OutContext(*new MCContext()),
56    OutStreamer(*createAsmStreamer(OutContext, O)),
57
58    IsInTextSection(false), LastMI(0), LastFn(0), Counter(~0U),
59    PrevDLT(0, ~0U, ~0U) {
60  DW = 0; MMI = 0;
61  switch (AsmVerbose) {
62  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
63  case cl::BOU_TRUE:  VerboseAsm = true;  break;
64  case cl::BOU_FALSE: VerboseAsm = false; break;
65  }
66}
67
68AsmPrinter::~AsmPrinter() {
69  for (gcp_iterator I = GCMetadataPrinters.begin(),
70                    E = GCMetadataPrinters.end(); I != E; ++I)
71    delete I->second;
72
73  delete &OutStreamer;
74  delete &OutContext;
75}
76
77TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
78  return TM.getTargetLowering()->getObjFileLowering();
79}
80
81
82/// SwitchToTextSection - Switch to the specified text section of the executable
83/// if we are not already in it!
84///
85void AsmPrinter::SwitchToTextSection(const char *NewSection,
86                                     const GlobalValue *GV) {
87  std::string NS;
88  if (GV && GV->hasSection())
89    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
90  else
91    NS = NewSection;
92
93  // If we're already in this section, we're done.
94  if (CurrentSection == NS) return;
95
96  // Close the current section, if applicable.
97  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
98    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
99
100  CurrentSection = NS;
101
102  if (!CurrentSection.empty())
103    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
104
105  IsInTextSection = true;
106}
107
108/// SwitchToDataSection - Switch to the specified data section of the executable
109/// if we are not already in it!
110///
111void AsmPrinter::SwitchToDataSection(const char *NewSection,
112                                     const GlobalValue *GV) {
113  std::string NS;
114  if (GV && GV->hasSection())
115    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
116  else
117    NS = NewSection;
118
119  // If we're already in this section, we're done.
120  if (CurrentSection == NS) return;
121
122  // Close the current section, if applicable.
123  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
124    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
125
126  CurrentSection = NS;
127
128  if (!CurrentSection.empty())
129    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
130
131  IsInTextSection = false;
132}
133
134/// SwitchToSection - Switch to the specified section of the executable if we
135/// are not already in it!  If "NS" is null, then this causes us to exit the
136/// current section and not reenter another one.  This is generally used for
137/// asmprinter hacks.
138///
139/// FIXME: Remove support for null sections.
140///
141void AsmPrinter::SwitchToSection(const MCSection *NS) {
142  const std::string &NewSection = NS ? NS->getName() : "";
143
144  // If we're already in this section, we're done.
145  if (CurrentSection == NewSection) return;
146
147  // Close the current section, if applicable.
148  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
149    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
150
151  // FIXME: Make CurrentSection a Section* in the future
152  CurrentSection = NewSection;
153  CurrentSection_ = NS;
154
155  if (!CurrentSection.empty()) {
156    // If section is named we need to switch into it via special '.section'
157    // directive and also append funky flags. Otherwise - section name is just
158    // some magic assembler directive.
159    if (!NS->isDirective()) {
160      SmallString<32> FlagsStr;
161
162      getObjFileLowering().getSectionFlagsAsString(NS->getKind(), FlagsStr);
163
164      O << TAI->getSwitchToSectionDirective()
165        << CurrentSection
166        << FlagsStr.c_str();
167    } else {
168      O << CurrentSection;
169    }
170    O << TAI->getDataSectionStartSuffix() << '\n';
171  }
172
173  IsInTextSection = NS ? NS->getKind().isText() : false;
174}
175
176void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
177  AU.setPreservesAll();
178  MachineFunctionPass::getAnalysisUsage(AU);
179  AU.addRequired<GCModuleInfo>();
180}
181
182bool AsmPrinter::doInitialization(Module &M) {
183  // Initialize TargetLoweringObjectFile.
184  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
185    .Initialize(OutContext, TM);
186
187  Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix(),
188                     TAI->getLinkerPrivateGlobalPrefix());
189
190  if (TAI->doesAllowQuotesInName())
191    Mang->setUseQuotes(true);
192
193  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
194  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
195
196  if (TAI->hasSingleParameterDotFile()) {
197    /* Very minimal debug info. It is ignored if we emit actual
198       debug info. If we don't, this at helps the user find where
199       a function came from. */
200    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
201  }
202
203  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
204    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
205      MP->beginAssembly(O, *this, *TAI);
206
207  if (!M.getModuleInlineAsm().empty())
208    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
209      << M.getModuleInlineAsm()
210      << '\n' << TAI->getCommentString()
211      << " End of file scope inline assembly\n";
212
213  SwitchToDataSection("");   // Reset back to no section.
214
215  if (TAI->doesSupportDebugInformation() ||
216      TAI->doesSupportExceptionHandling()) {
217    MMI = getAnalysisIfAvailable<MachineModuleInfo>();
218    if (MMI)
219      MMI->AnalyzeModule(M);
220    DW = getAnalysisIfAvailable<DwarfWriter>();
221    if (DW)
222      DW->BeginModule(&M, MMI, O, this, TAI);
223  }
224
225  return false;
226}
227
228bool AsmPrinter::doFinalization(Module &M) {
229  // Emit global variables.
230  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
231       I != E; ++I)
232    PrintGlobalVariable(I);
233
234  // Emit final debug information.
235  if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling())
236    DW->EndModule();
237
238  // If the target wants to know about weak references, print them all.
239  if (TAI->getWeakRefDirective()) {
240    // FIXME: This is not lazy, it would be nice to only print weak references
241    // to stuff that is actually used.  Note that doing so would require targets
242    // to notice uses in operands (due to constant exprs etc).  This should
243    // happen with the MC stuff eventually.
244    SwitchToDataSection("");
245
246    // Print out module-level global variables here.
247    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
248         I != E; ++I) {
249      if (I->hasExternalWeakLinkage())
250        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
251    }
252
253    for (Module::const_iterator I = M.begin(), E = M.end();
254         I != E; ++I) {
255      if (I->hasExternalWeakLinkage())
256        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
257    }
258  }
259
260  if (TAI->getSetDirective()) {
261    O << '\n';
262    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
263         I != E; ++I) {
264      std::string Name = Mang->getMangledName(I);
265
266      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
267      std::string Target = Mang->getMangledName(GV);
268
269      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
270        O << "\t.globl\t" << Name << '\n';
271      else if (I->hasWeakLinkage())
272        O << TAI->getWeakRefDirective() << Name << '\n';
273      else if (!I->hasLocalLinkage())
274        llvm_unreachable("Invalid alias linkage");
275
276      printVisibility(Name, I->getVisibility());
277
278      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
279    }
280  }
281
282  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
283  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
284  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
285    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
286      MP->finishAssembly(O, *this, *TAI);
287
288  // If we don't have any trampolines, then we don't require stack memory
289  // to be executable. Some targets have a directive to declare this.
