AsmPrinter.cpp revision a64f463fb90c66406033e3fd1dc912b648bad328
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/Support/Mangler.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Target/TargetAsmInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34#include <cerrno>
35using namespace llvm;
36
37char AsmPrinter::ID = 0;
38AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
39                       const TargetAsmInfo *T)
40  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
41    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
42    IsInTextSection(false)
43{}
44
45AsmPrinter::~AsmPrinter() {
46  for (gcp_iterator I = GCMetadataPrinters.begin(),
47                    E = GCMetadataPrinters.end(); I != E; ++I)
48    delete I->second;
49}
50
51/// SwitchToTextSection - Switch to the specified text section of the executable
52/// if we are not already in it!
53///
54void AsmPrinter::SwitchToTextSection(const char *NewSection,
55                                     const GlobalValue *GV) {
56  std::string NS;
57  if (GV && GV->hasSection())
58    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
59  else
60    NS = NewSection;
61
62  // If we're already in this section, we're done.
63  if (CurrentSection == NS) return;
64
65  // Close the current section, if applicable.
66  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
67    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
68
69  CurrentSection = NS;
70
71  if (!CurrentSection.empty())
72    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
73
74  IsInTextSection = true;
75}
76
77/// SwitchToDataSection - Switch to the specified data section of the executable
78/// if we are not already in it!
79///
80void AsmPrinter::SwitchToDataSection(const char *NewSection,
81                                     const GlobalValue *GV) {
82  std::string NS;
83  if (GV && GV->hasSection())
84    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
85  else
86    NS = NewSection;
87
88  // If we're already in this section, we're done.
89  if (CurrentSection == NS) return;
90
91  // Close the current section, if applicable.
92  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
93    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
94
95  CurrentSection = NS;
96
97  if (!CurrentSection.empty())
98    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
99
100  IsInTextSection = false;
101}
102
103/// SwitchToSection - Switch to the specified section of the executable if we
104/// are not already in it!
105void AsmPrinter::SwitchToSection(const Section* NS) {
106  const std::string& NewSection = NS->getName();
107
108  // If we're already in this section, we're done.
109  if (CurrentSection == NewSection) return;
110
111  // Close the current section, if applicable.
112  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
113    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
114
115  // FIXME: Make CurrentSection a Section* in the future
116  CurrentSection = NewSection;
117  CurrentSection_ = NS;
118
119  if (!CurrentSection.empty()) {
120    // If section is named we need to switch into it via special '.section'
121    // directive and also append funky flags. Otherwise - section name is just
122    // some magic assembler directive.
123    if (NS->isNamed())
124      O << TAI->getSwitchToSectionDirective()
125        << CurrentSection
126        << TAI->getSectionFlags(NS->getFlags());
127    else
128      O << CurrentSection;
129    O << TAI->getDataSectionStartSuffix() << '\n';
130  }
131
132  IsInTextSection = (NS->getFlags() & SectionFlags::Code);
133}
134
135void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
136  MachineFunctionPass::getAnalysisUsage(AU);
137  AU.addRequired<GCModuleInfo>();
138}
139
140bool AsmPrinter::doInitialization(Module &M) {
141  Mang = new Mangler(M, TAI->getGlobalPrefix());
142
143  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
144  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
145  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
146    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
147      MP->beginAssembly(O, *this, *TAI);
148
149  if (!M.getModuleInlineAsm().empty())
150    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
151      << M.getModuleInlineAsm()
152      << '\n' << TAI->getCommentString()
153      << " End of file scope inline assembly\n";
154
155  SwitchToDataSection("");   // Reset back to no section.
156
157  MMI = getAnalysisToUpdate<MachineModuleInfo>();
158  if (MMI) MMI->AnalyzeModule(M);
159
160  return false;
161}
162
163bool AsmPrinter::doFinalization(Module &M) {
164  if (TAI->getWeakRefDirective()) {
165    if (!ExtWeakSymbols.empty())
166      SwitchToDataSection("");
167
168    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
169         e = ExtWeakSymbols.end(); i != e; ++i) {
170      const GlobalValue *GV = *i;
171      std::string Name = Mang->getValueName(GV);
172      O << TAI->getWeakRefDirective() << Name << '\n';
173    }
174  }
175
176  if (TAI->getSetDirective()) {
177    if (!M.alias_empty())
178      SwitchToSection(TAI->getTextSection());
179
180    O << '\n';
181    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
182         I!=E; ++I) {
183      std::string Name = Mang->getValueName(I);
184      std::string Target;
185
186      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
187      Target = Mang->getValueName(GV);
188
189      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
190        O << "\t.globl\t" << Name << '\n';
191      else if (I->hasWeakLinkage())
192        O << TAI->getWeakRefDirective() << Name << '\n';
193      else if (!I->hasInternalLinkage())
194        assert(0 && "Invalid alias linkage");
195
196      printVisibility(Name, I->getVisibility());
197
198      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
199
200      // If the aliasee has external weak linkage it can be referenced only by
201      // alias itself. In this case it can be not in ExtWeakSymbols list. Emit
202      // weak reference in such case.
203      if (GV->hasExternalWeakLinkage()) {
204        if (TAI->getWeakRefDirective())
205          O << TAI->getWeakRefDirective() << Target << '\n';
206        else
207          O << "\t.globl\t" << Target << '\n';
208      }
209    }
210  }
211
212  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
213  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
214  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
215    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
216      MP->finishAssembly(O, *this, *TAI);
217
218  // If we don't have any trampolines, then we don't require stack memory
219  // to be executable. Some targets have a directive to declare this.
