AsmPrinter.cpp revision 9a501cf19dbf1f56f0782ddba4c1931565af9610
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineFrameInfo.h" 22#include "llvm/CodeGen/MachineFunction.h" 23#include "llvm/CodeGen/MachineJumpTableInfo.h" 24#include "llvm/CodeGen/MachineLoopInfo.h" 25#include "llvm/CodeGen/MachineModuleInfo.h" 26#include "llvm/CodeGen/DwarfWriter.h" 27#include "llvm/Analysis/DebugInfo.h" 28#include "llvm/MC/MCContext.h" 29#include "llvm/MC/MCInst.h" 30#include "llvm/MC/MCSection.h" 31#include "llvm/MC/MCStreamer.h" 32#include "llvm/MC/MCSymbol.h" 33#include "llvm/Support/CommandLine.h" 34#include "llvm/Support/ErrorHandling.h" 35#include "llvm/Support/FormattedStream.h" 36#include "llvm/Support/Mangler.h" 37#include "llvm/MC/MCAsmInfo.h" 38#include "llvm/Target/TargetData.h" 39#include "llvm/Target/TargetInstrInfo.h" 40#include "llvm/Target/TargetLowering.h" 41#include "llvm/Target/TargetLoweringObjectFile.h" 42#include "llvm/Target/TargetOptions.h" 43#include "llvm/Target/TargetRegisterInfo.h" 44#include "llvm/ADT/SmallPtrSet.h" 45#include "llvm/ADT/SmallString.h" 46#include "llvm/ADT/StringExtras.h" 47#include <cerrno> 48using namespace llvm; 49 50static cl::opt<cl::boolOrDefault> 51AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 52 cl::init(cl::BOU_UNSET)); 53 54char AsmPrinter::ID = 0; 55AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm, 56 const MCAsmInfo *T, bool VDef) 57 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 58 TM(tm), MAI(T), TRI(tm.getRegisterInfo()), 59 60 OutContext(*new MCContext()), 61 // FIXME: Pass instprinter to streamer. 62 OutStreamer(*createAsmStreamer(OutContext, O, *T, 0)), 63 64 LastMI(0), LastFn(0), Counter(~0U), 65 PrevDLT(0, 0, ~0U, ~0U) { 66 DW = 0; MMI = 0; 67 switch (AsmVerbose) { 68 case cl::BOU_UNSET: VerboseAsm = VDef; break; 69 case cl::BOU_TRUE: VerboseAsm = true; break; 70 case cl::BOU_FALSE: VerboseAsm = false; break; 71 } 72} 73 74AsmPrinter::~AsmPrinter() { 75 for (gcp_iterator I = GCMetadataPrinters.begin(), 76 E = GCMetadataPrinters.end(); I != E; ++I) 77 delete I->second; 78 79 delete &OutStreamer; 80 delete &OutContext; 81} 82 83TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 84 return TM.getTargetLowering()->getObjFileLowering(); 85} 86 87/// getCurrentSection() - Return the current section we are emitting to. 88const MCSection *AsmPrinter::getCurrentSection() const { 89 return OutStreamer.getCurrentSection(); 90} 91 92 93void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 94 AU.setPreservesAll(); 95 MachineFunctionPass::getAnalysisUsage(AU); 96 AU.addRequired<GCModuleInfo>(); 97 if (VerboseAsm) 98 AU.addRequired<MachineLoopInfo>(); 99} 100 101bool AsmPrinter::doInitialization(Module &M) { 102 // Initialize TargetLoweringObjectFile. 103 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 104 .Initialize(OutContext, TM); 105 106 Mang = new Mangler(M, MAI->getGlobalPrefix(), MAI->getPrivateGlobalPrefix(), 107 MAI->getLinkerPrivateGlobalPrefix()); 108 109 if (MAI->doesAllowQuotesInName()) 110 Mang->setUseQuotes(true); 111 112 if (MAI->doesAllowNameToStartWithDigit()) 113 Mang->setSymbolsCanStartWithDigit(true); 114 115 // Allow the target to emit any magic that it wants at the start of the file. 116 EmitStartOfAsmFile(M); 117 118 if (MAI->hasSingleParameterDotFile()) { 119 /* Very minimal debug info. It is ignored if we emit actual 120 debug info. If we don't, this at least helps the user find where 121 a function came from. */ 122 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 123 } 124 125 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 126 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 127 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 128 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 129 MP->beginAssembly(O, *this, *MAI); 130 131 if (!M.getModuleInlineAsm().empty()) 132 O << MAI->getCommentString() << " Start of file scope inline assembly\n" 133 << M.getModuleInlineAsm() 134 << '\n' << MAI->getCommentString() 135 << " End of file scope inline assembly\n"; 136 137 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 138 if (MMI) 139 MMI->AnalyzeModule(M); 140 DW = getAnalysisIfAvailable<DwarfWriter>(); 141 if (DW) 142 DW->BeginModule(&M, MMI, O, this, MAI); 143 144 return false; 145} 146 147bool AsmPrinter::doFinalization(Module &M) { 148 // Emit global variables. 149 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 150 I != E; ++I) 151 PrintGlobalVariable(I); 152 153 // Emit final debug information. 154 if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling()) 155 DW->EndModule(); 156 157 // If the target wants to know about weak references, print them all. 158 if (MAI->getWeakRefDirective()) { 159 // FIXME: This is not lazy, it would be nice to only print weak references 160 // to stuff that is actually used. Note that doing so would require targets 161 // to notice uses in operands (due to constant exprs etc). This should 162 // happen with the MC stuff eventually. 163 164 // Print out module-level global variables here. 165 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 166 I != E; ++I) { 167 if (I->hasExternalWeakLinkage()) 168 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 169 } 170 171 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 172 if (I->hasExternalWeakLinkage()) 173 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 174 } 175 } 176 177 if (MAI->getSetDirective()) { 178 O << '\n'; 179 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 180 I != E; ++I) { 181 std::string Name = Mang->getMangledName(I); 182 183 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 184 std::string Target = Mang->getMangledName(GV); 185 186 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 187 O << "\t.globl\t" << Name << '\n'; 188 else if (I->hasWeakLinkage()) 189 O << MAI->getWeakRefDirective() << Name << '\n'; 190 else if (!I->hasLocalLinkage()) 191 llvm_unreachable("Invalid alias linkage"); 192 193 printVisibility(Name, I->getVisibility()); 194 195 O << MAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 196 } 197 } 198 199 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 200 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 201 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 202 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 203 MP->finishAssembly(O, *this, *MAI); 204 205 // If we don't have any trampolines, then we don't require stack memory 206 // to be executable. Some targets have a directive to declare this. 207 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 208 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 209 if (MAI->getNonexecutableStackDirective()) 210 O << MAI->getNonexecutableStackDirective() << '\n'; 211 212 213 // Allow the target to emit any magic that it wants at the end of the file, 214 // after everything else has gone out. 215 EmitEndOfAsmFile(M); 216 217 delete Mang; Mang = 0; 218 DW = 0; MMI = 0; 219 220 OutStreamer.Finish(); 221 return false; 222} 223 224void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 225 // What's my mangled name? 226 CurrentFnName = Mang->getMangledName(MF.getFunction()); 227 IncrementFunctionNumber(); 228 229 if (VerboseAsm) 230 LI = &getAnalysis<MachineLoopInfo>(); 231} 232 233namespace { 234 // SectionCPs - Keep track the alignment, constpool entries per Section. 235 struct SectionCPs { 236 const MCSection *S; 237 unsigned Alignment; 238 SmallVector<unsigned, 4> CPEs; 239 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}; 240 }; 241} 242 243/// EmitConstantPool - Print to the current output stream assembly 244/// representations of the constants in the constant pool MCP. This is 245/// used to print out constants which have been "spilled to memory" by 246/// the code generator. 247/// 248void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 249 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 250 if (CP.empty()) return; 251 252 // Calculate sections for constant pool entries. We collect entries to go into 253 // the same section together to reduce amount of section switch statements. 