290  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
291  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
292    if (TAI->getNonexecutableStackDirective())
293      O << TAI->getNonexecutableStackDirective() << '\n';
294
295  delete Mang; Mang = 0;
296  DW = 0; MMI = 0;
297
298  OutStreamer.Finish();
299  return false;
300}
301
302std::string
303AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const {
304  assert(MF && "No machine function?");
305  return Mang->getMangledName(MF->getFunction(), ".eh",
306                              TAI->is_EHSymbolPrivate());
307}
308
309void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
310  // What's my mangled name?
311  CurrentFnName = Mang->getMangledName(MF.getFunction());
312  IncrementFunctionNumber();
313}
314
315namespace {
316  // SectionCPs - Keep track the alignment, constpool entries per Section.
317  struct SectionCPs {
318    const MCSection *S;
319    unsigned Alignment;
320    SmallVector<unsigned, 4> CPEs;
321    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {};
322  };
323}
324
325/// EmitConstantPool - Print to the current output stream assembly
326/// representations of the constants in the constant pool MCP. This is
327/// used to print out constants which have been "spilled to memory" by
328/// the code generator.
329///
330void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
331  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
332  if (CP.empty()) return;
333
334  // Calculate sections for constant pool entries. We collect entries to go into
335  // the same section together to reduce amount of section switch statements.
336  SmallVector<SectionCPs, 4> CPSections;
337  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
338    const MachineConstantPoolEntry &CPE = CP[i];
339    unsigned Align = CPE.getAlignment();
340
341    SectionKind Kind;
342    switch (CPE.getRelocationInfo()) {
343    default: llvm_unreachable("Unknown section kind");
344    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
345    case 1:
346      Kind = SectionKind::getReadOnlyWithRelLocal();
347      break;
348    case 0:
349    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
350    case 4:  Kind = SectionKind::getMergeableConst4(); break;
351    case 8:  Kind = SectionKind::getMergeableConst8(); break;
352    case 16: Kind = SectionKind::getMergeableConst16();break;
353    default: Kind = SectionKind::getMergeableConst(); break;
354    }
355    }
356
357    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
358
359    // The number of sections are small, just do a linear search from the
360    // last section to the first.
361    bool Found = false;
362    unsigned SecIdx = CPSections.size();
363    while (SecIdx != 0) {
364      if (CPSections[--SecIdx].S == S) {
365        Found = true;
366        break;
367      }
368    }
369    if (!Found) {
370      SecIdx = CPSections.size();
371      CPSections.push_back(SectionCPs(S, Align));
372    }
373
374    if (Align > CPSections[SecIdx].Alignment)
375      CPSections[SecIdx].Alignment = Align;
376    CPSections[SecIdx].CPEs.push_back(i);
377  }
378
379  // Now print stuff into the calculated sections.
380  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
381    SwitchToSection(CPSections[i].S);
382    EmitAlignment(Log2_32(CPSections[i].Alignment));
383
384    unsigned Offset = 0;
385    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
386      unsigned CPI = CPSections[i].CPEs[j];
387      MachineConstantPoolEntry CPE = CP[CPI];
388
389      // Emit inter-object padding for alignment.
390      unsigned AlignMask = CPE.getAlignment() - 1;
391      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
392      EmitZeros(NewOffset - Offset);
393
394      const Type *Ty = CPE.getType();
395      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
396
397      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
398        << CPI << ":\t\t\t\t\t";
399      if (VerboseAsm) {
400        O << TAI->getCommentString() << ' ';
401        WriteTypeSymbolic(O, CPE.getType(), 0);
402      }
403      O << '\n';
404      if (CPE.isMachineConstantPoolEntry())
405        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
406      else
407        EmitGlobalConstant(CPE.Val.ConstVal);
408    }
409  }
410}
411
412/// EmitJumpTableInfo - Print assembly representations of the jump tables used
413/// by the current function to the current output stream.
414///
415void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
416                                   MachineFunction &MF) {
417  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
418  if (JT.empty()) return;
419
420  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
421
422  // Pick the directive to use to print the jump table entries, and switch to
423  // the appropriate section.
424  TargetLowering *LoweringInfo = TM.getTargetLowering();
425
426  const Function *F = MF.getFunction();
427  bool JTInDiffSection = false;
428  if (F->isWeakForLinker() ||
429      (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
430    // In PIC mode, we need to emit the jump table to the same section as the
431    // function body itself, otherwise the label differences won't make sense.
432    // We should also do if the section name is NULL or function is declared in
433    // discardable section.
434    SwitchToSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
435  } else {
436    // Otherwise, drop it in the readonly section.
437    const MCSection *ReadOnlySection =
438      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
439    SwitchToSection(ReadOnlySection);
440    JTInDiffSection = true;
441  }
442
443  EmitAlignment(Log2_32(MJTI->getAlignment()));
444
445  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
446    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
447
448    // If this jump table was deleted, ignore it.
449    if (JTBBs.empty()) continue;
450
451    // For PIC codegen, if possible we want to use the SetDirective to reduce
452    // the number of relocations the assembler will generate for the jump table.
453    // Set directives are all printed before the jump table itself.
454    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
455    if (TAI->getSetDirective() && IsPic)
456      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
457        if (EmittedSets.insert(JTBBs[ii]))
458          printPICJumpTableSetLabel(i, JTBBs[ii]);
459
460    // On some targets (e.g. darwin) we want to emit two consequtive labels
461    // before each jump table.  The first label is never referenced, but tells
462    // the assembler and linker the extents of the jump table object.  The
463    // second label is actually referenced by the code.
464    if (JTInDiffSection) {
465      if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
466        O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
467    }
468
469    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
470      << '_' << i << ":\n";
471
472    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
473      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
474      O << '\n';
475    }
476  }
477}
478
479void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
480                                        const MachineBasicBlock *MBB,
481                                        unsigned uid)  const {
482  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
483
484  // Use JumpTableDirective otherwise honor the entry size from the jump table
485  // info.
486  const char *JTEntryDirective = TAI->getJumpTableDirective();
487  bool HadJTEntryDirective = JTEntryDirective != NULL;
488  if (!HadJTEntryDirective) {
489    JTEntryDirective = MJTI->getEntrySize() == 4 ?
490      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
491  }
492
493  O << JTEntryDirective << ' ';
494
495  // If we have emitted set directives for the jump table entries, print
496  // them rather than the entries themselves.  If we're emitting PIC, then
497  // emit the table entries as differences between two text section labels.
498  // If we're emitting non-PIC code, then emit the entries as direct
499  // references to the target basic blocks.
500  if (IsPic) {
501    if (TAI->getSetDirective()) {
502      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
503        << '_' << uid << "_set_" << MBB->getNumber();
504    } else {
505      printBasicBlockLabel(MBB, false, false, false);
506      // If the arch uses custom Jump Table directives, don't calc relative to
507      // JT
508      if (!HadJTEntryDirective)
509        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
510          << getFunctionNumber() << '_' << uid;
511    }
512  } else {
513    printBasicBlockLabel(MBB, false, false, false);
514  }
515}
516
517
518/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
519/// special global used by LLVM.  If so, emit it and return true, otherwise
520/// do nothing and return false.
521bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
522  if (GV->getName() == "llvm.used") {
523    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
524      EmitLLVMUsedList(GV->getInitializer());
525    return true;
526  }
527
528  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
529  if (GV->getSection() == "llvm.metadata" ||
530      GV->hasAvailableExternallyLinkage())
531    return true;
532
533  if (!GV->hasAppendingLinkage()) return false;
534
535  assert(GV->hasInitializer() && "Not a special LLVM global!");
536
537  const TargetData *TD = TM.getTargetData();
538  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
539  if (GV->getName() == "llvm.global_ctors") {
540    SwitchToSection(getObjFileLowering().getStaticCtorSection());
541    EmitAlignment(Align, 0);
542    EmitXXStructorList(GV->getInitializer());
543    return true;
544  }
545
546  if (GV->getName() == "llvm.global_dtors") {
547    SwitchToSection(getObjFileLowering().getStaticDtorSection());
548    EmitAlignment(Align, 0);
549    EmitXXStructorList(GV->getInitializer());
550    return true;
551  }
552
553  return false;
554}
555
556/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
557/// global in the specified llvm.used list for which emitUsedDirectiveFor
558/// is true, as being used with this directive.
559void AsmPrinter::EmitLLVMUsedList(Constant *List) {
560  const char *Directive = TAI->getUsedDirective();
561
562  // Should be an array of 'i8*'.
563  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
564  if (InitList == 0) return;
565
566  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
567    const GlobalValue *GV =
568      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
569    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
570      O << Directive;
571      EmitConstantValueOnly(InitList->getOperand(i));
572      O << '\n';
573    }
574  }
575}
576
577/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
578/// function pointers, ignoring the init priority.
579void AsmPrinter::EmitXXStructorList(Constant *List) {
580  // Should be an array of '{ int, void ()* }' structs.  The first value is the
581  // init priority, which we ignore.
582  if (!isa<ConstantArray>(List)) return;
583  ConstantArray *InitList = cast<ConstantArray>(List);
584  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
585    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
586      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
587
588      if (CS->getOperand(1)->isNullValue())
589        return;  // Found a null terminator, exit printing.
590      // Emit the function pointer.
591      EmitGlobalConstant(CS->getOperand(1));
592    }
593}
594
595/// getGlobalLinkName - Returns the asm/link name of of the specified
596/// global variable.  Should be overridden by each target asm printer to
597/// generate the appropriate value.
598const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
599                                                 std::string &LinkName) const {
600  if (isa<Function>(GV)) {
601    LinkName += TAI->getFunctionAddrPrefix();
602    LinkName += Mang->getMangledName(GV);
603    LinkName += TAI->getFunctionAddrSuffix();
604  } else {
605    LinkName += TAI->getGlobalVarAddrPrefix();
606    LinkName += Mang->getMangledName(GV);
607    LinkName += TAI->getGlobalVarAddrSuffix();
608  }
609
610  return LinkName;
611}
612
613/// EmitExternalGlobal - Emit the external reference to a global variable.
614/// Should be overridden if an indirect reference should be used.
615void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
616  std::string GLN;
617  O << getGlobalLinkName(GV, GLN);
618}
619
620
621
622//===----------------------------------------------------------------------===//
623/// LEB 128 number encoding.
624
625/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
626/// representing an unsigned leb128 value.
627void AsmPrinter::PrintULEB128(unsigned Value) const {
628  char Buffer[20];
629  do {
630    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
631    Value >>= 7;
632    if (Value) Byte |= 0x80;
633    O << "0x" << utohex_buffer(Byte, Buffer+20);
634    if (Value) O << ", ";
635  } while (Value);
636}
637
638/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
639/// representing a signed leb128 value.
640void AsmPrinter::PrintSLEB128(int Value) const {
641  int Sign = Value >> (8 * sizeof(Value) - 1);
642  bool IsMore;
643  char Buffer[20];
644
645  do {
646    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
647    Value >>= 7;
648    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
649    if (IsMore) Byte |= 0x80;
650    O << "0x" << utohex_buffer(Byte, Buffer+20);
651    if (IsMore) O << ", ";
652  } while (IsMore);
653}
654
655//===--------------------------------------------------------------------===//
656// Emission and print routines
657//
658
659/// PrintHex - Print a value as a hexidecimal value.
660///
661void AsmPrinter::PrintHex(int Value) const {
662  char Buffer[20];
663  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
664}
665
666/// EOL - Print a newline character to asm stream.  If a comment is present
667/// then it will be printed first.  Comments should not contain '\n'.
668void AsmPrinter::EOL() const {
669  O << '\n';
670}
671
672void AsmPrinter::EOL(const std::string &Comment) const {
673  if (VerboseAsm && !Comment.empty()) {
674    O << '\t'
675      << TAI->getCommentString()
676      << ' '
677      << Comment;
678  }
679  O << '\n';
680}
681
682void AsmPrinter::EOL(const char* Comment) const {
683  if (VerboseAsm && *Comment) {
684    O << '\t'
685      << TAI->getCommentString()
686      << ' '
687      << Comment;
688  }
689  O << '\n';
690}
691
692/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
693/// unsigned leb128 value.
694void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
695  if (TAI->hasLEB128()) {
696    O << "\t.uleb128\t"
697      << Value;
698  } else {
699    O << TAI->getData8bitsDirective();
700    PrintULEB128(Value);
701  }
702}
703
704/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
705/// signed leb128 value.
706void AsmPrinter::EmitSLEB128Bytes(int Value) const {
707  if (TAI->hasLEB128()) {
708    O << "\t.sleb128\t"
709      << Value;
710  } else {
711    O << TAI->getData8bitsDirective();
712    PrintSLEB128(Value);
713  }
714}
715
716/// EmitInt8 - Emit a byte directive and value.
717///
718void AsmPrinter::EmitInt8(int Value) const {
719  O << TAI->getData8bitsDirective();
720  PrintHex(Value & 0xFF);
721}
722
723/// EmitInt16 - Emit a short directive and value.
724///
725void AsmPrinter::EmitInt16(int Value) const {
726  O << TAI->getData16bitsDirective();
727  PrintHex(Value & 0xFFFF);
728}
729
730/// EmitInt32 - Emit a long directive and value.
731///
732void AsmPrinter::EmitInt32(int Value) const {
733  O << TAI->getData32bitsDirective();
734  PrintHex(Value);
735}
736
737/// EmitInt64 - Emit a long long directive and value.
738///
739void AsmPrinter::EmitInt64(uint64_t Value) const {
740  if (TAI->getData64bitsDirective()) {
741    O << TAI->getData64bitsDirective();
742    PrintHex(Value);
743  } else {
744    if (TM.getTargetData()->isBigEndian()) {
745      EmitInt32(unsigned(Value >> 32)); O << '\n';
746      EmitInt32(unsigned(Value));
747    } else {
748      EmitInt32(unsigned(Value)); O << '\n';
749      EmitInt32(unsigned(Value >> 32));
750    }
751  }
752}
753
754/// toOctal - Convert the low order bits of X into an octal digit.