220  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
221  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
222    if (TAI->getNonexecutableStackDirective())
223      O << TAI->getNonexecutableStackDirective() << '\n';
224
225  delete Mang; Mang = 0;
226  return false;
227}
228
229std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
230  assert(MF && "No machine function?");
231  std::string Name = MF->getFunction()->getName();
232  if (Name.empty())
233    Name = Mang->getValueName(MF->getFunction());
234  return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix());
235}
236
237void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
238  // What's my mangled name?
239  CurrentFnName = Mang->getValueName(MF.getFunction());
240  IncrementFunctionNumber();
241}
242
243/// EmitConstantPool - Print to the current output stream assembly
244/// representations of the constants in the constant pool MCP. This is
245/// used to print out constants which have been "spilled to memory" by
246/// the code generator.
247///
248void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
249  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
250  if (CP.empty()) return;
251
252  // Calculate sections for constant pool entries. We collect entries to go into
253  // the same section together to reduce amount of section switch statements.
254  typedef
255    std::multimap<const Section*,
256                  std::pair<MachineConstantPoolEntry, unsigned> > CPMap;
257  CPMap  CPs;
258  SmallPtrSet<const Section*, 5> Sections;
259
260  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
261    MachineConstantPoolEntry CPE = CP[i];
262    const Section* S = TAI->SelectSectionForMachineConst(CPE.getType());
263    CPs.insert(std::make_pair(S, std::make_pair(CPE, i)));
264    Sections.insert(S);
265  }
266
267  // Now print stuff into the calculated sections.
268  for (SmallPtrSet<const Section*, 5>::iterator IS = Sections.begin(),
269         ES = Sections.end(); IS != ES; ++IS) {
270    SwitchToSection(*IS);
271    EmitAlignment(MCP->getConstantPoolAlignment());
272
273    std::pair<CPMap::iterator, CPMap::iterator> II = CPs.equal_range(*IS);
274    for (CPMap::iterator I = II.first, E = II.second; I != E; ++I) {
275      CPMap::iterator J = next(I);
276      MachineConstantPoolEntry Entry = I->second.first;
277      unsigned index = I->second.second;
278
279      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
280        << index << ":\t\t\t\t\t";
281    // O << TAI->getCommentString() << ' ' <<
282    //      WriteTypeSymbolic(O, CP[i].first.getType(), 0);
283      O << '\n';
284      if (Entry.isMachineConstantPoolEntry())
285        EmitMachineConstantPoolValue(Entry.Val.MachineCPVal);
286      else
287        EmitGlobalConstant(Entry.Val.ConstVal);
288
289      // Emit inter-object padding for alignment.
290      if (J != E) {
291        const Type *Ty = Entry.getType();
292        unsigned EntSize = TM.getTargetData()->getABITypeSize(Ty);
293        unsigned ValEnd = Entry.getOffset() + EntSize;
294        EmitZeros(J->second.first.getOffset()-ValEnd);
295      }
296    }
297  }
298}
299
300/// EmitJumpTableInfo - Print assembly representations of the jump tables used
301/// by the current function to the current output stream.
302///
303void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
304                                   MachineFunction &MF) {
305  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
306  if (JT.empty()) return;
307
308  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
309
310  // Pick the directive to use to print the jump table entries, and switch to
311  // the appropriate section.
312  TargetLowering *LoweringInfo = TM.getTargetLowering();
313
314  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
315  const Function *F = MF.getFunction();
316  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
317  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
318     !JumpTableDataSection ||
319      SectionFlags & SectionFlags::Linkonce) {
320    // In PIC mode, we need to emit the jump table to the same section as the
321    // function body itself, otherwise the label differences won't make sense.
322    // We should also do if the section name is NULL or function is declared in
323    // discardable section.
324    SwitchToSection(TAI->SectionForGlobal(F));
325  } else {
326    SwitchToDataSection(JumpTableDataSection);
327  }
328
329  EmitAlignment(Log2_32(MJTI->getAlignment()));
330
331  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
332    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
333
334    // If this jump table was deleted, ignore it.
335    if (JTBBs.empty()) continue;
336
337    // For PIC codegen, if possible we want to use the SetDirective to reduce
338    // the number of relocations the assembler will generate for the jump table.
339    // Set directives are all printed before the jump table itself.
340    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
341    if (TAI->getSetDirective() && IsPic)
342      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
343        if (EmittedSets.insert(JTBBs[ii]))
344          printPICJumpTableSetLabel(i, JTBBs[ii]);
345
346    // On some targets (e.g. darwin) we want to emit two consequtive labels
347    // before each jump table.  The first label is never referenced, but tells
348    // the assembler and linker the extents of the jump table object.  The
349    // second label is actually referenced by the code.
350    if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
351      O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
352
353    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
354      << '_' << i << ":\n";
355
356    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
357      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
358      O << '\n';
359    }
360  }
361}
362
363void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
364                                        const MachineBasicBlock *MBB,
365                                        unsigned uid)  const {
366  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
367
368  // Use JumpTableDirective otherwise honor the entry size from the jump table
369  // info.
370  const char *JTEntryDirective = TAI->getJumpTableDirective();
371  bool HadJTEntryDirective = JTEntryDirective != NULL;
372  if (!HadJTEntryDirective) {
373    JTEntryDirective = MJTI->getEntrySize() == 4 ?
374      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
375  }
376
377  O << JTEntryDirective << ' ';
378
379  // If we have emitted set directives for the jump table entries, print
380  // them rather than the entries themselves.  If we're emitting PIC, then
381  // emit the table entries as differences between two text section labels.
