AsmPrinter.cpp revision 8b1e0549389e4c360ac95f50da95d5009553b447
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineJumpTableInfo.h" 22#include "llvm/CodeGen/MachineModuleInfo.h" 23#include "llvm/Support/Mangler.h" 24#include "llvm/Support/raw_ostream.h" 25#include "llvm/Target/TargetAsmInfo.h" 26#include "llvm/Target/TargetData.h" 27#include "llvm/Target/TargetLowering.h" 28#include "llvm/Target/TargetMachine.h" 29#include "llvm/Target/TargetOptions.h" 30#include "llvm/Target/TargetRegisterInfo.h" 31#include "llvm/ADT/SmallPtrSet.h" 32#include "llvm/ADT/SmallString.h" 33#include "llvm/ADT/StringExtras.h" 34#include <cerrno> 35using namespace llvm; 36 37char AsmPrinter::ID = 0; 38AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm, 39 const TargetAsmInfo *T) 40 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 41 TM(tm), TAI(T), TRI(tm.getRegisterInfo()), 42 IsInTextSection(false) 43{} 44 45AsmPrinter::~AsmPrinter() { 46 for (gcp_iterator I = GCMetadataPrinters.begin(), 47 E = GCMetadataPrinters.end(); I != E; ++I) 48 delete I->second; 49} 50 51/// SwitchToTextSection - Switch to the specified text section of the executable 52/// if we are not already in it! 53/// 54void AsmPrinter::SwitchToTextSection(const char *NewSection, 55 const GlobalValue *GV) { 56 std::string NS; 57 if (GV && GV->hasSection()) 58 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 59 else 60 NS = NewSection; 61 62 // If we're already in this section, we're done. 63 if (CurrentSection == NS) return; 64 65 // Close the current section, if applicable. 66 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 67 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 68 69 CurrentSection = NS; 70 71 if (!CurrentSection.empty()) 72 O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n'; 73 74 IsInTextSection = true; 75} 76 77/// SwitchToDataSection - Switch to the specified data section of the executable 78/// if we are not already in it! 79/// 80void AsmPrinter::SwitchToDataSection(const char *NewSection, 81 const GlobalValue *GV) { 82 std::string NS; 83 if (GV && GV->hasSection()) 84 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 85 else 86 NS = NewSection; 87 88 // If we're already in this section, we're done. 89 if (CurrentSection == NS) return; 90 91 // Close the current section, if applicable. 92 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 93 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 94 95 CurrentSection = NS; 96 97 if (!CurrentSection.empty()) 98 O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n'; 99 100 IsInTextSection = false; 101} 102 103/// SwitchToSection - Switch to the specified section of the executable if we 104/// are not already in it! 105void AsmPrinter::SwitchToSection(const Section* NS) { 106 const std::string& NewSection = NS->getName(); 107 108 // If we're already in this section, we're done. 109 if (CurrentSection == NewSection) return; 110 111 // Close the current section, if applicable. 112 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 113 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 114 115 // FIXME: Make CurrentSection a Section* in the future 116 CurrentSection = NewSection; 117 CurrentSection_ = NS; 118 119 if (!CurrentSection.empty()) { 120 // If section is named we need to switch into it via special '.section' 121 // directive and also append funky flags. Otherwise - section name is just 122 // some magic assembler directive. 123 if (NS->isNamed()) 124 O << TAI->getSwitchToSectionDirective() 125 << CurrentSection 126 << TAI->getSectionFlags(NS->getFlags()); 127 else 128 O << CurrentSection; 129 O << TAI->getDataSectionStartSuffix() << '\n'; 130 } 131 132 IsInTextSection = (NS->getFlags() & SectionFlags::Code); 133} 134 135void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 136 MachineFunctionPass::getAnalysisUsage(AU); 137 AU.addRequired<GCModuleInfo>(); 138} 139 140bool AsmPrinter::doInitialization(Module &M) { 141 Mang = new Mangler(M, TAI->getGlobalPrefix()); 142 143 GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>(); 144 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 145 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 146 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 147 MP->beginAssembly(O, *this, *TAI); 148 149 if (!M.getModuleInlineAsm().empty()) 150 O << TAI->getCommentString() << " Start of file scope inline assembly\n" 151 << M.getModuleInlineAsm() 152 << '\n' << TAI->getCommentString() 153 << " End of file scope inline assembly\n"; 154 155 SwitchToDataSection(""); // Reset back to no section. 156 157 MMI = getAnalysisToUpdate<MachineModuleInfo>(); 158 if (MMI) MMI->AnalyzeModule(M); 159 160 return false; 161} 162 163bool AsmPrinter::doFinalization(Module &M) { 164 if (TAI->getWeakRefDirective()) { 165 if (!ExtWeakSymbols.empty()) 166 SwitchToDataSection(""); 167 168 for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(), 169 e = ExtWeakSymbols.end(); i != e; ++i) { 170 const GlobalValue *GV = *i; 171 std::string Name = Mang->getValueName(GV); 172 O << TAI->getWeakRefDirective() << Name << '\n'; 173 } 174 } 175 176 if (TAI->getSetDirective()) { 177 if (!M.alias_empty()) 178 SwitchToSection(TAI->getTextSection()); 179 180 O << '\n'; 181 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 182 I!=E; ++I) { 183 std::string Name = Mang->getValueName(I); 184 std::string Target; 185 186 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 187 Target = Mang->getValueName(GV); 188 189 if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) 190 O << "\t.globl\t" << Name << '\n'; 191 else if (I->hasWeakLinkage()) 192 O << TAI->getWeakRefDirective() << Name << '\n'; 193 else if (!I->hasInternalLinkage()) 194 assert(0 && "Invalid alias linkage"); 195 196 printVisibility(Name, I->getVisibility()); 197 198 O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 199 200 // If the aliasee has external weak linkage it can be referenced only by 201 // alias itself. In this case it can be not in ExtWeakSymbols list. Emit 202 // weak reference in such case. 203 if (GV->hasExternalWeakLinkage()) { 204 if (TAI->getWeakRefDirective()) 205 O << TAI->getWeakRefDirective() << Target << '\n'; 206 else 207 O << "\t.globl\t" << Target << '\n'; 208 } 209 } 210 } 211 212 GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>(); 213 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 214 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 215 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 216 MP->finishAssembly(O, *this, *TAI); 