AsmPrinter.cpp revision 8f4b1ec02bbc72161a9bd9777a2996dae439c81e
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineLoopInfo.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/CodeGen/DwarfWriter.h"
25#include "llvm/Analysis/DebugInfo.h"
26#include "llvm/MC/MCContext.h"
27#include "llvm/MC/MCInst.h"
28#include "llvm/MC/MCSection.h"
29#include "llvm/MC/MCStreamer.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/FormattedStream.h"
33#include "llvm/Support/IOManip.h"
34#include "llvm/Support/Mangler.h"
35#include "llvm/Target/TargetAsmInfo.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetLoweringObjectFile.h"
39#include "llvm/Target/TargetOptions.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/StringExtras.h"
44#include <cerrno>
45using namespace llvm;
46
47static cl::opt<cl::boolOrDefault>
48AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
49           cl::init(cl::BOU_UNSET));
50
51static cl::opt<cl::boolOrDefault>
52AsmExuberant("asm-exuberant", cl::desc("Add many comments."),
53           cl::init(cl::BOU_FALSE));
54
55char AsmPrinter::ID = 0;
56AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
57                       const TargetAsmInfo *T, bool VDef)
58  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
59    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
60
61    OutContext(*new MCContext()),
62    OutStreamer(*createAsmStreamer(OutContext, O, *T, this)),
63
64    LastMI(0), LastFn(0), Counter(~0U),
65    PrevDLT(0, ~0U, ~0U) {
66  CurrentSection = 0;
67  DW = 0; MMI = 0;
68  switch (AsmVerbose) {
69  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
70  case cl::BOU_TRUE:  VerboseAsm = true;  break;
71  case cl::BOU_FALSE: VerboseAsm = false; break;
72  }
73  switch (AsmExuberant) {
74  case cl::BOU_UNSET: ExuberantAsm = false;  break;
75  case cl::BOU_TRUE:  ExuberantAsm = true;  break;
76  case cl::BOU_FALSE: ExuberantAsm = false; break;
77  }
78}
79
80AsmPrinter::~AsmPrinter() {
81  for (gcp_iterator I = GCMetadataPrinters.begin(),
82                    E = GCMetadataPrinters.end(); I != E; ++I)
83    delete I->second;
84
85  delete &OutStreamer;
86  delete &OutContext;
87}
88
89TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
90  return TM.getTargetLowering()->getObjFileLowering();
91}
92
93/// SwitchToSection - Switch to the specified section of the executable if we
94/// are not already in it!  If "NS" is null, then this causes us to exit the
95/// current section and not reenter another one.  This is generally used for
96/// asmprinter hacks.
97///
98/// FIXME: Remove support for null sections.
99///
100void AsmPrinter::SwitchToSection(const MCSection *NS) {
101  CurrentSection = NS;
102  // FIXME: Remove support for null sections!
103  if (NS)
104    OutStreamer.SwitchSection(NS);
105}
106
107void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
108  AU.setPreservesAll();
109  MachineFunctionPass::getAnalysisUsage(AU);
110  AU.addRequired<GCModuleInfo>();
111  if (ExuberantAsm)
112    AU.addRequired<MachineLoopInfo>();
113}
114
115bool AsmPrinter::doInitialization(Module &M) {
116  // Initialize TargetLoweringObjectFile.
117  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
118    .Initialize(OutContext, TM);
119
120  Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix(),
121                     TAI->getLinkerPrivateGlobalPrefix());
122
123  if (TAI->doesAllowQuotesInName())
124    Mang->setUseQuotes(true);
125
126  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
127  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
128
129  if (TAI->hasSingleParameterDotFile()) {
130    /* Very minimal debug info. It is ignored if we emit actual
131       debug info. If we don't, this at helps the user find where
132       a function came from. */
133    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
134  }
135
136  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
137    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
138      MP->beginAssembly(O, *this, *TAI);
139
140  if (!M.getModuleInlineAsm().empty())
141    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
142      << M.getModuleInlineAsm()
143      << '\n' << TAI->getCommentString()
144      << " End of file scope inline assembly\n";
145
146  SwitchToSection(0);   // Reset back to no section to close off sections.
147
148  if (TAI->doesSupportDebugInformation() ||
149      TAI->doesSupportExceptionHandling()) {
150    MMI = getAnalysisIfAvailable<MachineModuleInfo>();
151    if (MMI)
152      MMI->AnalyzeModule(M);
153    DW = getAnalysisIfAvailable<DwarfWriter>();
154    if (DW)
155      DW->BeginModule(&M, MMI, O, this, TAI);
156  }
157
158  return false;
159}
160
161bool AsmPrinter::doFinalization(Module &M) {
162  // Emit global variables.
163  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
164       I != E; ++I)
165    PrintGlobalVariable(I);
166
167  // Emit final debug information.
168  if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling())
169    DW->EndModule();
170
171  // If the target wants to know about weak references, print them all.
172  if (TAI->getWeakRefDirective()) {
173    // FIXME: This is not lazy, it would be nice to only print weak references
174    // to stuff that is actually used.  Note that doing so would require targets
175    // to notice uses in operands (due to constant exprs etc).  This should
176    // happen with the MC stuff eventually.
177    SwitchToSection(0);
178
179    // Print out module-level global variables here.
180    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
181         I != E; ++I) {
182      if (I->hasExternalWeakLinkage())
183        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
184    }
185
186    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
187      if (I->hasExternalWeakLinkage())
188        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
189    }
190  }
191
192  if (TAI->getSetDirective()) {
193    O << '\n';
194    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
195         I != E; ++I) {
196      std::string Name = Mang->getMangledName(I);
197
198      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
199      std::string Target = Mang->getMangledName(GV);
200
201      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
202        O << "\t.globl\t" << Name << '\n';
203      else if (I->hasWeakLinkage())
204        O << TAI->getWeakRefDirective() << Name << '\n';
205      else if (!I->hasLocalLinkage())
206        llvm_unreachable("Invalid alias linkage");
207
208      printVisibility(Name, I->getVisibility());
209
210      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
211    }
212  }
213
214  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
215  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
216  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
217    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
218      MP->finishAssembly(O, *this, *TAI);
219
220  // If we don't have any trampolines, then we don't require stack memory
221  // to be executable. Some targets have a directive to declare this.
222  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
223  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
224    if (TAI->getNonexecutableStackDirective())
225      O << TAI->getNonexecutableStackDirective() << '\n';
226
227  delete Mang; Mang = 0;
228  DW = 0; MMI = 0;
229
230  OutStreamer.Finish();
231  return false;
232}
233
234std::string
235AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const {
236  assert(MF && "No machine function?");
237  return Mang->getMangledName(MF->getFunction(), ".eh",
238                              TAI->is_EHSymbolPrivate());
239}
240
241void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
242  // What's my mangled name?
243  CurrentFnName = Mang->getMangledName(MF.getFunction());
244  IncrementFunctionNumber();
245
246  if (ExuberantAsm) {
247    LI = &getAnalysis<MachineLoopInfo>();
248  }
249}
250
251namespace {
252  // SectionCPs - Keep track the alignment, constpool entries per Section.
253  struct SectionCPs {
254    const MCSection *S;
255    unsigned Alignment;
256    SmallVector<unsigned, 4> CPEs;
257    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {};
258  };
259}
260
261/// EmitConstantPool - Print to the current output stream assembly
262/// representations of the constants in the constant pool MCP. This is
263/// used to print out constants which have been "spilled to memory" by
264/// the code generator.