382  // If we're emitting non-PIC code, then emit the entries as direct
383  // references to the target basic blocks.
384  if (IsPic) {
385    if (TAI->getSetDirective()) {
386      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
387        << '_' << uid << "_set_" << MBB->getNumber();
388    } else {
389      printBasicBlockLabel(MBB, false, false, false);
390      // If the arch uses custom Jump Table directives, don't calc relative to
391      // JT
392      if (!HadJTEntryDirective)
393        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
394          << getFunctionNumber() << '_' << uid;
395    }
396  } else {
397    printBasicBlockLabel(MBB, false, false, false);
398  }
399}
400
401
402/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
403/// special global used by LLVM.  If so, emit it and return true, otherwise
404/// do nothing and return false.
405bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
406  if (GV->getName() == "llvm.used") {
407    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
408      EmitLLVMUsedList(GV->getInitializer());
409    return true;
410  }
411
412  // Ignore debug and non-emitted data.
413  if (GV->getSection() == "llvm.metadata") return true;
414
415  if (!GV->hasAppendingLinkage()) return false;
416
417  assert(GV->hasInitializer() && "Not a special LLVM global!");
418
419  const TargetData *TD = TM.getTargetData();
420  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
421  if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
422    SwitchToDataSection(TAI->getStaticCtorsSection());
423    EmitAlignment(Align, 0);
424    EmitXXStructorList(GV->getInitializer());
425    return true;
426  }
427
428  if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
429    SwitchToDataSection(TAI->getStaticDtorsSection());
430    EmitAlignment(Align, 0);
431    EmitXXStructorList(GV->getInitializer());
432    return true;
433  }
434
435  return false;
436}
437
438/// findGlobalValue - if CV is an expression equivalent to a single
439/// global value, return that value.
440const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
441  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
442    return GV;
443  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
444    const TargetData *TD = TM.getTargetData();
445    unsigned Opcode = CE->getOpcode();
446    switch (Opcode) {
447    case Instruction::GetElementPtr: {
448      const Constant *ptrVal = CE->getOperand(0);
449      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
450      if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
451        return 0;
452      return findGlobalValue(ptrVal);
453    }
454    case Instruction::BitCast:
455      return findGlobalValue(CE->getOperand(0));
456    default:
457      return 0;
458    }
459  }
460  return 0;
461}
462
463/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
464/// global in the specified llvm.used list for which emitUsedDirectiveFor
465/// is true, as being used with this directive.
466
467void AsmPrinter::EmitLLVMUsedList(Constant *List) {
468  const char *Directive = TAI->getUsedDirective();
469
470  // Should be an array of 'sbyte*'.
471  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
472  if (InitList == 0) return;
473
474  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
475    const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
476    if (TAI->emitUsedDirectiveFor(GV, Mang)) {
477      O << Directive;
478      EmitConstantValueOnly(InitList->getOperand(i));
479      O << '\n';
480    }
481  }
482}
483
484/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
485/// function pointers, ignoring the init priority.
486void AsmPrinter::EmitXXStructorList(Constant *List) {
487  // Should be an array of '{ int, void ()* }' structs.  The first value is the
488  // init priority, which we ignore.
489  if (!isa<ConstantArray>(List)) return;
490  ConstantArray *InitList = cast<ConstantArray>(List);
491  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
492    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
493      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
494
495      if (CS->getOperand(1)->isNullValue())
496        return;  // Found a null terminator, exit printing.
497      // Emit the function pointer.
498      EmitGlobalConstant(CS->getOperand(1));
499    }
500}
501
502/// getGlobalLinkName - Returns the asm/link name of of the specified
503/// global variable.  Should be overridden by each target asm printer to
504/// generate the appropriate value.
505const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
506  std::string LinkName;
507
508  if (isa<Function>(GV)) {
509    LinkName += TAI->getFunctionAddrPrefix();
510    LinkName += Mang->getValueName(GV);
511    LinkName += TAI->getFunctionAddrSuffix();
512  } else {
513    LinkName += TAI->getGlobalVarAddrPrefix();
514    LinkName += Mang->getValueName(GV);
515    LinkName += TAI->getGlobalVarAddrSuffix();
516  }
517
518  return LinkName;
519}
520
521/// EmitExternalGlobal - Emit the external reference to a global variable.
522/// Should be overridden if an indirect reference should be used.
523void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
524  O << getGlobalLinkName(GV);
525}
526
527
528
529//===----------------------------------------------------------------------===//
530/// LEB 128 number encoding.
531
532/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
533/// representing an unsigned leb128 value.
534void AsmPrinter::PrintULEB128(unsigned Value) const {
535  char Buffer[20];
536  do {
537    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
538    Value >>= 7;
539    if (Value) Byte |= 0x80;
540    O << "0x" << utohex_buffer(Byte, Buffer+20);
541    if (Value) O << ", ";
542  } while (Value);
543}
544
545/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
546/// representing a signed leb128 value.
547void AsmPrinter::PrintSLEB128(int Value) const {
548  int Sign = Value >> (8 * sizeof(Value) - 1);
549  bool IsMore;
550  char Buffer[20];
551
552  do {
553    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
554    Value >>= 7;
555    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
556    if (IsMore) Byte |= 0x80;
557    O << "0x" << utohex_buffer(Byte, Buffer+20);
558    if (IsMore) O << ", ";
559  } while (IsMore);
560}
561
562//===--------------------------------------------------------------------===//
563// Emission and print routines
564//
565
566/// PrintHex - Print a value as a hexidecimal value.
