AsmPrinter.cpp revision 94d8a7600a9d3f4aba6189d67a6a3e80c79d806a
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineJumpTableInfo.h" 22#include "llvm/CodeGen/MachineModuleInfo.h" 23#include "llvm/CodeGen/DwarfWriter.h" 24#include "llvm/Analysis/DebugInfo.h" 25#include "llvm/MC/MCInst.h" 26#include "llvm/Support/CommandLine.h" 27#include "llvm/Support/ErrorHandling.h" 28#include "llvm/Support/FormattedStream.h" 29#include "llvm/Support/Mangler.h" 30#include "llvm/Target/TargetAsmInfo.h" 31#include "llvm/Target/TargetData.h" 32#include "llvm/Target/TargetLowering.h" 33#include "llvm/Target/TargetOptions.h" 34#include "llvm/Target/TargetRegisterInfo.h" 35#include "llvm/ADT/SmallPtrSet.h" 36#include "llvm/ADT/SmallString.h" 37#include "llvm/ADT/StringExtras.h" 38#include <cerrno> 39using namespace llvm; 40 41static cl::opt<cl::boolOrDefault> 42AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 43 cl::init(cl::BOU_UNSET)); 44 45char AsmPrinter::ID = 0; 46AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm, 47 const TargetAsmInfo *T, bool VDef) 48 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 49 TM(tm), TAI(T), TRI(tm.getRegisterInfo()), 50 IsInTextSection(false), LastMI(0), LastFn(0), Counter(~0U), 51 PrevDLT(0, ~0U, ~0U) { 52 DW = 0; MMI = 0; 53 switch (AsmVerbose) { 54 case cl::BOU_UNSET: VerboseAsm = VDef; break; 55 case cl::BOU_TRUE: VerboseAsm = true; break; 56 case cl::BOU_FALSE: VerboseAsm = false; break; 57 } 58} 59 60AsmPrinter::~AsmPrinter() { 61 for (gcp_iterator I = GCMetadataPrinters.begin(), 62 E = GCMetadataPrinters.end(); I != E; ++I) 63 delete I->second; 64} 65 66/// SwitchToTextSection - Switch to the specified text section of the executable 67/// if we are not already in it! 68/// 69void AsmPrinter::SwitchToTextSection(const char *NewSection, 70 const GlobalValue *GV) { 71 std::string NS; 72 if (GV && GV->hasSection()) 73 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 74 else 75 NS = NewSection; 76 77 // If we're already in this section, we're done. 78 if (CurrentSection == NS) return; 79 80 // Close the current section, if applicable. 81 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 82 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 83 84 CurrentSection = NS; 85 86 if (!CurrentSection.empty()) 87 O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n'; 88 89 IsInTextSection = true; 90} 91 92/// SwitchToDataSection - Switch to the specified data section of the executable 93/// if we are not already in it! 94/// 95void AsmPrinter::SwitchToDataSection(const char *NewSection, 96 const GlobalValue *GV) { 97 std::string NS; 98 if (GV && GV->hasSection()) 99 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 100 else 101 NS = NewSection; 102 103 // If we're already in this section, we're done. 104 if (CurrentSection == NS) return; 105 106 // Close the current section, if applicable. 107 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 108 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 109 110 CurrentSection = NS; 111 112 if (!CurrentSection.empty()) 113 O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n'; 114 115 IsInTextSection = false; 116} 117 118/// SwitchToSection - Switch to the specified section of the executable if we 119/// are not already in it! 120void AsmPrinter::SwitchToSection(const Section* NS) { 121 const std::string& NewSection = NS->getName(); 122 123 // If we're already in this section, we're done. 124 if (CurrentSection == NewSection) return; 125 126 // Close the current section, if applicable. 127 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 128 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 129 130 // FIXME: Make CurrentSection a Section* in the future 131 CurrentSection = NewSection; 132 CurrentSection_ = NS; 133 134 if (!CurrentSection.empty()) { 135 // If section is named we need to switch into it via special '.section' 136 // directive and also append funky flags. Otherwise - section name is just 137 // some magic assembler directive. 138 if (NS->hasFlag(SectionFlags::Named)) { 139 O << TAI->getSwitchToSectionDirective() 140 << CurrentSection; 141 142 SmallString<32> FlagsStr; 143 TAI->getSectionFlags(NS->getFlags(), FlagsStr); 144 O << FlagsStr.c_str(); 145 } else { 146 O << CurrentSection; 147 } 148 O << TAI->getDataSectionStartSuffix() << '\n'; 149 } 150 151 IsInTextSection = (NS->getFlags() & SectionFlags::Code); 152} 153 154void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 155 MachineFunctionPass::getAnalysisUsage(AU); 156 AU.addRequired<GCModuleInfo>(); 157} 158 159bool AsmPrinter::doInitialization(Module &M) { 160 Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix(), 161 TAI->getLinkerPrivateGlobalPrefix()); 162 163 if (TAI->doesAllowQuotesInName()) 164 Mang->setUseQuotes(true); 165 166 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 167 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 168 169 if (TAI->hasSingleParameterDotFile()) { 170 /* Very minimal debug info. It is ignored if we emit actual 171 debug info. If we don't, this at helps the user find where 172 a function came from. */ 173 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 174 } 175 176 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 177 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 178 MP->beginAssembly(O, *this, *TAI); 179 180 if (!M.getModuleInlineAsm().empty()) 181 O << TAI->getCommentString() << " Start of file scope inline assembly\n" 182 << M.getModuleInlineAsm() 183 << '\n' << TAI->getCommentString() 184 << " End of file scope inline assembly\n"; 185 186 SwitchToDataSection(""); // Reset back to no section. 187 188 if (TAI->doesSupportDebugInformation() || 189 TAI->doesSupportExceptionHandling()) { 190 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 191 if (MMI) 192 MMI->AnalyzeModule(M); 193 DW = getAnalysisIfAvailable<DwarfWriter>(); 194 if (DW) 195 DW->BeginModule(&M, MMI, O, this, TAI); 196 } 197 198 return false; 199} 200 201bool AsmPrinter::doFinalization(Module &M) { 202 // Emit global variables. 203 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 204 I != E; ++I) 205 PrintGlobalVariable(I); 206 207 // Emit final debug information. 208 if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling()) 209 DW->EndModule(); 210 211 // If the target wants to know about weak references, print them all. 212 if (TAI->getWeakRefDirective()) { 213 // FIXME: This is not lazy, it would be nice to only print weak references 214 // to stuff that is actually used. Note that doing so would require targets 215 // to notice uses in operands (due to constant exprs etc). This should 216 // happen with the MC stuff eventually. 