755///
756static inline char toOctal(int X) {
757  return (X&7)+'0';
758}
759
760/// printStringChar - Print a char, escaped if necessary.
761///
762static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
763  if (C == '"') {
764    O << "\\\"";
765  } else if (C == '\\') {
766    O << "\\\\";
767  } else if (isprint((unsigned char)C)) {
768    O << C;
769  } else {
770    switch(C) {
771    case '\b': O << "\\b"; break;
772    case '\f': O << "\\f"; break;
773    case '\n': O << "\\n"; break;
774    case '\r': O << "\\r"; break;
775    case '\t': O << "\\t"; break;
776    default:
777      O << '\\';
778      O << toOctal(C >> 6);
779      O << toOctal(C >> 3);
780      O << toOctal(C >> 0);
781      break;
782    }
783  }
784}
785
786/// EmitString - Emit a string with quotes and a null terminator.
787/// Special characters are emitted properly.
788/// \literal (Eg. '\t') \endliteral
789void AsmPrinter::EmitString(const std::string &String) const {
790  EmitString(String.c_str(), String.size());
791}
792
793void AsmPrinter::EmitString(const char *String, unsigned Size) const {
794  const char* AscizDirective = TAI->getAscizDirective();
795  if (AscizDirective)
796    O << AscizDirective;
797  else
798    O << TAI->getAsciiDirective();
799  O << '\"';
800  for (unsigned i = 0; i < Size; ++i)
801    printStringChar(O, String[i]);
802  if (AscizDirective)
803    O << '\"';
804  else
805    O << "\\0\"";
806}
807
808
809/// EmitFile - Emit a .file directive.
810void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
811  O << "\t.file\t" << Number << " \"";
812  for (unsigned i = 0, N = Name.size(); i < N; ++i)
813    printStringChar(O, Name[i]);
814  O << '\"';
815}
816
817
818//===----------------------------------------------------------------------===//
819
820// EmitAlignment - Emit an alignment directive to the specified power of
821// two boundary.  For example, if you pass in 3 here, you will get an 8
822// byte alignment.  If a global value is specified, and if that global has
823// an explicit alignment requested, it will unconditionally override the
824// alignment request.  However, if ForcedAlignBits is specified, this value
825// has final say: the ultimate alignment will be the max of ForcedAlignBits
826// and the alignment computed with NumBits and the global.
827//
828// The algorithm is:
829//     Align = NumBits;
830//     if (GV && GV->hasalignment) Align = GV->getalignment();
831//     Align = std::max(Align, ForcedAlignBits);
832//
833void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
834                               unsigned ForcedAlignBits,
835                               bool UseFillExpr) const {
836  if (GV && GV->getAlignment())
837    NumBits = Log2_32(GV->getAlignment());
838  NumBits = std::max(NumBits, ForcedAlignBits);
839
840  if (NumBits == 0) return;   // No need to emit alignment.
841  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
842  O << TAI->getAlignDirective() << NumBits;
843
844  unsigned FillValue = TAI->getTextAlignFillValue();
845  UseFillExpr &= IsInTextSection && FillValue;
846  if (UseFillExpr) {
847    O << ',';
848    PrintHex(FillValue);
849  }
850  O << '\n';
851}
852
853/// PadToColumn - This gets called every time a tab is emitted.  If
854/// column padding is turned on, we replace the tab with the
855/// appropriate amount of padding.  If not, we replace the tab with a
856/// space, except for the first operand so that initial operands are
857/// always lined up by tabs.
858void AsmPrinter::PadToColumn(unsigned Operand) const {
859  if (TAI->getOperandColumn(Operand) > 0) {
860    O.PadToColumn(TAI->getOperandColumn(Operand), 1);
861  }
862  else {
863    if (Operand == 1) {
864      // Emit the tab after the mnemonic.
865      O << '\t';
866    }
867    else {
868      // Replace the tab with a space.
869      O << ' ';
870    }
871  }
872}
873
874/// EmitZeros - Emit a block of zeros.
875///
876void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
877  if (NumZeros) {
878    if (TAI->getZeroDirective()) {
879      O << TAI->getZeroDirective() << NumZeros;
880      if (TAI->getZeroDirectiveSuffix())
881        O << TAI->getZeroDirectiveSuffix();
882      O << '\n';
883    } else {
884      for (; NumZeros; --NumZeros)
885        O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
886    }
887  }
888}
889
890// Print out the specified constant, without a storage class.  Only the
891// constants valid in constant expressions can occur here.
892void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
893  if (CV->isNullValue() || isa<UndefValue>(CV))
894    O << '0';
895  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
896    O << CI->getZExtValue();
897  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
898    // This is a constant address for a global variable or function. Use the
899    // name of the variable or function as the address value, possibly
900    // decorating it with GlobalVarAddrPrefix/Suffix or
901    // FunctionAddrPrefix/Suffix (these all default to "" )
902    if (isa<Function>(GV)) {
903      O << TAI->getFunctionAddrPrefix()
904        << Mang->getMangledName(GV)
905        << TAI->getFunctionAddrSuffix();
906    } else {
907      O << TAI->getGlobalVarAddrPrefix()
908        << Mang->getMangledName(GV)
909        << TAI->getGlobalVarAddrSuffix();
910    }
911  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
912    const TargetData *TD = TM.getTargetData();
913    unsigned Opcode = CE->getOpcode();
914    switch (Opcode) {
915    case Instruction::Trunc:
916    case Instruction::ZExt:
917    case Instruction::SExt:
918    case Instruction::FPTrunc:
919    case Instruction::FPExt:
920    case Instruction::UIToFP:
921    case Instruction::SIToFP:
922    case Instruction::FPToUI:
923    case Instruction::FPToSI:
924      llvm_unreachable("FIXME: Don't support this constant cast expr");
925    case Instruction::GetElementPtr: {
926      // generate a symbolic expression for the byte address
927      const Constant *ptrVal = CE->getOperand(0);
928      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
929      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
930                                                idxVec.size())) {
931        // Truncate/sext the offset to the pointer size.
932        if (TD->getPointerSizeInBits() != 64) {
933          int SExtAmount = 64-TD->getPointerSizeInBits();
934          Offset = (Offset << SExtAmount) >> SExtAmount;
935        }
936
937        if (Offset)
938          O << '(';
939        EmitConstantValueOnly(ptrVal);
940        if (Offset > 0)
941          O << ") + " << Offset;
942        else if (Offset < 0)
943          O << ") - " << -Offset;
944      } else {
945        EmitConstantValueOnly(ptrVal);
946      }
947      break;
948    }
949    case Instruction::BitCast:
950      return EmitConstantValueOnly(CE->getOperand(0));
951
952    case Instruction::IntToPtr: {
953      // Handle casts to pointers by changing them into casts to the appropriate
954      // integer type.  This promotes constant folding and simplifies this code.
