AsmPrinter.cpp revision 8b1e0549389e4c360ac95f50da95d5009553b447
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/Support/Mangler.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Target/TargetAsmInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34#include <cerrno>
35using namespace llvm;
36
37char AsmPrinter::ID = 0;
38AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
39                       const TargetAsmInfo *T)
40  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
41    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
42    IsInTextSection(false)
43{}
44
45AsmPrinter::~AsmPrinter() {
46  for (gcp_iterator I = GCMetadataPrinters.begin(),
47                    E = GCMetadataPrinters.end(); I != E; ++I)
48    delete I->second;
49}
50
51/// SwitchToTextSection - Switch to the specified text section of the executable
52/// if we are not already in it!
53///
54void AsmPrinter::SwitchToTextSection(const char *NewSection,
55                                     const GlobalValue *GV) {
56  std::string NS;
57  if (GV && GV->hasSection())
58    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
59  else
60    NS = NewSection;
61
62  // If we're already in this section, we're done.
63  if (CurrentSection == NS) return;
64
65  // Close the current section, if applicable.
66  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
67    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
68
69  CurrentSection = NS;
70
71  if (!CurrentSection.empty())
72    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
73
74  IsInTextSection = true;
75}
76
77/// SwitchToDataSection - Switch to the specified data section of the executable
78/// if we are not already in it!
79///
80void AsmPrinter::SwitchToDataSection(const char *NewSection,
81                                     const GlobalValue *GV) {
82  std::string NS;
83  if (GV && GV->hasSection())
84    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
85  else
86    NS = NewSection;
87
88  // If we're already in this section, we're done.
89  if (CurrentSection == NS) return;
90
91  // Close the current section, if applicable.
92  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
93    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
94
95  CurrentSection = NS;
96
97  if (!CurrentSection.empty())
98    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
99
100  IsInTextSection = false;
101}
102
103/// SwitchToSection - Switch to the specified section of the executable if we
104/// are not already in it!
105void AsmPrinter::SwitchToSection(const Section* NS) {
106  const std::string& NewSection = NS->getName();
107
108  // If we're already in this section, we're done.
109  if (CurrentSection == NewSection) return;
110
111  // Close the current section, if applicable.
112  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
113    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
114
115  // FIXME: Make CurrentSection a Section* in the future
116  CurrentSection = NewSection;
117  CurrentSection_ = NS;
118
119  if (!CurrentSection.empty()) {
120    // If section is named we need to switch into it via special '.section'
121    // directive and also append funky flags. Otherwise - section name is just
122    // some magic assembler directive.
123    if (NS->isNamed())
124      O << TAI->getSwitchToSectionDirective()
125        << CurrentSection
126        << TAI->getSectionFlags(NS->getFlags());
127    else
128      O << CurrentSection;
129    O << TAI->getDataSectionStartSuffix() << '\n';
130  }
131
132  IsInTextSection = (NS->getFlags() & SectionFlags::Code);
133}
134
135void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
136  MachineFunctionPass::getAnalysisUsage(AU);
137  AU.addRequired<GCModuleInfo>();
138}
139
140bool AsmPrinter::doInitialization(Module &M) {
141  Mang = new Mangler(M, TAI->getGlobalPrefix());
142
143  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
144  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
145  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
146    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
147      MP->beginAssembly(O, *this, *TAI);
148
149  if (!M.getModuleInlineAsm().empty())
150    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
151      << M.getModuleInlineAsm()
152      << '\n' << TAI->getCommentString()
153      << " End of file scope inline assembly\n";
154
155  SwitchToDataSection("");   // Reset back to no section.
156
157  MMI = getAnalysisToUpdate<MachineModuleInfo>();
158  if (MMI) MMI->AnalyzeModule(M);
159
160  return false;
161}
162
163bool AsmPrinter::doFinalization(Module &M) {
164  if (TAI->getWeakRefDirective()) {
165    if (!ExtWeakSymbols.empty())
166      SwitchToDataSection("");
167
168    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
169         e = ExtWeakSymbols.end(); i != e; ++i) {
170      const GlobalValue *GV = *i;
171      std::string Name = Mang->getValueName(GV);
172      O << TAI->getWeakRefDirective() << Name << '\n';
173    }
174  }
175
176  if (TAI->getSetDirective()) {
177    if (!M.alias_empty())
178      SwitchToSection(TAI->getTextSection());
179
180    O << '\n';
181    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
182         I!=E; ++I) {
183      std::string Name = Mang->getValueName(I);
184      std::string Target;
185
186      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
187      Target = Mang->getValueName(GV);
188
189      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
190        O << "\t.globl\t" << Name << '\n';
191      else if (I->hasWeakLinkage())
192        O << TAI->getWeakRefDirective() << Name << '\n';
193      else if (!I->hasInternalLinkage())
194        assert(0 && "Invalid alias linkage");
195
196      printVisibility(Name, I->getVisibility());
197
198      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
199
200      // If the aliasee has external weak linkage it can be referenced only by
201      // alias itself. In this case it can be not in ExtWeakSymbols list. Emit
202      // weak reference in such case.
203      if (GV->hasExternalWeakLinkage()) {
204        if (TAI->getWeakRefDirective())
205          O << TAI->getWeakRefDirective() << Target << '\n';
206        else
207          O << "\t.globl\t" << Target << '\n';
208      }
209    }
210  }
211
212  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
213  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
214  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
215    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
216      MP->finishAssembly(O, *this, *TAI);
217
218  // If we don't have any trampolines, then we don't require stack memory
219  // to be executable. Some targets have a directive to declare this.
220  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
221  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
222    if (TAI->getNonexecutableStackDirective())
223      O << TAI->getNonexecutableStackDirective() << '\n';
224
225  delete Mang; Mang = 0;
226  return false;
227}
228
229std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
230  assert(MF && "No machine function?");
231  std::string Name = MF->getFunction()->getName();
232  if (Name.empty())
233    Name = Mang->getValueName(MF->getFunction());
234  return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix());
235}
236
237void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
238  // What's my mangled name?