217 SwitchToDataSection(""); 218 219 // Print out module-level global variables here. 220 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 221 I != E; ++I) { 222 if (I->hasExternalWeakLinkage()) 223 O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 224 } 225 226 for (Module::const_iterator I = M.begin(), E = M.end(); 227 I != E; ++I) { 228 if (I->hasExternalWeakLinkage()) 229 O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 230 } 231 } 232 233 if (TAI->getSetDirective()) { 234 if (!M.alias_empty()) 235 SwitchToSection(TAI->getTextSection()); 236 237 O << '\n'; 238 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 239 I != E; ++I) { 240 std::string Name = Mang->getMangledName(I); 241 242 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 243 std::string Target = Mang->getMangledName(GV); 244 245 if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) 246 O << "\t.globl\t" << Name << '\n'; 247 else if (I->hasWeakLinkage()) 248 O << TAI->getWeakRefDirective() << Name << '\n'; 249 else if (!I->hasLocalLinkage()) 250 llvm_unreachable("Invalid alias linkage"); 251 252 printVisibility(Name, I->getVisibility()); 253 254 O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 255 } 256 } 257 258 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 259 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 260 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 261 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 262 MP->finishAssembly(O, *this, *TAI); 263 264 // If we don't have any trampolines, then we don't require stack memory 265 // to be executable. Some targets have a directive to declare this. 266 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 267 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 268 if (TAI->getNonexecutableStackDirective()) 269 O << TAI->getNonexecutableStackDirective() << '\n'; 270 271 delete Mang; Mang = 0; 272 DW = 0; MMI = 0; 273 return false; 274} 275 276std::string 277AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const { 278 assert(MF && "No machine function?"); 279 return Mang->getMangledName(MF->getFunction(), ".eh", 280 TAI->is_EHSymbolPrivate()); 281} 282 283void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 284 // What's my mangled name? 285 CurrentFnName = Mang->getMangledName(MF.getFunction()); 286 IncrementFunctionNumber(); 287} 288 289namespace { 290 // SectionCPs - Keep track the alignment, constpool entries per Section. 291 struct SectionCPs { 292 const Section *S; 293 unsigned Alignment; 294 SmallVector<unsigned, 4> CPEs; 295 SectionCPs(const Section *s, unsigned a) : S(s), Alignment(a) {}; 296 }; 297} 298 299/// EmitConstantPool - Print to the current output stream assembly 300/// representations of the constants in the constant pool MCP. This is 301/// used to print out constants which have been "spilled to memory" by 302/// the code generator. 303/// 304void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 305 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 306 if (CP.empty()) return; 307 308 // Calculate sections for constant pool entries. We collect entries to go into 309 // the same section together to reduce amount of section switch statements. 310 SmallVector<SectionCPs, 4> CPSections; 311 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 312 const MachineConstantPoolEntry &CPE = CP[i]; 313 unsigned Align = CPE.getAlignment(); 314 315 SectionKind Kind; 316 switch (CPE.getRelocationInfo()) { 317 default: llvm_unreachable("Unknown section kind"); 318 case 2: Kind = SectionKind::get(SectionKind::ReadOnlyWithRel, false); break; 319 case 1: 320 Kind = SectionKind::get(SectionKind::ReadOnlyWithRelLocal,false); 321 break; 322 case 0: 323 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 324 case 4: Kind = SectionKind::get(SectionKind::MergeableConst4,false); break; 325 case 8: Kind = SectionKind::get(SectionKind::MergeableConst8,false); break; 326 case 16: Kind = SectionKind::get(SectionKind::MergeableConst16,false);break; 327 default: Kind = SectionKind::get(SectionKind::MergeableConst,false); break; 328 } 329 } 330 331 const Section *S = TAI->getSectionForMergeableConstant(Kind); 332 333 // The number of sections are small, just do a linear search from the 334 // last section to the first. 335 bool Found = false; 336 unsigned SecIdx = CPSections.size(); 337 while (SecIdx != 0) { 338 if (CPSections[--SecIdx].S == S) { 339 Found = true; 340 break; 341 } 342 } 343 if (!Found) { 344 SecIdx = CPSections.size(); 345 CPSections.push_back(SectionCPs(S, Align)); 346 } 347 348 if (Align > CPSections[SecIdx].Alignment) 349 CPSections[SecIdx].Alignment = Align; 350 CPSections[SecIdx].CPEs.push_back(i); 351 } 352 353 // Now print stuff into the calculated sections. 354 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 355 SwitchToSection(CPSections[i].S); 356 EmitAlignment(Log2_32(CPSections[i].Alignment)); 357 358 unsigned Offset = 0; 359 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 360 unsigned CPI = CPSections[i].CPEs[j]; 361 MachineConstantPoolEntry CPE = CP[CPI]; 362 363 // Emit inter-object padding for alignment. 364 unsigned AlignMask = CPE.getAlignment() - 1; 365 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 366 EmitZeros(NewOffset - Offset); 367 368 const Type *Ty = CPE.getType(); 369 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 370 371 O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 372 << CPI << ":\t\t\t\t\t"; 373 if (VerboseAsm) { 374 O << TAI->getCommentString() << ' '; 375 WriteTypeSymbolic(O, CPE.getType(), 0); 376 } 377 O << '\n'; 378 if (CPE.isMachineConstantPoolEntry()) 379 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 380 else 381 EmitGlobalConstant(CPE.Val.ConstVal); 382 } 383 } 384} 385 386/// EmitJumpTableInfo - Print assembly representations of the jump tables used 387/// by the current function to the current output stream. 388/// 389void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 390 MachineFunction &MF) { 391 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 392 if (JT.empty()) return; 393 394 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 395 396 // Pick the directive to use to print the jump table entries, and switch to 397 // the appropriate section. 398 TargetLowering *LoweringInfo = TM.getTargetLowering(); 399 400 const char* JumpTableDataSection = TAI->getJumpTableDataSection(); 401 const Function *F = MF.getFunction(); 402 const Section *FuncSection = TAI->SectionForGlobal(F); 403 404 bool JTInDiffSection = false; 405 if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) || 406 !JumpTableDataSection || 407 FuncSection->hasFlag(SectionFlags::Linkonce)) { 408 // In PIC mode, we need to emit the jump table to the same section as the 409 // function body itself, otherwise the label differences won't make sense. 410 // We should also do if the section name is NULL or function is declared in 411 // discardable section. 412 SwitchToSection(FuncSection); 413 } else { 414 SwitchToDataSection(JumpTableDataSection); 415 JTInDiffSection = true; 416 } 417 418 EmitAlignment(Log2_32(MJTI->getAlignment())); 419 420 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 421 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 422 423 // If this jump table was deleted, ignore it. 424 if (JTBBs.empty()) continue; 425 426 // For PIC codegen, if possible we want to use the SetDirective to reduce 427 // the number of relocations the assembler will generate for the jump table. 428 // Set directives are all printed before the jump table itself. 