955      Constant *Op = CE->getOperand(0);
956      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
957      return EmitConstantValueOnly(Op);
958    }
959
960
961    case Instruction::PtrToInt: {
962      // Support only foldable casts to/from pointers that can be eliminated by
963      // changing the pointer to the appropriately sized integer type.
964      Constant *Op = CE->getOperand(0);
965      const Type *Ty = CE->getType();
966
967      // We can emit the pointer value into this slot if the slot is an
968      // integer slot greater or equal to the size of the pointer.
969      if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
970        return EmitConstantValueOnly(Op);
971
972      O << "((";
973      EmitConstantValueOnly(Op);
974      APInt ptrMask =
975        APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
976
977      SmallString<40> S;
978      ptrMask.toStringUnsigned(S);
979      O << ") & " << S.c_str() << ')';
980      break;
981    }
982    case Instruction::Add:
983    case Instruction::Sub:
984    case Instruction::And:
985    case Instruction::Or:
986    case Instruction::Xor:
987      O << '(';
988      EmitConstantValueOnly(CE->getOperand(0));
989      O << ')';
990      switch (Opcode) {
991      case Instruction::Add:
992       O << " + ";
993       break;
994      case Instruction::Sub:
995       O << " - ";
996       break;
997      case Instruction::And:
998       O << " & ";
999       break;
1000      case Instruction::Or:
1001       O << " | ";
1002       break;
1003      case Instruction::Xor:
1004       O << " ^ ";
1005       break;
1006      default:
1007       break;
1008      }
1009      O << '(';
1010      EmitConstantValueOnly(CE->getOperand(1));
1011      O << ')';
1012      break;
1013    default:
1014      llvm_unreachable("Unsupported operator!");
1015    }
1016  } else {
1017    llvm_unreachable("Unknown constant value!");
1018  }
1019}
1020
1021/// printAsCString - Print the specified array as a C compatible string, only if
1022/// the predicate isString is true.
1023///
1024static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
1025                           unsigned LastElt) {
1026  assert(CVA->isString() && "Array is not string compatible!");
1027
1028  O << '\"';
1029  for (unsigned i = 0; i != LastElt; ++i) {
1030    unsigned char C =
1031        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
1032    printStringChar(O, C);
1033  }
1034  O << '\"';
1035}
1036
1037/// EmitString - Emit a zero-byte-terminated string constant.
1038///
1039void AsmPrinter::EmitString(const ConstantArray *CVA) const {
1040  unsigned NumElts = CVA->getNumOperands();
1041  if (TAI->getAscizDirective() && NumElts &&
1042      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
1043    O << TAI->getAscizDirective();
1044    printAsCString(O, CVA, NumElts-1);
1045  } else {
1046    O << TAI->getAsciiDirective();
1047    printAsCString(O, CVA, NumElts);
1048  }
1049  O << '\n';
1050}
1051
1052void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
1053                                         unsigned AddrSpace) {
1054  if (CVA->isString()) {
1055    EmitString(CVA);
1056  } else { // Not a string.  Print the values in successive locations
1057    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
1058      EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
1059  }
1060}
1061
1062void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
1063  const VectorType *PTy = CP->getType();
1064
1065  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
1066    EmitGlobalConstant(CP->getOperand(I));
1067}
1068
1069void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
1070                                          unsigned AddrSpace) {
1071  // Print the fields in successive locations. Pad to align if needed!
1072  const TargetData *TD = TM.getTargetData();
1073  unsigned Size = TD->getTypeAllocSize(CVS->getType());
1074  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
1075  uint64_t sizeSoFar = 0;
1076  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
1077    const Constant* field = CVS->getOperand(i);
1078
1079    // Check if padding is needed and insert one or more 0s.
1080    uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
1081    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1082                        - cvsLayout->getElementOffset(i)) - fieldSize;
1083    sizeSoFar += fieldSize + padSize;
1084
1085    // Now print the actual field value.
1086    EmitGlobalConstant(field, AddrSpace);
1087
1088    // Insert padding - this may include padding to increase the size of the
1089    // current field up to the ABI size (if the struct is not packed) as well
1090    // as padding to ensure that the next field starts at the right offset.
1091    EmitZeros(padSize, AddrSpace);
1092  }
1093  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1094         "Layout of constant struct may be incorrect!");
1095}
1096
1097void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1098                                      unsigned AddrSpace) {
1099  // FP Constants are printed as integer constants to avoid losing
1100  // precision...
1101  const TargetData *TD = TM.getTargetData();
1102  if (CFP->getType() == Type::DoubleTy) {
1103    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1104    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1105    if (TAI->getData64bitsDirective(AddrSpace)) {
1106      O << TAI->getData64bitsDirective(AddrSpace) << i;
1107      if (VerboseAsm)
1108        O << '\t' << TAI->getCommentString() << " double value: " << Val;
1109      O << '\n';
1110    } else if (TD->isBigEndian()) {
1111      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1112      if (VerboseAsm)
1113        O << '\t' << TAI->getCommentString()
1114          << " double most significant word " << Val;
1115      O << '\n';
1116      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1117      if (VerboseAsm)
1118        O << '\t' << TAI->getCommentString()
1119          << " double least significant word " << Val;
1120      O << '\n';
1121    } else {
1122      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1123      if (VerboseAsm)
1124        O << '\t' << TAI->getCommentString()
1125          << " double least significant word " << Val;
1126      O << '\n';
1127      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1128      if (VerboseAsm)
1129        O << '\t' << TAI->getCommentString()
1130          << " double most significant word " << Val;
1131      O << '\n';
1132    }
1133    return;
1134  } else if (CFP->getType() == Type::FloatTy) {
1135    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1136    O << TAI->getData32bitsDirective(AddrSpace)
1137      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1138    if (VerboseAsm)
1139      O << '\t' << TAI->getCommentString() << " float " << Val;
1140    O << '\n';
1141    return;
1142  } else if (CFP->getType() == Type::X86_FP80Ty) {
1143    // all long double variants are printed as hex
1144    // api needed to prevent premature destruction
1145    APInt api = CFP->getValueAPF().bitcastToAPInt();
1146    const uint64_t *p = api.getRawData();
1147    // Convert to double so we can print the approximate val as a comment.