265///
266void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
267  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
268  if (CP.empty()) return;
269
270  // Calculate sections for constant pool entries. We collect entries to go into
271  // the same section together to reduce amount of section switch statements.
272  SmallVector<SectionCPs, 4> CPSections;
273  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
274    const MachineConstantPoolEntry &CPE = CP[i];
275    unsigned Align = CPE.getAlignment();
276
277    SectionKind Kind;
278    switch (CPE.getRelocationInfo()) {
279    default: llvm_unreachable("Unknown section kind");
280    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
281    case 1:
282      Kind = SectionKind::getReadOnlyWithRelLocal();
283      break;
284    case 0:
285    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
286    case 4:  Kind = SectionKind::getMergeableConst4(); break;
287    case 8:  Kind = SectionKind::getMergeableConst8(); break;
288    case 16: Kind = SectionKind::getMergeableConst16();break;
289    default: Kind = SectionKind::getMergeableConst(); break;
290    }
291    }
292
293    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
294
295    // The number of sections are small, just do a linear search from the
296    // last section to the first.
297    bool Found = false;
298    unsigned SecIdx = CPSections.size();
299    while (SecIdx != 0) {
300      if (CPSections[--SecIdx].S == S) {
301        Found = true;
302        break;
303      }
304    }
305    if (!Found) {
306      SecIdx = CPSections.size();
307      CPSections.push_back(SectionCPs(S, Align));
308    }
309
310    if (Align > CPSections[SecIdx].Alignment)
311      CPSections[SecIdx].Alignment = Align;
312    CPSections[SecIdx].CPEs.push_back(i);
313  }
314
315  // Now print stuff into the calculated sections.
316  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
317    SwitchToSection(CPSections[i].S);
318    EmitAlignment(Log2_32(CPSections[i].Alignment));
319
320    unsigned Offset = 0;
321    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
322      unsigned CPI = CPSections[i].CPEs[j];
323      MachineConstantPoolEntry CPE = CP[CPI];
324
325      // Emit inter-object padding for alignment.
326      unsigned AlignMask = CPE.getAlignment() - 1;
327      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
328      EmitZeros(NewOffset - Offset);
329
330      const Type *Ty = CPE.getType();
331      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
332
333      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
334        << CPI << ':';
335      if (VerboseAsm) {
336        O.PadToColumn(TAI->getCommentColumn());
337        O << TAI->getCommentString() << " constant ";
338        WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent());
339      }
340      O << '\n';
341      if (CPE.isMachineConstantPoolEntry())
342        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
343      else
344        EmitGlobalConstant(CPE.Val.ConstVal);
345    }
346  }
347}
348
349/// EmitJumpTableInfo - Print assembly representations of the jump tables used
350/// by the current function to the current output stream.
351///
352void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
353                                   MachineFunction &MF) {
354  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
355  if (JT.empty()) return;
356
357  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
358
359  // Pick the directive to use to print the jump table entries, and switch to
360  // the appropriate section.
361  TargetLowering *LoweringInfo = TM.getTargetLowering();
362
363  const Function *F = MF.getFunction();
364  bool JTInDiffSection = false;
365  if (F->isWeakForLinker() ||
366      (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
367    // In PIC mode, we need to emit the jump table to the same section as the
368    // function body itself, otherwise the label differences won't make sense.
369    // We should also do if the section name is NULL or function is declared in
370    // discardable section.
371    SwitchToSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
372  } else {
373    // Otherwise, drop it in the readonly section.
374    const MCSection *ReadOnlySection =
375      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
376    SwitchToSection(ReadOnlySection);
377    JTInDiffSection = true;
378  }
379
380  EmitAlignment(Log2_32(MJTI->getAlignment()));
381
382  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
383    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
384
385    // If this jump table was deleted, ignore it.
386    if (JTBBs.empty()) continue;
387
388    // For PIC codegen, if possible we want to use the SetDirective to reduce
389    // the number of relocations the assembler will generate for the jump table.
390    // Set directives are all printed before the jump table itself.
391    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
392    if (TAI->getSetDirective() && IsPic)
393      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
394        if (EmittedSets.insert(JTBBs[ii]))
395          printPICJumpTableSetLabel(i, JTBBs[ii]);
396
397    // On some targets (e.g. darwin) we want to emit two consequtive labels
398    // before each jump table.  The first label is never referenced, but tells
399    // the assembler and linker the extents of the jump table object.  The
400    // second label is actually referenced by the code.
401    if (JTInDiffSection) {
402      if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
403        O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
404    }
405
406    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
407      << '_' << i << ":\n";
408
409    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
410      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
411      O << '\n';
412    }
413  }
414}
415
416void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
417                                        const MachineBasicBlock *MBB,
418                                        unsigned uid)  const {
419  bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
420
421  // Use JumpTableDirective otherwise honor the entry size from the jump table
422  // info.
423  const char *JTEntryDirective = TAI->getJumpTableDirective(isPIC);
424  bool HadJTEntryDirective = JTEntryDirective != NULL;
425  if (!HadJTEntryDirective) {
426    JTEntryDirective = MJTI->getEntrySize() == 4 ?
427      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
428  }
429
430  O << JTEntryDirective << ' ';
431
432  // If we have emitted set directives for the jump table entries, print
433  // them rather than the entries themselves.  If we're emitting PIC, then
434  // emit the table entries as differences between two text section labels.
435  // If we're emitting non-PIC code, then emit the entries as direct
436  // references to the target basic blocks.
437  if (!isPIC) {
438    printBasicBlockLabel(MBB, false, false, false);
439  } else if (TAI->getSetDirective()) {
440    O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
441      << '_' << uid << "_set_" << MBB->getNumber();
442  } else {
443    printBasicBlockLabel(MBB, false, false, false);
444    // If the arch uses custom Jump Table directives, don't calc relative to
445    // JT
446    if (!HadJTEntryDirective)
447      O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
448        << getFunctionNumber() << '_' << uid;
449  }
450}
451
452
453/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
454/// special global used by LLVM.  If so, emit it and return true, otherwise
455/// do nothing and return false.
456bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
457  if (GV->getName() == "llvm.used") {
458    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
459      EmitLLVMUsedList(GV->getInitializer());
460    return true;
461  }
462
463  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
464  if (GV->getSection() == "llvm.metadata" ||
465      GV->hasAvailableExternallyLinkage())
466    return true;
467
468  if (!GV->hasAppendingLinkage()) return false;
469
470  assert(GV->hasInitializer() && "Not a special LLVM global!");
471
472  const TargetData *TD = TM.getTargetData();
473  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
474  if (GV->getName() == "llvm.global_ctors") {
475    SwitchToSection(getObjFileLowering().getStaticCtorSection());
476    EmitAlignment(Align, 0);
477    EmitXXStructorList(GV->getInitializer());
478    return true;
479  }
480
481  if (GV->getName() == "llvm.global_dtors") {
482    SwitchToSection(getObjFileLowering().getStaticDtorSection());
483    EmitAlignment(Align, 0);
484    EmitXXStructorList(GV->getInitializer());
485    return true;
486  }
487
488  return false;
489}
490
491/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
492/// global in the specified llvm.used list for which emitUsedDirectiveFor
493/// is true, as being used with this directive.
494void AsmPrinter::EmitLLVMUsedList(Constant *List) {
495  const char *Directive = TAI->getUsedDirective();
496
497  // Should be an array of 'i8*'.
498  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
499  if (InitList == 0) return;
500
501  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
502    const GlobalValue *GV =
503      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
504    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
505      O << Directive;
506      EmitConstantValueOnly(InitList->getOperand(i));
507      O << '\n';
508    }
509  }
510}
511
512/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
513/// function pointers, ignoring the init priority.