239  CurrentFnName = Mang->getValueName(MF.getFunction());
240  IncrementFunctionNumber();
241}
242
243/// EmitConstantPool - Print to the current output stream assembly
244/// representations of the constants in the constant pool MCP. This is
245/// used to print out constants which have been "spilled to memory" by
246/// the code generator.
247///
248void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
249  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
250  if (CP.empty()) return;
251
252  // Calculate sections for constant pool entries. We collect entries to go into
253  // the same section together to reduce amount of section switch statements.
254  typedef
255    std::multimap<const Section*,
256                  std::pair<MachineConstantPoolEntry, unsigned> > CPMap;
257  CPMap  CPs;
258  SmallPtrSet<const Section*, 5> Sections;
259
260  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
261    MachineConstantPoolEntry CPE = CP[i];
262    const Section* S = TAI->SelectSectionForMachineConst(CPE.getType());
263    CPs.insert(std::make_pair(S, std::make_pair(CPE, i)));
264    Sections.insert(S);
265  }
266
267  // Now print stuff into the calculated sections.
268  for (SmallPtrSet<const Section*, 5>::iterator IS = Sections.begin(),
269         ES = Sections.end(); IS != ES; ++IS) {
270    SwitchToSection(*IS);
271    EmitAlignment(MCP->getConstantPoolAlignment());
272
273    std::pair<CPMap::iterator, CPMap::iterator> II = CPs.equal_range(*IS);
274    for (CPMap::iterator I = II.first, E = II.second; I != E; ++I) {
275      CPMap::iterator J = next(I);
276      MachineConstantPoolEntry Entry = I->second.first;
277      unsigned index = I->second.second;
278
279      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
280        << index << ":\t\t\t\t\t";
281    // O << TAI->getCommentString() << ' ' <<
282    //      WriteTypeSymbolic(O, CP[i].first.getType(), 0);
283      O << '\n';
284      if (Entry.isMachineConstantPoolEntry())
285        EmitMachineConstantPoolValue(Entry.Val.MachineCPVal);
286      else
287        EmitGlobalConstant(Entry.Val.ConstVal);
288
289      // Emit inter-object padding for alignment.
290      if (J != E) {
291        const Type *Ty = Entry.getType();
292        unsigned EntSize = TM.getTargetData()->getABITypeSize(Ty);
293        unsigned ValEnd = Entry.getOffset() + EntSize;
294        EmitZeros(J->second.first.getOffset()-ValEnd);
295      }
296    }
297  }
298}
299
300/// EmitJumpTableInfo - Print assembly representations of the jump tables used
301/// by the current function to the current output stream.
302///
303void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
304                                   MachineFunction &MF) {
305  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
306  if (JT.empty()) return;
307
308  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
309
310  // Pick the directive to use to print the jump table entries, and switch to
311  // the appropriate section.
312  TargetLowering *LoweringInfo = TM.getTargetLowering();
313
314  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
315  const Function *F = MF.getFunction();
316  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
317  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
318     !JumpTableDataSection ||
319      SectionFlags & SectionFlags::Linkonce) {
320    // In PIC mode, we need to emit the jump table to the same section as the
321    // function body itself, otherwise the label differences won't make sense.
322    // We should also do if the section name is NULL or function is declared in
323    // discardable section.
324    SwitchToSection(TAI->SectionForGlobal(F));
325  } else {
326    SwitchToDataSection(JumpTableDataSection);
327  }
328
329  EmitAlignment(Log2_32(MJTI->getAlignment()));
330
331  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
332    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
333
334    // If this jump table was deleted, ignore it.
335    if (JTBBs.empty()) continue;
336
337    // For PIC codegen, if possible we want to use the SetDirective to reduce
338    // the number of relocations the assembler will generate for the jump table.
339    // Set directives are all printed before the jump table itself.
340    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
341    if (TAI->getSetDirective() && IsPic)
342      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
343        if (EmittedSets.insert(JTBBs[ii]))
344          printPICJumpTableSetLabel(i, JTBBs[ii]);
345
346    // On some targets (e.g. darwin) we want to emit two consequtive labels
347    // before each jump table.  The first label is never referenced, but tells
348    // the assembler and linker the extents of the jump table object.  The
349    // second label is actually referenced by the code.
350    if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
351      O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
352
353    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
354      << '_' << i << ":\n";
355
356    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
357      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
358      O << '\n';
359    }
360  }
361}
362
363void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
364                                        const MachineBasicBlock *MBB,
365                                        unsigned uid)  const {
366  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
367
368  // Use JumpTableDirective otherwise honor the entry size from the jump table
369  // info.
370  const char *JTEntryDirective = TAI->getJumpTableDirective();
371  bool HadJTEntryDirective = JTEntryDirective != NULL;
372  if (!HadJTEntryDirective) {
373    JTEntryDirective = MJTI->getEntrySize() == 4 ?
374      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
375  }
376
377  O << JTEntryDirective << ' ';
378
379  // If we have emitted set directives for the jump table entries, print
380  // them rather than the entries themselves.  If we're emitting PIC, then
381  // emit the table entries as differences between two text section labels.
382  // If we're emitting non-PIC code, then emit the entries as direct
383  // references to the target basic blocks.
384  if (IsPic) {
385    if (TAI->getSetDirective()) {
386      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
387        << '_' << uid << "_set_" << MBB->getNumber();
388    } else {
389      printBasicBlockLabel(MBB, false, false, false);
390      // If the arch uses custom Jump Table directives, don't calc relative to
391      // JT
392      if (!HadJTEntryDirective)
393        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
394          << getFunctionNumber() << '_' << uid;
395    }
396  } else {
397    printBasicBlockLabel(MBB, false, false, false);
398  }
399}
400
401
402/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
403/// special global used by LLVM.  If so, emit it and return true, otherwise
404/// do nothing and return false.
405bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
406  if (GV->getName() == "llvm.used") {
407    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
408      EmitLLVMUsedList(GV->getInitializer());
409    return true;
410  }
411
412  // Ignore debug and non-emitted data.