217 218 // If we don't have any trampolines, then we don't require stack memory 219 // to be executable. Some targets have a directive to declare this. 220 Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 221 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 222 if (TAI->getNonexecutableStackDirective()) 223 O << TAI->getNonexecutableStackDirective() << '\n'; 224 225 delete Mang; Mang = 0; 226 return false; 227} 228 229std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) { 230 assert(MF && "No machine function?"); 231 std::string Name = MF->getFunction()->getName(); 232 if (Name.empty()) 233 Name = Mang->getValueName(MF->getFunction()); 234 return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix()); 235} 236 237void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 238 // What's my mangled name? 239 CurrentFnName = Mang->getValueName(MF.getFunction()); 240 IncrementFunctionNumber(); 241} 242 243/// EmitConstantPool - Print to the current output stream assembly 244/// representations of the constants in the constant pool MCP. This is 245/// used to print out constants which have been "spilled to memory" by 246/// the code generator. 247/// 248void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 249 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 250 if (CP.empty()) return; 251 252 // Calculate sections for constant pool entries. We collect entries to go into 253 // the same section together to reduce amount of section switch statements. 254 typedef 255 std::multimap<const Section*, 256 std::pair<MachineConstantPoolEntry, unsigned> > CPMap; 257 CPMap CPs; 258 SmallPtrSet<const Section*, 5> Sections; 259 260 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 261 MachineConstantPoolEntry CPE = CP[i]; 262 const Section* S = TAI->SelectSectionForMachineConst(CPE.getType()); 263 CPs.insert(std::make_pair(S, std::make_pair(CPE, i))); 264 Sections.insert(S); 265 } 266 267 // Now print stuff into the calculated sections. 268 for (SmallPtrSet<const Section*, 5>::iterator IS = Sections.begin(), 269 ES = Sections.end(); IS != ES; ++IS) { 270 SwitchToSection(*IS); 271 EmitAlignment(MCP->getConstantPoolAlignment()); 272 273 std::pair<CPMap::iterator, CPMap::iterator> II = CPs.equal_range(*IS); 274 for (CPMap::iterator I = II.first, E = II.second; I != E; ++I) { 275 CPMap::iterator J = next(I); 276 MachineConstantPoolEntry Entry = I->second.first; 277 unsigned index = I->second.second; 278 279 O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 280 << index << ":\t\t\t\t\t"; 281 // O << TAI->getCommentString() << ' ' << 282 // WriteTypeSymbolic(O, CP[i].first.getType(), 0); 283 O << '\n'; 284 if (Entry.isMachineConstantPoolEntry()) 285 EmitMachineConstantPoolValue(Entry.Val.MachineCPVal); 286 else 287 EmitGlobalConstant(Entry.Val.ConstVal); 288 289 // Emit inter-object padding for alignment. 290 if (J != E) { 291 const Type *Ty = Entry.getType(); 292 unsigned EntSize = TM.getTargetData()->getABITypeSize(Ty); 293 unsigned ValEnd = Entry.getOffset() + EntSize; 294 EmitZeros(J->second.first.getOffset()-ValEnd); 295 } 296 } 297 } 298} 299 300/// EmitJumpTableInfo - Print assembly representations of the jump tables used 301/// by the current function to the current output stream. 302/// 303void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 304 MachineFunction &MF) { 305 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 306 if (JT.empty()) return; 307 308 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 309 310 // Pick the directive to use to print the jump table entries, and switch to 311 // the appropriate section. 312 TargetLowering *LoweringInfo = TM.getTargetLowering(); 313 314 const char* JumpTableDataSection = TAI->getJumpTableDataSection(); 315 const Function *F = MF.getFunction(); 316 unsigned SectionFlags = TAI->SectionFlagsForGlobal(F); 317 if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) || 318 !JumpTableDataSection || 319 SectionFlags & SectionFlags::Linkonce) { 320 // In PIC mode, we need to emit the jump table to the same section as the 321 // function body itself, otherwise the label differences won't make sense. 322 // We should also do if the section name is NULL or function is declared in 323 // discardable section. 324 SwitchToSection(TAI->SectionForGlobal(F)); 325 } else { 326 SwitchToDataSection(JumpTableDataSection); 327 } 328 329 EmitAlignment(Log2_32(MJTI->getAlignment())); 330 331 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 332 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 333 334 // If this jump table was deleted, ignore it. 335 if (JTBBs.empty()) continue; 336 337 // For PIC codegen, if possible we want to use the SetDirective to reduce 338 // the number of relocations the assembler will generate for the jump table. 339 // Set directives are all printed before the jump table itself. 340 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 341 if (TAI->getSetDirective() && IsPic) 342 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 343 if (EmittedSets.insert(JTBBs[ii])) 344 printPICJumpTableSetLabel(i, JTBBs[ii]); 345 346 // On some targets (e.g. darwin) we want to emit two consequtive labels 347 // before each jump table. The first label is never referenced, but tells 348 // the assembler and linker the extents of the jump table object. The 349 // second label is actually referenced by the code. 350 if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) 351 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 352 353 O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 354 << '_' << i << ":\n"; 355 356 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 357 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 358 O << '\n'; 359 } 360 } 361} 362 363void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 364 const MachineBasicBlock *MBB, 365 unsigned uid) const { 366 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 367 368 // Use JumpTableDirective otherwise honor the entry size from the jump table 369 // info. 370 const char *JTEntryDirective = TAI->getJumpTableDirective(); 371 bool HadJTEntryDirective = JTEntryDirective != NULL; 372 if (!HadJTEntryDirective) { 373 JTEntryDirective = MJTI->getEntrySize() == 4 ? 374 TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); 375 } 376 377 O << JTEntryDirective << ' '; 378 379 // If we have emitted set directives for the jump table entries, print 380 // them rather than the entries themselves. If we're emitting PIC, then 381 // emit the table entries as differences between two text section labels. 