254 SmallVector<SectionCPs, 4> CPSections; 255 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 256 const MachineConstantPoolEntry &CPE = CP[i]; 257 unsigned Align = CPE.getAlignment(); 258 259 SectionKind Kind; 260 switch (CPE.getRelocationInfo()) { 261 default: llvm_unreachable("Unknown section kind"); 262 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 263 case 1: 264 Kind = SectionKind::getReadOnlyWithRelLocal(); 265 break; 266 case 0: 267 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 268 case 4: Kind = SectionKind::getMergeableConst4(); break; 269 case 8: Kind = SectionKind::getMergeableConst8(); break; 270 case 16: Kind = SectionKind::getMergeableConst16();break; 271 default: Kind = SectionKind::getMergeableConst(); break; 272 } 273 } 274 275 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 276 277 // The number of sections are small, just do a linear search from the 278 // last section to the first. 279 bool Found = false; 280 unsigned SecIdx = CPSections.size(); 281 while (SecIdx != 0) { 282 if (CPSections[--SecIdx].S == S) { 283 Found = true; 284 break; 285 } 286 } 287 if (!Found) { 288 SecIdx = CPSections.size(); 289 CPSections.push_back(SectionCPs(S, Align)); 290 } 291 292 if (Align > CPSections[SecIdx].Alignment) 293 CPSections[SecIdx].Alignment = Align; 294 CPSections[SecIdx].CPEs.push_back(i); 295 } 296 297 // Now print stuff into the calculated sections. 298 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 299 OutStreamer.SwitchSection(CPSections[i].S); 300 EmitAlignment(Log2_32(CPSections[i].Alignment)); 301 302 unsigned Offset = 0; 303 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 304 unsigned CPI = CPSections[i].CPEs[j]; 305 MachineConstantPoolEntry CPE = CP[CPI]; 306 307 // Emit inter-object padding for alignment. 308 unsigned AlignMask = CPE.getAlignment() - 1; 309 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 310 EmitZeros(NewOffset - Offset); 311 312 const Type *Ty = CPE.getType(); 313 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 314 315 O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 316 << CPI << ':'; 317 if (VerboseAsm) { 318 O.PadToColumn(MAI->getCommentColumn()); 319 O << MAI->getCommentString() << " constant "; 320 WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent()); 321 } 322 O << '\n'; 323 if (CPE.isMachineConstantPoolEntry()) 324 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 325 else 326 EmitGlobalConstant(CPE.Val.ConstVal); 327 } 328 } 329} 330 331/// EmitJumpTableInfo - Print assembly representations of the jump tables used 332/// by the current function to the current output stream. 333/// 334void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 335 MachineFunction &MF) { 336 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 337 if (JT.empty()) return; 338 339 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 340 341 // Pick the directive to use to print the jump table entries, and switch to 342 // the appropriate section. 343 TargetLowering *LoweringInfo = TM.getTargetLowering(); 344 345 const Function *F = MF.getFunction(); 346 bool JTInDiffSection = false; 347 if (F->isWeakForLinker() || 348 (IsPic && !LoweringInfo->usesGlobalOffsetTable())) { 349 // In PIC mode, we need to emit the jump table to the same section as the 350 // function body itself, otherwise the label differences won't make sense. 351 // We should also do if the section name is NULL or function is declared in 352 // discardable section. 353 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, 354 TM)); 355 } else { 356 // Otherwise, drop it in the readonly section. 357 const MCSection *ReadOnlySection = 358 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 359 OutStreamer.SwitchSection(ReadOnlySection); 360 JTInDiffSection = true; 361 } 362 363 EmitAlignment(Log2_32(MJTI->getAlignment())); 364 365 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 366 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 367 368 // If this jump table was deleted, ignore it. 369 if (JTBBs.empty()) continue; 370 371 // For PIC codegen, if possible we want to use the SetDirective to reduce 372 // the number of relocations the assembler will generate for the jump table. 373 // Set directives are all printed before the jump table itself. 374 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 375 if (MAI->getSetDirective() && IsPic) 376 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 377 if (EmittedSets.insert(JTBBs[ii])) 378 printPICJumpTableSetLabel(i, JTBBs[ii]); 379 380 // On some targets (e.g. Darwin) we want to emit two consequtive labels 381 // before each jump table. The first label is never referenced, but tells 382 // the assembler and linker the extents of the jump table object. The 383 // second label is actually referenced by the code. 384 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) { 385 O << MAI->getLinkerPrivateGlobalPrefix() 386 << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 387 } 388 389 O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 390 << '_' << i << ":\n"; 391 392 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 393 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 394 O << '\n'; 395 } 396 } 397} 398 399void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 400 const MachineBasicBlock *MBB, 401 unsigned uid) const { 402 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 403 404 // Use JumpTableDirective otherwise honor the entry size from the jump table 405 // info. 406 const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC); 407 bool HadJTEntryDirective = JTEntryDirective != NULL; 408 if (!HadJTEntryDirective) { 409 JTEntryDirective = MJTI->getEntrySize() == 4 ? 410 MAI->getData32bitsDirective() : MAI->getData64bitsDirective(); 411 } 412 413 O << JTEntryDirective << ' '; 414 415 // If we have emitted set directives for the jump table entries, print 416 // them rather than the entries themselves. If we're emitting PIC, then 417 // emit the table entries as differences between two text section labels. 418 // If we're emitting non-PIC code, then emit the entries as direct 419 // references to the target basic blocks. 420 if (!isPIC) { 421 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 422 } else if (MAI->getSetDirective()) { 423 O << MAI->getPrivateGlobalPrefix() << getFunctionNumber() 424 << '_' << uid << "_set_" << MBB->getNumber(); 425 } else { 426 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 427 // If the arch uses custom Jump Table directives, don't calc relative to 428 // JT 429 if (!HadJTEntryDirective) 430 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" 431 << getFunctionNumber() << '_' << uid; 432 } 433} 434 435 436/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 437/// special global used by LLVM. If so, emit it and return true, otherwise 438/// do nothing and return false. 439bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 440 if (GV->getName() == "llvm.used") { 441 if (MAI->getUsedDirective() != 0) // No need to emit this at all. 442 EmitLLVMUsedList(GV->getInitializer()); 443 return true; 444 } 445 446 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 447 if (GV->getSection() == "llvm.metadata" || 448 GV->hasAvailableExternallyLinkage()) 449 return true; 450 451 if (!GV->hasAppendingLinkage()) return false; 452 453 assert(GV->hasInitializer() && "Not a special LLVM global!"); 454 455 const TargetData *TD = TM.getTargetData(); 456 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 457 if (GV->getName() == "llvm.global_ctors") { 458 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection()); 459 EmitAlignment(Align, 0); 460 EmitXXStructorList(GV->getInitializer()); 461 return true; 462 } 463 464 if (GV->getName() == "llvm.global_dtors") { 465 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection()); 466 EmitAlignment(Align, 0); 467 EmitXXStructorList(GV->getInitializer()); 468 return true; 469 } 470 471 return false; 472} 473 474/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 475/// global in the specified llvm.used list for which emitUsedDirectiveFor 476/// is true, as being used with this directive. 