413  if (GV->getSection() == "llvm.metadata") return true;
414
415  if (!GV->hasAppendingLinkage()) return false;
416
417  assert(GV->hasInitializer() && "Not a special LLVM global!");
418
419  const TargetData *TD = TM.getTargetData();
420  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
421  if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
422    SwitchToDataSection(TAI->getStaticCtorsSection());
423    EmitAlignment(Align, 0);
424    EmitXXStructorList(GV->getInitializer());
425    return true;
426  }
427
428  if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
429    SwitchToDataSection(TAI->getStaticDtorsSection());
430    EmitAlignment(Align, 0);
431    EmitXXStructorList(GV->getInitializer());
432    return true;
433  }
434
435  return false;
436}
437
438/// findGlobalValue - if CV is an expression equivalent to a single
439/// global value, return that value.
440const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
441  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
442    return GV;
443  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
444    const TargetData *TD = TM.getTargetData();
445    unsigned Opcode = CE->getOpcode();
446    switch (Opcode) {
447    case Instruction::GetElementPtr: {
448      const Constant *ptrVal = CE->getOperand(0);
449      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
450      if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
451        return 0;
452      return findGlobalValue(ptrVal);
453    }
454    case Instruction::BitCast:
455      return findGlobalValue(CE->getOperand(0));
456    default:
457      return 0;
458    }
459  }
460  return 0;
461}
462
463/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
464/// global in the specified llvm.used list for which emitUsedDirectiveFor
465/// is true, as being used with this directive.
466
467void AsmPrinter::EmitLLVMUsedList(Constant *List) {
468  const char *Directive = TAI->getUsedDirective();
469
470  // Should be an array of 'sbyte*'.
471  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
472  if (InitList == 0) return;
473
474  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
475    const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
476    if (TAI->emitUsedDirectiveFor(GV, Mang)) {
477      O << Directive;
478      EmitConstantValueOnly(InitList->getOperand(i));
479      O << '\n';
480    }
481  }
482}
483
484/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
485/// function pointers, ignoring the init priority.
486void AsmPrinter::EmitXXStructorList(Constant *List) {
487  // Should be an array of '{ int, void ()* }' structs.  The first value is the
488  // init priority, which we ignore.
489  if (!isa<ConstantArray>(List)) return;
490  ConstantArray *InitList = cast<ConstantArray>(List);
491  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
492    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
493      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
494
495      if (CS->getOperand(1)->isNullValue())
496        return;  // Found a null terminator, exit printing.
497      // Emit the function pointer.
498      EmitGlobalConstant(CS->getOperand(1));
499    }
500}
501
502/// getGlobalLinkName - Returns the asm/link name of of the specified
503/// global variable.  Should be overridden by each target asm printer to
504/// generate the appropriate value.
505const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
506  std::string LinkName;
507
508  if (isa<Function>(GV)) {
509    LinkName += TAI->getFunctionAddrPrefix();
510    LinkName += Mang->getValueName(GV);
511    LinkName += TAI->getFunctionAddrSuffix();
512  } else {
513    LinkName += TAI->getGlobalVarAddrPrefix();
514    LinkName += Mang->getValueName(GV);
515    LinkName += TAI->getGlobalVarAddrSuffix();
516  }
517
518  return LinkName;
519}
520
521/// EmitExternalGlobal - Emit the external reference to a global variable.
522/// Should be overridden if an indirect reference should be used.
523void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
524  O << getGlobalLinkName(GV);
525}
526
527
528
529//===----------------------------------------------------------------------===//
530/// LEB 128 number encoding.
531
532/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
533/// representing an unsigned leb128 value.
534void AsmPrinter::PrintULEB128(unsigned Value) const {
535  do {
536    unsigned Byte = Value & 0x7f;
537    Value >>= 7;
538    if (Value) Byte |= 0x80;
539    O << "0x" <<  utohexstr(Byte);
540    if (Value) O << ", ";
541  } while (Value);
542}
543
544/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
545/// representing a signed leb128 value.
546void AsmPrinter::PrintSLEB128(int Value) const {
547  int Sign = Value >> (8 * sizeof(Value) - 1);
548  bool IsMore;
549
550  do {
551    unsigned Byte = Value & 0x7f;
552    Value >>= 7;
553    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
554    if (IsMore) Byte |= 0x80;
555    O << "0x" << utohexstr(Byte);
556    if (IsMore) O << ", ";
557  } while (IsMore);
558}
559
560//===--------------------------------------------------------------------===//
561// Emission and print routines
562//
563
564/// PrintHex - Print a value as a hexidecimal value.
565///
566void AsmPrinter::PrintHex(int Value) const {
567  O << "0x" << utohexstr(static_cast<unsigned>(Value));
568}
569
570/// EOL - Print a newline character to asm stream.  If a comment is present
571/// then it will be printed first.  Comments should not contain '\n'.
572void AsmPrinter::EOL() const {
573  O << '\n';
574}
575
576void AsmPrinter::EOL(const std::string &Comment) const {
577  if (VerboseAsm && !Comment.empty()) {
578    O << '\t'
579      << TAI->getCommentString()
580      << ' '
581      << Comment;
582  }
583  O << '\n';
584}
585
586void AsmPrinter::EOL(const char* Comment) const {
587  if (VerboseAsm && *Comment) {
588    O << '\t'
589      << TAI->getCommentString()
590      << ' '
591      << Comment;
592  }
593  O << '\n';
594}
595
596/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
597/// unsigned leb128 value.
598void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
599  if (TAI->hasLEB128()) {
600    O << "\t.uleb128\t"
601      << Value;
602  } else {
603    O << TAI->getData8bitsDirective();
604    PrintULEB128(Value);
605  }
606}
607
608/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
609/// signed leb128 value.
610void AsmPrinter::EmitSLEB128Bytes(int Value) const {
611  if (TAI->hasLEB128()) {
612    O << "\t.sleb128\t"
613      << Value;
614  } else {
615    O << TAI->getData8bitsDirective();
616    PrintSLEB128(Value);
617  }
618}
619
620/// EmitInt8 - Emit a byte directive and value.
621///
622void AsmPrinter::EmitInt8(int Value) const {
623  O << TAI->getData8bitsDirective();
624  PrintHex(Value & 0xFF);
625}
626
627/// EmitInt16 - Emit a short directive and value.