382 // If we're emitting non-PIC code, then emit the entries as direct 383 // references to the target basic blocks. 384 if (IsPic) { 385 if (TAI->getSetDirective()) { 386 O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() 387 << '_' << uid << "_set_" << MBB->getNumber(); 388 } else { 389 printBasicBlockLabel(MBB, false, false, false); 390 // If the arch uses custom Jump Table directives, don't calc relative to 391 // JT 392 if (!HadJTEntryDirective) 393 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" 394 << getFunctionNumber() << '_' << uid; 395 } 396 } else { 397 printBasicBlockLabel(MBB, false, false, false); 398 } 399} 400 401 402/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 403/// special global used by LLVM. If so, emit it and return true, otherwise 404/// do nothing and return false. 405bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 406 if (GV->getName() == "llvm.used") { 407 if (TAI->getUsedDirective() != 0) // No need to emit this at all. 408 EmitLLVMUsedList(GV->getInitializer()); 409 return true; 410 } 411 412 // Ignore debug and non-emitted data. 413 if (GV->getSection() == "llvm.metadata") return true; 414 415 if (!GV->hasAppendingLinkage()) return false; 416 417 assert(GV->hasInitializer() && "Not a special LLVM global!"); 418 419 const TargetData *TD = TM.getTargetData(); 420 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 421 if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) { 422 SwitchToDataSection(TAI->getStaticCtorsSection()); 423 EmitAlignment(Align, 0); 424 EmitXXStructorList(GV->getInitializer()); 425 return true; 426 } 427 428 if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) { 429 SwitchToDataSection(TAI->getStaticDtorsSection()); 430 EmitAlignment(Align, 0); 431 EmitXXStructorList(GV->getInitializer()); 432 return true; 433 } 434 435 return false; 436} 437 438/// findGlobalValue - if CV is an expression equivalent to a single 439/// global value, return that value. 440const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) { 441 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 442 return GV; 443 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 444 const TargetData *TD = TM.getTargetData(); 445 unsigned Opcode = CE->getOpcode(); 446 switch (Opcode) { 447 case Instruction::GetElementPtr: { 448 const Constant *ptrVal = CE->getOperand(0); 449 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 450 if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size())) 451 return 0; 452 return findGlobalValue(ptrVal); 453 } 454 case Instruction::BitCast: 455 return findGlobalValue(CE->getOperand(0)); 456 default: 457 return 0; 458 } 459 } 460 return 0; 461} 462 463/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each 464/// global in the specified llvm.used list for which emitUsedDirectiveFor 465/// is true, as being used with this directive. 466 467void AsmPrinter::EmitLLVMUsedList(Constant *List) { 468 const char *Directive = TAI->getUsedDirective(); 469 470 // Should be an array of 'sbyte*'. 471 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 472 if (InitList == 0) return; 473 474 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 475 const GlobalValue *GV = findGlobalValue(InitList->getOperand(i)); 476 if (TAI->emitUsedDirectiveFor(GV, Mang)) { 477 O << Directive; 478 EmitConstantValueOnly(InitList->getOperand(i)); 479 O << '\n'; 480 } 481 } 482} 483 484/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 485/// function pointers, ignoring the init priority. 486void AsmPrinter::EmitXXStructorList(Constant *List) { 487 // Should be an array of '{ int, void ()* }' structs. The first value is the 488 // init priority, which we ignore. 489 if (!isa<ConstantArray>(List)) return; 490 ConstantArray *InitList = cast<ConstantArray>(List); 491 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 492 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 493 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 494 495 if (CS->getOperand(1)->isNullValue()) 496 return; // Found a null terminator, exit printing. 497 // Emit the function pointer. 498 EmitGlobalConstant(CS->getOperand(1)); 499 } 500} 501 502/// getGlobalLinkName - Returns the asm/link name of of the specified 503/// global variable. Should be overridden by each target asm printer to 504/// generate the appropriate value. 505const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{ 506 std::string LinkName; 507 508 if (isa<Function>(GV)) { 509 LinkName += TAI->getFunctionAddrPrefix(); 510 LinkName += Mang->getValueName(GV); 511 LinkName += TAI->getFunctionAddrSuffix(); 512 } else { 513 LinkName += TAI->getGlobalVarAddrPrefix(); 514 LinkName += Mang->getValueName(GV); 515 LinkName += TAI->getGlobalVarAddrSuffix(); 516 } 517 518 return LinkName; 519} 520 521/// EmitExternalGlobal - Emit the external reference to a global variable. 522/// Should be overridden if an indirect reference should be used. 523void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { 524 O << getGlobalLinkName(GV); 525} 526 527 528 529//===----------------------------------------------------------------------===// 530/// LEB 128 number encoding. 531 532/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) 533/// representing an unsigned leb128 value. 534void AsmPrinter::PrintULEB128(unsigned Value) const { 535 do { 536 unsigned Byte = Value & 0x7f; 537 Value >>= 7; 538 if (Value) Byte |= 0x80; 539 O << "0x" << utohexstr(Byte); 540 if (Value) O << ", "; 541 } while (Value); 542} 543 544/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) 545/// representing a signed leb128 value. 546void AsmPrinter::PrintSLEB128(int Value) const { 547 int Sign = Value >> (8 * sizeof(Value) - 1); 548 bool IsMore; 549 550 do { 551 unsigned Byte = Value & 0x7f; 552 Value >>= 7; 553 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 554 if (IsMore) Byte |= 0x80; 555 O << "0x" << utohexstr(Byte); 556 if (IsMore) O << ", "; 557 } while (IsMore); 558} 559 560//===--------------------------------------------------------------------===// 561// Emission and print routines 562// 563 564/// PrintHex - Print a value as a hexidecimal value. 565/// 566void AsmPrinter::PrintHex(int Value) const { 567 O << "0x" << utohexstr(static_cast<unsigned>(Value)); 568} 569 570/// EOL - Print a newline character to asm stream. If a comment is present 571/// then it will be printed first. Comments should not contain '\n'. 