567///
568void AsmPrinter::PrintHex(int Value) const {
569  char Buffer[20];
570  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
571}
572
573/// EOL - Print a newline character to asm stream.  If a comment is present
574/// then it will be printed first.  Comments should not contain '\n'.
575void AsmPrinter::EOL() const {
576  O << '\n';
577}
578
579void AsmPrinter::EOL(const std::string &Comment) const {
580  if (VerboseAsm && !Comment.empty()) {
581    O << '\t'
582      << TAI->getCommentString()
583      << ' '
584      << Comment;
585  }
586  O << '\n';
587}
588
589void AsmPrinter::EOL(const char* Comment) const {
590  if (VerboseAsm && *Comment) {
591    O << '\t'
592      << TAI->getCommentString()
593      << ' '
594      << Comment;
595  }
596  O << '\n';
597}
598
599/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
600/// unsigned leb128 value.
601void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
602  if (TAI->hasLEB128()) {
603    O << "\t.uleb128\t"
604      << Value;
605  } else {
606    O << TAI->getData8bitsDirective();
607    PrintULEB128(Value);
608  }
609}
610
611/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
612/// signed leb128 value.
613void AsmPrinter::EmitSLEB128Bytes(int Value) const {
614  if (TAI->hasLEB128()) {
615    O << "\t.sleb128\t"
616      << Value;
617  } else {
618    O << TAI->getData8bitsDirective();
619    PrintSLEB128(Value);
620  }
621}
622
623/// EmitInt8 - Emit a byte directive and value.
624///
625void AsmPrinter::EmitInt8(int Value) const {
626  O << TAI->getData8bitsDirective();
627  PrintHex(Value & 0xFF);
628}
629
630/// EmitInt16 - Emit a short directive and value.
631///
632void AsmPrinter::EmitInt16(int Value) const {
633  O << TAI->getData16bitsDirective();
634  PrintHex(Value & 0xFFFF);
635}
636
637/// EmitInt32 - Emit a long directive and value.
638///
639void AsmPrinter::EmitInt32(int Value) const {
640  O << TAI->getData32bitsDirective();
641  PrintHex(Value);
642}
643
644/// EmitInt64 - Emit a long long directive and value.
645///
646void AsmPrinter::EmitInt64(uint64_t Value) const {
647  if (TAI->getData64bitsDirective()) {
648    O << TAI->getData64bitsDirective();
649    PrintHex(Value);
650  } else {
651    if (TM.getTargetData()->isBigEndian()) {
652      EmitInt32(unsigned(Value >> 32)); O << '\n';
653      EmitInt32(unsigned(Value));
654    } else {
655      EmitInt32(unsigned(Value)); O << '\n';
656      EmitInt32(unsigned(Value >> 32));
657    }
658  }
659}
660
661/// toOctal - Convert the low order bits of X into an octal digit.
662///
663static inline char toOctal(int X) {
664  return (X&7)+'0';
665}
666
667/// printStringChar - Print a char, escaped if necessary.
668///
669static void printStringChar(raw_ostream &O, char C) {
670  if (C == '"') {
671    O << "\\\"";
672  } else if (C == '\\') {
673    O << "\\\\";
674  } else if (isprint(C)) {
675    O << C;
676  } else {
677    switch(C) {
678    case '\b': O << "\\b"; break;
679    case '\f': O << "\\f"; break;
680    case '\n': O << "\\n"; break;
681    case '\r': O << "\\r"; break;
682    case '\t': O << "\\t"; break;
683    default:
684      O << '\\';
685      O << toOctal(C >> 6);
686      O << toOctal(C >> 3);
687      O << toOctal(C >> 0);
688      break;
689    }
690  }
691}
692
693/// EmitString - Emit a string with quotes and a null terminator.
694/// Special characters are emitted properly.
695/// \literal (Eg. '\t') \endliteral
696void AsmPrinter::EmitString(const std::string &String) const {
697  const char* AscizDirective = TAI->getAscizDirective();
698  if (AscizDirective)
699    O << AscizDirective;
700  else
701    O << TAI->getAsciiDirective();
702  O << '\"';
703  for (unsigned i = 0, N = String.size(); i < N; ++i) {
704    unsigned char C = String[i];
705    printStringChar(O, C);
706  }
707  if (AscizDirective)
708    O << '\"';
709  else
710    O << "\\0\"";
711}
712
713
714/// EmitFile - Emit a .file directive.
715void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
716  O << "\t.file\t" << Number << " \"";
717  for (unsigned i = 0, N = Name.size(); i < N; ++i) {
718    unsigned char C = Name[i];
719    printStringChar(O, C);
720  }
721  O << '\"';
722}
723
724
725//===----------------------------------------------------------------------===//
726
727// EmitAlignment - Emit an alignment directive to the specified power of
728// two boundary.  For example, if you pass in 3 here, you will get an 8
729// byte alignment.  If a global value is specified, and if that global has
730// an explicit alignment requested, it will unconditionally override the
731// alignment request.  However, if ForcedAlignBits is specified, this value
732// has final say: the ultimate alignment will be the max of ForcedAlignBits
733// and the alignment computed with NumBits and the global.