628///
629void AsmPrinter::EmitInt16(int Value) const {
630  O << TAI->getData16bitsDirective();
631  PrintHex(Value & 0xFFFF);
632}
633
634/// EmitInt32 - Emit a long directive and value.
635///
636void AsmPrinter::EmitInt32(int Value) const {
637  O << TAI->getData32bitsDirective();
638  PrintHex(Value);
639}
640
641/// EmitInt64 - Emit a long long directive and value.
642///
643void AsmPrinter::EmitInt64(uint64_t Value) const {
644  if (TAI->getData64bitsDirective()) {
645    O << TAI->getData64bitsDirective();
646    PrintHex(Value);
647  } else {
648    if (TM.getTargetData()->isBigEndian()) {
649      EmitInt32(unsigned(Value >> 32)); O << '\n';
650      EmitInt32(unsigned(Value));
651    } else {
652      EmitInt32(unsigned(Value)); O << '\n';
653      EmitInt32(unsigned(Value >> 32));
654    }
655  }
656}
657
658/// toOctal - Convert the low order bits of X into an octal digit.
659///
660static inline char toOctal(int X) {
661  return (X&7)+'0';
662}
663
664/// printStringChar - Print a char, escaped if necessary.
665///
666static void printStringChar(raw_ostream &O, char C) {
667  if (C == '"') {
668    O << "\\\"";
669  } else if (C == '\\') {
670    O << "\\\\";
671  } else if (isprint(C)) {
672    O << C;
673  } else {
674    switch(C) {
675    case '\b': O << "\\b"; break;
676    case '\f': O << "\\f"; break;
677    case '\n': O << "\\n"; break;
678    case '\r': O << "\\r"; break;
679    case '\t': O << "\\t"; break;
680    default:
681      O << '\\';
682      O << toOctal(C >> 6);
683      O << toOctal(C >> 3);
684      O << toOctal(C >> 0);
685      break;
686    }
687  }
688}
689
690/// EmitString - Emit a string with quotes and a null terminator.
691/// Special characters are emitted properly.
692/// \literal (Eg. '\t') \endliteral
693void AsmPrinter::EmitString(const std::string &String) const {
694  const char* AscizDirective = TAI->getAscizDirective();
695  if (AscizDirective)
696    O << AscizDirective;
697  else
698    O << TAI->getAsciiDirective();
699  O << '\"';
700  for (unsigned i = 0, N = String.size(); i < N; ++i) {
701    unsigned char C = String[i];
702    printStringChar(O, C);
703  }
704  if (AscizDirective)
705    O << '\"';
706  else
707    O << "\\0\"";
708}
709
710
711/// EmitFile - Emit a .file directive.
712void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
713  O << "\t.file\t" << Number << " \"";
714  for (unsigned i = 0, N = Name.size(); i < N; ++i) {
715    unsigned char C = Name[i];
716    printStringChar(O, C);
717  }
718  O << '\"';
719}
720
721
722//===----------------------------------------------------------------------===//
723
724// EmitAlignment - Emit an alignment directive to the specified power of
725// two boundary.  For example, if you pass in 3 here, you will get an 8
726// byte alignment.  If a global value is specified, and if that global has
727// an explicit alignment requested, it will unconditionally override the
728// alignment request.  However, if ForcedAlignBits is specified, this value
729// has final say: the ultimate alignment will be the max of ForcedAlignBits
730// and the alignment computed with NumBits and the global.
731//
732// The algorithm is:
733//     Align = NumBits;
734//     if (GV && GV->hasalignment) Align = GV->getalignment();
735//     Align = std::max(Align, ForcedAlignBits);
736//
737void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
738                               unsigned ForcedAlignBits,
739                               bool UseFillExpr) const {
740  if (GV && GV->getAlignment())
741    NumBits = Log2_32(GV->getAlignment());
742  NumBits = std::max(NumBits, ForcedAlignBits);
743
744  if (NumBits == 0) return;   // No need to emit alignment.
745  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
746  O << TAI->getAlignDirective() << NumBits;
747
748  unsigned FillValue = TAI->getTextAlignFillValue();
749  UseFillExpr &= IsInTextSection && FillValue;
750  if (UseFillExpr) O << ",0x" << utohexstr(FillValue);
751  O << '\n';
752}
753
754
755/// EmitZeros - Emit a block of zeros.
756///
757void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
758  if (NumZeros) {
759    if (TAI->getZeroDirective()) {
760      O << TAI->getZeroDirective() << NumZeros;
761      if (TAI->getZeroDirectiveSuffix())
762        O << TAI->getZeroDirectiveSuffix();
763      O << '\n';
764    } else {
765      for (; NumZeros; --NumZeros)
766        O << TAI->getData8bitsDirective() << "0\n";
767    }
768  }
769}
770
771// Print out the specified constant, without a storage class.  Only the
772// constants valid in constant expressions can occur here.
773void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
774  if (CV->isNullValue() || isa<UndefValue>(CV))
775    O << '0';
776  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
777    O << CI->getZExtValue();
778  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
779    // This is a constant address for a global variable or function. Use the
780    // name of the variable or function as the address value, possibly
781    // decorating it with GlobalVarAddrPrefix/Suffix or
782    // FunctionAddrPrefix/Suffix (these all default to "" )
783    if (isa<Function>(GV)) {
784      O << TAI->getFunctionAddrPrefix()
785        << Mang->getValueName(GV)
786        << TAI->getFunctionAddrSuffix();
787    } else {
788      O << TAI->getGlobalVarAddrPrefix()
789        << Mang->getValueName(GV)
790        << TAI->getGlobalVarAddrSuffix();
791    }
792  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
793    const TargetData *TD = TM.getTargetData();
794    unsigned Opcode = CE->getOpcode();
795    switch (Opcode) {
796    case Instruction::GetElementPtr: {
797      // generate a symbolic expression for the byte address
798      const Constant *ptrVal = CE->getOperand(0);
799      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
800      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
801                                                idxVec.size())) {
802        if (Offset)
803          O << '(';
804        EmitConstantValueOnly(ptrVal);
805        if (Offset > 0)
806          O << ") + " << Offset;
807        else if (Offset < 0)
808          O << ") - " << -Offset;
809      } else {
810        EmitConstantValueOnly(ptrVal);
811      }
812      break;
813    }
814    case Instruction::Trunc:
815    case Instruction::ZExt:
816    case Instruction::SExt:
817    case Instruction::FPTrunc:
818    case Instruction::FPExt:
819    case Instruction::UIToFP:
820    case Instruction::SIToFP:
821    case Instruction::FPToUI:
822    case Instruction::FPToSI:
823      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
824      break;
825    case Instruction::BitCast:
826      return EmitConstantValueOnly(CE->getOperand(0));
827
828    case Instruction::IntToPtr: {
829      // Handle casts to pointers by changing them into casts to the appropriate
830      // integer type.  This promotes constant folding and simplifies this code.