572void AsmPrinter::EOL() const { 573 O << '\n'; 574} 575 576void AsmPrinter::EOL(const std::string &Comment) const { 577 if (VerboseAsm && !Comment.empty()) { 578 O << '\t' 579 << TAI->getCommentString() 580 << ' ' 581 << Comment; 582 } 583 O << '\n'; 584} 585 586void AsmPrinter::EOL(const char* Comment) const { 587 if (VerboseAsm && *Comment) { 588 O << '\t' 589 << TAI->getCommentString() 590 << ' ' 591 << Comment; 592 } 593 O << '\n'; 594} 595 596/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 597/// unsigned leb128 value. 598void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 599 if (TAI->hasLEB128()) { 600 O << "\t.uleb128\t" 601 << Value; 602 } else { 603 O << TAI->getData8bitsDirective(); 604 PrintULEB128(Value); 605 } 606} 607 608/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 609/// signed leb128 value. 610void AsmPrinter::EmitSLEB128Bytes(int Value) const { 611 if (TAI->hasLEB128()) { 612 O << "\t.sleb128\t" 613 << Value; 614 } else { 615 O << TAI->getData8bitsDirective(); 616 PrintSLEB128(Value); 617 } 618} 619 620/// EmitInt8 - Emit a byte directive and value. 621/// 622void AsmPrinter::EmitInt8(int Value) const { 623 O << TAI->getData8bitsDirective(); 624 PrintHex(Value & 0xFF); 625} 626 627/// EmitInt16 - Emit a short directive and value. 628/// 629void AsmPrinter::EmitInt16(int Value) const { 630 O << TAI->getData16bitsDirective(); 631 PrintHex(Value & 0xFFFF); 632} 633 634/// EmitInt32 - Emit a long directive and value. 635/// 636void AsmPrinter::EmitInt32(int Value) const { 637 O << TAI->getData32bitsDirective(); 638 PrintHex(Value); 639} 640 641/// EmitInt64 - Emit a long long directive and value. 642/// 643void AsmPrinter::EmitInt64(uint64_t Value) const { 644 if (TAI->getData64bitsDirective()) { 645 O << TAI->getData64bitsDirective(); 646 PrintHex(Value); 647 } else { 648 if (TM.getTargetData()->isBigEndian()) { 649 EmitInt32(unsigned(Value >> 32)); O << '\n'; 650 EmitInt32(unsigned(Value)); 651 } else { 652 EmitInt32(unsigned(Value)); O << '\n'; 653 EmitInt32(unsigned(Value >> 32)); 654 } 655 } 656} 657 658/// toOctal - Convert the low order bits of X into an octal digit. 659/// 660static inline char toOctal(int X) { 661 return (X&7)+'0'; 662} 663 664/// printStringChar - Print a char, escaped if necessary. 665/// 666static void printStringChar(raw_ostream &O, char C) { 667 if (C == '"') { 668 O << "\\\""; 669 } else if (C == '\\') { 670 O << "\\\\"; 671 } else if (isprint(C)) { 672 O << C; 673 } else { 674 switch(C) { 675 case '\b': O << "\\b"; break; 676 case '\f': O << "\\f"; break; 677 case '\n': O << "\\n"; break; 678 case '\r': O << "\\r"; break; 679 case '\t': O << "\\t"; break; 680 default: 681 O << '\\'; 682 O << toOctal(C >> 6); 683 O << toOctal(C >> 3); 684 O << toOctal(C >> 0); 685 break; 686 } 687 } 688} 689 690/// EmitString - Emit a string with quotes and a null terminator. 691/// Special characters are emitted properly. 692/// \literal (Eg. '\t') \endliteral 693void AsmPrinter::EmitString(const std::string &String) const { 694 const char* AscizDirective = TAI->getAscizDirective(); 695 if (AscizDirective) 696 O << AscizDirective; 697 else 698 O << TAI->getAsciiDirective(); 699 O << '\"'; 700 for (unsigned i = 0, N = String.size(); i < N; ++i) { 701 unsigned char C = String[i]; 702 printStringChar(O, C); 703 } 704 if (AscizDirective) 705 O << '\"'; 706 else 707 O << "\\0\""; 708} 709 710 711/// EmitFile - Emit a .file directive. 712void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 713 O << "\t.file\t" << Number << " \""; 714 for (unsigned i = 0, N = Name.size(); i < N; ++i) { 715 unsigned char C = Name[i]; 716 printStringChar(O, C); 717 } 718 O << '\"'; 719} 720 721 722//===----------------------------------------------------------------------===// 723 724// EmitAlignment - Emit an alignment directive to the specified power of 725// two boundary. For example, if you pass in 3 here, you will get an 8 726// byte alignment. If a global value is specified, and if that global has 727// an explicit alignment requested, it will unconditionally override the 728// alignment request. However, if ForcedAlignBits is specified, this value 729// has final say: the ultimate alignment will be the max of ForcedAlignBits 730// and the alignment computed with NumBits and the global. 731// 732// The algorithm is: 733// Align = NumBits; 734// if (GV && GV->hasalignment) Align = GV->getalignment(); 735// Align = std::max(Align, ForcedAlignBits); 736// 737void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 738 unsigned ForcedAlignBits, 739 bool UseFillExpr) const { 740 if (GV && GV->getAlignment()) 741 NumBits = Log2_32(GV->getAlignment()); 742 NumBits = std::max(NumBits, ForcedAlignBits); 743 744 if (NumBits == 0) return; // No need to emit alignment. 745 if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; 746 O << TAI->getAlignDirective() << NumBits; 747 748 unsigned FillValue = TAI->getTextAlignFillValue(); 749 UseFillExpr &= IsInTextSection && FillValue; 750 if (UseFillExpr) O << ",0x" << utohexstr(FillValue); 751 O << '\n'; 752} 753 754 755/// EmitZeros - Emit a block of zeros. 756/// 757void AsmPrinter::EmitZeros(uint64_t NumZeros) const { 758 if (NumZeros) { 759 if (TAI->getZeroDirective()) { 760 O << TAI->getZeroDirective() << NumZeros; 761 if (TAI->getZeroDirectiveSuffix()) 762 O << TAI->getZeroDirectiveSuffix(); 763 O << '\n'; 764 } else { 765 for (; NumZeros; --NumZeros) 766 O << TAI->getData8bitsDirective() << "0\n"; 767 } 768 } 769} 770 771// Print out the specified constant, without a storage class. Only the 772// constants valid in constant expressions can occur here. 773void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 774 if (CV->isNullValue() || isa<UndefValue>(CV)) 775 O << '0'; 776 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 777 O << CI->getZExtValue(); 778 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 779 // This is a constant address for a global variable or function. Use the 780 // name of the variable or function as the address value, possibly 781 // decorating it with GlobalVarAddrPrefix/Suffix or 782 // FunctionAddrPrefix/Suffix (these all default to "" ) 783 if (isa<Function>(GV)) { 784 O << TAI->getFunctionAddrPrefix() 785 << Mang->getValueName(GV) 786 << TAI->getFunctionAddrSuffix(); 787 } else { 788 O << TAI->getGlobalVarAddrPrefix() 789 << Mang->getValueName(GV) 790 << TAI->getGlobalVarAddrSuffix(); 791 } 792 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 793 const TargetData *TD = TM.getTargetData(); 794 unsigned Opcode = CE->getOpcode(); 