477void AsmPrinter::EmitLLVMUsedList(Constant *List) { 478 const char *Directive = MAI->getUsedDirective(); 479 480 // Should be an array of 'i8*'. 481 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 482 if (InitList == 0) return; 483 484 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 485 const GlobalValue *GV = 486 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 487 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) { 488 O << Directive; 489 EmitConstantValueOnly(InitList->getOperand(i)); 490 O << '\n'; 491 } 492 } 493} 494 495/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 496/// function pointers, ignoring the init priority. 497void AsmPrinter::EmitXXStructorList(Constant *List) { 498 // Should be an array of '{ int, void ()* }' structs. The first value is the 499 // init priority, which we ignore. 500 if (!isa<ConstantArray>(List)) return; 501 ConstantArray *InitList = cast<ConstantArray>(List); 502 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 503 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 504 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 505 506 if (CS->getOperand(1)->isNullValue()) 507 return; // Found a null terminator, exit printing. 508 // Emit the function pointer. 509 EmitGlobalConstant(CS->getOperand(1)); 510 } 511} 512 513 514//===----------------------------------------------------------------------===// 515/// LEB 128 number encoding. 516 517/// PrintULEB128 - Print a series of hexadecimal values (separated by commas) 518/// representing an unsigned leb128 value. 519void AsmPrinter::PrintULEB128(unsigned Value) const { 520 char Buffer[20]; 521 do { 522 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 523 Value >>= 7; 524 if (Value) Byte |= 0x80; 525 O << "0x" << utohex_buffer(Byte, Buffer+20); 526 if (Value) O << ", "; 527 } while (Value); 528} 529 530/// PrintSLEB128 - Print a series of hexadecimal values (separated by commas) 531/// representing a signed leb128 value. 532void AsmPrinter::PrintSLEB128(int Value) const { 533 int Sign = Value >> (8 * sizeof(Value) - 1); 534 bool IsMore; 535 char Buffer[20]; 536 537 do { 538 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 539 Value >>= 7; 540 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 541 if (IsMore) Byte |= 0x80; 542 O << "0x" << utohex_buffer(Byte, Buffer+20); 543 if (IsMore) O << ", "; 544 } while (IsMore); 545} 546 547//===--------------------------------------------------------------------===// 548// Emission and print routines 549// 550 551/// PrintHex - Print a value as a hexadecimal value. 552/// 553void AsmPrinter::PrintHex(int Value) const { 554 char Buffer[20]; 555 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); 556} 557 558/// EOL - Print a newline character to asm stream. If a comment is present 559/// then it will be printed first. Comments should not contain '\n'. 560void AsmPrinter::EOL() const { 561 O << '\n'; 562} 563 564void AsmPrinter::EOL(const std::string &Comment) const { 565 if (VerboseAsm && !Comment.empty()) { 566 O.PadToColumn(MAI->getCommentColumn()); 567 O << MAI->getCommentString() 568 << ' ' 569 << Comment; 570 } 571 O << '\n'; 572} 573 574void AsmPrinter::EOL(const char* Comment) const { 575 if (VerboseAsm && *Comment) { 576 O.PadToColumn(MAI->getCommentColumn()); 577 O << MAI->getCommentString() 578 << ' ' 579 << Comment; 580 } 581 O << '\n'; 582} 583 584static const char *DecodeDWARFEncoding(unsigned Encoding) { 585 switch (Encoding) { 586 case dwarf::DW_EH_PE_absptr: 587 return "absptr"; 588 case dwarf::DW_EH_PE_omit: 589 return "omit"; 590 case dwarf::DW_EH_PE_pcrel: 591 return "pcrel"; 592 case dwarf::DW_EH_PE_udata4: 593 return "udata4"; 594 case dwarf::DW_EH_PE_udata8: 595 return "udata8"; 596 case dwarf::DW_EH_PE_sdata4: 597 return "sdata4"; 598 case dwarf::DW_EH_PE_sdata8: 599 return "sdata8"; 600 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4: 601 return "pcrel udata4"; 602 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4: 603 return "pcrel sdata4"; 604 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8: 605 return "pcrel udata8"; 606 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8: 607 return "pcrel sdata8"; 608 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4: 609 return "indirect pcrel udata4"; 610 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4: 611 return "indirect pcrel sdata4"; 612 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8: 613 return "indirect pcrel udata8"; 614 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8: 615 return "indirect pcrel sdata8"; 616 } 617 618 return 0; 619} 620 621void AsmPrinter::EOL(const char *Comment, unsigned Encoding) const { 622 if (VerboseAsm && *Comment) { 623 O.PadToColumn(MAI->getCommentColumn()); 624 O << MAI->getCommentString() 625 << ' ' 626 << Comment; 627 628 if (const char *EncStr = DecodeDWARFEncoding(Encoding)) 629 O << " (" << EncStr << ')'; 630 } 631 O << '\n'; 632} 633 634/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 635/// unsigned leb128 value. 636void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 637 if (MAI->hasLEB128()) { 638 O << "\t.uleb128\t" 639 << Value; 640 } else { 641 O << MAI->getData8bitsDirective(); 642 PrintULEB128(Value); 643 } 644} 645 646/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 647/// signed leb128 value. 648void AsmPrinter::EmitSLEB128Bytes(int Value) const { 649 if (MAI->hasLEB128()) { 650 O << "\t.sleb128\t" 651 << Value; 652 } else { 653 O << MAI->getData8bitsDirective(); 654 PrintSLEB128(Value); 655 } 656} 657 658/// EmitInt8 - Emit a byte directive and value. 659/// 660void AsmPrinter::EmitInt8(int Value) const { 661 O << MAI->getData8bitsDirective(); 662 PrintHex(Value & 0xFF); 663} 664 665/// EmitInt16 - Emit a short directive and value. 666/// 667void AsmPrinter::EmitInt16(int Value) const { 668 O << MAI->getData16bitsDirective(); 669 PrintHex(Value & 0xFFFF); 670} 671 672/// EmitInt32 - Emit a long directive and value. 673/// 674void AsmPrinter::EmitInt32(int Value) const { 675 O << MAI->getData32bitsDirective(); 676 PrintHex(Value); 677} 678 679/// EmitInt64 - Emit a long long directive and value. 680/// 681void AsmPrinter::EmitInt64(uint64_t Value) const { 682 if (MAI->getData64bitsDirective()) { 683 O << MAI->getData64bitsDirective(); 684 PrintHex(Value); 685 } else { 686 if (TM.getTargetData()->isBigEndian()) { 687 EmitInt32(unsigned(Value >> 32)); O << '\n'; 688 EmitInt32(unsigned(Value)); 689 } else { 690 EmitInt32(unsigned(Value)); O << '\n'; 691 EmitInt32(unsigned(Value >> 32)); 692 } 693 } 694} 695 696/// toOctal - Convert the low order bits of X into an octal digit. 697/// 698static inline char toOctal(int X) { 699 return (X&7)+'0'; 700} 701 702/// printStringChar - Print a char, escaped if necessary. 703/// 704static void printStringChar(formatted_raw_ostream &O, unsigned char C) { 705 if (C == '"') { 706 O << "\\\""; 707 } else if (C == '\\') { 708 O << "\\\\"; 709 } else if (isprint((unsigned char)C)) { 710 O << C; 711 } else { 712 switch(C) { 713 case '\b': O << "\\b"; break; 714 case '\f': O << "\\f"; break; 715 case '\n': O << "\\n"; break; 716 case '\r': O << "\\r"; break; 717 case '\t': O << "\\t"; break; 718 default: 719 O << '\\'; 720 O << toOctal(C >> 6); 721 O << toOctal(C >> 3); 722 O << toOctal(C >> 0); 723 break; 724 } 725 } 726} 727 728/// EmitString - Emit a string with quotes and a null terminator. 729/// Special characters are emitted properly. 