514void AsmPrinter::EmitXXStructorList(Constant *List) {
515  // Should be an array of '{ int, void ()* }' structs.  The first value is the
516  // init priority, which we ignore.
517  if (!isa<ConstantArray>(List)) return;
518  ConstantArray *InitList = cast<ConstantArray>(List);
519  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
520    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
521      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
522
523      if (CS->getOperand(1)->isNullValue())
524        return;  // Found a null terminator, exit printing.
525      // Emit the function pointer.
526      EmitGlobalConstant(CS->getOperand(1));
527    }
528}
529
530/// getGlobalLinkName - Returns the asm/link name of of the specified
531/// global variable.  Should be overridden by each target asm printer to
532/// generate the appropriate value.
533const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
534                                                 std::string &LinkName) const {
535  if (isa<Function>(GV)) {
536    LinkName += TAI->getFunctionAddrPrefix();
537    LinkName += Mang->getMangledName(GV);
538    LinkName += TAI->getFunctionAddrSuffix();
539  } else {
540    LinkName += TAI->getGlobalVarAddrPrefix();
541    LinkName += Mang->getMangledName(GV);
542    LinkName += TAI->getGlobalVarAddrSuffix();
543  }
544
545  return LinkName;
546}
547
548/// EmitExternalGlobal - Emit the external reference to a global variable.
549/// Should be overridden if an indirect reference should be used.
550void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
551  std::string GLN;
552  O << getGlobalLinkName(GV, GLN);
553}
554
555
556
557//===----------------------------------------------------------------------===//
558/// LEB 128 number encoding.
559
560/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
561/// representing an unsigned leb128 value.
562void AsmPrinter::PrintULEB128(unsigned Value) const {
563  char Buffer[20];
564  do {
565    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
566    Value >>= 7;
567    if (Value) Byte |= 0x80;
568    O << "0x" << utohex_buffer(Byte, Buffer+20);
569    if (Value) O << ", ";
570  } while (Value);
571}
572
573/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
574/// representing a signed leb128 value.
575void AsmPrinter::PrintSLEB128(int Value) const {
576  int Sign = Value >> (8 * sizeof(Value) - 1);
577  bool IsMore;
578  char Buffer[20];
579
580  do {
581    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
582    Value >>= 7;
583    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
584    if (IsMore) Byte |= 0x80;
585    O << "0x" << utohex_buffer(Byte, Buffer+20);
586    if (IsMore) O << ", ";
587  } while (IsMore);
588}
589
590//===--------------------------------------------------------------------===//
591// Emission and print routines
592//
593
594/// PrintHex - Print a value as a hexidecimal value.
595///
596void AsmPrinter::PrintHex(int Value) const {
597  char Buffer[20];
598  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
599}
600
601/// EOL - Print a newline character to asm stream.  If a comment is present
602/// then it will be printed first.  Comments should not contain '\n'.
603void AsmPrinter::EOL() const {
604  O << '\n';
605}
606
607void AsmPrinter::EOL(const std::string &Comment) const {
608  if (VerboseAsm && !Comment.empty()) {
609    O.PadToColumn(TAI->getCommentColumn());
610    O << TAI->getCommentString()
611      << ' '
612      << Comment;
613  }
614  O << '\n';
615}
616
617void AsmPrinter::EOL(const char* Comment) const {
618  if (VerboseAsm && *Comment) {
619    O.PadToColumn(TAI->getCommentColumn());
620    O << TAI->getCommentString()
621      << ' '
622      << Comment;
623  }
624  O << '\n';
625}
626
627/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
628/// unsigned leb128 value.
629void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
630  if (TAI->hasLEB128()) {
631    O << "\t.uleb128\t"
632      << Value;
633  } else {
634    O << TAI->getData8bitsDirective();
635    PrintULEB128(Value);
636  }
637}
638
639/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
640/// signed leb128 value.
641void AsmPrinter::EmitSLEB128Bytes(int Value) const {
642  if (TAI->hasLEB128()) {
643    O << "\t.sleb128\t"
644      << Value;
645  } else {
646    O << TAI->getData8bitsDirective();
647    PrintSLEB128(Value);
648  }
649}
650
651/// EmitInt8 - Emit a byte directive and value.
652///
653void AsmPrinter::EmitInt8(int Value) const {
654  O << TAI->getData8bitsDirective();
655  PrintHex(Value & 0xFF);
656}
657
658/// EmitInt16 - Emit a short directive and value.
659///
660void AsmPrinter::EmitInt16(int Value) const {
661  O << TAI->getData16bitsDirective();
662  PrintHex(Value & 0xFFFF);
663}
664
665/// EmitInt32 - Emit a long directive and value.
666///
667void AsmPrinter::EmitInt32(int Value) const {
668  O << TAI->getData32bitsDirective();
669  PrintHex(Value);
670}
671
672/// EmitInt64 - Emit a long long directive and value.
673///
674void AsmPrinter::EmitInt64(uint64_t Value) const {
675  if (TAI->getData64bitsDirective()) {
676    O << TAI->getData64bitsDirective();
677    PrintHex(Value);
678  } else {
679    if (TM.getTargetData()->isBigEndian()) {
680      EmitInt32(unsigned(Value >> 32)); O << '\n';
681      EmitInt32(unsigned(Value));
682    } else {
683      EmitInt32(unsigned(Value)); O << '\n';
684      EmitInt32(unsigned(Value >> 32));
685    }
686  }
687}
688
689/// toOctal - Convert the low order bits of X into an octal digit.
690///
691static inline char toOctal(int X) {
692  return (X&7)+'0';
693}
694
695/// printStringChar - Print a char, escaped if necessary.
696///
697static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
698  if (C == '"') {
699    O << "\\\"";
700  } else if (C == '\\') {
701    O << "\\\\";
702  } else if (isprint((unsigned char)C)) {
703    O << C;
704  } else {
705    switch(C) {
706    case '\b': O << "\\b"; break;
707    case '\f': O << "\\f"; break;
708    case '\n': O << "\\n"; break;
709    case '\r': O << "\\r"; break;
710    case '\t': O << "\\t"; break;
711    default:
712      O << '\\';
713      O << toOctal(C >> 6);
714      O << toOctal(C >> 3);
715      O << toOctal(C >> 0);
716      break;
717    }
718  }
719}
720
721/// EmitString - Emit a string with quotes and a null terminator.
722/// Special characters are emitted properly.
723/// \literal (Eg. '\t') \endliteral
724void AsmPrinter::EmitString(const std::string &String) const {
725  EmitString(String.c_str(), String.size());
726}
727
728void AsmPrinter::EmitString(const char *String, unsigned Size) const {
729  const char* AscizDirective = TAI->getAscizDirective();
730  if (AscizDirective)
731    O << AscizDirective;
732  else
733    O << TAI->getAsciiDirective();
734  O << '\"';
735  for (unsigned i = 0; i < Size; ++i)
736    printStringChar(O, String[i]);
737  if (AscizDirective)
738    O << '\"';
739  else
740    O << "\\0\"";
741}
742
743
744/// EmitFile - Emit a .file directive.
745void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
746  O << "\t.file\t" << Number << " \"";
747  for (unsigned i = 0, N = Name.size(); i < N; ++i)
748    printStringChar(O, Name[i]);
749  O << '\"';
750}
751
752
753//===----------------------------------------------------------------------===//
754
755// EmitAlignment - Emit an alignment directive to the specified power of
756// two boundary.  For example, if you pass in 3 here, you will get an 8
757// byte alignment.  If a global value is specified, and if that global has
758// an explicit alignment requested, it will unconditionally override the
759// alignment request.  However, if ForcedAlignBits is specified, this value
760// has final say: the ultimate alignment will be the max of ForcedAlignBits
761// and the alignment computed with NumBits and the global.