1148    APFloat DoubleVal = CFP->getValueAPF();
1149    bool ignored;
1150    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1151                      &ignored);
1152    if (TD->isBigEndian()) {
1153      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1154      if (VerboseAsm)
1155        O << '\t' << TAI->getCommentString()
1156          << " long double most significant halfword of ~"
1157          << DoubleVal.convertToDouble();
1158      O << '\n';
1159      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1160      if (VerboseAsm)
1161        O << '\t' << TAI->getCommentString() << " long double next halfword";
1162      O << '\n';
1163      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1164      if (VerboseAsm)
1165        O << '\t' << TAI->getCommentString() << " long double next halfword";
1166      O << '\n';
1167      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1168      if (VerboseAsm)
1169        O << '\t' << TAI->getCommentString() << " long double next halfword";
1170      O << '\n';
1171      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1172      if (VerboseAsm)
1173        O << '\t' << TAI->getCommentString()
1174          << " long double least significant halfword";
1175      O << '\n';
1176     } else {
1177      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1178      if (VerboseAsm)
1179        O << '\t' << TAI->getCommentString()
1180          << " long double least significant halfword of ~"
1181          << DoubleVal.convertToDouble();
1182      O << '\n';
1183      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1184      if (VerboseAsm)
1185        O << '\t' << TAI->getCommentString()
1186          << " long double next halfword";
1187      O << '\n';
1188      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1189      if (VerboseAsm)
1190        O << '\t' << TAI->getCommentString()
1191          << " long double next halfword";
1192      O << '\n';
1193      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1194      if (VerboseAsm)
1195        O << '\t' << TAI->getCommentString()
1196          << " long double next halfword";
1197      O << '\n';
1198      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1199      if (VerboseAsm)
1200        O << '\t' << TAI->getCommentString()
1201          << " long double most significant halfword";
1202      O << '\n';
1203    }
1204    EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) -
1205              TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
1206    return;
1207  } else if (CFP->getType() == Type::PPC_FP128Ty) {
1208    // all long double variants are printed as hex
1209    // api needed to prevent premature destruction
1210    APInt api = CFP->getValueAPF().bitcastToAPInt();
1211    const uint64_t *p = api.getRawData();
1212    if (TD->isBigEndian()) {
1213      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1214      if (VerboseAsm)
1215        O << '\t' << TAI->getCommentString()
1216          << " long double most significant word";
1217      O << '\n';
1218      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1219      if (VerboseAsm)
1220        O << '\t' << TAI->getCommentString()
1221        << " long double next word";
1222      O << '\n';
1223      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1224      if (VerboseAsm)
1225        O << '\t' << TAI->getCommentString()
1226          << " long double next word";
1227      O << '\n';
1228      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1229      if (VerboseAsm)
1230        O << '\t' << TAI->getCommentString()
1231          << " long double least significant word";
1232      O << '\n';
1233     } else {
1234      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1235      if (VerboseAsm)
1236        O << '\t' << TAI->getCommentString()
1237          << " long double least significant word";
1238      O << '\n';
1239      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1240      if (VerboseAsm)
1241        O << '\t' << TAI->getCommentString()
1242          << " long double next word";
1243      O << '\n';
1244      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1245      if (VerboseAsm)
1246        O << '\t' << TAI->getCommentString()
1247          << " long double next word";
1248      O << '\n';
1249      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1250      if (VerboseAsm)
1251        O << '\t' << TAI->getCommentString()
1252          << " long double most significant word";
1253      O << '\n';
1254    }
1255    return;
1256  } else llvm_unreachable("Floating point constant type not handled");
1257}
1258
1259void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1260                                            unsigned AddrSpace) {
1261  const TargetData *TD = TM.getTargetData();
1262  unsigned BitWidth = CI->getBitWidth();
1263  assert(isPowerOf2_32(BitWidth) &&
1264         "Non-power-of-2-sized integers not handled!");
1265
1266  // We don't expect assemblers to support integer data directives
1267  // for more than 64 bits, so we emit the data in at most 64-bit
1268  // quantities at a time.
1269  const uint64_t *RawData = CI->getValue().getRawData();
1270  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1271    uint64_t Val;
1272    if (TD->isBigEndian())
1273      Val = RawData[e - i - 1];
1274    else
1275      Val = RawData[i];
1276
1277    if (TAI->getData64bitsDirective(AddrSpace))
1278      O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1279    else if (TD->isBigEndian()) {
1280      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1281      if (VerboseAsm)
1282        O << '\t' << TAI->getCommentString()
1283          << " Double-word most significant word " << Val;
1284      O << '\n';
1285      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1286      if (VerboseAsm)
1287        O << '\t' << TAI->getCommentString()
1288          << " Double-word least significant word " << Val;
1289      O << '\n';
1290    } else {
1291      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1292      if (VerboseAsm)
1293        O << '\t' << TAI->getCommentString()
1294          << " Double-word least significant word " << Val;
1295      O << '\n';
1296      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1297      if (VerboseAsm)
1298        O << '\t' << TAI->getCommentString()
1299          << " Double-word most significant word " << Val;
1300      O << '\n';
1301    }
1302  }
1303}
1304
1305/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1306void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1307  const TargetData *TD = TM.getTargetData();
1308  const Type *type = CV->getType();
1309  unsigned Size = TD->getTypeAllocSize(type);
1310
1311  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1312    EmitZeros(Size, AddrSpace);
1313    return;
1314  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1315    EmitGlobalConstantArray(CVA , AddrSpace);
1316    return;
1317  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1318    EmitGlobalConstantStruct(CVS, AddrSpace);
1319    return;
1320  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1321    EmitGlobalConstantFP(CFP, AddrSpace);
1322    return;
1323  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1324    // Small integers are handled below; large integers are handled here.
1325    if (Size > 4) {
1326      EmitGlobalConstantLargeInt(CI, AddrSpace);
1327      return;
1328    }
1329  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1330    EmitGlobalConstantVector(CP);
1331    return;
1332  }
1333
1334  printDataDirective(type, AddrSpace);
1335  EmitConstantValueOnly(CV);
1336  if (VerboseAsm) {
1337    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1338      SmallString<40> S;
1339      CI->getValue().toStringUnsigned(S, 16);
1340      O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1341    }
1342  }
1343  O << '\n';
1344}
1345
1346void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1347  // Target doesn't support this yet!
1348  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1349}
1350
1351/// PrintSpecial - Print information related to the specified machine instr
1352/// that is independent of the operand, and may be independent of the instr
1353/// itself.  This can be useful for portably encoding the comment character
1354/// or other bits of target-specific knowledge into the asmstrings.  The
1355/// syntax used is ${:comment}.  Targets can override this to add support
1356/// for their own strange codes.
1357void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1358  if (!strcmp(Code, "private")) {
1359    O << TAI->getPrivateGlobalPrefix();
1360  } else if (!strcmp(Code, "comment")) {
1361    if (VerboseAsm)
1362      O << TAI->getCommentString();
1363  } else if (!strcmp(Code, "uid")) {
1364    // Comparing the address of MI isn't sufficient, because machineinstrs may
1365    // be allocated to the same address across functions.
1366    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1367
1368    // If this is a new LastFn instruction, bump the counter.
1369    if (LastMI != MI || LastFn != ThisF) {
1370      ++Counter;
1371      LastMI = MI;
1372      LastFn = ThisF;
1373    }
1374    O << Counter;
1375  } else {
1376    std::string msg;
1377    raw_string_ostream Msg(msg);
1378    Msg << "Unknown special formatter '" << Code
1379         << "' for machine instr: " << *MI;
1380    llvm_report_error(Msg.str());
1381  }
1382}
1383
1384/// processDebugLoc - Processes the debug information of each machine
1385/// instruction's DebugLoc.