429 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 430 if (TAI->getSetDirective() && IsPic) 431 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 432 if (EmittedSets.insert(JTBBs[ii])) 433 printPICJumpTableSetLabel(i, JTBBs[ii]); 434 435 // On some targets (e.g. darwin) we want to emit two consequtive labels 436 // before each jump table. The first label is never referenced, but tells 437 // the assembler and linker the extents of the jump table object. The 438 // second label is actually referenced by the code. 439 if (JTInDiffSection) { 440 if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) 441 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 442 } 443 444 O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 445 << '_' << i << ":\n"; 446 447 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 448 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 449 O << '\n'; 450 } 451 } 452} 453 454void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 455 const MachineBasicBlock *MBB, 456 unsigned uid) const { 457 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 458 459 // Use JumpTableDirective otherwise honor the entry size from the jump table 460 // info. 461 const char *JTEntryDirective = TAI->getJumpTableDirective(); 462 bool HadJTEntryDirective = JTEntryDirective != NULL; 463 if (!HadJTEntryDirective) { 464 JTEntryDirective = MJTI->getEntrySize() == 4 ? 465 TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); 466 } 467 468 O << JTEntryDirective << ' '; 469 470 // If we have emitted set directives for the jump table entries, print 471 // them rather than the entries themselves. If we're emitting PIC, then 472 // emit the table entries as differences between two text section labels. 473 // If we're emitting non-PIC code, then emit the entries as direct 474 // references to the target basic blocks. 475 if (IsPic) { 476 if (TAI->getSetDirective()) { 477 O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() 478 << '_' << uid << "_set_" << MBB->getNumber(); 479 } else { 480 printBasicBlockLabel(MBB, false, false, false); 481 // If the arch uses custom Jump Table directives, don't calc relative to 482 // JT 483 if (!HadJTEntryDirective) 484 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" 485 << getFunctionNumber() << '_' << uid; 486 } 487 } else { 488 printBasicBlockLabel(MBB, false, false, false); 489 } 490} 491 492 493/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 494/// special global used by LLVM. If so, emit it and return true, otherwise 495/// do nothing and return false. 496bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 497 if (GV->getName() == "llvm.used") { 498 if (TAI->getUsedDirective() != 0) // No need to emit this at all. 499 EmitLLVMUsedList(GV->getInitializer()); 500 return true; 501 } 502 503 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 504 if (GV->getSection() == "llvm.metadata" || 505 GV->hasAvailableExternallyLinkage()) 506 return true; 507 508 if (!GV->hasAppendingLinkage()) return false; 509 510 assert(GV->hasInitializer() && "Not a special LLVM global!"); 511 512 const TargetData *TD = TM.getTargetData(); 513 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 514 if (GV->getName() == "llvm.global_ctors") { 515 SwitchToDataSection(TAI->getStaticCtorsSection()); 516 EmitAlignment(Align, 0); 517 EmitXXStructorList(GV->getInitializer()); 518 return true; 519 } 520 521 if (GV->getName() == "llvm.global_dtors") { 522 SwitchToDataSection(TAI->getStaticDtorsSection()); 523 EmitAlignment(Align, 0); 524 EmitXXStructorList(GV->getInitializer()); 525 return true; 526 } 527 528 return false; 529} 530 531/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each 532/// global in the specified llvm.used list for which emitUsedDirectiveFor 533/// is true, as being used with this directive. 534void AsmPrinter::EmitLLVMUsedList(Constant *List) { 535 const char *Directive = TAI->getUsedDirective(); 536 537 // Should be an array of 'i8*'. 538 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 539 if (InitList == 0) return; 540 541 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 542 const GlobalValue *GV = 543 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 544 if (GV && TAI->emitUsedDirectiveFor(GV, Mang)) { 545 O << Directive; 546 EmitConstantValueOnly(InitList->getOperand(i)); 547 O << '\n'; 548 } 549 } 550} 551 552/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 553/// function pointers, ignoring the init priority. 554void AsmPrinter::EmitXXStructorList(Constant *List) { 555 // Should be an array of '{ int, void ()* }' structs. The first value is the 556 // init priority, which we ignore. 557 if (!isa<ConstantArray>(List)) return; 558 ConstantArray *InitList = cast<ConstantArray>(List); 559 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 560 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 561 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 562 563 if (CS->getOperand(1)->isNullValue()) 564 return; // Found a null terminator, exit printing. 565 // Emit the function pointer. 566 EmitGlobalConstant(CS->getOperand(1)); 567 } 568} 569 570/// getGlobalLinkName - Returns the asm/link name of of the specified 571/// global variable. Should be overridden by each target asm printer to 572/// generate the appropriate value. 573const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV, 574 std::string &LinkName) const { 575 if (isa<Function>(GV)) { 576 LinkName += TAI->getFunctionAddrPrefix(); 577 LinkName += Mang->getMangledName(GV); 578 LinkName += TAI->getFunctionAddrSuffix(); 579 } else { 580 LinkName += TAI->getGlobalVarAddrPrefix(); 581 LinkName += Mang->getMangledName(GV); 582 LinkName += TAI->getGlobalVarAddrSuffix(); 583 } 584 585 return LinkName; 586} 587 588/// EmitExternalGlobal - Emit the external reference to a global variable. 589/// Should be overridden if an indirect reference should be used. 590void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { 591 std::string GLN; 592 O << getGlobalLinkName(GV, GLN); 593} 594 595 596 597//===----------------------------------------------------------------------===// 598/// LEB 128 number encoding. 599 600/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) 601/// representing an unsigned leb128 value. 602void AsmPrinter::PrintULEB128(unsigned Value) const { 603 char Buffer[20]; 604 do { 605 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 606 Value >>= 7; 607 if (Value) Byte |= 0x80; 608 O << "0x" << utohex_buffer(Byte, Buffer+20); 609 if (Value) O << ", "; 610 } while (Value); 611} 612 613/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) 614/// representing a signed leb128 value. 615void AsmPrinter::PrintSLEB128(int Value) const { 616 int Sign = Value >> (8 * sizeof(Value) - 1); 617 bool IsMore; 618 char Buffer[20]; 619 620 do { 621 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 622 Value >>= 7; 623 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 624 if (IsMore) Byte |= 0x80; 625 O << "0x" << utohex_buffer(Byte, Buffer+20); 626 if (IsMore) O << ", "; 627 } while (IsMore); 628} 629 630//===--------------------------------------------------------------------===// 631// Emission and print routines 632// 633 634/// PrintHex - Print a value as a hexidecimal value. 635/// 636void AsmPrinter::PrintHex(int Value) const { 637 char Buffer[20]; 638 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); 639} 640 641/// EOL - Print a newline character to asm stream. If a comment is present 642/// then it will be printed first. Comments should not contain '\n'. 643void AsmPrinter::EOL() const { 644 O << '\n'; 645} 646 647void AsmPrinter::EOL(const std::string &Comment) const { 648 if (VerboseAsm && !Comment.empty()) { 649 O << '\t' 650 << TAI->getCommentString() 651 << ' ' 652 << Comment; 653 } 654 O << '\n'; 655} 656 657void AsmPrinter::EOL(const char* Comment) const { 658 if (VerboseAsm && *Comment) { 659 O << '\t' 660 << TAI->getCommentString() 661 << ' ' 662 << Comment; 663 } 664 O << '\n'; 665} 666 667/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 668/// unsigned leb128 value. 