795 switch (Opcode) { 796 case Instruction::GetElementPtr: { 797 // generate a symbolic expression for the byte address 798 const Constant *ptrVal = CE->getOperand(0); 799 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 800 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 801 idxVec.size())) { 802 if (Offset) 803 O << '('; 804 EmitConstantValueOnly(ptrVal); 805 if (Offset > 0) 806 O << ") + " << Offset; 807 else if (Offset < 0) 808 O << ") - " << -Offset; 809 } else { 810 EmitConstantValueOnly(ptrVal); 811 } 812 break; 813 } 814 case Instruction::Trunc: 815 case Instruction::ZExt: 816 case Instruction::SExt: 817 case Instruction::FPTrunc: 818 case Instruction::FPExt: 819 case Instruction::UIToFP: 820 case Instruction::SIToFP: 821 case Instruction::FPToUI: 822 case Instruction::FPToSI: 823 assert(0 && "FIXME: Don't yet support this kind of constant cast expr"); 824 break; 825 case Instruction::BitCast: 826 return EmitConstantValueOnly(CE->getOperand(0)); 827 828 case Instruction::IntToPtr: { 829 // Handle casts to pointers by changing them into casts to the appropriate 830 // integer type. This promotes constant folding and simplifies this code. 831 Constant *Op = CE->getOperand(0); 832 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/); 833 return EmitConstantValueOnly(Op); 834 } 835 836 837 case Instruction::PtrToInt: { 838 // Support only foldable casts to/from pointers that can be eliminated by 839 // changing the pointer to the appropriately sized integer type. 840 Constant *Op = CE->getOperand(0); 841 const Type *Ty = CE->getType(); 842 843 // We can emit the pointer value into this slot if the slot is an 844 // integer slot greater or equal to the size of the pointer. 845 if (TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType())) 846 return EmitConstantValueOnly(Op); 847 848 O << "(("; 849 EmitConstantValueOnly(Op); 850 APInt ptrMask = APInt::getAllOnesValue(TD->getABITypeSizeInBits(Ty)); 851 852 SmallString<40> S; 853 ptrMask.toStringUnsigned(S); 854 O << ") & " << S.c_str() << ')'; 855 break; 856 } 857 case Instruction::Add: 858 case Instruction::Sub: 859 case Instruction::And: 860 case Instruction::Or: 861 case Instruction::Xor: 862 O << '('; 863 EmitConstantValueOnly(CE->getOperand(0)); 864 O << ')'; 865 switch (Opcode) { 866 case Instruction::Add: 867 O << " + "; 868 break; 869 case Instruction::Sub: 870 O << " - "; 871 break; 872 case Instruction::And: 873 O << " & "; 874 break; 875 case Instruction::Or: 876 O << " | "; 877 break; 878 case Instruction::Xor: 879 O << " ^ "; 880 break; 881 default: 882 break; 883 } 884 O << '('; 885 EmitConstantValueOnly(CE->getOperand(1)); 886 O << ')'; 887 break; 888 default: 889 assert(0 && "Unsupported operator!"); 890 } 891 } else { 892 assert(0 && "Unknown constant value!"); 893 } 894} 895 896/// printAsCString - Print the specified array as a C compatible string, only if 897/// the predicate isString is true. 898/// 899static void printAsCString(raw_ostream &O, const ConstantArray *CVA, 900 unsigned LastElt) { 901 assert(CVA->isString() && "Array is not string compatible!"); 902 903 O << '\"'; 904 for (unsigned i = 0; i != LastElt; ++i) { 905 unsigned char C = 906 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 907 printStringChar(O, C); 908 } 909 O << '\"'; 910} 911 912/// EmitString - Emit a zero-byte-terminated string constant. 913/// 914void AsmPrinter::EmitString(const ConstantArray *CVA) const { 915 unsigned NumElts = CVA->getNumOperands(); 916 if (TAI->getAscizDirective() && NumElts && 917 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 918 O << TAI->getAscizDirective(); 919 printAsCString(O, CVA, NumElts-1); 920 } else { 921 O << TAI->getAsciiDirective(); 922 printAsCString(O, CVA, NumElts); 923 } 924 O << '\n'; 925} 926 927/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 928void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 929 const TargetData *TD = TM.getTargetData(); 930 unsigned Size = TD->getABITypeSize(CV->getType()); 931 932 if (CV->isNullValue() || isa<UndefValue>(CV)) { 933 EmitZeros(Size); 934 return; 935 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 936 if (CVA->isString()) { 937 EmitString(CVA); 938 } else { // Not a string. Print the values in successive locations 939 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 940 EmitGlobalConstant(CVA->getOperand(i)); 941 } 942 return; 943 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 944 // Print the fields in successive locations. Pad to align if needed! 945 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 946 uint64_t sizeSoFar = 0; 947 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 948 const Constant* field = CVS->getOperand(i); 949 950 // Check if padding is needed and insert one or more 0s. 951 uint64_t fieldSize = TD->getABITypeSize(field->getType()); 952 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 953 - cvsLayout->getElementOffset(i)) - fieldSize; 954 sizeSoFar += fieldSize + padSize; 955 956 // Now print the actual field value. 957 EmitGlobalConstant(field); 958 959 // Insert padding - this may include padding to increase the size of the 960 // current field up to the ABI size (if the struct is not packed) as well 961 // as padding to ensure that the next field starts at the right offset. 962 EmitZeros(padSize); 963 } 964 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 965 "Layout of constant struct may be incorrect!"); 966 return; 967 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 968 // FP Constants are printed as integer constants to avoid losing 969 // precision... 970 if (CFP->getType() == Type::DoubleTy) { 971 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 972 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 973 if (TAI->getData64bitsDirective()) 974 O << TAI->getData64bitsDirective() << i << '\t' 975 << TAI->getCommentString() << " double value: " << Val << '\n'; 976 else if (TD->isBigEndian()) { 977 O << TAI->getData32bitsDirective() << unsigned(i >> 32) 978 << '\t' << TAI->getCommentString() 979 << " double most significant word " << Val << '\n'; 980 O << TAI->getData32bitsDirective() << unsigned(i) 981 << '\t' << TAI->getCommentString() 982 << " double least significant word " << Val << '\n'; 983 } else { 984 O << TAI->getData32bitsDirective() << unsigned(i) 985 << '\t' << TAI->getCommentString() 986 << " double least significant word " << Val << '\n'; 987 O << TAI->getData32bitsDirective() << unsigned(i >> 32) 988 << '\t' << TAI->getCommentString() 989 << " double most significant word " << Val << '\n'; 990 } 991 return; 992 } else if (CFP->getType() == Type::FloatTy) { 993 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 994 O << TAI->getData32bitsDirective() 995 << CFP->getValueAPF().bitcastToAPInt().getZExtValue() 996 << '\t' << TAI->getCommentString() << " float " << Val << '\n'; 997 return; 998 } else if (CFP->getType() == Type::X86_FP80Ty) { 999 // all long double variants are printed as hex 1000 // api needed to prevent premature destruction 1001 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1002 const uint64_t *p = api.getRawData(); 1003 // Convert to double so we can print the approximate val as a comment. 