762//
763// The algorithm is:
764//     Align = NumBits;
765//     if (GV && GV->hasalignment) Align = GV->getalignment();
766//     Align = std::max(Align, ForcedAlignBits);
767//
768void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
769                               unsigned ForcedAlignBits,
770                               bool UseFillExpr) const {
771  if (GV && GV->getAlignment())
772    NumBits = Log2_32(GV->getAlignment());
773  NumBits = std::max(NumBits, ForcedAlignBits);
774
775  if (NumBits == 0) return;   // No need to emit alignment.
776  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
777  O << TAI->getAlignDirective() << NumBits;
778
779  if (CurrentSection && CurrentSection->getKind().isText())
780    if (unsigned FillValue = TAI->getTextAlignFillValue()) {
781      O << ',';
782      PrintHex(FillValue);
783    }
784  O << '\n';
785}
786
787/// EmitZeros - Emit a block of zeros.
788///
789void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
790  if (NumZeros) {
791    if (TAI->getZeroDirective()) {
792      O << TAI->getZeroDirective() << NumZeros;
793      if (TAI->getZeroDirectiveSuffix())
794        O << TAI->getZeroDirectiveSuffix();
795      O << '\n';
796    } else {
797      for (; NumZeros; --NumZeros)
798        O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
799    }
800  }
801}
802
803// Print out the specified constant, without a storage class.  Only the
804// constants valid in constant expressions can occur here.
805void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
806  if (CV->isNullValue() || isa<UndefValue>(CV))
807    O << '0';
808  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
809    O << CI->getZExtValue();
810  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
811    // This is a constant address for a global variable or function. Use the
812    // name of the variable or function as the address value, possibly
813    // decorating it with GlobalVarAddrPrefix/Suffix or
814    // FunctionAddrPrefix/Suffix (these all default to "" )
815    if (isa<Function>(GV)) {
816      O << TAI->getFunctionAddrPrefix()
817        << Mang->getMangledName(GV)
818        << TAI->getFunctionAddrSuffix();
819    } else {
820      O << TAI->getGlobalVarAddrPrefix()
821        << Mang->getMangledName(GV)
822        << TAI->getGlobalVarAddrSuffix();
823    }
824  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
825    const TargetData *TD = TM.getTargetData();
826    unsigned Opcode = CE->getOpcode();
827    switch (Opcode) {
828    case Instruction::Trunc:
829    case Instruction::ZExt:
830    case Instruction::SExt:
831    case Instruction::FPTrunc:
832    case Instruction::FPExt:
833    case Instruction::UIToFP:
834    case Instruction::SIToFP:
835    case Instruction::FPToUI:
836    case Instruction::FPToSI:
837      llvm_unreachable("FIXME: Don't support this constant cast expr");
838    case Instruction::GetElementPtr: {
839      // generate a symbolic expression for the byte address
840      const Constant *ptrVal = CE->getOperand(0);
841      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
842      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
843                                                idxVec.size())) {
844        // Truncate/sext the offset to the pointer size.
845        if (TD->getPointerSizeInBits() != 64) {
846          int SExtAmount = 64-TD->getPointerSizeInBits();
847          Offset = (Offset << SExtAmount) >> SExtAmount;
848        }
849
850        if (Offset)
851          O << '(';
852        EmitConstantValueOnly(ptrVal);
853        if (Offset > 0)
854          O << ") + " << Offset;
855        else if (Offset < 0)
856          O << ") - " << -Offset;
857      } else {
858        EmitConstantValueOnly(ptrVal);
859      }
860      break;
861    }
862    case Instruction::BitCast:
863      return EmitConstantValueOnly(CE->getOperand(0));
864
865    case Instruction::IntToPtr: {
866      // Handle casts to pointers by changing them into casts to the appropriate
867      // integer type.  This promotes constant folding and simplifies this code.
868      Constant *Op = CE->getOperand(0);
869      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
870                                        false/*ZExt*/);
871      return EmitConstantValueOnly(Op);
872    }
873
874
875    case Instruction::PtrToInt: {
876      // Support only foldable casts to/from pointers that can be eliminated by
877      // changing the pointer to the appropriately sized integer type.
878      Constant *Op = CE->getOperand(0);
879      const Type *Ty = CE->getType();
880
881      // We can emit the pointer value into this slot if the slot is an
882      // integer slot greater or equal to the size of the pointer.
883      if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
884        return EmitConstantValueOnly(Op);
885
886      O << "((";
887      EmitConstantValueOnly(Op);
888      APInt ptrMask =
889        APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
890
891      SmallString<40> S;
892      ptrMask.toStringUnsigned(S);
893      O << ") & " << S.c_str() << ')';
894      break;
895    }
896    case Instruction::Add:
897    case Instruction::Sub:
898    case Instruction::And:
899    case Instruction::Or:
900    case Instruction::Xor:
901      O << '(';
902      EmitConstantValueOnly(CE->getOperand(0));
903      O << ')';
904      switch (Opcode) {
905      case Instruction::Add:
906       O << " + ";
907       break;
908      case Instruction::Sub:
909       O << " - ";
910       break;
911      case Instruction::And:
912       O << " & ";
913       break;
914      case Instruction::Or:
915       O << " | ";
916       break;
917      case Instruction::Xor:
918       O << " ^ ";
919       break;
920      default:
921       break;
922      }
923      O << '(';
924      EmitConstantValueOnly(CE->getOperand(1));
925      O << ')';
926      break;
927    default:
928      llvm_unreachable("Unsupported operator!");
929    }
930  } else {
931    llvm_unreachable("Unknown constant value!");
932  }
933}
934
935/// printAsCString - Print the specified array as a C compatible string, only if
936/// the predicate isString is true.
937///
938static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
939                           unsigned LastElt) {
940  assert(CVA->isString() && "Array is not string compatible!");
941
942  O << '\"';
943  for (unsigned i = 0; i != LastElt; ++i) {
944    unsigned char C =
945        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
946    printStringChar(O, C);
947  }
948  O << '\"';
949}
950
951/// EmitString - Emit a zero-byte-terminated string constant.
952///
953void AsmPrinter::EmitString(const ConstantArray *CVA) const {
954  unsigned NumElts = CVA->getNumOperands();
955  if (TAI->getAscizDirective() && NumElts &&
956      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
957    O << TAI->getAscizDirective();
958    printAsCString(O, CVA, NumElts-1);
959  } else {
960    O << TAI->getAsciiDirective();
961    printAsCString(O, CVA, NumElts);
962  }
963  O << '\n';
964}
965
966void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
967                                         unsigned AddrSpace) {
968  if (CVA->isString()) {
969    EmitString(CVA);
970  } else { // Not a string.  Print the values in successive locations
971    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
972      EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
973  }
974}
975
976void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
977  const VectorType *PTy = CP->getType();
978
979  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
980    EmitGlobalConstant(CP->getOperand(I));
981}
982
983void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
984                                          unsigned AddrSpace) {
985  // Print the fields in successive locations. Pad to align if needed!
986  const TargetData *TD = TM.getTargetData();
987  unsigned Size = TD->getTypeAllocSize(CVS->getType());
988  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
989  uint64_t sizeSoFar = 0;
990  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
991    const Constant* field = CVS->getOperand(i);
992
993    // Check if padding is needed and insert one or more 0s.