669void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 670 if (TAI->hasLEB128()) { 671 O << "\t.uleb128\t" 672 << Value; 673 } else { 674 O << TAI->getData8bitsDirective(); 675 PrintULEB128(Value); 676 } 677} 678 679/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 680/// signed leb128 value. 681void AsmPrinter::EmitSLEB128Bytes(int Value) const { 682 if (TAI->hasLEB128()) { 683 O << "\t.sleb128\t" 684 << Value; 685 } else { 686 O << TAI->getData8bitsDirective(); 687 PrintSLEB128(Value); 688 } 689} 690 691/// EmitInt8 - Emit a byte directive and value. 692/// 693void AsmPrinter::EmitInt8(int Value) const { 694 O << TAI->getData8bitsDirective(); 695 PrintHex(Value & 0xFF); 696} 697 698/// EmitInt16 - Emit a short directive and value. 699/// 700void AsmPrinter::EmitInt16(int Value) const { 701 O << TAI->getData16bitsDirective(); 702 PrintHex(Value & 0xFFFF); 703} 704 705/// EmitInt32 - Emit a long directive and value. 706/// 707void AsmPrinter::EmitInt32(int Value) const { 708 O << TAI->getData32bitsDirective(); 709 PrintHex(Value); 710} 711 712/// EmitInt64 - Emit a long long directive and value. 713/// 714void AsmPrinter::EmitInt64(uint64_t Value) const { 715 if (TAI->getData64bitsDirective()) { 716 O << TAI->getData64bitsDirective(); 717 PrintHex(Value); 718 } else { 719 if (TM.getTargetData()->isBigEndian()) { 720 EmitInt32(unsigned(Value >> 32)); O << '\n'; 721 EmitInt32(unsigned(Value)); 722 } else { 723 EmitInt32(unsigned(Value)); O << '\n'; 724 EmitInt32(unsigned(Value >> 32)); 725 } 726 } 727} 728 729/// toOctal - Convert the low order bits of X into an octal digit. 730/// 731static inline char toOctal(int X) { 732 return (X&7)+'0'; 733} 734 735/// printStringChar - Print a char, escaped if necessary. 736/// 737static void printStringChar(formatted_raw_ostream &O, unsigned char C) { 738 if (C == '"') { 739 O << "\\\""; 740 } else if (C == '\\') { 741 O << "\\\\"; 742 } else if (isprint((unsigned char)C)) { 743 O << C; 744 } else { 745 switch(C) { 746 case '\b': O << "\\b"; break; 747 case '\f': O << "\\f"; break; 748 case '\n': O << "\\n"; break; 749 case '\r': O << "\\r"; break; 750 case '\t': O << "\\t"; break; 751 default: 752 O << '\\'; 753 O << toOctal(C >> 6); 754 O << toOctal(C >> 3); 755 O << toOctal(C >> 0); 756 break; 757 } 758 } 759} 760 761/// EmitString - Emit a string with quotes and a null terminator. 762/// Special characters are emitted properly. 763/// \literal (Eg. '\t') \endliteral 764void AsmPrinter::EmitString(const std::string &String) const { 765 EmitString(String.c_str(), String.size()); 766} 767 768void AsmPrinter::EmitString(const char *String, unsigned Size) const { 769 const char* AscizDirective = TAI->getAscizDirective(); 770 if (AscizDirective) 771 O << AscizDirective; 772 else 773 O << TAI->getAsciiDirective(); 774 O << '\"'; 775 for (unsigned i = 0; i < Size; ++i) 776 printStringChar(O, String[i]); 777 if (AscizDirective) 778 O << '\"'; 779 else 780 O << "\\0\""; 781} 782 783 784/// EmitFile - Emit a .file directive. 785void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 786 O << "\t.file\t" << Number << " \""; 787 for (unsigned i = 0, N = Name.size(); i < N; ++i) 788 printStringChar(O, Name[i]); 789 O << '\"'; 790} 791 792 793//===----------------------------------------------------------------------===// 794 795// EmitAlignment - Emit an alignment directive to the specified power of 796// two boundary. For example, if you pass in 3 here, you will get an 8 797// byte alignment. If a global value is specified, and if that global has 798// an explicit alignment requested, it will unconditionally override the 799// alignment request. However, if ForcedAlignBits is specified, this value 800// has final say: the ultimate alignment will be the max of ForcedAlignBits 801// and the alignment computed with NumBits and the global. 802// 803// The algorithm is: 804// Align = NumBits; 805// if (GV && GV->hasalignment) Align = GV->getalignment(); 806// Align = std::max(Align, ForcedAlignBits); 807// 808void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 809 unsigned ForcedAlignBits, 810 bool UseFillExpr) const { 811 if (GV && GV->getAlignment()) 812 NumBits = Log2_32(GV->getAlignment()); 813 NumBits = std::max(NumBits, ForcedAlignBits); 814 815 if (NumBits == 0) return; // No need to emit alignment. 816 if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; 817 O << TAI->getAlignDirective() << NumBits; 818 819 unsigned FillValue = TAI->getTextAlignFillValue(); 820 UseFillExpr &= IsInTextSection && FillValue; 821 if (UseFillExpr) { 822 O << ','; 823 PrintHex(FillValue); 824 } 825 O << '\n'; 826} 827 828 829/// EmitZeros - Emit a block of zeros. 830/// 831void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const { 832 if (NumZeros) { 833 if (TAI->getZeroDirective()) { 834 O << TAI->getZeroDirective() << NumZeros; 835 if (TAI->getZeroDirectiveSuffix()) 836 O << TAI->getZeroDirectiveSuffix(); 837 O << '\n'; 838 } else { 839 for (; NumZeros; --NumZeros) 840 O << TAI->getData8bitsDirective(AddrSpace) << "0\n"; 841 } 842 } 843} 844 845// Print out the specified constant, without a storage class. Only the 846// constants valid in constant expressions can occur here. 847void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 848 if (CV->isNullValue() || isa<UndefValue>(CV)) 849 O << '0'; 850 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 851 O << CI->getZExtValue(); 852 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 853 // This is a constant address for a global variable or function. Use the 854 // name of the variable or function as the address value, possibly 855 // decorating it with GlobalVarAddrPrefix/Suffix or 856 // FunctionAddrPrefix/Suffix (these all default to "" ) 857 if (isa<Function>(GV)) { 858 O << TAI->getFunctionAddrPrefix() 859 << Mang->getMangledName(GV) 860 << TAI->getFunctionAddrSuffix(); 861 } else { 862 O << TAI->getGlobalVarAddrPrefix() 863 << Mang->getMangledName(GV) 864 << TAI->getGlobalVarAddrSuffix(); 865 } 866 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 867 const TargetData *TD = TM.getTargetData(); 868 unsigned Opcode = CE->getOpcode(); 869 switch (Opcode) { 870 case Instruction::GetElementPtr: { 871 // generate a symbolic expression for the byte address 872 const Constant *ptrVal = CE->getOperand(0); 873 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 874 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 875 idxVec.size())) { 876 // Truncate/sext the offset to the pointer size. 877 if (TD->getPointerSizeInBits() != 64) { 878 int SExtAmount = 64-TD->getPointerSizeInBits(); 879 Offset = (Offset << SExtAmount) >> SExtAmount; 880 } 881 882 if (Offset) 883 O << '('; 884 EmitConstantValueOnly(ptrVal); 885 if (Offset > 0) 886 O << ") + " << Offset; 887 else if (Offset < 0) 888 O << ") - " << -Offset; 889 } else { 890 EmitConstantValueOnly(ptrVal); 891 } 892 break; 893 } 894 case Instruction::Trunc: 895 case Instruction::ZExt: 896 case Instruction::SExt: 897 case Instruction::FPTrunc: 898 case Instruction::FPExt: 899 case Instruction::UIToFP: 900 case Instruction::SIToFP: 901 case Instruction::FPToUI: 902 case Instruction::FPToSI: 903 llvm_unreachable("FIXME: Don't yet support this kind of constant cast expr"); 904 break; 905 case Instruction::BitCast: 906 return EmitConstantValueOnly(CE->getOperand(0)); 907 908 case Instruction::IntToPtr: { 909 // Handle casts to pointers by changing them into casts to the appropriate 910 // integer type. This promotes constant folding and simplifies this code. 911 Constant *Op = CE->getOperand(0); 912 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/); 913 return EmitConstantValueOnly(Op); 914 } 915 916 917 case Instruction::PtrToInt: { 918 // Support only foldable casts to/from pointers that can be eliminated by 919 // changing the pointer to the appropriately sized integer type. 920 Constant *Op = CE->getOperand(0); 921 const Type *Ty = CE->getType(); 922 923 // We can emit the pointer value into this slot if the slot is an 924 // integer slot greater or equal to the size of the pointer. 