734//
735// The algorithm is:
736//     Align = NumBits;
737//     if (GV && GV->hasalignment) Align = GV->getalignment();
738//     Align = std::max(Align, ForcedAlignBits);
739//
740void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
741                               unsigned ForcedAlignBits,
742                               bool UseFillExpr) const {
743  if (GV && GV->getAlignment())
744    NumBits = Log2_32(GV->getAlignment());
745  NumBits = std::max(NumBits, ForcedAlignBits);
746
747  if (NumBits == 0) return;   // No need to emit alignment.
748  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
749  O << TAI->getAlignDirective() << NumBits;
750
751  unsigned FillValue = TAI->getTextAlignFillValue();
752  UseFillExpr &= IsInTextSection && FillValue;
753  if (UseFillExpr) {
754    O << ',';
755    PrintHex(FillValue);
756  }
757  O << '\n';
758}
759
760
761/// EmitZeros - Emit a block of zeros.
762///
763void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
764  if (NumZeros) {
765    if (TAI->getZeroDirective()) {
766      O << TAI->getZeroDirective() << NumZeros;
767      if (TAI->getZeroDirectiveSuffix())
768        O << TAI->getZeroDirectiveSuffix();
769      O << '\n';
770    } else {
771      for (; NumZeros; --NumZeros)
772        O << TAI->getData8bitsDirective() << "0\n";
773    }
774  }
775}
776
777// Print out the specified constant, without a storage class.  Only the
778// constants valid in constant expressions can occur here.
779void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
780  if (CV->isNullValue() || isa<UndefValue>(CV))
781    O << '0';
782  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
783    O << CI->getZExtValue();
784  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
785    // This is a constant address for a global variable or function. Use the
786    // name of the variable or function as the address value, possibly
787    // decorating it with GlobalVarAddrPrefix/Suffix or
788    // FunctionAddrPrefix/Suffix (these all default to "" )
789    if (isa<Function>(GV)) {
790      O << TAI->getFunctionAddrPrefix()
791        << Mang->getValueName(GV)
792        << TAI->getFunctionAddrSuffix();
793    } else {
794      O << TAI->getGlobalVarAddrPrefix()
795        << Mang->getValueName(GV)
796        << TAI->getGlobalVarAddrSuffix();
797    }
798  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
799    const TargetData *TD = TM.getTargetData();
800    unsigned Opcode = CE->getOpcode();
801    switch (Opcode) {
802    case Instruction::GetElementPtr: {
803      // generate a symbolic expression for the byte address
804      const Constant *ptrVal = CE->getOperand(0);
805      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
806      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
807                                                idxVec.size())) {
808        if (Offset)
809          O << '(';
810        EmitConstantValueOnly(ptrVal);
811        if (Offset > 0)
812          O << ") + " << Offset;
813        else if (Offset < 0)
814          O << ") - " << -Offset;
815      } else {
816        EmitConstantValueOnly(ptrVal);
817      }
818      break;
819    }
820    case Instruction::Trunc:
821    case Instruction::ZExt:
822    case Instruction::SExt:
823    case Instruction::FPTrunc:
824    case Instruction::FPExt:
825    case Instruction::UIToFP:
826    case Instruction::SIToFP:
827    case Instruction::FPToUI:
828    case Instruction::FPToSI:
829      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
830      break;
831    case Instruction::BitCast:
832      return EmitConstantValueOnly(CE->getOperand(0));
833
834    case Instruction::IntToPtr: {
835      // Handle casts to pointers by changing them into casts to the appropriate
836      // integer type.  This promotes constant folding and simplifies this code.
837      Constant *Op = CE->getOperand(0);
838      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
839      return EmitConstantValueOnly(Op);
840    }
841
842
843    case Instruction::PtrToInt: {
844      // Support only foldable casts to/from pointers that can be eliminated by
845      // changing the pointer to the appropriately sized integer type.
846      Constant *Op = CE->getOperand(0);
847      const Type *Ty = CE->getType();
848
849      // We can emit the pointer value into this slot if the slot is an
850      // integer slot greater or equal to the size of the pointer.
851      if (TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType()))
852        return EmitConstantValueOnly(Op);
853
854      O << "((";
855      EmitConstantValueOnly(Op);
856      APInt ptrMask = APInt::getAllOnesValue(TD->getABITypeSizeInBits(Ty));
857
858      SmallString<40> S;
859      ptrMask.toStringUnsigned(S);
860      O << ") & " << S.c_str() << ')';
861      break;
862    }
863    case Instruction::Add:
864    case Instruction::Sub:
865    case Instruction::And:
866    case Instruction::Or:
867    case Instruction::Xor:
868      O << '(';
869      EmitConstantValueOnly(CE->getOperand(0));
870      O << ')';
871      switch (Opcode) {
872      case Instruction::Add:
873       O << " + ";
874       break;
875      case Instruction::Sub:
876       O << " - ";
877       break;
878      case Instruction::And:
879       O << " & ";
880       break;
881      case Instruction::Or:
882       O << " | ";
883       break;
884      case Instruction::Xor:
885       O << " ^ ";
886       break;
887      default:
888       break;
889      }
890      O << '(';
891      EmitConstantValueOnly(CE->getOperand(1));
892      O << ')';
893      break;
894    default:
895      assert(0 && "Unsupported operator!");
896    }
897  } else {
898    assert(0 && "Unknown constant value!");
899  }
900}
901
902/// printAsCString - Print the specified array as a C compatible string, only if
903/// the predicate isString is true.