994    uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
995    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
996                        - cvsLayout->getElementOffset(i)) - fieldSize;
997    sizeSoFar += fieldSize + padSize;
998
999    // Now print the actual field value.
1000    EmitGlobalConstant(field, AddrSpace);
1001
1002    // Insert padding - this may include padding to increase the size of the
1003    // current field up to the ABI size (if the struct is not packed) as well
1004    // as padding to ensure that the next field starts at the right offset.
1005    EmitZeros(padSize, AddrSpace);
1006  }
1007  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1008         "Layout of constant struct may be incorrect!");
1009}
1010
1011void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1012                                      unsigned AddrSpace) {
1013  // FP Constants are printed as integer constants to avoid losing
1014  // precision...
1015  LLVMContext &Context = CFP->getContext();
1016  const TargetData *TD = TM.getTargetData();
1017  if (CFP->getType() == Type::getDoubleTy(Context)) {
1018    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1019    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1020    if (TAI->getData64bitsDirective(AddrSpace)) {
1021      O << TAI->getData64bitsDirective(AddrSpace) << i;
1022      if (VerboseAsm) {
1023        O.PadToColumn(TAI->getCommentColumn());
1024        O << TAI->getCommentString() << " double " << Val;
1025      }
1026      O << '\n';
1027    } else if (TD->isBigEndian()) {
1028      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1029      if (VerboseAsm) {
1030        O.PadToColumn(TAI->getCommentColumn());
1031        O << TAI->getCommentString()
1032          << " most significant word of double " << Val;
1033      }
1034      O << '\n';
1035      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1036      if (VerboseAsm) {
1037        O.PadToColumn(TAI->getCommentColumn());
1038        O << TAI->getCommentString()
1039          << " least significant word of double " << Val;
1040      }
1041      O << '\n';
1042    } else {
1043      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1044      if (VerboseAsm) {
1045        O.PadToColumn(TAI->getCommentColumn());
1046        O << TAI->getCommentString()
1047          << " least significant word of double " << Val;
1048      }
1049      O << '\n';
1050      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1051      if (VerboseAsm) {
1052        O.PadToColumn(TAI->getCommentColumn());
1053        O << TAI->getCommentString()
1054          << " most significant word of double " << Val;
1055      }
1056      O << '\n';
1057    }
1058    return;
1059  } else if (CFP->getType() == Type::getFloatTy(Context)) {
1060    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1061    O << TAI->getData32bitsDirective(AddrSpace)
1062      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1063    if (VerboseAsm) {
1064      O.PadToColumn(TAI->getCommentColumn());
1065      O << TAI->getCommentString() << " float " << Val;
1066    }
1067    O << '\n';
1068    return;
1069  } else if (CFP->getType() == Type::getX86_FP80Ty(Context)) {
1070    // all long double variants are printed as hex
1071    // api needed to prevent premature destruction
1072    APInt api = CFP->getValueAPF().bitcastToAPInt();
1073    const uint64_t *p = api.getRawData();
1074    // Convert to double so we can print the approximate val as a comment.
1075    APFloat DoubleVal = CFP->getValueAPF();
1076    bool ignored;
1077    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1078                      &ignored);
1079    if (TD->isBigEndian()) {
1080      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1081      if (VerboseAsm) {
1082        O.PadToColumn(TAI->getCommentColumn());
1083        O << TAI->getCommentString()
1084          << " most significant halfword of x86_fp80 ~"
1085          << DoubleVal.convertToDouble();
1086      }
1087      O << '\n';
1088      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1089      if (VerboseAsm) {
1090        O.PadToColumn(TAI->getCommentColumn());
1091        O << TAI->getCommentString() << " next halfword";
1092      }
1093      O << '\n';
1094      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1095      if (VerboseAsm) {
1096        O.PadToColumn(TAI->getCommentColumn());
1097        O << TAI->getCommentString() << " next halfword";
1098      }
1099      O << '\n';
1100      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1101      if (VerboseAsm) {
1102        O.PadToColumn(TAI->getCommentColumn());
1103        O << TAI->getCommentString() << " next halfword";
1104      }
1105      O << '\n';
1106      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1107      if (VerboseAsm) {
1108        O.PadToColumn(TAI->getCommentColumn());
1109        O << TAI->getCommentString()
1110          << " least significant halfword";
1111      }
1112      O << '\n';
1113     } else {
1114      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1115      if (VerboseAsm) {
1116        O.PadToColumn(TAI->getCommentColumn());
1117        O << TAI->getCommentString()
1118          << " least significant halfword of x86_fp80 ~"
1119          << DoubleVal.convertToDouble();
1120      }
1121      O << '\n';
1122      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1123      if (VerboseAsm) {
1124        O.PadToColumn(TAI->getCommentColumn());
1125        O << TAI->getCommentString()
1126          << " next halfword";
1127      }
1128      O << '\n';
1129      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1130      if (VerboseAsm) {
1131        O.PadToColumn(TAI->getCommentColumn());
1132        O << TAI->getCommentString()
1133          << " next halfword";
1134      }
1135      O << '\n';
1136      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1137      if (VerboseAsm) {
1138        O.PadToColumn(TAI->getCommentColumn());
1139        O << TAI->getCommentString()
1140          << " next halfword";
1141      }
1142      O << '\n';
1143      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1144      if (VerboseAsm) {
1145        O.PadToColumn(TAI->getCommentColumn());
1146        O << TAI->getCommentString()
1147          << " most significant halfword";
1148      }
1149      O << '\n';
1150    }
1151    EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) -
1152              TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace);
1153    return;
1154  } else if (CFP->getType() == Type::getPPC_FP128Ty(Context)) {
1155    // all long double variants are printed as hex
1156    // api needed to prevent premature destruction
1157    APInt api = CFP->getValueAPF().bitcastToAPInt();
1158    const uint64_t *p = api.getRawData();
1159    if (TD->isBigEndian()) {
1160      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1161      if (VerboseAsm) {
1162        O.PadToColumn(TAI->getCommentColumn());
1163        O << TAI->getCommentString()
1164          << " most significant word of ppc_fp128";
1165      }
1166      O << '\n';
1167      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1168      if (VerboseAsm) {
1169        O.PadToColumn(TAI->getCommentColumn());
1170        O << TAI->getCommentString()
1171        << " next word";
1172      }
1173      O << '\n';
1174      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1175      if (VerboseAsm) {
1176        O.PadToColumn(TAI->getCommentColumn());
1177        O << TAI->getCommentString()
1178          << " next word";
1179      }
1180      O << '\n';
1181      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1182      if (VerboseAsm) {
1183        O.PadToColumn(TAI->getCommentColumn());
1184        O << TAI->getCommentString()
1185          << " least significant word";
1186      }
1187      O << '\n';
1188     } else {
1189      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1190      if (VerboseAsm) {
1191        O.PadToColumn(TAI->getCommentColumn());
1192        O << TAI->getCommentString()
1193          << " least significant word of ppc_fp128";
1194      }
1195      O << '\n';
1196      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1197      if (VerboseAsm) {
1198        O.PadToColumn(TAI->getCommentColumn());
1199        O << TAI->getCommentString()
1200          << " next word";
1201      }
1202      O << '\n';
1203      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1204      if (VerboseAsm) {
1205        O.PadToColumn(TAI->getCommentColumn());
1206        O << TAI->getCommentString()
1207          << " next word";
1208      }
1209      O << '\n';
1210      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1211      if (VerboseAsm) {
1212        O.PadToColumn(TAI->getCommentColumn());
1213        O << TAI->getCommentString()
1214          << " most significant word";
1215      }
1216      O << '\n';
1217    }
1218    return;
1219  } else llvm_unreachable("Floating point constant type not handled");
1220}
1221
1222void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1223                                            unsigned AddrSpace) {
1224  const TargetData *TD = TM.getTargetData();
1225  unsigned BitWidth = CI->getBitWidth();
1226  assert(isPowerOf2_32(BitWidth) &&
1227         "Non-power-of-2-sized integers not handled!");
1228
1229  // We don't expect assemblers to support integer data directives
1230  // for more than 64 bits, so we emit the data in at most 64-bit
1231  // quantities at a time.