925 if (TD->getTypeAllocSize(Ty) >= TD->getTypeAllocSize(Op->getType())) 926 return EmitConstantValueOnly(Op); 927 928 O << "(("; 929 EmitConstantValueOnly(Op); 930 APInt ptrMask = APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Ty)); 931 932 SmallString<40> S; 933 ptrMask.toStringUnsigned(S); 934 O << ") & " << S.c_str() << ')'; 935 break; 936 } 937 case Instruction::Add: 938 case Instruction::Sub: 939 case Instruction::And: 940 case Instruction::Or: 941 case Instruction::Xor: 942 O << '('; 943 EmitConstantValueOnly(CE->getOperand(0)); 944 O << ')'; 945 switch (Opcode) { 946 case Instruction::Add: 947 O << " + "; 948 break; 949 case Instruction::Sub: 950 O << " - "; 951 break; 952 case Instruction::And: 953 O << " & "; 954 break; 955 case Instruction::Or: 956 O << " | "; 957 break; 958 case Instruction::Xor: 959 O << " ^ "; 960 break; 961 default: 962 break; 963 } 964 O << '('; 965 EmitConstantValueOnly(CE->getOperand(1)); 966 O << ')'; 967 break; 968 default: 969 llvm_unreachable("Unsupported operator!"); 970 } 971 } else { 972 llvm_unreachable("Unknown constant value!"); 973 } 974} 975 976/// printAsCString - Print the specified array as a C compatible string, only if 977/// the predicate isString is true. 978/// 979static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA, 980 unsigned LastElt) { 981 assert(CVA->isString() && "Array is not string compatible!"); 982 983 O << '\"'; 984 for (unsigned i = 0; i != LastElt; ++i) { 985 unsigned char C = 986 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 987 printStringChar(O, C); 988 } 989 O << '\"'; 990} 991 992/// EmitString - Emit a zero-byte-terminated string constant. 993/// 994void AsmPrinter::EmitString(const ConstantArray *CVA) const { 995 unsigned NumElts = CVA->getNumOperands(); 996 if (TAI->getAscizDirective() && NumElts && 997 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 998 O << TAI->getAscizDirective(); 999 printAsCString(O, CVA, NumElts-1); 1000 } else { 1001 O << TAI->getAsciiDirective(); 1002 printAsCString(O, CVA, NumElts); 1003 } 1004 O << '\n'; 1005} 1006 1007void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA, 1008 unsigned AddrSpace) { 1009 if (CVA->isString()) { 1010 EmitString(CVA); 1011 } else { // Not a string. Print the values in successive locations 1012 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 1013 EmitGlobalConstant(CVA->getOperand(i), AddrSpace); 1014 } 1015} 1016 1017void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) { 1018 const VectorType *PTy = CP->getType(); 1019 1020 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 1021 EmitGlobalConstant(CP->getOperand(I)); 1022} 1023 1024void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS, 1025 unsigned AddrSpace) { 1026 // Print the fields in successive locations. Pad to align if needed! 1027 const TargetData *TD = TM.getTargetData(); 1028 unsigned Size = TD->getTypeAllocSize(CVS->getType()); 1029 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 1030 uint64_t sizeSoFar = 0; 1031 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 1032 const Constant* field = CVS->getOperand(i); 1033 1034 // Check if padding is needed and insert one or more 0s. 1035 uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); 1036 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 1037 - cvsLayout->getElementOffset(i)) - fieldSize; 1038 sizeSoFar += fieldSize + padSize; 1039 1040 // Now print the actual field value. 1041 EmitGlobalConstant(field, AddrSpace); 1042 1043 // Insert padding - this may include padding to increase the size of the 1044 // current field up to the ABI size (if the struct is not packed) as well 1045 // as padding to ensure that the next field starts at the right offset. 1046 EmitZeros(padSize, AddrSpace); 1047 } 1048 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 1049 "Layout of constant struct may be incorrect!"); 1050} 1051 1052void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP, 1053 unsigned AddrSpace) { 1054 // FP Constants are printed as integer constants to avoid losing 1055 // precision... 1056 const TargetData *TD = TM.getTargetData(); 1057 if (CFP->getType() == Type::DoubleTy) { 1058 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 1059 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1060 if (TAI->getData64bitsDirective(AddrSpace)) { 1061 O << TAI->getData64bitsDirective(AddrSpace) << i; 1062 if (VerboseAsm) 1063 O << '\t' << TAI->getCommentString() << " double value: " << Val; 1064 O << '\n'; 1065 } else if (TD->isBigEndian()) { 1066 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1067 if (VerboseAsm) 1068 O << '\t' << TAI->getCommentString() 1069 << " double most significant word " << Val; 1070 O << '\n'; 1071 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1072 if (VerboseAsm) 1073 O << '\t' << TAI->getCommentString() 1074 << " double least significant word " << Val; 1075 O << '\n'; 1076 } else { 1077 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1078 if (VerboseAsm) 1079 O << '\t' << TAI->getCommentString() 1080 << " double least significant word " << Val; 1081 O << '\n'; 1082 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1083 if (VerboseAsm) 1084 O << '\t' << TAI->getCommentString() 1085 << " double most significant word " << Val; 1086 O << '\n'; 1087 } 1088 return; 1089 } else if (CFP->getType() == Type::FloatTy) { 1090 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1091 O << TAI->getData32bitsDirective(AddrSpace) 1092 << CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1093 if (VerboseAsm) 1094 O << '\t' << TAI->getCommentString() << " float " << Val; 1095 O << '\n'; 1096 return; 1097 } else if (CFP->getType() == Type::X86_FP80Ty) { 1098 // all long double variants are printed as hex 1099 // api needed to prevent premature destruction 1100 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1101 const uint64_t *p = api.getRawData(); 1102 // Convert to double so we can print the approximate val as a comment. 