831      Constant *Op = CE->getOperand(0);
832      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
833      return EmitConstantValueOnly(Op);
834    }
835
836
837    case Instruction::PtrToInt: {
838      // Support only foldable casts to/from pointers that can be eliminated by
839      // changing the pointer to the appropriately sized integer type.
840      Constant *Op = CE->getOperand(0);
841      const Type *Ty = CE->getType();
842
843      // We can emit the pointer value into this slot if the slot is an
844      // integer slot greater or equal to the size of the pointer.
845      if (TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType()))
846        return EmitConstantValueOnly(Op);
847
848      O << "((";
849      EmitConstantValueOnly(Op);
850      APInt ptrMask = APInt::getAllOnesValue(TD->getABITypeSizeInBits(Ty));
851
852      SmallString<40> S;
853      ptrMask.toStringUnsigned(S);
854      O << ") & " << S.c_str() << ')';
855      break;
856    }
857    case Instruction::Add:
858    case Instruction::Sub:
859    case Instruction::And:
860    case Instruction::Or:
861    case Instruction::Xor:
862      O << '(';
863      EmitConstantValueOnly(CE->getOperand(0));
864      O << ')';
865      switch (Opcode) {
866      case Instruction::Add:
867       O << " + ";
868       break;
869      case Instruction::Sub:
870       O << " - ";
871       break;
872      case Instruction::And:
873       O << " & ";
874       break;
875      case Instruction::Or:
876       O << " | ";
877       break;
878      case Instruction::Xor:
879       O << " ^ ";
880       break;
881      default:
882       break;
883      }
884      O << '(';
885      EmitConstantValueOnly(CE->getOperand(1));
886      O << ')';
887      break;
888    default:
889      assert(0 && "Unsupported operator!");
890    }
891  } else {
892    assert(0 && "Unknown constant value!");
893  }
894}
895
896/// printAsCString - Print the specified array as a C compatible string, only if
897/// the predicate isString is true.
898///
899static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
900                           unsigned LastElt) {
901  assert(CVA->isString() && "Array is not string compatible!");
902
903  O << '\"';
904  for (unsigned i = 0; i != LastElt; ++i) {
905    unsigned char C =
906        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
907    printStringChar(O, C);
908  }
909  O << '\"';
910}
911
912/// EmitString - Emit a zero-byte-terminated string constant.
913///
914void AsmPrinter::EmitString(const ConstantArray *CVA) const {
915  unsigned NumElts = CVA->getNumOperands();
916  if (TAI->getAscizDirective() && NumElts &&
917      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
918    O << TAI->getAscizDirective();
919    printAsCString(O, CVA, NumElts-1);
920  } else {
921    O << TAI->getAsciiDirective();
922    printAsCString(O, CVA, NumElts);
923  }
924  O << '\n';
925}
926
927/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
928void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
929  const TargetData *TD = TM.getTargetData();
930  unsigned Size = TD->getABITypeSize(CV->getType());
931
932  if (CV->isNullValue() || isa<UndefValue>(CV)) {
933    EmitZeros(Size);
934    return;
935  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
936    if (CVA->isString()) {
937      EmitString(CVA);
938    } else { // Not a string.  Print the values in successive locations
939      for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
940        EmitGlobalConstant(CVA->getOperand(i));
941    }
942    return;
943  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
944    // Print the fields in successive locations. Pad to align if needed!
945    const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
946    uint64_t sizeSoFar = 0;
947    for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
948      const Constant* field = CVS->getOperand(i);
949
950      // Check if padding is needed and insert one or more 0s.
951      uint64_t fieldSize = TD->getABITypeSize(field->getType());
952      uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
953                          - cvsLayout->getElementOffset(i)) - fieldSize;
954      sizeSoFar += fieldSize + padSize;
955
956      // Now print the actual field value.
957      EmitGlobalConstant(field);
958
959      // Insert padding - this may include padding to increase the size of the
960      // current field up to the ABI size (if the struct is not packed) as well
961      // as padding to ensure that the next field starts at the right offset.
962      EmitZeros(padSize);
963    }
964    assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
965           "Layout of constant struct may be incorrect!");
966    return;
967  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
968    // FP Constants are printed as integer constants to avoid losing
969    // precision...
970    if (CFP->getType() == Type::DoubleTy) {
971      double Val = CFP->getValueAPF().convertToDouble();  // for comment only
972      uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
973      if (TAI->getData64bitsDirective())
974        O << TAI->getData64bitsDirective() << i << '\t'
975          << TAI->getCommentString() << " double value: " << Val << '\n';
976      else if (TD->isBigEndian()) {
977        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
978          << '\t' << TAI->getCommentString()
979          << " double most significant word " << Val << '\n';
980        O << TAI->getData32bitsDirective() << unsigned(i)
981          << '\t' << TAI->getCommentString()
982          << " double least significant word " << Val << '\n';
983      } else {
984        O << TAI->getData32bitsDirective() << unsigned(i)
985          << '\t' << TAI->getCommentString()
986          << " double least significant word " << Val << '\n';
987        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
988          << '\t' << TAI->getCommentString()
989          << " double most significant word " << Val << '\n';
990      }
991      return;
992    } else if (CFP->getType() == Type::FloatTy) {
993      float Val = CFP->getValueAPF().convertToFloat();  // for comment only
994      O << TAI->getData32bitsDirective()
995        << CFP->getValueAPF().bitcastToAPInt().getZExtValue()
996        << '\t' << TAI->getCommentString() << " float " << Val << '\n';
997      return;
998    } else if (CFP->getType() == Type::X86_FP80Ty) {
999      // all long double variants are printed as hex
1000      // api needed to prevent premature destruction
1001      APInt api = CFP->getValueAPF().bitcastToAPInt();
1002      const uint64_t *p = api.getRawData();
1003      // Convert to double so we can print the approximate val as a comment.