1232  const uint64_t *RawData = CI->getValue().getRawData();
1233  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1234    uint64_t Val;
1235    if (TD->isBigEndian())
1236      Val = RawData[e - i - 1];
1237    else
1238      Val = RawData[i];
1239
1240    if (TAI->getData64bitsDirective(AddrSpace))
1241      O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1242    else if (TD->isBigEndian()) {
1243      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1244      if (VerboseAsm) {
1245        O.PadToColumn(TAI->getCommentColumn());
1246        O << TAI->getCommentString()
1247          << " most significant half of i64 " << Val;
1248      }
1249      O << '\n';
1250      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1251      if (VerboseAsm) {
1252        O.PadToColumn(TAI->getCommentColumn());
1253        O << TAI->getCommentString()
1254          << " least significant half of i64 " << Val;
1255      }
1256      O << '\n';
1257    } else {
1258      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1259      if (VerboseAsm) {
1260        O.PadToColumn(TAI->getCommentColumn());
1261        O << TAI->getCommentString()
1262          << " least significant half of i64 " << Val;
1263      }
1264      O << '\n';
1265      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1266      if (VerboseAsm) {
1267        O.PadToColumn(TAI->getCommentColumn());
1268        O << TAI->getCommentString()
1269          << " most significant half of i64 " << Val;
1270      }
1271      O << '\n';
1272    }
1273  }
1274}
1275
1276/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1277void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1278  const TargetData *TD = TM.getTargetData();
1279  const Type *type = CV->getType();
1280  unsigned Size = TD->getTypeAllocSize(type);
1281
1282  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1283    EmitZeros(Size, AddrSpace);
1284    return;
1285  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1286    EmitGlobalConstantArray(CVA , AddrSpace);
1287    return;
1288  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1289    EmitGlobalConstantStruct(CVS, AddrSpace);
1290    return;
1291  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1292    EmitGlobalConstantFP(CFP, AddrSpace);
1293    return;
1294  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1295    // Small integers are handled below; large integers are handled here.
1296    if (Size > 4) {
1297      EmitGlobalConstantLargeInt(CI, AddrSpace);
1298      return;
1299    }
1300  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1301    EmitGlobalConstantVector(CP);
1302    return;
1303  }
1304
1305  printDataDirective(type, AddrSpace);
1306  EmitConstantValueOnly(CV);
1307  if (VerboseAsm) {
1308    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1309      SmallString<40> S;
1310      CI->getValue().toStringUnsigned(S, 16);
1311      O.PadToColumn(TAI->getCommentColumn());
1312      O << TAI->getCommentString() << " 0x" << S.c_str();
1313    }
1314  }
1315  O << '\n';
1316}
1317
1318void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1319  // Target doesn't support this yet!
1320  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1321}
1322
1323/// PrintSpecial - Print information related to the specified machine instr
1324/// that is independent of the operand, and may be independent of the instr
1325/// itself.  This can be useful for portably encoding the comment character
1326/// or other bits of target-specific knowledge into the asmstrings.  The
1327/// syntax used is ${:comment}.  Targets can override this to add support
1328/// for their own strange codes.
1329void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1330  if (!strcmp(Code, "private")) {
1331    O << TAI->getPrivateGlobalPrefix();
1332  } else if (!strcmp(Code, "comment")) {
1333    if (VerboseAsm)
1334      O << TAI->getCommentString();
1335  } else if (!strcmp(Code, "uid")) {
1336    // Comparing the address of MI isn't sufficient, because machineinstrs may
1337    // be allocated to the same address across functions.
1338    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1339
1340    // If this is a new LastFn instruction, bump the counter.
1341    if (LastMI != MI || LastFn != ThisF) {
1342      ++Counter;
1343      LastMI = MI;
1344      LastFn = ThisF;
1345    }
1346    O << Counter;
1347  } else {
1348    std::string msg;
1349    raw_string_ostream Msg(msg);
1350    Msg << "Unknown special formatter '" << Code
1351         << "' for machine instr: " << *MI;
1352    llvm_report_error(Msg.str());
1353  }
1354}
1355
1356/// processDebugLoc - Processes the debug information of each machine
1357/// instruction's DebugLoc.
1358void AsmPrinter::processDebugLoc(DebugLoc DL) {
1359  if (!TAI || !DW)
1360    return;
1361
1362  if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
1363    if (!DL.isUnknown()) {
1364      DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1365
1366      if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT)
1367        printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1368                                        DICompileUnit(CurDLT.CompileUnit)));
1369
1370      PrevDLT = CurDLT;
1371    }
1372  }
1373}
1374
1375/// printInlineAsm - This method formats and prints the specified machine
1376/// instruction that is an inline asm.
1377void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1378  unsigned NumOperands = MI->getNumOperands();
1379
1380  // Count the number of register definitions.
1381  unsigned NumDefs = 0;
1382  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1383       ++NumDefs)
1384    assert(NumDefs != NumOperands-1 && "No asm string?");
1385
1386  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1387
1388  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1389  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1390
1391  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1392  // These are useful to see where empty asm's wound up.
1393  if (AsmStr[0] == 0) {
1394    O << TAI->getCommentString() << TAI->getInlineAsmStart() << "\n\t";
1395    O << TAI->getCommentString() << TAI->getInlineAsmEnd() << '\n';
1396    return;
1397  }
1398
1399  O << TAI->getCommentString() << TAI->getInlineAsmStart() << "\n\t";
1400
1401  // The variant of the current asmprinter.
1402  int AsmPrinterVariant = TAI->getAssemblerDialect();
1403
1404  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1405  const char *LastEmitted = AsmStr; // One past the last character emitted.
1406
1407  while (*LastEmitted) {
1408    switch (*LastEmitted) {
1409    default: {
1410      // Not a special case, emit the string section literally.
1411      const char *LiteralEnd = LastEmitted+1;
1412      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1413             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1414        ++LiteralEnd;
1415      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1416        O.write(LastEmitted, LiteralEnd-LastEmitted);
1417      LastEmitted = LiteralEnd;
1418      break;
1419    }
1420    case '\n':
1421      ++LastEmitted;   // Consume newline character.
1422      O << '\n';       // Indent code with newline.
1423      break;
1424    case '$': {
1425      ++LastEmitted;   // Consume '$' character.
1426      bool Done = true;
1427
1428      // Handle escapes.
1429      switch (*LastEmitted) {
1430      default: Done = false; break;
1431      case '$':     // $$ -> $
1432        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1433          O << '$';
1434        ++LastEmitted;  // Consume second '$' character.
1435        break;
1436      case '(':             // $( -> same as GCC's { character.
1437        ++LastEmitted;      // Consume '(' character.
1438        if (CurVariant != -1) {
1439          llvm_report_error("Nested variants found in inline asm string: '"
1440                            + std::string(AsmStr) + "'");
1441        }
1442        CurVariant = 0;     // We're in the first variant now.
1443        break;
1444      case '|':
1445        ++LastEmitted;  // consume '|' character.