904///
905static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
906                           unsigned LastElt) {
907  assert(CVA->isString() && "Array is not string compatible!");
908
909  O << '\"';
910  for (unsigned i = 0; i != LastElt; ++i) {
911    unsigned char C =
912        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
913    printStringChar(O, C);
914  }
915  O << '\"';
916}
917
918/// EmitString - Emit a zero-byte-terminated string constant.
919///
920void AsmPrinter::EmitString(const ConstantArray *CVA) const {
921  unsigned NumElts = CVA->getNumOperands();
922  if (TAI->getAscizDirective() && NumElts &&
923      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
924    O << TAI->getAscizDirective();
925    printAsCString(O, CVA, NumElts-1);
926  } else {
927    O << TAI->getAsciiDirective();
928    printAsCString(O, CVA, NumElts);
929  }
930  O << '\n';
931}
932
933/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
934void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
935  const TargetData *TD = TM.getTargetData();
936  unsigned Size = TD->getABITypeSize(CV->getType());
937
938  if (CV->isNullValue() || isa<UndefValue>(CV)) {
939    EmitZeros(Size);
940    return;
941  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
942    if (CVA->isString()) {
943      EmitString(CVA);
944    } else { // Not a string.  Print the values in successive locations
945      for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
946        EmitGlobalConstant(CVA->getOperand(i));
947    }
948    return;
949  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
950    // Print the fields in successive locations. Pad to align if needed!
951    const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
952    uint64_t sizeSoFar = 0;
953    for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
954      const Constant* field = CVS->getOperand(i);
955
956      // Check if padding is needed and insert one or more 0s.
957      uint64_t fieldSize = TD->getABITypeSize(field->getType());
958      uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
959                          - cvsLayout->getElementOffset(i)) - fieldSize;
960      sizeSoFar += fieldSize + padSize;
961
962      // Now print the actual field value.
963      EmitGlobalConstant(field);
964
965      // Insert padding - this may include padding to increase the size of the
966      // current field up to the ABI size (if the struct is not packed) as well
967      // as padding to ensure that the next field starts at the right offset.
968      EmitZeros(padSize);
969    }
970    assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
971           "Layout of constant struct may be incorrect!");
972    return;
973  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
974    // FP Constants are printed as integer constants to avoid losing
975    // precision...
976    if (CFP->getType() == Type::DoubleTy) {
977      double Val = CFP->getValueAPF().convertToDouble();  // for comment only
978      uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
979      if (TAI->getData64bitsDirective())
980        O << TAI->getData64bitsDirective() << i << '\t'
981          << TAI->getCommentString() << " double value: " << Val << '\n';
982      else if (TD->isBigEndian()) {
983        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
984          << '\t' << TAI->getCommentString()
985          << " double most significant word " << Val << '\n';
986        O << TAI->getData32bitsDirective() << unsigned(i)
987          << '\t' << TAI->getCommentString()
988          << " double least significant word " << Val << '\n';
989      } else {
990        O << TAI->getData32bitsDirective() << unsigned(i)
991          << '\t' << TAI->getCommentString()
992          << " double least significant word " << Val << '\n';
993        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
994          << '\t' << TAI->getCommentString()
995          << " double most significant word " << Val << '\n';
996      }
997      return;
998    } else if (CFP->getType() == Type::FloatTy) {
999      float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1000      O << TAI->getData32bitsDirective()
1001        << CFP->getValueAPF().bitcastToAPInt().getZExtValue()
1002        << '\t' << TAI->getCommentString() << " float " << Val << '\n';
1003      return;
1004    } else if (CFP->getType() == Type::X86_FP80Ty) {
1005      // all long double variants are printed as hex
1006      // api needed to prevent premature destruction
1007      APInt api = CFP->getValueAPF().bitcastToAPInt();
1008      const uint64_t *p = api.getRawData();
1009      // Convert to double so we can print the approximate val as a comment.