730/// \literal (Eg. '\t') \endliteral 731void AsmPrinter::EmitString(const std::string &String) const { 732 EmitString(String.data(), String.size()); 733} 734 735void AsmPrinter::EmitString(const char *String, unsigned Size) const { 736 const char* AscizDirective = MAI->getAscizDirective(); 737 if (AscizDirective) 738 O << AscizDirective; 739 else 740 O << MAI->getAsciiDirective(); 741 O << '\"'; 742 for (unsigned i = 0; i < Size; ++i) 743 printStringChar(O, String[i]); 744 if (AscizDirective) 745 O << '\"'; 746 else 747 O << "\\0\""; 748} 749 750 751/// EmitFile - Emit a .file directive. 752void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 753 O << "\t.file\t" << Number << " \""; 754 for (unsigned i = 0, N = Name.size(); i < N; ++i) 755 printStringChar(O, Name[i]); 756 O << '\"'; 757} 758 759 760//===----------------------------------------------------------------------===// 761 762// EmitAlignment - Emit an alignment directive to the specified power of 763// two boundary. For example, if you pass in 3 here, you will get an 8 764// byte alignment. If a global value is specified, and if that global has 765// an explicit alignment requested, it will unconditionally override the 766// alignment request. However, if ForcedAlignBits is specified, this value 767// has final say: the ultimate alignment will be the max of ForcedAlignBits 768// and the alignment computed with NumBits and the global. 769// 770// The algorithm is: 771// Align = NumBits; 772// if (GV && GV->hasalignment) Align = GV->getalignment(); 773// Align = std::max(Align, ForcedAlignBits); 774// 775void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 776 unsigned ForcedAlignBits, 777 bool UseFillExpr) const { 778 if (GV && GV->getAlignment()) 779 NumBits = Log2_32(GV->getAlignment()); 780 NumBits = std::max(NumBits, ForcedAlignBits); 781 782 if (NumBits == 0) return; // No need to emit alignment. 783 784 unsigned FillValue = 0; 785 if (getCurrentSection()->getKind().isText()) 786 FillValue = MAI->getTextAlignFillValue(); 787 788 OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0); 789} 790 791/// EmitZeros - Emit a block of zeros. 792/// 793void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const { 794 if (NumZeros) { 795 if (MAI->getZeroDirective()) { 796 O << MAI->getZeroDirective() << NumZeros; 797 if (MAI->getZeroDirectiveSuffix()) 798 O << MAI->getZeroDirectiveSuffix(); 799 O << '\n'; 800 } else { 801 for (; NumZeros; --NumZeros) 802 O << MAI->getData8bitsDirective(AddrSpace) << "0\n"; 803 } 804 } 805} 806 807// Print out the specified constant, without a storage class. Only the 808// constants valid in constant expressions can occur here. 809void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 810 if (CV->isNullValue() || isa<UndefValue>(CV)) 811 O << '0'; 812 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 813 O << CI->getZExtValue(); 814 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 815 // This is a constant address for a global variable or function. Use the 816 // name of the variable or function as the address value. 817 O << Mang->getMangledName(GV); 818 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 819 const TargetData *TD = TM.getTargetData(); 820 unsigned Opcode = CE->getOpcode(); 821 switch (Opcode) { 822 case Instruction::Trunc: 823 case Instruction::ZExt: 824 case Instruction::SExt: 825 case Instruction::FPTrunc: 826 case Instruction::FPExt: 827 case Instruction::UIToFP: 828 case Instruction::SIToFP: 829 case Instruction::FPToUI: 830 case Instruction::FPToSI: 831 llvm_unreachable("FIXME: Don't support this constant cast expr"); 832 case Instruction::GetElementPtr: { 833 // generate a symbolic expression for the byte address 834 const Constant *ptrVal = CE->getOperand(0); 835 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 836 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 837 idxVec.size())) { 838 // Truncate/sext the offset to the pointer size. 839 if (TD->getPointerSizeInBits() != 64) { 840 int SExtAmount = 64-TD->getPointerSizeInBits(); 841 Offset = (Offset << SExtAmount) >> SExtAmount; 842 } 843 844 if (Offset) 845 O << '('; 846 EmitConstantValueOnly(ptrVal); 847 if (Offset > 0) 848 O << ") + " << Offset; 849 else if (Offset < 0) 850 O << ") - " << -Offset; 851 } else { 852 EmitConstantValueOnly(ptrVal); 853 } 854 break; 855 } 856 case Instruction::BitCast: 857 return EmitConstantValueOnly(CE->getOperand(0)); 858 859 case Instruction::IntToPtr: { 860 // Handle casts to pointers by changing them into casts to the appropriate 861 // integer type. This promotes constant folding and simplifies this code. 862 Constant *Op = CE->getOperand(0); 863 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()), 864 false/*ZExt*/); 865 return EmitConstantValueOnly(Op); 866 } 867 868 869 case Instruction::PtrToInt: { 870 // Support only foldable casts to/from pointers that can be eliminated by 871 // changing the pointer to the appropriately sized integer type. 872 Constant *Op = CE->getOperand(0); 873 const Type *Ty = CE->getType(); 874 875 // We can emit the pointer value into this slot if the slot is an 876 // integer slot greater or equal to the size of the pointer. 877 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType())) 878 return EmitConstantValueOnly(Op); 879 880 O << "(("; 881 EmitConstantValueOnly(Op); 882 APInt ptrMask = 883 APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType())); 884 885 SmallString<40> S; 886 ptrMask.toStringUnsigned(S); 887 O << ") & " << S.str() << ')'; 888 break; 889 } 890 case Instruction::Add: 891 case Instruction::Sub: 892 case Instruction::And: 893 case Instruction::Or: 894 case Instruction::Xor: 895 O << '('; 896 EmitConstantValueOnly(CE->getOperand(0)); 897 O << ')'; 898 switch (Opcode) { 899 case Instruction::Add: 900 O << " + "; 901 break; 902 case Instruction::Sub: 903 O << " - "; 904 break; 905 case Instruction::And: 906 O << " & "; 907 break; 908 case Instruction::Or: 909 O << " | "; 910 break; 911 case Instruction::Xor: 912 O << " ^ "; 913 break; 914 default: 915 break; 916 } 917 O << '('; 918 EmitConstantValueOnly(CE->getOperand(1)); 919 O << ')'; 920 break; 921 default: 922 llvm_unreachable("Unsupported operator!"); 923 } 924 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 925 GetBlockAddressSymbol(BA)->print(O, MAI); 926 } else { 927 llvm_unreachable("Unknown constant value!"); 928 } 929} 930 931/// printAsCString - Print the specified array as a C compatible string, only if 932/// the predicate isString is true. 933/// 934static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA, 935 unsigned LastElt) { 936 assert(CVA->isString() && "Array is not string compatible!"); 937 938 O << '\"'; 939 for (unsigned i = 0; i != LastElt; ++i) { 940 unsigned char C = 941 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 942 printStringChar(O, C); 943 } 944 O << '\"'; 945} 946 947/// EmitString - Emit a zero-byte-terminated string constant. 948/// 949void AsmPrinter::EmitString(const ConstantArray *CVA) const { 950 unsigned NumElts = CVA->getNumOperands(); 951 if (MAI->getAscizDirective() && NumElts && 952 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 953 O << MAI->getAscizDirective(); 954 printAsCString(O, CVA, NumElts-1); 955 } else { 956 O << MAI->getAsciiDirective(); 957 printAsCString(O, CVA, NumElts); 958 } 959 O << '\n'; 960} 961 962void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA, 963 unsigned AddrSpace) { 964 if (CVA->isString()) { 965 EmitString(CVA); 966 } else { // Not a string. Print the values in successive locations 967 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 968 EmitGlobalConstant(CVA->getOperand(i), AddrSpace); 969 } 970} 971 972void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) { 973 const VectorType *PTy = CP->getType(); 974 975 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 976 EmitGlobalConstant(CP->getOperand(I)); 977} 978 979void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS, 980 unsigned AddrSpace) { 981 // Print the fields in successive locations. Pad to align if needed! 