1386void AsmPrinter::processDebugLoc(DebugLoc DL) {
1387  if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
1388    if (!DL.isUnknown()) {
1389      DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1390
1391      if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT)
1392        printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1393                                        DICompileUnit(CurDLT.CompileUnit)));
1394
1395      PrevDLT = CurDLT;
1396    }
1397  }
1398}
1399
1400/// printInlineAsm - This method formats and prints the specified machine
1401/// instruction that is an inline asm.
1402void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1403  unsigned NumOperands = MI->getNumOperands();
1404
1405  // Count the number of register definitions.
1406  unsigned NumDefs = 0;
1407  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1408       ++NumDefs)
1409    assert(NumDefs != NumOperands-1 && "No asm string?");
1410
1411  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1412
1413  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1414  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1415
1416  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1417  // These are useful to see where empty asm's wound up.
1418  if (AsmStr[0] == 0) {
1419    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1420    return;
1421  }
1422
1423  O << TAI->getInlineAsmStart() << "\n\t";
1424
1425  // The variant of the current asmprinter.
1426  int AsmPrinterVariant = TAI->getAssemblerDialect();
1427
1428  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1429  const char *LastEmitted = AsmStr; // One past the last character emitted.
1430
1431  while (*LastEmitted) {
1432    switch (*LastEmitted) {
1433    default: {
1434      // Not a special case, emit the string section literally.
1435      const char *LiteralEnd = LastEmitted+1;
1436      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1437             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1438        ++LiteralEnd;
1439      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1440        O.write(LastEmitted, LiteralEnd-LastEmitted);
1441      LastEmitted = LiteralEnd;
1442      break;
1443    }
1444    case '\n':
1445      ++LastEmitted;   // Consume newline character.
1446      O << '\n';       // Indent code with newline.
1447      break;
1448    case '$': {
1449      ++LastEmitted;   // Consume '$' character.
1450      bool Done = true;
1451
1452      // Handle escapes.
1453      switch (*LastEmitted) {
1454      default: Done = false; break;
1455      case '$':     // $$ -> $
1456        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1457          O << '$';
1458        ++LastEmitted;  // Consume second '$' character.
1459        break;
1460      case '(':             // $( -> same as GCC's { character.
1461        ++LastEmitted;      // Consume '(' character.
1462        if (CurVariant != -1) {
1463          llvm_report_error("Nested variants found in inline asm string: '"
1464                            + std::string(AsmStr) + "'");
1465        }
1466        CurVariant = 0;     // We're in the first variant now.
1467        break;
1468      case '|':
1469        ++LastEmitted;  // consume '|' character.
1470        if (CurVariant == -1)
1471          O << '|';       // this is gcc's behavior for | outside a variant
1472        else
1473          ++CurVariant;   // We're in the next variant.
1474        break;
1475      case ')':         // $) -> same as GCC's } char.
1476        ++LastEmitted;  // consume ')' character.
1477        if (CurVariant == -1)
1478          O << '}';     // this is gcc's behavior for } outside a variant
1479        else
1480          CurVariant = -1;
1481        break;
1482      }
1483      if (Done) break;
1484
1485      bool HasCurlyBraces = false;
1486      if (*LastEmitted == '{') {     // ${variable}
1487        ++LastEmitted;               // Consume '{' character.
1488        HasCurlyBraces = true;
1489      }
1490
1491      // If we have ${:foo}, then this is not a real operand reference, it is a
1492      // "magic" string reference, just like in .td files.  Arrange to call
1493      // PrintSpecial.
1494      if (HasCurlyBraces && *LastEmitted == ':') {
1495        ++LastEmitted;
1496        const char *StrStart = LastEmitted;
1497        const char *StrEnd = strchr(StrStart, '}');
1498        if (StrEnd == 0) {
1499          llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1500                            + std::string(AsmStr) + "'");
1501        }
1502
1503        std::string Val(StrStart, StrEnd);
1504        PrintSpecial(MI, Val.c_str());
1505        LastEmitted = StrEnd+1;
1506        break;
1507      }
1508
1509      const char *IDStart = LastEmitted;
1510      char *IDEnd;
1511      errno = 0;
1512      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1513      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1514        llvm_report_error("Bad $ operand number in inline asm string: '"
1515                          + std::string(AsmStr) + "'");
1516      }
1517      LastEmitted = IDEnd;
1518
1519      char Modifier[2] = { 0, 0 };
1520
1521      if (HasCurlyBraces) {
1522        // If we have curly braces, check for a modifier character.  This
1523        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1524        if (*LastEmitted == ':') {
1525          ++LastEmitted;    // Consume ':' character.
1526          if (*LastEmitted == 0) {
1527            llvm_report_error("Bad ${:} expression in inline asm string: '"
1528                              + std::string(AsmStr) + "'");
1529          }
1530
1531          Modifier[0] = *LastEmitted;
1532          ++LastEmitted;    // Consume modifier character.
1533        }
1534
1535        if (*LastEmitted != '}') {
1536          llvm_report_error("Bad ${} expression in inline asm string: '"
1537                            + std::string(AsmStr) + "'");
1538        }
1539        ++LastEmitted;    // Consume '}' character.
1540      }
1541
1542      if ((unsigned)Val >= NumOperands-1) {
1543        llvm_report_error("Invalid $ operand number in inline asm string: '"
1544                          + std::string(AsmStr) + "'");
1545      }
1546
1547      // Okay, we finally have a value number.  Ask the target to print this
1548      // operand!
1549      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1550        unsigned OpNo = 1;
1551
1552        bool Error = false;
1553
1554        // Scan to find the machine operand number for the operand.
1555        for (; Val; --Val) {
1556          if (OpNo >= MI->getNumOperands()) break;
1557          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1558          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1559        }
1560
1561        if (OpNo >= MI->getNumOperands()) {
1562          Error = true;
1563        } else {
1564          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1565          ++OpNo;  // Skip over the ID number.
1566
1567          if (Modifier[0]=='l')  // labels are target independent
1568            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1569                                 false, false, false);
1570          else {
1571            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1572            if ((OpFlags & 7) == 4) {
1573              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1574                                                Modifier[0] ? Modifier : 0);
1575            } else {
1576              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1577                                          Modifier[0] ? Modifier : 0);
1578            }
1579          }
1580        }
1581        if (Error) {
1582          std::string msg;
1583          raw_string_ostream Msg(msg);
1584          Msg << "Invalid operand found in inline asm: '"
1585               << AsmStr << "'\n";
1586          MI->print(Msg);
1587          llvm_report_error(Msg.str());
1588        }
1589      }
1590      break;
1591    }
1592    }
1593  }
1594  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1595}
1596
1597/// printImplicitDef - This method prints the specified machine instruction
1598/// that is an implicit def.
1599void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1600  if (VerboseAsm)
1601    O << '\t' << TAI->getCommentString() << " implicit-def: "
1602      << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1603}
1604
1605/// printLabel - This method prints a local label used by debug and
1606/// exception handling tables.
1607void AsmPrinter::printLabel(const MachineInstr *MI) const {
1608  printLabel(MI->getOperand(0).getImm());
1609}
1610
1611void AsmPrinter::printLabel(unsigned Id) const {
1612  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1613}
1614
1615/// printDeclare - This method prints a local variable declaration used by
1616/// debug tables.