1004      APFloat DoubleVal = CFP->getValueAPF();
1005      bool ignored;
1006      DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1007                        &ignored);
1008      if (TD->isBigEndian()) {
1009        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1010          << '\t' << TAI->getCommentString()
1011          << " long double most significant halfword of ~"
1012          << DoubleVal.convertToDouble() << '\n';
1013        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1014          << '\t' << TAI->getCommentString()
1015          << " long double next halfword\n";
1016        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1017          << '\t' << TAI->getCommentString()
1018          << " long double next halfword\n";
1019        O << TAI->getData16bitsDirective() << uint16_t(p[0])
1020          << '\t' << TAI->getCommentString()
1021          << " long double next halfword\n";
1022        O << TAI->getData16bitsDirective() << uint16_t(p[1])
1023          << '\t' << TAI->getCommentString()
1024          << " long double least significant halfword\n";
1025       } else {
1026        O << TAI->getData16bitsDirective() << uint16_t(p[1])
1027          << '\t' << TAI->getCommentString()
1028          << " long double least significant halfword of ~"
1029          << DoubleVal.convertToDouble() << '\n';
1030        O << TAI->getData16bitsDirective() << uint16_t(p[0])
1031          << '\t' << TAI->getCommentString()
1032          << " long double next halfword\n";
1033        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1034          << '\t' << TAI->getCommentString()
1035          << " long double next halfword\n";
1036        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1037          << '\t' << TAI->getCommentString()
1038          << " long double next halfword\n";
1039        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1040          << '\t' << TAI->getCommentString()
1041          << " long double most significant halfword\n";
1042      }
1043      EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty));
1044      return;
1045    } else if (CFP->getType() == Type::PPC_FP128Ty) {
1046      // all long double variants are printed as hex
1047      // api needed to prevent premature destruction
1048      APInt api = CFP->getValueAPF().bitcastToAPInt();
1049      const uint64_t *p = api.getRawData();
1050      if (TD->isBigEndian()) {
1051        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1052          << '\t' << TAI->getCommentString()
1053          << " long double most significant word\n";
1054        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1055          << '\t' << TAI->getCommentString()
1056          << " long double next word\n";
1057        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1058          << '\t' << TAI->getCommentString()
1059          << " long double next word\n";
1060        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1061          << '\t' << TAI->getCommentString()
1062          << " long double least significant word\n";
1063       } else {
1064        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1065          << '\t' << TAI->getCommentString()
1066          << " long double least significant word\n";
1067        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1068          << '\t' << TAI->getCommentString()
1069          << " long double next word\n";
1070        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1071          << '\t' << TAI->getCommentString()
1072          << " long double next word\n";
1073        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1074          << '\t' << TAI->getCommentString()
1075          << " long double most significant word\n";
1076      }
1077      return;
1078    } else assert(0 && "Floating point constant type not handled");
1079  } else if (CV->getType()->isInteger() &&
1080             cast<IntegerType>(CV->getType())->getBitWidth() >= 64) {
1081    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1082      unsigned BitWidth = CI->getBitWidth();
1083      assert(isPowerOf2_32(BitWidth) &&
1084             "Non-power-of-2-sized integers not handled!");
1085
1086      // We don't expect assemblers to support integer data directives
1087      // for more than 64 bits, so we emit the data in at most 64-bit
1088      // quantities at a time.
1089      const uint64_t *RawData = CI->getValue().getRawData();
1090      for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1091        uint64_t Val;
1092        if (TD->isBigEndian())
1093          Val = RawData[e - i - 1];
1094        else
1095          Val = RawData[i];
1096
1097        if (TAI->getData64bitsDirective())
1098          O << TAI->getData64bitsDirective() << Val << '\n';
1099        else if (TD->isBigEndian()) {
1100          O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1101            << '\t' << TAI->getCommentString()
1102            << " Double-word most significant word " << Val << '\n';
1103          O << TAI->getData32bitsDirective() << unsigned(Val)
1104            << '\t' << TAI->getCommentString()
1105            << " Double-word least significant word " << Val << '\n';
1106        } else {
1107          O << TAI->getData32bitsDirective() << unsigned(Val)
1108            << '\t' << TAI->getCommentString()
1109            << " Double-word least significant word " << Val << '\n';
1110          O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1111            << '\t' << TAI->getCommentString()
1112            << " Double-word most significant word " << Val << '\n';
1113        }
1114      }
1115      return;
1116    }
1117  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1118    const VectorType *PTy = CP->getType();
1119
1120    for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
1121      EmitGlobalConstant(CP->getOperand(I));
1122
1123    return;
1124  }
1125
1126  const Type *type = CV->getType();
1127  printDataDirective(type);
1128  EmitConstantValueOnly(CV);
1129  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1130    SmallString<40> S;
1131    CI->getValue().toStringUnsigned(S, 16);
1132    O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1133  }
1134  O << '\n';
1135}
1136
1137void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1138  // Target doesn't support this yet!
1139  abort();
1140}
1141
1142/// PrintSpecial - Print information related to the specified machine instr
1143/// that is independent of the operand, and may be independent of the instr
1144/// itself.  This can be useful for portably encoding the comment character
1145/// or other bits of target-specific knowledge into the asmstrings.  The
1146/// syntax used is ${:comment}.  Targets can override this to add support
1147/// for their own strange codes.
1148void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
1149  if (!strcmp(Code, "private")) {
1150    O << TAI->getPrivateGlobalPrefix();
1151  } else if (!strcmp(Code, "comment")) {
1152    O << TAI->getCommentString();
1153  } else if (!strcmp(Code, "uid")) {
1154    // Assign a unique ID to this machine instruction.