982 const TargetData *TD = TM.getTargetData(); 983 unsigned Size = TD->getTypeAllocSize(CVS->getType()); 984 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 985 uint64_t sizeSoFar = 0; 986 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 987 const Constant* field = CVS->getOperand(i); 988 989 // Check if padding is needed and insert one or more 0s. 990 uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); 991 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 992 - cvsLayout->getElementOffset(i)) - fieldSize; 993 sizeSoFar += fieldSize + padSize; 994 995 // Now print the actual field value. 996 EmitGlobalConstant(field, AddrSpace); 997 998 // Insert padding - this may include padding to increase the size of the 999 // current field up to the ABI size (if the struct is not packed) as well 1000 // as padding to ensure that the next field starts at the right offset. 1001 EmitZeros(padSize, AddrSpace); 1002 } 1003 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 1004 "Layout of constant struct may be incorrect!"); 1005} 1006 1007void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP, 1008 unsigned AddrSpace) { 1009 // FP Constants are printed as integer constants to avoid losing 1010 // precision... 1011 LLVMContext &Context = CFP->getContext(); 1012 const TargetData *TD = TM.getTargetData(); 1013 if (CFP->getType()->isDoubleTy()) { 1014 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 1015 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1016 if (MAI->getData64bitsDirective(AddrSpace)) { 1017 O << MAI->getData64bitsDirective(AddrSpace) << i; 1018 if (VerboseAsm) { 1019 O.PadToColumn(MAI->getCommentColumn()); 1020 O << MAI->getCommentString() << " double " << Val; 1021 } 1022 O << '\n'; 1023 } else if (TD->isBigEndian()) { 1024 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1025 if (VerboseAsm) { 1026 O.PadToColumn(MAI->getCommentColumn()); 1027 O << MAI->getCommentString() 1028 << " most significant word of double " << Val; 1029 } 1030 O << '\n'; 1031 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1032 if (VerboseAsm) { 1033 O.PadToColumn(MAI->getCommentColumn()); 1034 O << MAI->getCommentString() 1035 << " least significant word of double " << Val; 1036 } 1037 O << '\n'; 1038 } else { 1039 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1040 if (VerboseAsm) { 1041 O.PadToColumn(MAI->getCommentColumn()); 1042 O << MAI->getCommentString() 1043 << " least significant word of double " << Val; 1044 } 1045 O << '\n'; 1046 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1047 if (VerboseAsm) { 1048 O.PadToColumn(MAI->getCommentColumn()); 1049 O << MAI->getCommentString() 1050 << " most significant word of double " << Val; 1051 } 1052 O << '\n'; 1053 } 1054 return; 1055 } 1056 1057 if (CFP->getType()->isFloatTy()) { 1058 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1059 O << MAI->getData32bitsDirective(AddrSpace) 1060 << CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1061 if (VerboseAsm) { 1062 O.PadToColumn(MAI->getCommentColumn()); 1063 O << MAI->getCommentString() << " float " << Val; 1064 } 1065 O << '\n'; 1066 return; 1067 } 1068 1069 if (CFP->getType()->isX86_FP80Ty()) { 1070 // all long double variants are printed as hex 1071 // api needed to prevent premature destruction 1072 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1073 const uint64_t *p = api.getRawData(); 1074 // Convert to double so we can print the approximate val as a comment. 1075 APFloat DoubleVal = CFP->getValueAPF(); 1076 bool ignored; 1077 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1078 &ignored); 1079 if (TD->isBigEndian()) { 1080 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1081 if (VerboseAsm) { 1082 O.PadToColumn(MAI->getCommentColumn()); 1083 O << MAI->getCommentString() 1084 << " most significant halfword of x86_fp80 ~" 1085 << DoubleVal.convertToDouble(); 1086 } 1087 O << '\n'; 1088 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1089 if (VerboseAsm) { 1090 O.PadToColumn(MAI->getCommentColumn()); 1091 O << MAI->getCommentString() << " next halfword"; 1092 } 1093 O << '\n'; 1094 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1095 if (VerboseAsm) { 1096 O.PadToColumn(MAI->getCommentColumn()); 1097 O << MAI->getCommentString() << " next halfword"; 1098 } 1099 O << '\n'; 1100 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1101 if (VerboseAsm) { 1102 O.PadToColumn(MAI->getCommentColumn()); 1103 O << MAI->getCommentString() << " next halfword"; 1104 } 1105 O << '\n'; 1106 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1107 if (VerboseAsm) { 1108 O.PadToColumn(MAI->getCommentColumn()); 1109 O << MAI->getCommentString() 1110 << " least significant halfword"; 1111 } 1112 O << '\n'; 1113 } else { 1114 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1115 if (VerboseAsm) { 1116 O.PadToColumn(MAI->getCommentColumn()); 1117 O << MAI->getCommentString() 1118 << " least significant halfword of x86_fp80 ~" 1119 << DoubleVal.convertToDouble(); 1120 } 1121 O << '\n'; 1122 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1123 if (VerboseAsm) { 1124 O.PadToColumn(MAI->getCommentColumn()); 1125 O << MAI->getCommentString() 1126 << " next halfword"; 1127 } 1128 O << '\n'; 1129 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1130 if (VerboseAsm) { 1131 O.PadToColumn(MAI->getCommentColumn()); 1132 O << MAI->getCommentString() 1133 << " next halfword"; 1134 } 1135 O << '\n'; 1136 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1137 if (VerboseAsm) { 1138 O.PadToColumn(MAI->getCommentColumn()); 1139 O << MAI->getCommentString() 1140 << " next halfword"; 1141 } 1142 O << '\n'; 1143 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1144 if (VerboseAsm) { 1145 O.PadToColumn(MAI->getCommentColumn()); 1146 O << MAI->getCommentString() 1147 << " most significant halfword"; 1148 } 1149 O << '\n'; 1150 } 1151 EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) - 1152 TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace); 1153 return; 1154 } 1155 1156 if (CFP->getType()->isPPC_FP128Ty()) { 1157 // all long double variants are printed as hex 1158 // api needed to prevent premature destruction 1159 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1160 const uint64_t *p = api.getRawData(); 1161 if (TD->isBigEndian()) { 1162 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1163 if (VerboseAsm) { 1164 O.PadToColumn(MAI->getCommentColumn()); 1165 O << MAI->getCommentString() 1166 << " most significant word of ppc_fp128"; 1167 } 1168 O << '\n'; 1169 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1170 if (VerboseAsm) { 1171 O.PadToColumn(MAI->getCommentColumn()); 1172 O << MAI->getCommentString() 1173 << " next word"; 1174 } 1175 O << '\n'; 1176 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1177 if (VerboseAsm) { 1178 O.PadToColumn(MAI->getCommentColumn()); 1179 O << MAI->getCommentString() 1180 << " next word"; 1181 } 1182 O << '\n'; 1183 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1184 if (VerboseAsm) { 1185 O.PadToColumn(MAI->getCommentColumn()); 1186 O << MAI->getCommentString() 1187 << " least significant word"; 1188 } 1189 O << '\n'; 1190 } else { 1191 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1192 if (VerboseAsm) { 1193 O.PadToColumn(MAI->getCommentColumn()); 1194 O << MAI->getCommentString() 1195 << " least significant word of ppc_fp128"; 1196 } 1197 O << '\n'; 1198 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1199 if (VerboseAsm) { 1200 O.PadToColumn(MAI->getCommentColumn()); 1201 O << MAI->getCommentString() 1202 << " next word"; 1203 } 1204 O << '\n'; 1205 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1206 if (VerboseAsm) { 1207 O.PadToColumn(MAI->getCommentColumn()); 1208 O << MAI->getCommentString() 1209 << " next word"; 1210 } 1211 O << '\n'; 1212 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1213 if (VerboseAsm) { 1214 