1103 APFloat DoubleVal = CFP->getValueAPF(); 1104 bool ignored; 1105 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1106 &ignored); 1107 if (TD->isBigEndian()) { 1108 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1109 if (VerboseAsm) 1110 O << '\t' << TAI->getCommentString() 1111 << " long double most significant halfword of ~" 1112 << DoubleVal.convertToDouble(); 1113 O << '\n'; 1114 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1115 if (VerboseAsm) 1116 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1117 O << '\n'; 1118 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1119 if (VerboseAsm) 1120 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1121 O << '\n'; 1122 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1123 if (VerboseAsm) 1124 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1125 O << '\n'; 1126 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1127 if (VerboseAsm) 1128 O << '\t' << TAI->getCommentString() 1129 << " long double least significant halfword"; 1130 O << '\n'; 1131 } else { 1132 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1133 if (VerboseAsm) 1134 O << '\t' << TAI->getCommentString() 1135 << " long double least significant halfword of ~" 1136 << DoubleVal.convertToDouble(); 1137 O << '\n'; 1138 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1139 if (VerboseAsm) 1140 O << '\t' << TAI->getCommentString() 1141 << " long double next halfword"; 1142 O << '\n'; 1143 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1144 if (VerboseAsm) 1145 O << '\t' << TAI->getCommentString() 1146 << " long double next halfword"; 1147 O << '\n'; 1148 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1149 if (VerboseAsm) 1150 O << '\t' << TAI->getCommentString() 1151 << " long double next halfword"; 1152 O << '\n'; 1153 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1154 if (VerboseAsm) 1155 O << '\t' << TAI->getCommentString() 1156 << " long double most significant halfword"; 1157 O << '\n'; 1158 } 1159 EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) - 1160 TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace); 1161 return; 1162 } else if (CFP->getType() == Type::PPC_FP128Ty) { 1163 // all long double variants are printed as hex 1164 // api needed to prevent premature destruction 1165 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1166 const uint64_t *p = api.getRawData(); 1167 if (TD->isBigEndian()) { 1168 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1169 if (VerboseAsm) 1170 O << '\t' << TAI->getCommentString() 1171 << " long double most significant word"; 1172 O << '\n'; 1173 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1174 if (VerboseAsm) 1175 O << '\t' << TAI->getCommentString() 1176 << " long double next word"; 1177 O << '\n'; 1178 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1179 if (VerboseAsm) 1180 O << '\t' << TAI->getCommentString() 1181 << " long double next word"; 1182 O << '\n'; 1183 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1184 if (VerboseAsm) 1185 O << '\t' << TAI->getCommentString() 1186 << " long double least significant word"; 1187 O << '\n'; 1188 } else { 1189 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1190 if (VerboseAsm) 1191 O << '\t' << TAI->getCommentString() 1192 << " long double least significant word"; 1193 O << '\n'; 1194 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1195 if (VerboseAsm) 1196 O << '\t' << TAI->getCommentString() 1197 << " long double next word"; 1198 O << '\n'; 1199 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1200 if (VerboseAsm) 1201 O << '\t' << TAI->getCommentString() 1202 << " long double next word"; 1203 O << '\n'; 1204 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1205 if (VerboseAsm) 1206 O << '\t' << TAI->getCommentString() 1207 << " long double most significant word"; 1208 O << '\n'; 1209 } 1210 return; 1211 } else llvm_unreachable("Floating point constant type not handled"); 1212} 1213 1214void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 1215 unsigned AddrSpace) { 1216 const TargetData *TD = TM.getTargetData(); 1217 unsigned BitWidth = CI->getBitWidth(); 1218 assert(isPowerOf2_32(BitWidth) && 1219 "Non-power-of-2-sized integers not handled!"); 1220 1221 // We don't expect assemblers to support integer data directives 1222 // for more than 64 bits, so we emit the data in at most 64-bit 1223 // quantities at a time. 1224 const uint64_t *RawData = CI->getValue().getRawData(); 1225 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1226 uint64_t Val; 1227 if (TD->isBigEndian()) 1228 Val = RawData[e - i - 1]; 1229 else 1230 Val = RawData[i]; 1231 1232 if (TAI->getData64bitsDirective(AddrSpace)) 1233 O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n'; 1234 else if (TD->isBigEndian()) { 1235 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1236 if (VerboseAsm) 1237 O << '\t' << TAI->getCommentString() 1238 << " Double-word most significant word " << Val; 1239 O << '\n'; 1240 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1241 if (VerboseAsm) 1242 O << '\t' << TAI->getCommentString() 1243 << " Double-word least significant word " << Val; 1244 O << '\n'; 1245 } else { 1246 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1247 if (VerboseAsm) 1248 O << '\t' << TAI->getCommentString() 1249 << " Double-word least significant word " << Val; 1250 O << '\n'; 1251 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1252 if (VerboseAsm) 1253 O << '\t' << TAI->getCommentString() 1254 << " Double-word most significant word " << Val; 1255 O << '\n'; 1256 } 1257 } 1258} 1259 1260/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1261void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1262 const TargetData *TD = TM.getTargetData(); 1263 const Type *type = CV->getType(); 1264 unsigned Size = TD->getTypeAllocSize(type); 1265 1266 if (CV->isNullValue() || isa<UndefValue>(CV)) { 1267 EmitZeros(Size, AddrSpace); 1268 return; 1269 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 1270 EmitGlobalConstantArray(CVA , AddrSpace); 1271 return; 1272 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 1273 EmitGlobalConstantStruct(CVS, AddrSpace); 1274 return; 1275 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1276 EmitGlobalConstantFP(CFP, AddrSpace); 1277 return; 1278 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1279 // Small integers are handled below; large integers are handled here. 1280 if (Size > 4) { 1281 EmitGlobalConstantLargeInt(CI, AddrSpace); 1282 return; 1283 } 1284 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1285 EmitGlobalConstantVector(CP); 1286 return; 1287 } 1288 1289 printDataDirective(type, AddrSpace); 1290 EmitConstantValueOnly(CV); 1291 if (VerboseAsm) { 1292 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1293 SmallString<40> S; 1294 CI->getValue().toStringUnsigned(S, 16); 1295 O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str(); 1296 } 1297 } 1298 O << '\n'; 1299} 1300 1301void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1302 // Target doesn't support this yet! 1303 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1304} 1305 1306/// PrintSpecial - Print information related to the specified machine instr 1307/// that is independent of the operand, and may be independent of the instr 1308/// itself. This can be useful for portably encoding the comment character 1309/// or other bits of target-specific knowledge into the asmstrings. The 1310/// syntax used is ${:comment}. Targets can override this to add support 1311/// for their own strange codes. 1312void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1313 if (!strcmp(Code, "private")) { 1314 O << TAI->getPrivateGlobalPrefix(); 1315 } else if (!strcmp(Code, "comment")) { 1316 if (VerboseAsm) 1317 O << TAI->getCommentString(); 1318 } else if (!strcmp(Code, "uid")) { 1319 // Comparing the address of MI isn't sufficient, because machineinstrs may 1320 // be allocated to the same address across functions. 1321 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1322 1323 // If this is a new LastFn instruction, bump the counter. 