1155    static const MachineInstr *LastMI = 0;
1156    static const Function *F = 0;
1157    static unsigned Counter = 0U-1;
1158
1159    // Comparing the address of MI isn't sufficient, because machineinstrs may
1160    // be allocated to the same address across functions.
1161    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1162
1163    // If this is a new machine instruction, bump the counter.
1164    if (LastMI != MI || F != ThisF) {
1165      ++Counter;
1166      LastMI = MI;
1167      F = ThisF;
1168    }
1169    O << Counter;
1170  } else {
1171    cerr << "Unknown special formatter '" << Code
1172         << "' for machine instr: " << *MI;
1173    exit(1);
1174  }
1175}
1176
1177
1178/// printInlineAsm - This method formats and prints the specified machine
1179/// instruction that is an inline asm.
1180void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1181  unsigned NumOperands = MI->getNumOperands();
1182
1183  // Count the number of register definitions.
1184  unsigned NumDefs = 0;
1185  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1186       ++NumDefs)
1187    assert(NumDefs != NumOperands-1 && "No asm string?");
1188
1189  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1190
1191  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1192  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1193
1194  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1195  // These are useful to see where empty asm's wound up.
1196  if (AsmStr[0] == 0) {
1197    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1198    return;
1199  }
1200
1201  O << TAI->getInlineAsmStart() << "\n\t";
1202
1203  // The variant of the current asmprinter.
1204  int AsmPrinterVariant = TAI->getAssemblerDialect();
1205
1206  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1207  const char *LastEmitted = AsmStr; // One past the last character emitted.
1208
1209  while (*LastEmitted) {
1210    switch (*LastEmitted) {
1211    default: {
1212      // Not a special case, emit the string section literally.
1213      const char *LiteralEnd = LastEmitted+1;
1214      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1215             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1216        ++LiteralEnd;
1217      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1218        O.write(LastEmitted, LiteralEnd-LastEmitted);
1219      LastEmitted = LiteralEnd;
1220      break;
1221    }
1222    case '\n':
1223      ++LastEmitted;   // Consume newline character.
1224      O << '\n';       // Indent code with newline.
1225      break;
1226    case '$': {
1227      ++LastEmitted;   // Consume '$' character.
1228      bool Done = true;
1229
1230      // Handle escapes.
1231      switch (*LastEmitted) {
1232      default: Done = false; break;
1233      case '$':     // $$ -> $
1234        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1235          O << '$';
1236        ++LastEmitted;  // Consume second '$' character.
1237        break;
1238      case '(':             // $( -> same as GCC's { character.
1239        ++LastEmitted;      // Consume '(' character.
1240        if (CurVariant != -1) {
1241          cerr << "Nested variants found in inline asm string: '"
1242               << AsmStr << "'\n";
1243          exit(1);
1244        }
1245        CurVariant = 0;     // We're in the first variant now.
1246        break;
1247      case '|':
1248        ++LastEmitted;  // consume '|' character.
1249        if (CurVariant == -1)
1250          O << '|';       // this is gcc's behavior for | outside a variant
1251        else
1252          ++CurVariant;   // We're in the next variant.
1253        break;
1254      case ')':         // $) -> same as GCC's } char.
1255        ++LastEmitted;  // consume ')' character.
1256        if (CurVariant == -1)
1257          O << '}';     // this is gcc's behavior for } outside a variant
1258        else
1259          CurVariant = -1;
1260        break;
1261      }
1262      if (Done) break;
1263
1264      bool HasCurlyBraces = false;
1265      if (*LastEmitted == '{') {     // ${variable}
1266        ++LastEmitted;               // Consume '{' character.
1267        HasCurlyBraces = true;
1268      }
1269
1270      const char *IDStart = LastEmitted;
1271      char *IDEnd;
1272      errno = 0;
1273      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1274      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1275        cerr << "Bad $ operand number in inline asm string: '"
1276             << AsmStr << "'\n";
1277        exit(1);
1278      }
1279      LastEmitted = IDEnd;
1280
1281      char Modifier[2] = { 0, 0 };
1282
1283      if (HasCurlyBraces) {
1284        // If we have curly braces, check for a modifier character.  This
1285        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1286        if (*LastEmitted == ':') {
1287          ++LastEmitted;    // Consume ':' character.
1288          if (*LastEmitted == 0) {
1289            cerr << "Bad ${:} expression in inline asm string: '"
1290                 << AsmStr << "'\n";
1291            exit(1);
1292          }
1293
1294          Modifier[0] = *LastEmitted;
1295          ++LastEmitted;    // Consume modifier character.
1296        }
1297
1298        if (*LastEmitted != '}') {
1299          cerr << "Bad ${} expression in inline asm string: '"
1300               << AsmStr << "'\n";
1301          exit(1);
1302        }
1303        ++LastEmitted;    // Consume '}' character.
1304      }
1305
1306      if ((unsigned)Val >= NumOperands-1) {
1307        cerr << "Invalid $ operand number in inline asm string: '"
1308             << AsmStr << "'\n";
1309        exit(1);
1310      }
1311
1312      // Okay, we finally have a value number.  Ask the target to print this
1313      // operand!
1314      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1315        unsigned OpNo = 1;
1316
1317        bool Error = false;
1318
1319        // Scan to find the machine operand number for the operand.
1320        for (; Val; --Val) {
1321          if (OpNo >= MI->getNumOperands()) break;
1322          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1323          OpNo += (OpFlags >> 3) + 1;
1324        }
1325
1326        if (OpNo >= MI->getNumOperands()) {
1327          Error = true;
1328        } else {
1329          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1330          ++OpNo;  // Skip over the ID number.
1331
1332          if (Modifier[0]=='l')  // labels are target independent
1333            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1334                                 false, false, false);
1335          else {
1336            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1337            if ((OpFlags & 7) == 4) {
1338              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1339                                                Modifier[0] ? Modifier : 0);
1340            } else {
1341              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1342                                          Modifier[0] ? Modifier : 0);
1343            }
1344          }
1345        }
1346        if (Error) {
1347          cerr << "Invalid operand found in inline asm: '"
1348               << AsmStr << "'\n";
1349          MI->dump();
1350          exit(1);
1351        }
1352      }
1353      break;
1354    }
1355    }
1356  }
1357  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1358}
1359
1360/// printImplicitDef - This method prints the specified machine instruction
1361/// that is an implicit def.