O.PadToColumn(MAI->getCommentColumn()); 1215 O << MAI->getCommentString() 1216 << " most significant word"; 1217 } 1218 O << '\n'; 1219 } 1220 return; 1221 } else llvm_unreachable("Floating point constant type not handled"); 1222} 1223 1224void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 1225 unsigned AddrSpace) { 1226 const TargetData *TD = TM.getTargetData(); 1227 unsigned BitWidth = CI->getBitWidth(); 1228 assert(isPowerOf2_32(BitWidth) && 1229 "Non-power-of-2-sized integers not handled!"); 1230 1231 // We don't expect assemblers to support integer data directives 1232 // for more than 64 bits, so we emit the data in at most 64-bit 1233 // quantities at a time. 1234 const uint64_t *RawData = CI->getValue().getRawData(); 1235 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1236 uint64_t Val; 1237 if (TD->isBigEndian()) 1238 Val = RawData[e - i - 1]; 1239 else 1240 Val = RawData[i]; 1241 1242 if (MAI->getData64bitsDirective(AddrSpace)) 1243 O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n'; 1244 else if (TD->isBigEndian()) { 1245 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1246 if (VerboseAsm) { 1247 O.PadToColumn(MAI->getCommentColumn()); 1248 O << MAI->getCommentString() 1249 << " most significant half of i64 " << Val; 1250 } 1251 O << '\n'; 1252 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1253 if (VerboseAsm) { 1254 O.PadToColumn(MAI->getCommentColumn()); 1255 O << MAI->getCommentString() 1256 << " least significant half of i64 " << Val; 1257 } 1258 O << '\n'; 1259 } else { 1260 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1261 if (VerboseAsm) { 1262 O.PadToColumn(MAI->getCommentColumn()); 1263 O << MAI->getCommentString() 1264 << " least significant half of i64 " << Val; 1265 } 1266 O << '\n'; 1267 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1268 if (VerboseAsm) { 1269 O.PadToColumn(MAI->getCommentColumn()); 1270 O << MAI->getCommentString() 1271 << " most significant half of i64 " << Val; 1272 } 1273 O << '\n'; 1274 } 1275 } 1276} 1277 1278/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1279void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1280 const TargetData *TD = TM.getTargetData(); 1281 const Type *type = CV->getType(); 1282 unsigned Size = TD->getTypeAllocSize(type); 1283 1284 if (CV->isNullValue() || isa<UndefValue>(CV)) { 1285 EmitZeros(Size, AddrSpace); 1286 return; 1287 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 1288 EmitGlobalConstantArray(CVA , AddrSpace); 1289 return; 1290 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 1291 EmitGlobalConstantStruct(CVS, AddrSpace); 1292 return; 1293 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1294 EmitGlobalConstantFP(CFP, AddrSpace); 1295 return; 1296 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1297 // Small integers are handled below; large integers are handled here. 1298 if (Size > 4) { 1299 EmitGlobalConstantLargeInt(CI, AddrSpace); 1300 return; 1301 } 1302 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1303 EmitGlobalConstantVector(CP); 1304 return; 1305 } 1306 1307 printDataDirective(type, AddrSpace); 1308 EmitConstantValueOnly(CV); 1309 if (VerboseAsm) { 1310 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1311 SmallString<40> S; 1312 CI->getValue().toStringUnsigned(S, 16); 1313 O.PadToColumn(MAI->getCommentColumn()); 1314 O << MAI->getCommentString() << " 0x" << S.str(); 1315 } 1316 } 1317 O << '\n'; 1318} 1319 1320void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1321 // Target doesn't support this yet! 1322 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1323} 1324 1325/// PrintSpecial - Print information related to the specified machine instr 1326/// that is independent of the operand, and may be independent of the instr 1327/// itself. This can be useful for portably encoding the comment character 1328/// or other bits of target-specific knowledge into the asmstrings. The 1329/// syntax used is ${:comment}. Targets can override this to add support 1330/// for their own strange codes. 1331void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1332 if (!strcmp(Code, "private")) { 1333 O << MAI->getPrivateGlobalPrefix(); 1334 } else if (!strcmp(Code, "comment")) { 1335 if (VerboseAsm) 1336 O << MAI->getCommentString(); 1337 } else if (!strcmp(Code, "uid")) { 1338 // Comparing the address of MI isn't sufficient, because machineinstrs may 1339 // be allocated to the same address across functions. 1340 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1341 1342 // If this is a new LastFn instruction, bump the counter. 1343 if (LastMI != MI || LastFn != ThisF) { 1344 ++Counter; 1345 LastMI = MI; 1346 LastFn = ThisF; 1347 } 1348 O << Counter; 1349 } else { 1350 std::string msg; 1351 raw_string_ostream Msg(msg); 1352 Msg << "Unknown special formatter '" << Code 1353 << "' for machine instr: " << *MI; 1354 llvm_report_error(Msg.str()); 1355 } 1356} 1357 1358/// processDebugLoc - Processes the debug information of each machine 1359/// instruction's DebugLoc. 1360void AsmPrinter::processDebugLoc(const MachineInstr *MI, 1361 bool BeforePrintingInsn) { 1362 if (!MAI || !DW || !MAI->doesSupportDebugInformation() 1363 || !DW->ShouldEmitDwarfDebug()) 1364 return; 1365 DebugLoc DL = MI->getDebugLoc(); 1366 if (DL.isUnknown()) 1367 return; 1368 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL); 1369 if (CurDLT.Scope == 0) 1370 return; 1371 1372 if (BeforePrintingInsn) { 1373 if (CurDLT != PrevDLT) { 1374 unsigned L = DW->RecordSourceLine(CurDLT.Line, CurDLT.Col, 1375 CurDLT.Scope); 1376 printLabel(L); 1377 DW->BeginScope(MI, L); 1378 PrevDLT = CurDLT; 1379 } 1380 } else { 1381 // After printing instruction 1382 DW->EndScope(MI); 1383 } 1384} 1385 1386 1387/// printInlineAsm - This method formats and prints the specified machine 1388/// instruction that is an inline asm. 1389void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1390 unsigned NumOperands = MI->getNumOperands(); 1391 1392 // Count the number of register definitions. 1393 unsigned NumDefs = 0; 1394 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1395 ++NumDefs) 1396 assert(NumDefs != NumOperands-1 && "No asm string?"); 1397 1398 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1399 1400 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1401 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1402 1403 O << '\t'; 1404 1405 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1406 // These are useful to see where empty asm's wound up. 1407 if (AsmStr[0] == 0) { 1408 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1409 O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n'; 1410 return; 1411 } 1412 1413 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1414 1415 // The variant of the current asmprinter. 1416 int AsmPrinterVariant = MAI->getAssemblerDialect(); 1417 1418 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1419 const char *LastEmitted = AsmStr; // One past the last character emitted. 1420 1421 while (*LastEmitted) { 1422 switch (*LastEmitted) { 1423 default: { 1424 // Not a special case, emit the string section literally. 1425 const char *LiteralEnd = LastEmitted+1; 1426 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1427 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1428 ++LiteralEnd; 1429 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1430 O.write(LastEmitted, LiteralEnd-LastEmitted); 1431 LastEmitted = LiteralEnd; 1432 break; 1433 } 1434 case '\n': 1435 ++LastEmitted; // Consume newline character. 1436 O << '\n'; // Indent code with newline. 1437 break; 1438 case '$': { 1439 ++LastEmitted; // Consume '$' character. 1440 bool Done = true; 1441 1442 // Handle escapes. 1443 switch (*LastEmitted) { 1444 default: Done = false; break; 1445 case '$': // $$ -> $ 1446 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1447 O << '$'; 1448 ++LastEmitted; // Consume second '$' character. 1449 break; 1450 case '(': // $( -> same as GCC's { character. 