1324 if (LastMI != MI || LastFn != ThisF) { 1325 ++Counter; 1326 LastMI = MI; 1327 LastFn = ThisF; 1328 } 1329 O << Counter; 1330 } else { 1331 std::string msg; 1332 raw_string_ostream Msg(msg); 1333 Msg << "Unknown special formatter '" << Code 1334 << "' for machine instr: " << *MI; 1335 llvm_report_error(Msg.str()); 1336 } 1337} 1338 1339/// processDebugLoc - Processes the debug information of each machine 1340/// instruction's DebugLoc. 1341void AsmPrinter::processDebugLoc(DebugLoc DL) { 1342 if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) { 1343 if (!DL.isUnknown()) { 1344 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL); 1345 1346 if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT) 1347 printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col, 1348 DICompileUnit(CurDLT.CompileUnit))); 1349 1350 PrevDLT = CurDLT; 1351 } 1352 } 1353} 1354 1355/// printInlineAsm - This method formats and prints the specified machine 1356/// instruction that is an inline asm. 1357void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1358 unsigned NumOperands = MI->getNumOperands(); 1359 1360 // Count the number of register definitions. 1361 unsigned NumDefs = 0; 1362 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1363 ++NumDefs) 1364 assert(NumDefs != NumOperands-1 && "No asm string?"); 1365 1366 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1367 1368 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1369 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1370 1371 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1372 // These are useful to see where empty asm's wound up. 1373 if (AsmStr[0] == 0) { 1374 O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1375 return; 1376 } 1377 1378 O << TAI->getInlineAsmStart() << "\n\t"; 1379 1380 // The variant of the current asmprinter. 1381 int AsmPrinterVariant = TAI->getAssemblerDialect(); 1382 1383 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1384 const char *LastEmitted = AsmStr; // One past the last character emitted. 1385 1386 while (*LastEmitted) { 1387 switch (*LastEmitted) { 1388 default: { 1389 // Not a special case, emit the string section literally. 1390 const char *LiteralEnd = LastEmitted+1; 1391 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1392 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1393 ++LiteralEnd; 1394 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1395 O.write(LastEmitted, LiteralEnd-LastEmitted); 1396 LastEmitted = LiteralEnd; 1397 break; 1398 } 1399 case '\n': 1400 ++LastEmitted; // Consume newline character. 1401 O << '\n'; // Indent code with newline. 1402 break; 1403 case '$': { 1404 ++LastEmitted; // Consume '$' character. 1405 bool Done = true; 1406 1407 // Handle escapes. 1408 switch (*LastEmitted) { 1409 default: Done = false; break; 1410 case '$': // $$ -> $ 1411 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1412 O << '$'; 1413 ++LastEmitted; // Consume second '$' character. 1414 break; 1415 case '(': // $( -> same as GCC's { character. 1416 ++LastEmitted; // Consume '(' character. 1417 if (CurVariant != -1) { 1418 llvm_report_error("Nested variants found in inline asm string: '" 1419 + std::string(AsmStr) + "'"); 1420 } 1421 CurVariant = 0; // We're in the first variant now. 1422 break; 1423 case '|': 1424 ++LastEmitted; // consume '|' character. 1425 if (CurVariant == -1) 1426 O << '|'; // this is gcc's behavior for | outside a variant 1427 else 1428 ++CurVariant; // We're in the next variant. 1429 break; 1430 case ')': // $) -> same as GCC's } char. 1431 ++LastEmitted; // consume ')' character. 1432 if (CurVariant == -1) 1433 O << '}'; // this is gcc's behavior for } outside a variant 1434 else 1435 CurVariant = -1; 1436 break; 1437 } 1438 if (Done) break; 1439 1440 bool HasCurlyBraces = false; 1441 if (*LastEmitted == '{') { // ${variable} 1442 ++LastEmitted; // Consume '{' character. 1443 HasCurlyBraces = true; 1444 } 1445 1446 // If we have ${:foo}, then this is not a real operand reference, it is a 1447 // "magic" string reference, just like in .td files. Arrange to call 1448 // PrintSpecial. 1449 if (HasCurlyBraces && *LastEmitted == ':') { 1450 ++LastEmitted; 1451 const char *StrStart = LastEmitted; 1452 const char *StrEnd = strchr(StrStart, '}'); 1453 if (StrEnd == 0) { 1454 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '" 1455 + std::string(AsmStr) + "'"); 1456 } 1457 1458 std::string Val(StrStart, StrEnd); 1459 PrintSpecial(MI, Val.c_str()); 1460 LastEmitted = StrEnd+1; 1461 break; 1462 } 1463 1464 const char *IDStart = LastEmitted; 1465 char *IDEnd; 1466 errno = 0; 1467 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1468 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1469 llvm_report_error("Bad $ operand number in inline asm string: '" 1470 + std::string(AsmStr) + "'"); 1471 } 1472 LastEmitted = IDEnd; 1473 1474 char Modifier[2] = { 0, 0 }; 1475 1476 if (HasCurlyBraces) { 1477 // If we have curly braces, check for a modifier character. This 1478 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1479 if (*LastEmitted == ':') { 1480 ++LastEmitted; // Consume ':' character. 1481 if (*LastEmitted == 0) { 1482 llvm_report_error("Bad ${:} expression in inline asm string: '" 1483 + std::string(AsmStr) + "'"); 1484 } 1485 1486 Modifier[0] = *LastEmitted; 1487 ++LastEmitted; // Consume modifier character. 1488 } 1489 1490 if (*LastEmitted != '}') { 1491 llvm_report_error("Bad ${} expression in inline asm string: '" 1492 + std::string(AsmStr) + "'"); 1493 } 1494 ++LastEmitted; // Consume '}' character. 1495 } 1496 1497 if ((unsigned)Val >= NumOperands-1) { 1498 llvm_report_error("Invalid $ operand number in inline asm string: '" 1499 + std::string(AsmStr) + "'"); 1500 } 1501 1502 // Okay, we finally have a value number. Ask the target to print this 1503 // operand! 1504 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1505 unsigned OpNo = 1; 1506 1507 bool Error = false; 1508 1509 // Scan to find the machine operand number for the operand. 1510 for (; Val; --Val) { 1511 if (OpNo >= MI->getNumOperands()) break; 1512 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1513 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1514 } 1515 1516 if (OpNo >= MI->getNumOperands()) { 1517 Error = true; 1518 } else { 1519 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1520 ++OpNo; // Skip over the ID number. 1521 1522 if (Modifier[0]=='l') // labels are target independent 1523 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), 1524 false, false, false); 1525 else { 1526 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1527 if ((OpFlags & 7) == 4) { 1528 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1529 Modifier[0] ? Modifier : 0); 1530 } else { 1531 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1532 Modifier[0] ? Modifier : 0); 1533 } 1534 } 1535 } 1536 if (Error) { 1537 std::string msg; 1538 raw_string_ostream Msg(msg); 1539 Msg << "Invalid operand found in inline asm: '" 1540 << AsmStr << "'\n"; 1541 MI->print(Msg); 1542 llvm_report_error(Msg.str()); 1543 } 1544 } 1545 break; 1546 } 1547 } 1548 } 1549 O << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1550} 1551 1552/// printImplicitDef - This method prints the specified machine instruction 1553/// that is an implicit def. 1554void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1555 if (VerboseAsm) 1556 O << '\t' << TAI->getCommentString() << " implicit-def: " 1557 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; 1558} 1559 1560/// printLabel - This method prints a local label used by debug and 1561/// exception handling tables. 