1010      APFloat DoubleVal = CFP->getValueAPF();
1011      bool ignored;
1012      DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1013                        &ignored);
1014      if (TD->isBigEndian()) {
1015        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1016          << '\t' << TAI->getCommentString()
1017          << " long double most significant halfword of ~"
1018          << DoubleVal.convertToDouble() << '\n';
1019        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1020          << '\t' << TAI->getCommentString()
1021          << " long double next halfword\n";
1022        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1023          << '\t' << TAI->getCommentString()
1024          << " long double next halfword\n";
1025        O << TAI->getData16bitsDirective() << uint16_t(p[0])
1026          << '\t' << TAI->getCommentString()
1027          << " long double next halfword\n";
1028        O << TAI->getData16bitsDirective() << uint16_t(p[1])
1029          << '\t' << TAI->getCommentString()
1030          << " long double least significant halfword\n";
1031       } else {
1032        O << TAI->getData16bitsDirective() << uint16_t(p[1])
1033          << '\t' << TAI->getCommentString()
1034          << " long double least significant halfword of ~"
1035          << DoubleVal.convertToDouble() << '\n';
1036        O << TAI->getData16bitsDirective() << uint16_t(p[0])
1037          << '\t' << TAI->getCommentString()
1038          << " long double next halfword\n";
1039        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1040          << '\t' << TAI->getCommentString()
1041          << " long double next halfword\n";
1042        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1043          << '\t' << TAI->getCommentString()
1044          << " long double next halfword\n";
1045        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1046          << '\t' << TAI->getCommentString()
1047          << " long double most significant halfword\n";
1048      }
1049      EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty));
1050      return;
1051    } else if (CFP->getType() == Type::PPC_FP128Ty) {
1052      // all long double variants are printed as hex
1053      // api needed to prevent premature destruction
1054      APInt api = CFP->getValueAPF().bitcastToAPInt();
1055      const uint64_t *p = api.getRawData();
1056      if (TD->isBigEndian()) {
1057        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1058          << '\t' << TAI->getCommentString()
1059          << " long double most significant word\n";
1060        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1061          << '\t' << TAI->getCommentString()
1062          << " long double next word\n";
1063        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1064          << '\t' << TAI->getCommentString()
1065          << " long double next word\n";
1066        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1067          << '\t' << TAI->getCommentString()
1068          << " long double least significant word\n";
1069       } else {
1070        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1071          << '\t' << TAI->getCommentString()
1072          << " long double least significant word\n";
1073        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1074          << '\t' << TAI->getCommentString()
1075          << " long double next word\n";
1076        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1077          << '\t' << TAI->getCommentString()
1078          << " long double next word\n";
1079        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1080          << '\t' << TAI->getCommentString()
1081          << " long double most significant word\n";
1082      }
1083      return;
1084    } else assert(0 && "Floating point constant type not handled");
1085  } else if (CV->getType()->isInteger() &&
1086             cast<IntegerType>(CV->getType())->getBitWidth() >= 64) {
1087    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1088      unsigned BitWidth = CI->getBitWidth();
1089      assert(isPowerOf2_32(BitWidth) &&
1090             "Non-power-of-2-sized integers not handled!");
1091
1092      // We don't expect assemblers to support integer data directives
1093      // for more than 64 bits, so we emit the data in at most 64-bit
1094      // quantities at a time.
1095      const uint64_t *RawData = CI->getValue().getRawData();
1096      for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1097        uint64_t Val;
1098        if (TD->isBigEndian())
1099          Val = RawData[e - i - 1];
1100        else
1101          Val = RawData[i];
1102
1103        if (TAI->getData64bitsDirective())
1104          O << TAI->getData64bitsDirective() << Val << '\n';
1105        else if (TD->isBigEndian()) {
1106          O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1107            << '\t' << TAI->getCommentString()
1108            << " Double-word most significant word " << Val << '\n';
1109          O << TAI->getData32bitsDirective() << unsigned(Val)
1110            << '\t' << TAI->getCommentString()
1111            << " Double-word least significant word " << Val << '\n';
1112        } else {
1113          O << TAI->getData32bitsDirective() << unsigned(Val)
1114            << '\t' << TAI->getCommentString()
1115            << " Double-word least significant word " << Val << '\n';
1116          O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1117            << '\t' << TAI->getCommentString()
1118            << " Double-word most significant word " << Val << '\n';
1119        }
1120      }
1121      return;
1122    }
1123  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1124    const VectorType *PTy = CP->getType();
1125
1126    for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
1127      EmitGlobalConstant(CP->getOperand(I));
1128
1129    return;
1130  }
1131
1132  const Type *type = CV->getType();
1133  printDataDirective(type);
1134  EmitConstantValueOnly(CV);
1135  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1136    SmallString<40> S;
1137    CI->getValue().toStringUnsigned(S, 16);
1138    O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1139  }
1140  O << '\n';
1141}
1142
1143void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1144  // Target doesn't support this yet!
1145  abort();
1146}
1147
1148/// PrintSpecial - Print information related to the specified machine instr
1149/// that is independent of the operand, and may be independent of the instr
1150/// itself.  This can be useful for portably encoding the comment character
1151/// or other bits of target-specific knowledge into the asmstrings.  The
1152/// syntax used is ${:comment}.  Targets can override this to add support
1153/// for their own strange codes.
1154void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
1155  if (!strcmp(Code, "private")) {
1156    O << TAI->getPrivateGlobalPrefix();
1157  } else if (!strcmp(Code, "comment")) {
1158    O << TAI->getCommentString();
1159  } else if (!strcmp(Code, "uid")) {
1160    // Assign a unique ID to this machine instruction.
1161    static const MachineInstr *LastMI = 0;
1162    static const Function *F = 0;
1163    static unsigned Counter = 0U-1;
1164
1165    // Comparing the address of MI isn't sufficient, because machineinstrs may
1166    // be allocated to the same address across functions.
1167    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1168
1169    // If this is a new machine instruction, bump the counter.
1170    if (LastMI != MI || F != ThisF) {
1171      ++Counter;
1172      LastMI = MI;
1173      F = ThisF;
1174    }
1175    O << Counter;
1176  } else {
1177    cerr << "Unknown special formatter '" << Code
1178         << "' for machine instr: " << *MI;
1179    exit(1);
1180  }
1181}
1182
1183
1184/// printInlineAsm - This method formats and prints the specified machine
1185/// instruction that is an inline asm.
1186void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1187  unsigned NumOperands = MI->getNumOperands();
1188
1189  // Count the number of register definitions.
1190  unsigned NumDefs = 0;
1191  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1192       ++NumDefs)
1193    assert(NumDefs != NumOperands-1 && "No asm string?");
1194
1195  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1196
1197  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1198  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1199
1200  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1201  // These are useful to see where empty asm's wound up.
1202  if (AsmStr[0] == 0) {
1203    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1204    return;
1205  }
1206
1207  O << TAI->getInlineAsmStart() << "\n\t";
1208
1209  // The variant of the current asmprinter.