1446        if (CurVariant == -1)
1447          O << '|';       // this is gcc's behavior for | outside a variant
1448        else
1449          ++CurVariant;   // We're in the next variant.
1450        break;
1451      case ')':         // $) -> same as GCC's } char.
1452        ++LastEmitted;  // consume ')' character.
1453        if (CurVariant == -1)
1454          O << '}';     // this is gcc's behavior for } outside a variant
1455        else
1456          CurVariant = -1;
1457        break;
1458      }
1459      if (Done) break;
1460
1461      bool HasCurlyBraces = false;
1462      if (*LastEmitted == '{') {     // ${variable}
1463        ++LastEmitted;               // Consume '{' character.
1464        HasCurlyBraces = true;
1465      }
1466
1467      // If we have ${:foo}, then this is not a real operand reference, it is a
1468      // "magic" string reference, just like in .td files.  Arrange to call
1469      // PrintSpecial.
1470      if (HasCurlyBraces && *LastEmitted == ':') {
1471        ++LastEmitted;
1472        const char *StrStart = LastEmitted;
1473        const char *StrEnd = strchr(StrStart, '}');
1474        if (StrEnd == 0) {
1475          llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1476                            + std::string(AsmStr) + "'");
1477        }
1478
1479        std::string Val(StrStart, StrEnd);
1480        PrintSpecial(MI, Val.c_str());
1481        LastEmitted = StrEnd+1;
1482        break;
1483      }
1484
1485      const char *IDStart = LastEmitted;
1486      char *IDEnd;
1487      errno = 0;
1488      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1489      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1490        llvm_report_error("Bad $ operand number in inline asm string: '"
1491                          + std::string(AsmStr) + "'");
1492      }
1493      LastEmitted = IDEnd;
1494
1495      char Modifier[2] = { 0, 0 };
1496
1497      if (HasCurlyBraces) {
1498        // If we have curly braces, check for a modifier character.  This
1499        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1500        if (*LastEmitted == ':') {
1501          ++LastEmitted;    // Consume ':' character.
1502          if (*LastEmitted == 0) {
1503            llvm_report_error("Bad ${:} expression in inline asm string: '"
1504                              + std::string(AsmStr) + "'");
1505          }
1506
1507          Modifier[0] = *LastEmitted;
1508          ++LastEmitted;    // Consume modifier character.
1509        }
1510
1511        if (*LastEmitted != '}') {
1512          llvm_report_error("Bad ${} expression in inline asm string: '"
1513                            + std::string(AsmStr) + "'");
1514        }
1515        ++LastEmitted;    // Consume '}' character.
1516      }
1517
1518      if ((unsigned)Val >= NumOperands-1) {
1519        llvm_report_error("Invalid $ operand number in inline asm string: '"
1520                          + std::string(AsmStr) + "'");
1521      }
1522
1523      // Okay, we finally have a value number.  Ask the target to print this
1524      // operand!
1525      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1526        unsigned OpNo = 1;
1527
1528        bool Error = false;
1529
1530        // Scan to find the machine operand number for the operand.
1531        for (; Val; --Val) {
1532          if (OpNo >= MI->getNumOperands()) break;
1533          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1534          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1535        }
1536
1537        if (OpNo >= MI->getNumOperands()) {
1538          Error = true;
1539        } else {
1540          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1541          ++OpNo;  // Skip over the ID number.
1542
1543          if (Modifier[0]=='l')  // labels are target independent
1544            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1545                                 false, false, false);
1546          else {
1547            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1548            if ((OpFlags & 7) == 4) {
1549              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1550                                                Modifier[0] ? Modifier : 0);
1551            } else {
1552              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1553                                          Modifier[0] ? Modifier : 0);
1554            }
1555          }
1556        }
1557        if (Error) {
1558          std::string msg;
1559          raw_string_ostream Msg(msg);
1560          Msg << "Invalid operand found in inline asm: '"
1561               << AsmStr << "'\n";
1562          MI->print(Msg);
1563          llvm_report_error(Msg.str());
1564        }
1565      }
1566      break;
1567    }
1568    }
1569  }
1570  O << "\n\t" << TAI->getCommentString() << TAI->getInlineAsmEnd() << '\n';
1571}
1572
1573/// printImplicitDef - This method prints the specified machine instruction
1574/// that is an implicit def.
1575void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1576  if (VerboseAsm) {
1577    O.PadToColumn(TAI->getCommentColumn());
1578    O << TAI->getCommentString() << " implicit-def: "
1579      << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1580  }
1581}
1582
1583/// printLabel - This method prints a local label used by debug and
1584/// exception handling tables.
1585void AsmPrinter::printLabel(const MachineInstr *MI) const {
1586  printLabel(MI->getOperand(0).getImm());
1587}
1588
1589void AsmPrinter::printLabel(unsigned Id) const {
1590  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1591}
1592
1593/// printDeclare - This method prints a local variable declaration used by
1594/// debug tables.
1595/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1596/// entry into dwarf table.
1597void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1598  unsigned FI = MI->getOperand(0).getIndex();
1599  GlobalValue *GV = MI->getOperand(1).getGlobal();
1600  DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI);
1601}
1602
1603/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1604/// instruction, using the specified assembler variant.  Targets should
1605/// overried this to format as appropriate.
1606bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1607                                 unsigned AsmVariant, const char *ExtraCode) {
1608  // Target doesn't support this yet!
1609  return true;
1610}
1611
1612bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1613                                       unsigned AsmVariant,
1614                                       const char *ExtraCode) {
1615  // Target doesn't support this yet!
1616  return true;
1617}
1618
1619/// printBasicBlockLabel - This method prints the label for the specified
1620/// MachineBasicBlock
1621void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1622                                      bool printAlign,
1623                                      bool printColon,
1624                                      bool printComment) const {
1625  if (printAlign) {
1626    unsigned Align = MBB->getAlignment();
1627    if (Align)
1628      EmitAlignment(Log2_32(Align));
1629  }
1630
1631  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1632    << MBB->getNumber();
1633  if (printColon)
1634    O << ':';
1635  if (printComment) {
1636    if (const BasicBlock *BB = MBB->getBasicBlock())
1637      if (BB->hasName()) {
1638        O.PadToColumn(TAI->getCommentColumn());
1639        O << TAI->getCommentString() << ' ';
1640        WriteAsOperand(O, BB, /*PrintType=*/false);
1641      }
1642
1643    if (printColon)
1644      EmitComments(*MBB);
1645  }
1646}
1647
1648/// printPICJumpTableSetLabel - This method prints a set label for the
1649/// specified MachineBasicBlock for a jumptable entry.
1650void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1651                                           const MachineBasicBlock *MBB) const {
1652  if (!TAI->getSetDirective())
1653    return;
1654
1655  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1656    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1657  printBasicBlockLabel(MBB, false, false, false);
1658  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1659    << '_' << uid << '\n';
1660}
1661
1662void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1663                                           const MachineBasicBlock *MBB) const {
1664  if (!TAI->getSetDirective())
1665    return;
1666
1667  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1668    << getFunctionNumber() << '_' << uid << '_' << uid2
1669    << "_set_" << MBB->getNumber() << ',';
1670  printBasicBlockLabel(MBB, false, false, false);
1671  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1672    << '_' << uid << '_' << uid2 << '\n';
1673}
1674
1675/// printDataDirective - This method prints the asm directive for the
1676/// specified type.