1004 APFloat DoubleVal = CFP->getValueAPF(); 1005 bool ignored; 1006 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1007 &ignored); 1008 if (TD->isBigEndian()) { 1009 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48) 1010 << '\t' << TAI->getCommentString() 1011 << " long double most significant halfword of ~" 1012 << DoubleVal.convertToDouble() << '\n'; 1013 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32) 1014 << '\t' << TAI->getCommentString() 1015 << " long double next halfword\n"; 1016 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16) 1017 << '\t' << TAI->getCommentString() 1018 << " long double next halfword\n"; 1019 O << TAI->getData16bitsDirective() << uint16_t(p[0]) 1020 << '\t' << TAI->getCommentString() 1021 << " long double next halfword\n"; 1022 O << TAI->getData16bitsDirective() << uint16_t(p[1]) 1023 << '\t' << TAI->getCommentString() 1024 << " long double least significant halfword\n"; 1025 } else { 1026 O << TAI->getData16bitsDirective() << uint16_t(p[1]) 1027 << '\t' << TAI->getCommentString() 1028 << " long double least significant halfword of ~" 1029 << DoubleVal.convertToDouble() << '\n'; 1030 O << TAI->getData16bitsDirective() << uint16_t(p[0]) 1031 << '\t' << TAI->getCommentString() 1032 << " long double next halfword\n"; 1033 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16) 1034 << '\t' << TAI->getCommentString() 1035 << " long double next halfword\n"; 1036 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32) 1037 << '\t' << TAI->getCommentString() 1038 << " long double next halfword\n"; 1039 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48) 1040 << '\t' << TAI->getCommentString() 1041 << " long double most significant halfword\n"; 1042 } 1043 EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty)); 1044 return; 1045 } else if (CFP->getType() == Type::PPC_FP128Ty) { 1046 // all long double variants are printed as hex 1047 // api needed to prevent premature destruction 1048 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1049 const uint64_t *p = api.getRawData(); 1050 if (TD->isBigEndian()) { 1051 O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32) 1052 << '\t' << TAI->getCommentString() 1053 << " long double most significant word\n"; 1054 O << TAI->getData32bitsDirective() << uint32_t(p[0]) 1055 << '\t' << TAI->getCommentString() 1056 << " long double next word\n"; 1057 O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32) 1058 << '\t' << TAI->getCommentString() 1059 << " long double next word\n"; 1060 O << TAI->getData32bitsDirective() << uint32_t(p[1]) 1061 << '\t' << TAI->getCommentString() 1062 << " long double least significant word\n"; 1063 } else { 1064 O << TAI->getData32bitsDirective() << uint32_t(p[1]) 1065 << '\t' << TAI->getCommentString() 1066 << " long double least significant word\n"; 1067 O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32) 1068 << '\t' << TAI->getCommentString() 1069 << " long double next word\n"; 1070 O << TAI->getData32bitsDirective() << uint32_t(p[0]) 1071 << '\t' << TAI->getCommentString() 1072 << " long double next word\n"; 1073 O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32) 1074 << '\t' << TAI->getCommentString() 1075 << " long double most significant word\n"; 1076 } 1077 return; 1078 } else assert(0 && "Floating point constant type not handled"); 1079 } else if (CV->getType()->isInteger() && 1080 cast<IntegerType>(CV->getType())->getBitWidth() >= 64) { 1081 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1082 unsigned BitWidth = CI->getBitWidth(); 1083 assert(isPowerOf2_32(BitWidth) && 1084 "Non-power-of-2-sized integers not handled!"); 1085 1086 // We don't expect assemblers to support integer data directives 1087 // for more than 64 bits, so we emit the data in at most 64-bit 1088 // quantities at a time. 1089 const uint64_t *RawData = CI->getValue().getRawData(); 1090 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1091 uint64_t Val; 1092 if (TD->isBigEndian()) 1093 Val = RawData[e - i - 1]; 1094 else 1095 Val = RawData[i]; 1096 1097 if (TAI->getData64bitsDirective()) 1098 O << TAI->getData64bitsDirective() << Val << '\n'; 1099 else if (TD->isBigEndian()) { 1100 O << TAI->getData32bitsDirective() << unsigned(Val >> 32) 1101 << '\t' << TAI->getCommentString() 1102 << " Double-word most significant word " << Val << '\n'; 1103 O << TAI->getData32bitsDirective() << unsigned(Val) 1104 << '\t' << TAI->getCommentString() 1105 << " Double-word least significant word " << Val << '\n'; 1106 } else { 1107 O << TAI->getData32bitsDirective() << unsigned(Val) 1108 << '\t' << TAI->getCommentString() 1109 << " Double-word least significant word " << Val << '\n'; 1110 O << TAI->getData32bitsDirective() << unsigned(Val >> 32) 1111 << '\t' << TAI->getCommentString() 1112 << " Double-word most significant word " << Val << '\n'; 1113 } 1114 } 1115 return; 1116 } 1117 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1118 const VectorType *PTy = CP->getType(); 1119 1120 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 1121 EmitGlobalConstant(CP->getOperand(I)); 1122 1123 return; 1124 } 1125 1126 const Type *type = CV->getType(); 1127 printDataDirective(type); 1128 EmitConstantValueOnly(CV); 1129 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1130 SmallString<40> S; 1131 CI->getValue().toStringUnsigned(S, 16); 1132 O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str(); 1133 } 1134 O << '\n'; 1135} 1136 1137void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1138 // Target doesn't support this yet! 1139 abort(); 1140} 1141 1142/// PrintSpecial - Print information related to the specified machine instr 1143/// that is independent of the operand, and may be independent of the instr 1144/// itself. This can be useful for portably encoding the comment character 1145/// or other bits of target-specific knowledge into the asmstrings. The 1146/// syntax used is ${:comment}. Targets can override this to add support 1147/// for their own strange codes. 