1617/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1618/// entry into dwarf table.
1619void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1620  unsigned FI = MI->getOperand(0).getIndex();
1621  GlobalValue *GV = MI->getOperand(1).getGlobal();
1622  DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI);
1623}
1624
1625/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1626/// instruction, using the specified assembler variant.  Targets should
1627/// overried this to format as appropriate.
1628bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1629                                 unsigned AsmVariant, const char *ExtraCode) {
1630  // Target doesn't support this yet!
1631  return true;
1632}
1633
1634bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1635                                       unsigned AsmVariant,
1636                                       const char *ExtraCode) {
1637  // Target doesn't support this yet!
1638  return true;
1639}
1640
1641/// printBasicBlockLabel - This method prints the label for the specified
1642/// MachineBasicBlock
1643void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1644                                      bool printAlign,
1645                                      bool printColon,
1646                                      bool printComment) const {
1647  if (printAlign) {
1648    unsigned Align = MBB->getAlignment();
1649    if (Align)
1650      EmitAlignment(Log2_32(Align));
1651  }
1652
1653  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1654    << MBB->getNumber();
1655  if (printColon)
1656    O << ':';
1657  if (printComment && MBB->getBasicBlock())
1658    O << '\t' << TAI->getCommentString() << ' '
1659      << MBB->getBasicBlock()->getNameStr();
1660}
1661
1662/// printPICJumpTableSetLabel - This method prints a set label for the
1663/// specified MachineBasicBlock for a jumptable entry.
1664void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1665                                           const MachineBasicBlock *MBB) const {
1666  if (!TAI->getSetDirective())
1667    return;
1668
1669  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1670    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1671  printBasicBlockLabel(MBB, false, false, false);
1672  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1673    << '_' << uid << '\n';
1674}
1675
1676void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1677                                           const MachineBasicBlock *MBB) const {
1678  if (!TAI->getSetDirective())
1679    return;
1680
1681  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1682    << getFunctionNumber() << '_' << uid << '_' << uid2
1683    << "_set_" << MBB->getNumber() << ',';
1684  printBasicBlockLabel(MBB, false, false, false);
1685  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1686    << '_' << uid << '_' << uid2 << '\n';
1687}
1688
1689/// printDataDirective - This method prints the asm directive for the
1690/// specified type.
1691void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1692  const TargetData *TD = TM.getTargetData();
1693  switch (type->getTypeID()) {
1694  case Type::FloatTyID: case Type::DoubleTyID:
1695  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1696    assert(0 && "Should have already output floating point constant.");
1697  default:
1698    assert(0 && "Can't handle printing this type of thing");
1699  case Type::IntegerTyID: {
1700    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1701    if (BitWidth <= 8)
1702      O << TAI->getData8bitsDirective(AddrSpace);
1703    else if (BitWidth <= 16)
1704      O << TAI->getData16bitsDirective(AddrSpace);
1705    else if (BitWidth <= 32)
1706      O << TAI->getData32bitsDirective(AddrSpace);
1707    else if (BitWidth <= 64) {
1708      assert(TAI->getData64bitsDirective(AddrSpace) &&
1709             "Target cannot handle 64-bit constant exprs!");
1710      O << TAI->getData64bitsDirective(AddrSpace);
1711    } else {
1712      llvm_unreachable("Target cannot handle given data directive width!");
1713    }
1714    break;
1715  }
1716  case Type::PointerTyID:
1717    if (TD->getPointerSize() == 8) {
1718      assert(TAI->getData64bitsDirective(AddrSpace) &&
1719             "Target cannot handle 64-bit pointer exprs!");
1720      O << TAI->getData64bitsDirective(AddrSpace);
1721    } else if (TD->getPointerSize() == 2) {
1722      O << TAI->getData16bitsDirective(AddrSpace);
1723    } else if (TD->getPointerSize() == 1) {
1724      O << TAI->getData8bitsDirective(AddrSpace);
1725    } else {
1726      O << TAI->getData32bitsDirective(AddrSpace);
1727    }
1728    break;
1729  }
1730}
1731
1732void AsmPrinter::printVisibility(const std::string& Name,
1733                                 unsigned Visibility) const {
1734  if (Visibility == GlobalValue::HiddenVisibility) {
1735    if (const char *Directive = TAI->getHiddenDirective())
1736      O << Directive << Name << '\n';
1737  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1738    if (const char *Directive = TAI->getProtectedDirective())
1739      O << Directive << Name << '\n';
1740  }
1741}
1742
1743void AsmPrinter::printOffset(int64_t Offset) const {
1744  if (Offset > 0)
1745    O << '+' << Offset;
1746  else if (Offset < 0)
1747    O << Offset;
1748}
1749
1750GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1751  if (!S->usesMetadata())
1752    return 0;
1753
1754  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1755  if (GCPI != GCMetadataPrinters.end())
1756    return GCPI->second;
1757
1758  const char *Name = S->getName().c_str();
1759
1760  for (GCMetadataPrinterRegistry::iterator
1761         I = GCMetadataPrinterRegistry::begin(),
1762         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1763    if (strcmp(Name, I->getName()) == 0) {
1764      GCMetadataPrinter *GMP = I->instantiate();
1765      GMP->S = S;
1766      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1767      return GMP;
1768    }
1769
1770  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1771  llvm_unreachable(0);
1772}
1773
1774/// EmitComments - Pretty-print comments for instructions
1775void AsmPrinter::EmitComments(const MachineInstr &MI) const
1776{
1777  if (VerboseAsm) {
1778    if (!MI.getDebugLoc().isUnknown()) {
1779      DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1780
1781      // Print source line info
1782      O.PadToColumn(TAI->getCommentColumn(), 1);
1783      O << TAI->getCommentString() << " SrcLine ";
1784      if (DLT.CompileUnit->hasInitializer()) {
1785        Constant *Name = DLT.CompileUnit->getInitializer();
1786        if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1787          if (NameString->isString()) {
1788            O << NameString->getAsString() << " ";
1789          }
1790      }
1791      O << DLT.Line;
1792      if (DLT.Col != 0)
1793        O << ":" << DLT.Col;
1794    }
1795  }
1796}
1797
1798/// EmitComments - Pretty-print comments for instructions
1799void AsmPrinter::EmitComments(const MCInst &MI) const
1800{
1801  if (VerboseAsm) {
1802    if (!MI.getDebugLoc().isUnknown()) {
1803      DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1804
1805      // Print source line info
1806      O.PadToColumn(TAI->getCommentColumn(), 1);
1807      O << TAI->getCommentString() << " SrcLine ";
1808      if (DLT.CompileUnit->hasInitializer()) {
1809        Constant *Name = DLT.CompileUnit->getInitializer();
1810        if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1811          if (NameString->isString()) {
1812            O << NameString->getAsString() << " ";
1813          }
1814      }
1815      O << DLT.Line;
1816      if (DLT.Col != 0)
1817        O << ":" << DLT.Col;
1818    }
1819  }
1820}
1821