1451 ++LastEmitted; // Consume '(' character. 1452 if (CurVariant != -1) { 1453 llvm_report_error("Nested variants found in inline asm string: '" 1454 + std::string(AsmStr) + "'"); 1455 } 1456 CurVariant = 0; // We're in the first variant now. 1457 break; 1458 case '|': 1459 ++LastEmitted; // consume '|' character. 1460 if (CurVariant == -1) 1461 O << '|'; // this is gcc's behavior for | outside a variant 1462 else 1463 ++CurVariant; // We're in the next variant. 1464 break; 1465 case ')': // $) -> same as GCC's } char. 1466 ++LastEmitted; // consume ')' character. 1467 if (CurVariant == -1) 1468 O << '}'; // this is gcc's behavior for } outside a variant 1469 else 1470 CurVariant = -1; 1471 break; 1472 } 1473 if (Done) break; 1474 1475 bool HasCurlyBraces = false; 1476 if (*LastEmitted == '{') { // ${variable} 1477 ++LastEmitted; // Consume '{' character. 1478 HasCurlyBraces = true; 1479 } 1480 1481 // If we have ${:foo}, then this is not a real operand reference, it is a 1482 // "magic" string reference, just like in .td files. Arrange to call 1483 // PrintSpecial. 1484 if (HasCurlyBraces && *LastEmitted == ':') { 1485 ++LastEmitted; 1486 const char *StrStart = LastEmitted; 1487 const char *StrEnd = strchr(StrStart, '}'); 1488 if (StrEnd == 0) { 1489 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '" 1490 + std::string(AsmStr) + "'"); 1491 } 1492 1493 std::string Val(StrStart, StrEnd); 1494 PrintSpecial(MI, Val.c_str()); 1495 LastEmitted = StrEnd+1; 1496 break; 1497 } 1498 1499 const char *IDStart = LastEmitted; 1500 char *IDEnd; 1501 errno = 0; 1502 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1503 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1504 llvm_report_error("Bad $ operand number in inline asm string: '" 1505 + std::string(AsmStr) + "'"); 1506 } 1507 LastEmitted = IDEnd; 1508 1509 char Modifier[2] = { 0, 0 }; 1510 1511 if (HasCurlyBraces) { 1512 // If we have curly braces, check for a modifier character. This 1513 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1514 if (*LastEmitted == ':') { 1515 ++LastEmitted; // Consume ':' character. 1516 if (*LastEmitted == 0) { 1517 llvm_report_error("Bad ${:} expression in inline asm string: '" 1518 + std::string(AsmStr) + "'"); 1519 } 1520 1521 Modifier[0] = *LastEmitted; 1522 ++LastEmitted; // Consume modifier character. 1523 } 1524 1525 if (*LastEmitted != '}') { 1526 llvm_report_error("Bad ${} expression in inline asm string: '" 1527 + std::string(AsmStr) + "'"); 1528 } 1529 ++LastEmitted; // Consume '}' character. 1530 } 1531 1532 if ((unsigned)Val >= NumOperands-1) { 1533 llvm_report_error("Invalid $ operand number in inline asm string: '" 1534 + std::string(AsmStr) + "'"); 1535 } 1536 1537 // Okay, we finally have a value number. Ask the target to print this 1538 // operand! 1539 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1540 unsigned OpNo = 1; 1541 1542 bool Error = false; 1543 1544 // Scan to find the machine operand number for the operand. 1545 for (; Val; --Val) { 1546 if (OpNo >= MI->getNumOperands()) break; 1547 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1548 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1549 } 1550 1551 if (OpNo >= MI->getNumOperands()) { 1552 Error = true; 1553 } else { 1554 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1555 ++OpNo; // Skip over the ID number. 1556 1557 if (Modifier[0]=='l') // labels are target independent 1558 GetMBBSymbol(MI->getOperand(OpNo).getMBB() 1559 ->getNumber())->print(O, MAI); 1560 else { 1561 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1562 if ((OpFlags & 7) == 4) { 1563 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1564 Modifier[0] ? Modifier : 0); 1565 } else { 1566 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1567 Modifier[0] ? Modifier : 0); 1568 } 1569 } 1570 } 1571 if (Error) { 1572 std::string msg; 1573 raw_string_ostream Msg(msg); 1574 Msg << "Invalid operand found in inline asm: '" 1575 << AsmStr << "'\n"; 1576 MI->print(Msg); 1577 llvm_report_error(Msg.str()); 1578 } 1579 } 1580 break; 1581 } 1582 } 1583 } 1584 O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd(); 1585} 1586 1587/// printImplicitDef - This method prints the specified machine instruction 1588/// that is an implicit def. 1589void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1590 if (!VerboseAsm) return; 1591 O.PadToColumn(MAI->getCommentColumn()); 1592 O << MAI->getCommentString() << " implicit-def: " 1593 << TRI->getName(MI->getOperand(0).getReg()); 1594} 1595 1596void AsmPrinter::printKill(const MachineInstr *MI) const { 1597 if (!VerboseAsm) return; 1598 O.PadToColumn(MAI->getCommentColumn()); 1599 O << MAI->getCommentString() << " kill:"; 1600 for (unsigned n = 0, e = MI->getNumOperands(); n != e; ++n) { 1601 const MachineOperand &op = MI->getOperand(n); 1602 assert(op.isReg() && "KILL instruction must have only register operands"); 1603 O << ' ' << TRI->getName(op.getReg()) << (op.isDef() ? "<def>" : "<kill>"); 1604 } 1605} 1606 1607/// printLabel - This method prints a local label used by debug and 1608/// exception handling tables. 1609void AsmPrinter::printLabel(const MachineInstr *MI) const { 1610 printLabel(MI->getOperand(0).getImm()); 1611} 1612 1613void AsmPrinter::printLabel(unsigned Id) const { 1614 O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':'; 1615} 1616 1617/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1618/// instruction, using the specified assembler variant. Targets should 1619/// overried this to format as appropriate. 1620bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1621 unsigned AsmVariant, const char *ExtraCode) { 1622 // Target doesn't support this yet! 1623 return true; 1624} 1625 1626bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1627 unsigned AsmVariant, 1628 const char *ExtraCode) { 1629 // Target doesn't support this yet! 1630 return true; 1631} 1632 1633MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 1634 return GetBlockAddressSymbol(BA->getFunction(), BA->getBasicBlock()); 1635} 1636 1637MCSymbol *AsmPrinter::GetBlockAddressSymbol(const Function *F, 1638 const BasicBlock *BB) const { 1639 assert(BB->hasName() && 1640 "Address of anonymous basic block not supported yet!"); 1641 1642 // This code must use the function name itself, and not the function number, 1643 // since it must be possible to generate the label name from within other 1644 // functions. 1645 std::string FuncName = Mang->getMangledName(F); 1646 1647 SmallString<60> Name; 1648 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BA" 1649 << FuncName.size() << '_' << FuncName << '_' 1650 << Mang->makeNameProper(BB->getName()); 1651 1652 return OutContext.GetOrCreateSymbol(Name.str()); 1653} 1654 1655MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const { 1656 SmallString<60> Name; 1657 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB" 1658 << getFunctionNumber() << '_' << MBBID; 1659 1660 return OutContext.GetOrCreateSymbol(Name.str()); 1661} 1662 1663 1664/// EmitBasicBlockStart - This method prints the label for the specified 1665/// MachineBasicBlock, an alignment (if present) and a comment describing 1666/// it if appropriate. 1667void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 1668 // Emit an alignment directive for this block, if needed. 1669 if (unsigned Align = MBB->getAlignment()) 1670 EmitAlignment(Log2_32(Align)); 1671 1672 // If the block has its address taken, emit a special label to satisfy 1673 // references to the block. This is done so that we don't need to 1674 // remember the number of this label, and so that we can make 1675 // forward references to labels without knowing what their numbers 1676 // will be. 1677 if (MBB->hasAddressTaken()) { 1678 GetBlockAddressSymbol(MBB->getBasicBlock()->getParent(), 1679 MBB->getBasicBlock())->print(O, MAI); 1680 O << ':'; 1681 if (VerboseAsm) { 1682 O.PadToColumn(MAI->getCommentColumn()); 1683 O << MAI->getCommentString() << " Address Taken"; 1684 } 1685 O << '\n'; 1686 } 1687 1688 // Print the main label for the block. 