1562void AsmPrinter::printLabel(const MachineInstr *MI) const { 1563 printLabel(MI->getOperand(0).getImm()); 1564} 1565 1566void AsmPrinter::printLabel(unsigned Id) const { 1567 O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; 1568} 1569 1570/// printDeclare - This method prints a local variable declaration used by 1571/// debug tables. 1572/// FIXME: It doesn't really print anything rather it inserts a DebugVariable 1573/// entry into dwarf table. 1574void AsmPrinter::printDeclare(const MachineInstr *MI) const { 1575 unsigned FI = MI->getOperand(0).getIndex(); 1576 GlobalValue *GV = MI->getOperand(1).getGlobal(); 1577 DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI); 1578} 1579 1580/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1581/// instruction, using the specified assembler variant. Targets should 1582/// overried this to format as appropriate. 1583bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1584 unsigned AsmVariant, const char *ExtraCode) { 1585 // Target doesn't support this yet! 1586 return true; 1587} 1588 1589bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1590 unsigned AsmVariant, 1591 const char *ExtraCode) { 1592 // Target doesn't support this yet! 1593 return true; 1594} 1595 1596/// printBasicBlockLabel - This method prints the label for the specified 1597/// MachineBasicBlock 1598void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, 1599 bool printAlign, 1600 bool printColon, 1601 bool printComment) const { 1602 if (printAlign) { 1603 unsigned Align = MBB->getAlignment(); 1604 if (Align) 1605 EmitAlignment(Log2_32(Align)); 1606 } 1607 1608 O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' 1609 << MBB->getNumber(); 1610 if (printColon) 1611 O << ':'; 1612 if (printComment && MBB->getBasicBlock()) 1613 O << '\t' << TAI->getCommentString() << ' ' 1614 << MBB->getBasicBlock()->getNameStart(); 1615} 1616 1617/// printPICJumpTableSetLabel - This method prints a set label for the 1618/// specified MachineBasicBlock for a jumptable entry. 1619void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1620 const MachineBasicBlock *MBB) const { 1621 if (!TAI->getSetDirective()) 1622 return; 1623 1624 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1625 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1626 printBasicBlockLabel(MBB, false, false, false); 1627 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1628 << '_' << uid << '\n'; 1629} 1630 1631void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1632 const MachineBasicBlock *MBB) const { 1633 if (!TAI->getSetDirective()) 1634 return; 1635 1636 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1637 << getFunctionNumber() << '_' << uid << '_' << uid2 1638 << "_set_" << MBB->getNumber() << ','; 1639 printBasicBlockLabel(MBB, false, false, false); 1640 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1641 << '_' << uid << '_' << uid2 << '\n'; 1642} 1643 1644/// printDataDirective - This method prints the asm directive for the 1645/// specified type. 1646void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { 1647 const TargetData *TD = TM.getTargetData(); 1648 switch (type->getTypeID()) { 1649 case Type::FloatTyID: case Type::DoubleTyID: 1650 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1651 assert(0 && "Should have already output floating point constant."); 1652 default: 1653 assert(0 && "Can't handle printing this type of thing"); 1654 case Type::IntegerTyID: { 1655 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1656 if (BitWidth <= 8) 1657 O << TAI->getData8bitsDirective(AddrSpace); 1658 else if (BitWidth <= 16) 1659 O << TAI->getData16bitsDirective(AddrSpace); 1660 else if (BitWidth <= 32) 1661 O << TAI->getData32bitsDirective(AddrSpace); 1662 else if (BitWidth <= 64) { 1663 assert(TAI->getData64bitsDirective(AddrSpace) && 1664 "Target cannot handle 64-bit constant exprs!"); 1665 O << TAI->getData64bitsDirective(AddrSpace); 1666 } else { 1667 llvm_unreachable("Target cannot handle given data directive width!"); 1668 } 1669 break; 1670 } 1671 case Type::PointerTyID: 1672 if (TD->getPointerSize() == 8) { 1673 assert(TAI->getData64bitsDirective(AddrSpace) && 1674 "Target cannot handle 64-bit pointer exprs!"); 1675 O << TAI->getData64bitsDirective(AddrSpace); 1676 } else if (TD->getPointerSize() == 2) { 1677 O << TAI->getData16bitsDirective(AddrSpace); 1678 } else if (TD->getPointerSize() == 1) { 1679 O << TAI->getData8bitsDirective(AddrSpace); 1680 } else { 1681 O << TAI->getData32bitsDirective(AddrSpace); 1682 } 1683 break; 1684 } 1685} 1686 1687void AsmPrinter::printVisibility(const std::string& Name, 1688 unsigned Visibility) const { 1689 if (Visibility == GlobalValue::HiddenVisibility) { 1690 if (const char *Directive = TAI->getHiddenDirective()) 1691 O << Directive << Name << '\n'; 1692 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1693 if (const char *Directive = TAI->getProtectedDirective()) 1694 O << Directive << Name << '\n'; 1695 } 1696} 1697 1698void AsmPrinter::printOffset(int64_t Offset) const { 1699 if (Offset > 0) 1700 O << '+' << Offset; 1701 else if (Offset < 0) 1702 O << Offset; 1703} 1704 1705GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1706 if (!S->usesMetadata()) 1707 return 0; 1708 1709 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1710 if (GCPI != GCMetadataPrinters.end()) 1711 return GCPI->second; 1712 1713 const char *Name = S->getName().c_str(); 1714 1715 for (GCMetadataPrinterRegistry::iterator 1716 I = GCMetadataPrinterRegistry::begin(), 1717 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1718 if (strcmp(Name, I->getName()) == 0) { 1719 GCMetadataPrinter *GMP = I->instantiate(); 1720 GMP->S = S; 1721 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1722 return GMP; 1723 } 1724 1725 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1726 llvm_unreachable(0); 1727} 1728 1729/// EmitComments - Pretty-print comments for instructions 1730void AsmPrinter::EmitComments(const MachineInstr &MI) const 1731{ 1732 if (VerboseAsm) { 1733 if (!MI.getDebugLoc().isUnknown()) { 1734 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); 1735 1736 // Print source line info 1737 O.PadToColumn(TAI->getCommentColumn(), 1); 1738 O << TAI->getCommentString() << " SrcLine "; 1739 if (DLT.CompileUnit->hasInitializer()) { 1740 Constant *Name = DLT.CompileUnit->getInitializer(); 1741 if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name)) 1742 if (NameString->isString()) { 1743 O << NameString->getAsString() << " "; 1744 } 1745 } 1746 O << DLT.Line; 1747 if (DLT.Col != 0) 1748 O << ":" << DLT.Col; 1749 } 1750 } 1751} 1752 1753/// EmitComments - Pretty-print comments for instructions 1754void AsmPrinter::EmitComments(const MCInst &MI) const 1755{ 1756 if (VerboseAsm) { 1757 if (!MI.getDebugLoc().isUnknown()) { 1758 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); 1759 1760 // Print source line info 1761 O.PadToColumn(TAI->getCommentColumn(), 1); 1762 O << TAI->getCommentString() << " SrcLine "; 1763 if (DLT.CompileUnit->hasInitializer()) { 1764 Constant *Name = DLT.CompileUnit->getInitializer(); 1765 if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name)) 1766 if (NameString->isString()) { 1767 O << NameString->getAsString() << " "; 1768 } 1769 } 1770 O << DLT.Line; 1771 if (DLT.Col != 0) 1772 O << ":" << DLT.Col; 1773 } 1774 } 1775} 1776