1677void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1678  const TargetData *TD = TM.getTargetData();
1679  switch (type->getTypeID()) {
1680  case Type::FloatTyID: case Type::DoubleTyID:
1681  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1682    assert(0 && "Should have already output floating point constant.");
1683  default:
1684    assert(0 && "Can't handle printing this type of thing");
1685  case Type::IntegerTyID: {
1686    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1687    if (BitWidth <= 8)
1688      O << TAI->getData8bitsDirective(AddrSpace);
1689    else if (BitWidth <= 16)
1690      O << TAI->getData16bitsDirective(AddrSpace);
1691    else if (BitWidth <= 32)
1692      O << TAI->getData32bitsDirective(AddrSpace);
1693    else if (BitWidth <= 64) {
1694      assert(TAI->getData64bitsDirective(AddrSpace) &&
1695             "Target cannot handle 64-bit constant exprs!");
1696      O << TAI->getData64bitsDirective(AddrSpace);
1697    } else {
1698      llvm_unreachable("Target cannot handle given data directive width!");
1699    }
1700    break;
1701  }
1702  case Type::PointerTyID:
1703    if (TD->getPointerSize() == 8) {
1704      assert(TAI->getData64bitsDirective(AddrSpace) &&
1705             "Target cannot handle 64-bit pointer exprs!");
1706      O << TAI->getData64bitsDirective(AddrSpace);
1707    } else if (TD->getPointerSize() == 2) {
1708      O << TAI->getData16bitsDirective(AddrSpace);
1709    } else if (TD->getPointerSize() == 1) {
1710      O << TAI->getData8bitsDirective(AddrSpace);
1711    } else {
1712      O << TAI->getData32bitsDirective(AddrSpace);
1713    }
1714    break;
1715  }
1716}
1717
1718void AsmPrinter::printVisibility(const std::string& Name,
1719                                 unsigned Visibility) const {
1720  if (Visibility == GlobalValue::HiddenVisibility) {
1721    if (const char *Directive = TAI->getHiddenDirective())
1722      O << Directive << Name << '\n';
1723  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1724    if (const char *Directive = TAI->getProtectedDirective())
1725      O << Directive << Name << '\n';
1726  }
1727}
1728
1729void AsmPrinter::printOffset(int64_t Offset) const {
1730  if (Offset > 0)
1731    O << '+' << Offset;
1732  else if (Offset < 0)
1733    O << Offset;
1734}
1735
1736void AsmPrinter::printMCInst(const MCInst *MI) {
1737  llvm_unreachable("MCInst printing unavailable on this target!");
1738}
1739
1740GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1741  if (!S->usesMetadata())
1742    return 0;
1743
1744  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1745  if (GCPI != GCMetadataPrinters.end())
1746    return GCPI->second;
1747
1748  const char *Name = S->getName().c_str();
1749
1750  for (GCMetadataPrinterRegistry::iterator
1751         I = GCMetadataPrinterRegistry::begin(),
1752         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1753    if (strcmp(Name, I->getName()) == 0) {
1754      GCMetadataPrinter *GMP = I->instantiate();
1755      GMP->S = S;
1756      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1757      return GMP;
1758    }
1759
1760  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1761  llvm_unreachable(0);
1762}
1763
1764/// EmitComments - Pretty-print comments for instructions
1765void AsmPrinter::EmitComments(const MachineInstr &MI) const {
1766  if (!VerboseAsm ||
1767      MI.getDebugLoc().isUnknown())
1768    return;
1769
1770  DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1771
1772  // Print source line info.
1773  O.PadToColumn(TAI->getCommentColumn());
1774  O << TAI->getCommentString() << " SrcLine ";
1775  if (DLT.CompileUnit->hasInitializer()) {
1776    Constant *Name = DLT.CompileUnit->getInitializer();
1777    if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1778      if (NameString->isString())
1779        O << NameString->getAsString() << " ";
1780  }
1781  O << DLT.Line;
1782  if (DLT.Col != 0)
1783    O << ":" << DLT.Col;
1784}
1785
1786/// EmitComments - Pretty-print comments for instructions
1787void AsmPrinter::EmitComments(const MCInst &MI) const
1788{
1789  if (VerboseAsm) {
1790    if (!MI.getDebugLoc().isUnknown()) {
1791      DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1792
1793      // Print source line info
1794      O.PadToColumn(TAI->getCommentColumn());
1795      O << TAI->getCommentString() << " SrcLine ";
1796      if (DLT.CompileUnit->hasInitializer()) {
1797        Constant *Name = DLT.CompileUnit->getInitializer();
1798        if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1799          if (NameString->isString()) {
1800            O << NameString->getAsString() << " ";
1801          }
1802      }
1803      O << DLT.Line;
1804      if (DLT.Col != 0)
1805        O << ":" << DLT.Col;
1806    }
1807  }
1808}
1809
1810/// EmitComments - Pretty-print comments for basic blocks
1811void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const
1812{
1813  if (ExuberantAsm) {
1814    // Add loop depth information
1815    const MachineLoop *loop = LI->getLoopFor(&MBB);
1816
1817    if (loop) {
1818      // Print a newline after bb# annotation.
1819      O << "\n";
1820      O.PadToColumn(TAI->getCommentColumn());
1821      O << TAI->getCommentString() << " Loop Depth " << loop->getLoopDepth()
1822        << '\n';
1823
1824      O.PadToColumn(TAI->getCommentColumn());
1825
1826      MachineBasicBlock *Header = loop->getHeader();
1827      assert(Header && "No header for loop");
1828
1829      if (Header == &MBB) {
1830        O << TAI->getCommentString() << " Loop Header";
1831        PrintChildLoopComment(loop);
1832      }
1833      else {
1834        O << TAI->getCommentString() << " Loop Header is BB"
1835          << getFunctionNumber() << "_" << loop->getHeader()->getNumber();
1836      }
1837
1838      if (loop->empty()) {
1839        O << '\n';
1840        O.PadToColumn(TAI->getCommentColumn());
1841        O << TAI->getCommentString() << " Inner Loop";
1842      }
1843
1844      // Add parent loop information
1845      for (const MachineLoop *CurLoop = loop->getParentLoop();
1846           CurLoop;
1847           CurLoop = CurLoop->getParentLoop()) {
1848        MachineBasicBlock *Header = CurLoop->getHeader();
1849        assert(Header && "No header for loop");
1850
1851        O << '\n';
1852        O.PadToColumn(TAI->getCommentColumn());
1853        O << TAI->getCommentString() << Indent(CurLoop->getLoopDepth()-1)
1854          << " Inside Loop BB" << getFunctionNumber() << "_"
1855          << Header->getNumber() << " Depth " << CurLoop->getLoopDepth();
1856      }
1857    }
1858  }
1859}
1860
1861void AsmPrinter::PrintChildLoopComment(const MachineLoop *loop) const {
1862  // Add child loop information
1863  for(MachineLoop::iterator cl = loop->begin(),
1864        clend = loop->end();
1865      cl != clend;
1866      ++cl) {
1867    MachineBasicBlock *Header = (*cl)->getHeader();
1868    assert(Header && "No header for loop");
1869
1870    O << '\n';
1871    O.PadToColumn(TAI->getCommentColumn());
1872
1873    O << TAI->getCommentString() << Indent((*cl)->getLoopDepth()-1)
1874      << " Child Loop BB" << getFunctionNumber() << "_"
1875      << Header->getNumber() << " Depth " << (*cl)->getLoopDepth();
1876
1877    PrintChildLoopComment(*cl);
1878  }
1879}
1880