1148void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) { 1149 if (!strcmp(Code, "private")) { 1150 O << TAI->getPrivateGlobalPrefix(); 1151 } else if (!strcmp(Code, "comment")) { 1152 O << TAI->getCommentString(); 1153 } else if (!strcmp(Code, "uid")) { 1154 // Assign a unique ID to this machine instruction. 1155 static const MachineInstr *LastMI = 0; 1156 static const Function *F = 0; 1157 static unsigned Counter = 0U-1; 1158 1159 // Comparing the address of MI isn't sufficient, because machineinstrs may 1160 // be allocated to the same address across functions. 1161 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1162 1163 // If this is a new machine instruction, bump the counter. 1164 if (LastMI != MI || F != ThisF) { 1165 ++Counter; 1166 LastMI = MI; 1167 F = ThisF; 1168 } 1169 O << Counter; 1170 } else { 1171 cerr << "Unknown special formatter '" << Code 1172 << "' for machine instr: " << *MI; 1173 exit(1); 1174 } 1175} 1176 1177 1178/// printInlineAsm - This method formats and prints the specified machine 1179/// instruction that is an inline asm. 1180void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1181 unsigned NumOperands = MI->getNumOperands(); 1182 1183 // Count the number of register definitions. 1184 unsigned NumDefs = 0; 1185 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1186 ++NumDefs) 1187 assert(NumDefs != NumOperands-1 && "No asm string?"); 1188 1189 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1190 1191 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1192 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1193 1194 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1195 // These are useful to see where empty asm's wound up. 1196 if (AsmStr[0] == 0) { 1197 O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1198 return; 1199 } 1200 1201 O << TAI->getInlineAsmStart() << "\n\t"; 1202 1203 // The variant of the current asmprinter. 1204 int AsmPrinterVariant = TAI->getAssemblerDialect(); 1205 1206 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1207 const char *LastEmitted = AsmStr; // One past the last character emitted. 1208 1209 while (*LastEmitted) { 1210 switch (*LastEmitted) { 1211 default: { 1212 // Not a special case, emit the string section literally. 1213 const char *LiteralEnd = LastEmitted+1; 1214 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1215 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1216 ++LiteralEnd; 1217 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1218 O.write(LastEmitted, LiteralEnd-LastEmitted); 1219 LastEmitted = LiteralEnd; 1220 break; 1221 } 1222 case '\n': 1223 ++LastEmitted; // Consume newline character. 1224 O << '\n'; // Indent code with newline. 1225 break; 1226 case '$': { 1227 ++LastEmitted; // Consume '$' character. 1228 bool Done = true; 1229 1230 // Handle escapes. 1231 switch (*LastEmitted) { 1232 default: Done = false; break; 1233 case '$': // $$ -> $ 1234 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1235 O << '$'; 1236 ++LastEmitted; // Consume second '$' character. 1237 break; 1238 case '(': // $( -> same as GCC's { character. 1239 ++LastEmitted; // Consume '(' character. 1240 if (CurVariant != -1) { 1241 cerr << "Nested variants found in inline asm string: '" 1242 << AsmStr << "'\n"; 1243 exit(1); 1244 } 1245 CurVariant = 0; // We're in the first variant now. 1246 break; 1247 case '|': 1248 ++LastEmitted; // consume '|' character. 1249 if (CurVariant == -1) 1250 O << '|'; // this is gcc's behavior for | outside a variant 1251 else 1252 ++CurVariant; // We're in the next variant. 1253 break; 1254 case ')': // $) -> same as GCC's } char. 1255 ++LastEmitted; // consume ')' character. 1256 if (CurVariant == -1) 1257 O << '}'; // this is gcc's behavior for } outside a variant 1258 else 1259 CurVariant = -1; 1260 break; 1261 } 1262 if (Done) break; 1263 1264 bool HasCurlyBraces = false; 1265 if (*LastEmitted == '{') { // ${variable} 1266 ++LastEmitted; // Consume '{' character. 1267 HasCurlyBraces = true; 1268 } 1269 1270 const char *IDStart = LastEmitted; 1271 char *IDEnd; 1272 errno = 0; 1273 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1274 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1275 cerr << "Bad $ operand number in inline asm string: '" 1276 << AsmStr << "'\n"; 1277 exit(1); 1278 } 1279 LastEmitted = IDEnd; 1280 1281 char Modifier[2] = { 0, 0 }; 1282 1283 if (HasCurlyBraces) { 1284 // If we have curly braces, check for a modifier character. This 1285 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1286 if (*LastEmitted == ':') { 1287 ++LastEmitted; // Consume ':' character. 1288 if (*LastEmitted == 0) { 1289 cerr << "Bad ${:} expression in inline asm string: '" 1290 << AsmStr << "'\n"; 1291 exit(1); 1292 } 1293 1294 Modifier[0] = *LastEmitted; 1295 ++LastEmitted; // Consume modifier character. 1296 } 1297 1298 if (*LastEmitted != '}') { 1299 cerr << "Bad ${} expression in inline asm string: '" 1300 << AsmStr << "'\n"; 1301 exit(1); 1302 } 1303 ++LastEmitted; // Consume '}' character. 1304 } 1305 1306 if ((unsigned)Val >= NumOperands-1) { 1307 cerr << "Invalid $ operand number in inline asm string: '" 1308 << AsmStr << "'\n"; 1309 exit(1); 1310 } 1311 1312 // Okay, we finally have a value number. Ask the target to print this 1313 // operand! 1314 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1315 unsigned OpNo = 1; 1316 1317 bool Error = false; 1318 1319 // Scan to find the machine operand number for the operand. 1320 for (; Val; --Val) { 1321 if (OpNo >= MI->getNumOperands()) break; 1322 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1323 OpNo += (OpFlags >> 3) + 1; 1324 } 1325 1326 if (OpNo >= MI->getNumOperands()) { 1327 Error = true; 1328 } else { 1329 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1330 ++OpNo; // Skip over the ID number. 