1689 if (MBB->pred_empty() || MBB->isOnlyReachableByFallthrough()) { 1690 if (VerboseAsm) 1691 O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':'; 1692 } else { 1693 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 1694 O << ':'; 1695 if (!VerboseAsm) 1696 O << '\n'; 1697 } 1698 1699 // Print some comments to accompany the label. 1700 if (VerboseAsm) { 1701 if (const BasicBlock *BB = MBB->getBasicBlock()) 1702 if (BB->hasName()) { 1703 O.PadToColumn(MAI->getCommentColumn()); 1704 O << MAI->getCommentString() << ' '; 1705 WriteAsOperand(O, BB, /*PrintType=*/false); 1706 } 1707 1708 EmitComments(*MBB); 1709 O << '\n'; 1710 } 1711} 1712 1713/// printPICJumpTableSetLabel - This method prints a set label for the 1714/// specified MachineBasicBlock for a jumptable entry. 1715void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1716 const MachineBasicBlock *MBB) const { 1717 if (!MAI->getSetDirective()) 1718 return; 1719 1720 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1721 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1722 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 1723 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1724 << '_' << uid << '\n'; 1725} 1726 1727void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1728 const MachineBasicBlock *MBB) const { 1729 if (!MAI->getSetDirective()) 1730 return; 1731 1732 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1733 << getFunctionNumber() << '_' << uid << '_' << uid2 1734 << "_set_" << MBB->getNumber() << ','; 1735 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 1736 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1737 << '_' << uid << '_' << uid2 << '\n'; 1738} 1739 1740/// printDataDirective - This method prints the asm directive for the 1741/// specified type. 1742void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { 1743 const TargetData *TD = TM.getTargetData(); 1744 switch (type->getTypeID()) { 1745 case Type::FloatTyID: case Type::DoubleTyID: 1746 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1747 assert(0 && "Should have already output floating point constant."); 1748 default: 1749 assert(0 && "Can't handle printing this type of thing"); 1750 case Type::IntegerTyID: { 1751 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1752 if (BitWidth <= 8) 1753 O << MAI->getData8bitsDirective(AddrSpace); 1754 else if (BitWidth <= 16) 1755 O << MAI->getData16bitsDirective(AddrSpace); 1756 else if (BitWidth <= 32) 1757 O << MAI->getData32bitsDirective(AddrSpace); 1758 else if (BitWidth <= 64) { 1759 assert(MAI->getData64bitsDirective(AddrSpace) && 1760 "Target cannot handle 64-bit constant exprs!"); 1761 O << MAI->getData64bitsDirective(AddrSpace); 1762 } else { 1763 llvm_unreachable("Target cannot handle given data directive width!"); 1764 } 1765 break; 1766 } 1767 case Type::PointerTyID: 1768 if (TD->getPointerSize() == 8) { 1769 assert(MAI->getData64bitsDirective(AddrSpace) && 1770 "Target cannot handle 64-bit pointer exprs!"); 1771 O << MAI->getData64bitsDirective(AddrSpace); 1772 } else if (TD->getPointerSize() == 2) { 1773 O << MAI->getData16bitsDirective(AddrSpace); 1774 } else if (TD->getPointerSize() == 1) { 1775 O << MAI->getData8bitsDirective(AddrSpace); 1776 } else { 1777 O << MAI->getData32bitsDirective(AddrSpace); 1778 } 1779 break; 1780 } 1781} 1782 1783void AsmPrinter::printVisibility(const std::string& Name, 1784 unsigned Visibility) const { 1785 if (Visibility == GlobalValue::HiddenVisibility) { 1786 if (const char *Directive = MAI->getHiddenDirective()) 1787 O << Directive << Name << '\n'; 1788 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1789 if (const char *Directive = MAI->getProtectedDirective()) 1790 O << Directive << Name << '\n'; 1791 } 1792} 1793 1794void AsmPrinter::printOffset(int64_t Offset) const { 1795 if (Offset > 0) 1796 O << '+' << Offset; 1797 else if (Offset < 0) 1798 O << Offset; 1799} 1800 1801GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1802 if (!S->usesMetadata()) 1803 return 0; 1804 1805 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1806 if (GCPI != GCMetadataPrinters.end()) 1807 return GCPI->second; 1808 1809 const char *Name = S->getName().c_str(); 1810 1811 for (GCMetadataPrinterRegistry::iterator 1812 I = GCMetadataPrinterRegistry::begin(), 1813 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1814 if (strcmp(Name, I->getName()) == 0) { 1815 GCMetadataPrinter *GMP = I->instantiate(); 1816 GMP->S = S; 1817 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1818 return GMP; 1819 } 1820 1821 errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1822 llvm_unreachable(0); 1823} 1824 1825/// EmitComments - Pretty-print comments for instructions 1826void AsmPrinter::EmitComments(const MachineInstr &MI) const { 1827 if (!VerboseAsm) 1828 return; 1829 1830 bool Newline = false; 1831 1832 if (!MI.getDebugLoc().isUnknown()) { 1833 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); 1834 1835 // Print source line info. 1836 O.PadToColumn(MAI->getCommentColumn()); 1837 O << MAI->getCommentString() << " SrcLine "; 1838 if (DLT.Scope) { 1839 DICompileUnit CU(DLT.Scope); 1840 if (!CU.isNull()) 1841 O << CU.getFilename() << " "; 1842 } 1843 O << DLT.Line; 1844 if (DLT.Col != 0) 1845 O << ":" << DLT.Col; 1846 Newline = true; 1847 } 1848 1849} 1850 1851/// PrintChildLoopComment - Print comments about child loops within 1852/// the loop for this basic block, with nesting. 1853/// 1854static void PrintChildLoopComment(formatted_raw_ostream &O, 1855 const MachineLoop *loop, 1856 const MCAsmInfo *MAI, 1857 int FunctionNumber) { 1858 // Add child loop information 1859 for(MachineLoop::iterator cl = loop->begin(), 1860 clend = loop->end(); 1861 cl != clend; 1862 ++cl) { 1863 MachineBasicBlock *Header = (*cl)->getHeader(); 1864 assert(Header && "No header for loop"); 1865 1866 O << '\n'; 1867 O.PadToColumn(MAI->getCommentColumn()); 1868 1869 O << MAI->getCommentString(); 1870 O.indent(((*cl)->getLoopDepth()-1)*2) 1871 << " Child Loop BB" << FunctionNumber << "_" 1872 << Header->getNumber() << " Depth " << (*cl)->getLoopDepth(); 1873 1874 PrintChildLoopComment(O, *cl, MAI, FunctionNumber); 1875 } 1876} 1877 1878/// EmitComments - Pretty-print comments for basic blocks 1879void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const { 1880 if (VerboseAsm) { 1881 // Add loop depth information 1882 const MachineLoop *loop = LI->getLoopFor(&MBB); 1883 1884 if (loop) { 1885 // Print a newline after bb# annotation. 1886 O << "\n"; 1887 O.PadToColumn(MAI->getCommentColumn()); 1888 O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth() 1889 << '\n'; 1890 1891 O.PadToColumn(MAI->getCommentColumn()); 1892 1893 MachineBasicBlock *Header = loop->getHeader(); 1894 assert(Header && "No header for loop"); 1895 1896 if (Header == &MBB) { 1897 O << MAI->getCommentString() << " Loop Header"; 1898 PrintChildLoopComment(O, loop, MAI, getFunctionNumber()); 1899 } 1900 else { 1901 O << MAI->getCommentString() << " Loop Header is BB" 1902 << getFunctionNumber() << "_" << loop->getHeader()->getNumber(); 1903 } 1904 1905 if (loop->empty()) { 1906 O << '\n'; 1907 O.PadToColumn(MAI->getCommentColumn()); 1908 O << MAI->getCommentString() << " Inner Loop"; 1909 } 1910 1911 // Add parent loop information 1912 for (const MachineLoop *CurLoop = loop->getParentLoop(); 1913 CurLoop; 1914 CurLoop = CurLoop->getParentLoop()) { 1915 MachineBasicBlock *Header = CurLoop->getHeader(); 1916 assert(Header && "No header for loop"); 1917 1918 O << '\n'; 1919 O.PadToColumn(MAI->getCommentColumn()); 1920 O << MAI->getCommentString(); 1921 O.indent((CurLoop->getLoopDepth()-1)*2) 1922 << " Inside Loop BB" << getFunctionNumber() << "_" 1923 << Header->getNumber() << " Depth " << CurLoop->getLoopDepth(); 1924 } 1925 } 1926 } 1927} 1928