1362void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1363  O << '\t' << TAI->getCommentString() << " implicit-def: "
1364    << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1365}
1366
1367/// printLabel - This method prints a local label used by debug and
1368/// exception handling tables.
1369void AsmPrinter::printLabel(const MachineInstr *MI) const {
1370  printLabel(MI->getOperand(0).getImm());
1371}
1372
1373void AsmPrinter::printLabel(unsigned Id) const {
1374  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1375}
1376
1377/// printDeclare - This method prints a local variable declaration used by
1378/// debug tables.
1379/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1380/// entry into dwarf table.
1381void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1382  int FI = MI->getOperand(0).getIndex();
1383  GlobalValue *GV = MI->getOperand(1).getGlobal();
1384  MMI->RecordVariable(GV, FI);
1385}
1386
1387/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1388/// instruction, using the specified assembler variant.  Targets should
1389/// overried this to format as appropriate.
1390bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1391                                 unsigned AsmVariant, const char *ExtraCode) {
1392  // Target doesn't support this yet!
1393  return true;
1394}
1395
1396bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1397                                       unsigned AsmVariant,
1398                                       const char *ExtraCode) {
1399  // Target doesn't support this yet!
1400  return true;
1401}
1402
1403/// printBasicBlockLabel - This method prints the label for the specified
1404/// MachineBasicBlock
1405void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1406                                      bool printAlign,
1407                                      bool printColon,
1408                                      bool printComment) const {
1409  if (printAlign) {
1410    unsigned Align = MBB->getAlignment();
1411    if (Align)
1412      EmitAlignment(Log2_32(Align));
1413  }
1414
1415  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1416    << MBB->getNumber();
1417  if (printColon)
1418    O << ':';
1419  if (printComment && MBB->getBasicBlock())
1420    O << '\t' << TAI->getCommentString() << ' '
1421      << MBB->getBasicBlock()->getNameStart();
1422}
1423
1424/// printPICJumpTableSetLabel - This method prints a set label for the
1425/// specified MachineBasicBlock for a jumptable entry.
1426void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1427                                           const MachineBasicBlock *MBB) const {
1428  if (!TAI->getSetDirective())
1429    return;
1430
1431  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1432    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1433  printBasicBlockLabel(MBB, false, false, false);
1434  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1435    << '_' << uid << '\n';
1436}
1437
1438void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1439                                           const MachineBasicBlock *MBB) const {
1440  if (!TAI->getSetDirective())
1441    return;
1442
1443  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1444    << getFunctionNumber() << '_' << uid << '_' << uid2
1445    << "_set_" << MBB->getNumber() << ',';
1446  printBasicBlockLabel(MBB, false, false, false);
1447  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1448    << '_' << uid << '_' << uid2 << '\n';
1449}
1450
1451/// printDataDirective - This method prints the asm directive for the
1452/// specified type.
1453void AsmPrinter::printDataDirective(const Type *type) {
1454  const TargetData *TD = TM.getTargetData();
1455  switch (type->getTypeID()) {
1456  case Type::IntegerTyID: {
1457    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1458    if (BitWidth <= 8)
1459      O << TAI->getData8bitsDirective();
1460    else if (BitWidth <= 16)
1461      O << TAI->getData16bitsDirective();
1462    else if (BitWidth <= 32)
1463      O << TAI->getData32bitsDirective();
1464    else if (BitWidth <= 64) {
1465      assert(TAI->getData64bitsDirective() &&
1466             "Target cannot handle 64-bit constant exprs!");
1467      O << TAI->getData64bitsDirective();
1468    } else {
1469      assert(0 && "Target cannot handle given data directive width!");
1470    }
1471    break;
1472  }
1473  case Type::PointerTyID:
1474    if (TD->getPointerSize() == 8) {
1475      assert(TAI->getData64bitsDirective() &&
1476             "Target cannot handle 64-bit pointer exprs!");
1477      O << TAI->getData64bitsDirective();
1478    } else {
1479      O << TAI->getData32bitsDirective();
1480    }
1481    break;
1482  case Type::FloatTyID: case Type::DoubleTyID:
1483  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1484    assert (0 && "Should have already output floating point constant.");
1485  default:
1486    assert (0 && "Can't handle printing this type of thing");
1487    break;
1488  }
1489}
1490
1491void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1492                                   const char *Prefix) {
1493  if (Name[0]=='\"')
1494    O << '\"';
1495  O << TAI->getPrivateGlobalPrefix();
1496  if (Prefix) O << Prefix;
1497  if (Name[0]=='\"')
1498    O << '\"';
1499  if (Name[0]=='\"')
1500    O << Name[1];
1501  else
1502    O << Name;
1503  O << Suffix;
1504  if (Name[0]=='\"')
1505    O << '\"';
1506}
1507
1508void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1509  printSuffixedName(Name.c_str(), Suffix);
1510}
1511
1512void AsmPrinter::printVisibility(const std::string& Name,
1513                                 unsigned Visibility) const {
1514  if (Visibility == GlobalValue::HiddenVisibility) {
1515    if (const char *Directive = TAI->getHiddenDirective())
1516      O << Directive << Name << '\n';
1517  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1518    if (const char *Directive = TAI->getProtectedDirective())
1519      O << Directive << Name << '\n';
1520  }
1521}
1522
1523GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1524  if (!S->usesMetadata())
1525    return 0;
1526
1527  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1528  if (GCPI != GCMetadataPrinters.end())
1529    return GCPI->second;
1530
1531  const char *Name = S->getName().c_str();
1532
1533  for (GCMetadataPrinterRegistry::iterator
1534         I = GCMetadataPrinterRegistry::begin(),
1535         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1536    if (strcmp(Name, I->getName()) == 0) {
1537      GCMetadataPrinter *GMP = I->instantiate();
1538      GMP->S = S;
1539      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1540      return GMP;
1541    }
1542
1543  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1544  abort();
1545}
1546