1331 1332 if (Modifier[0]=='l') // labels are target independent 1333 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), 1334 false, false, false); 1335 else { 1336 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1337 if ((OpFlags & 7) == 4) { 1338 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1339 Modifier[0] ? Modifier : 0); 1340 } else { 1341 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1342 Modifier[0] ? Modifier : 0); 1343 } 1344 } 1345 } 1346 if (Error) { 1347 cerr << "Invalid operand found in inline asm: '" 1348 << AsmStr << "'\n"; 1349 MI->dump(); 1350 exit(1); 1351 } 1352 } 1353 break; 1354 } 1355 } 1356 } 1357 O << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1358} 1359 1360/// printImplicitDef - This method prints the specified machine instruction 1361/// that is an implicit def. 1362void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1363 O << '\t' << TAI->getCommentString() << " implicit-def: " 1364 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; 1365} 1366 1367/// printLabel - This method prints a local label used by debug and 1368/// exception handling tables. 1369void AsmPrinter::printLabel(const MachineInstr *MI) const { 1370 printLabel(MI->getOperand(0).getImm()); 1371} 1372 1373void AsmPrinter::printLabel(unsigned Id) const { 1374 O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; 1375} 1376 1377/// printDeclare - This method prints a local variable declaration used by 1378/// debug tables. 1379/// FIXME: It doesn't really print anything rather it inserts a DebugVariable 1380/// entry into dwarf table. 1381void AsmPrinter::printDeclare(const MachineInstr *MI) const { 1382 int FI = MI->getOperand(0).getIndex(); 1383 GlobalValue *GV = MI->getOperand(1).getGlobal(); 1384 MMI->RecordVariable(GV, FI); 1385} 1386 1387/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1388/// instruction, using the specified assembler variant. Targets should 1389/// overried this to format as appropriate. 1390bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1391 unsigned AsmVariant, const char *ExtraCode) { 1392 // Target doesn't support this yet! 1393 return true; 1394} 1395 1396bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1397 unsigned AsmVariant, 1398 const char *ExtraCode) { 1399 // Target doesn't support this yet! 1400 return true; 1401} 1402 1403/// printBasicBlockLabel - This method prints the label for the specified 1404/// MachineBasicBlock 1405void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, 1406 bool printAlign, 1407 bool printColon, 1408 bool printComment) const { 1409 if (printAlign) { 1410 unsigned Align = MBB->getAlignment(); 1411 if (Align) 1412 EmitAlignment(Log2_32(Align)); 1413 } 1414 1415 O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' 1416 << MBB->getNumber(); 1417 if (printColon) 1418 O << ':'; 1419 if (printComment && MBB->getBasicBlock()) 1420 O << '\t' << TAI->getCommentString() << ' ' 1421 << MBB->getBasicBlock()->getNameStart(); 1422} 1423 1424/// printPICJumpTableSetLabel - This method prints a set label for the 1425/// specified MachineBasicBlock for a jumptable entry. 1426void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1427 const MachineBasicBlock *MBB) const { 1428 if (!TAI->getSetDirective()) 1429 return; 1430 1431 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1432 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1433 printBasicBlockLabel(MBB, false, false, false); 1434 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1435 << '_' << uid << '\n'; 1436} 1437 1438void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1439 const MachineBasicBlock *MBB) const { 1440 if (!TAI->getSetDirective()) 1441 return; 1442 1443 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1444 << getFunctionNumber() << '_' << uid << '_' << uid2 1445 << "_set_" << MBB->getNumber() << ','; 1446 printBasicBlockLabel(MBB, false, false, false); 1447 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1448 << '_' << uid << '_' << uid2 << '\n'; 1449} 1450 1451/// printDataDirective - This method prints the asm directive for the 1452/// specified type. 1453void AsmPrinter::printDataDirective(const Type *type) { 1454 const TargetData *TD = TM.getTargetData(); 1455 switch (type->getTypeID()) { 1456 case Type::IntegerTyID: { 1457 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1458 if (BitWidth <= 8) 1459 O << TAI->getData8bitsDirective(); 1460 else if (BitWidth <= 16) 1461 O << TAI->getData16bitsDirective(); 1462 else if (BitWidth <= 32) 1463 O << TAI->getData32bitsDirective(); 1464 else if (BitWidth <= 64) { 1465 assert(TAI->getData64bitsDirective() && 1466 "Target cannot handle 64-bit constant exprs!"); 1467 O << TAI->getData64bitsDirective(); 1468 } else { 1469 assert(0 && "Target cannot handle given data directive width!"); 1470 } 1471 break; 1472 } 1473 case Type::PointerTyID: 1474 if (TD->getPointerSize() == 8) { 1475 assert(TAI->getData64bitsDirective() && 1476 "Target cannot handle 64-bit pointer exprs!"); 1477 O << TAI->getData64bitsDirective(); 1478 } else { 1479 O << TAI->getData32bitsDirective(); 1480 } 1481 break; 1482 case Type::FloatTyID: case Type::DoubleTyID: 1483 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1484 assert (0 && "Should have already output floating point constant."); 1485 default: 1486 assert (0 && "Can't handle printing this type of thing"); 1487 break; 1488 } 1489} 1490 1491void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix, 1492 const char *Prefix) { 1493 if (Name[0]=='\"') 1494 O << '\"'; 1495 O << TAI->getPrivateGlobalPrefix(); 1496 if (Prefix) O << Prefix; 1497 if (Name[0]=='\"') 1498 O << '\"'; 1499 if (Name[0]=='\"') 1500 O << Name[1]; 1501 else 1502 O << Name; 1503 O << Suffix; 1504 if (Name[0]=='\"') 1505 O << '\"'; 1506} 1507 1508void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) { 1509 printSuffixedName(Name.c_str(), Suffix); 1510} 1511 1512void AsmPrinter::printVisibility(const std::string& Name, 1513 unsigned Visibility) const { 1514 if (Visibility == GlobalValue::HiddenVisibility) { 1515 if (const char *Directive = TAI->getHiddenDirective()) 1516 O << Directive << Name << '\n'; 1517 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1518 if (const char *Directive = TAI->getProtectedDirective()) 1519 O << Directive << Name << '\n'; 1520 } 1521} 1522 1523GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1524 if (!S->usesMetadata()) 1525 return 0; 1526 1527 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1528 if (GCPI != GCMetadataPrinters.end()) 1529 return GCPI->second; 1530 1531 const char *Name = S->getName().c_str(); 1532 1533 for (GCMetadataPrinterRegistry::iterator 1534 I = GCMetadataPrinterRegistry::begin(), 1535 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1536 if (strcmp(Name, I->getName()) == 0) { 1537 GCMetadataPrinter *GMP = I->instantiate(); 1538 GMP->S = S; 1539 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1540 return GMP; 1541 } 1542 1543 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1544 abort(); 1545} 1546