1210  int AsmPrinterVariant = TAI->getAssemblerDialect();
1211
1212  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1213  const char *LastEmitted = AsmStr; // One past the last character emitted.
1214
1215  while (*LastEmitted) {
1216    switch (*LastEmitted) {
1217    default: {
1218      // Not a special case, emit the string section literally.
1219      const char *LiteralEnd = LastEmitted+1;
1220      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1221             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1222        ++LiteralEnd;
1223      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1224        O.write(LastEmitted, LiteralEnd-LastEmitted);
1225      LastEmitted = LiteralEnd;
1226      break;
1227    }
1228    case '\n':
1229      ++LastEmitted;   // Consume newline character.
1230      O << '\n';       // Indent code with newline.
1231      break;
1232    case '$': {
1233      ++LastEmitted;   // Consume '$' character.
1234      bool Done = true;
1235
1236      // Handle escapes.
1237      switch (*LastEmitted) {
1238      default: Done = false; break;
1239      case '$':     // $$ -> $
1240        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1241          O << '$';
1242        ++LastEmitted;  // Consume second '$' character.
1243        break;
1244      case '(':             // $( -> same as GCC's { character.
1245        ++LastEmitted;      // Consume '(' character.
1246        if (CurVariant != -1) {
1247          cerr << "Nested variants found in inline asm string: '"
1248               << AsmStr << "'\n";
1249          exit(1);
1250        }
1251        CurVariant = 0;     // We're in the first variant now.
1252        break;
1253      case '|':
1254        ++LastEmitted;  // consume '|' character.
1255        if (CurVariant == -1)
1256          O << '|';       // this is gcc's behavior for | outside a variant
1257        else
1258          ++CurVariant;   // We're in the next variant.
1259        break;
1260      case ')':         // $) -> same as GCC's } char.
1261        ++LastEmitted;  // consume ')' character.
1262        if (CurVariant == -1)
1263          O << '}';     // this is gcc's behavior for } outside a variant
1264        else
1265          CurVariant = -1;
1266        break;
1267      }
1268      if (Done) break;
1269
1270      bool HasCurlyBraces = false;
1271      if (*LastEmitted == '{') {     // ${variable}
1272        ++LastEmitted;               // Consume '{' character.
1273        HasCurlyBraces = true;
1274      }
1275
1276      const char *IDStart = LastEmitted;
1277      char *IDEnd;
1278      errno = 0;
1279      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1280      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1281        cerr << "Bad $ operand number in inline asm string: '"
1282             << AsmStr << "'\n";
1283        exit(1);
1284      }
1285      LastEmitted = IDEnd;
1286
1287      char Modifier[2] = { 0, 0 };
1288
1289      if (HasCurlyBraces) {
1290        // If we have curly braces, check for a modifier character.  This
1291        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1292        if (*LastEmitted == ':') {
1293          ++LastEmitted;    // Consume ':' character.
1294          if (*LastEmitted == 0) {
1295            cerr << "Bad ${:} expression in inline asm string: '"
1296                 << AsmStr << "'\n";
1297            exit(1);
1298          }
1299
1300          Modifier[0] = *LastEmitted;
1301          ++LastEmitted;    // Consume modifier character.
1302        }
1303
1304        if (*LastEmitted != '}') {
1305          cerr << "Bad ${} expression in inline asm string: '"
1306               << AsmStr << "'\n";
1307          exit(1);
1308        }
1309        ++LastEmitted;    // Consume '}' character.
1310      }
1311
1312      if ((unsigned)Val >= NumOperands-1) {
1313        cerr << "Invalid $ operand number in inline asm string: '"
1314             << AsmStr << "'\n";
1315        exit(1);
1316      }
1317
1318      // Okay, we finally have a value number.  Ask the target to print this
1319      // operand!
1320      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1321        unsigned OpNo = 1;
1322
1323        bool Error = false;
1324
1325        // Scan to find the machine operand number for the operand.
1326        for (; Val; --Val) {
1327          if (OpNo >= MI->getNumOperands()) break;
1328          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1329          OpNo += (OpFlags >> 3) + 1;
1330        }
1331
1332        if (OpNo >= MI->getNumOperands()) {
1333          Error = true;
1334        } else {
1335          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1336          ++OpNo;  // Skip over the ID number.
1337
1338          if (Modifier[0]=='l')  // labels are target independent
1339            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1340                                 false, false, false);
1341          else {
1342            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1343            if ((OpFlags & 7) == 4) {
1344              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1345                                                Modifier[0] ? Modifier : 0);
1346            } else {
1347              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1348                                          Modifier[0] ? Modifier : 0);
1349            }
1350          }
1351        }
1352        if (Error) {
1353          cerr << "Invalid operand found in inline asm: '"
1354               << AsmStr << "'\n";
1355          MI->dump();
1356          exit(1);
1357        }
1358      }
1359      break;
1360    }
1361    }
1362  }
1363  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1364}
1365
1366/// printImplicitDef - This method prints the specified machine instruction
1367/// that is an implicit def.
1368void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1369  O << '\t' << TAI->getCommentString() << " implicit-def: "
1370    << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1371}
1372
1373/// printLabel - This method prints a local label used by debug and
1374/// exception handling tables.
1375void AsmPrinter::printLabel(const MachineInstr *MI) const {
1376  printLabel(MI->getOperand(0).getImm());
1377}
1378
1379void AsmPrinter::printLabel(unsigned Id) const {
1380  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1381}
1382
1383/// printDeclare - This method prints a local variable declaration used by
1384/// debug tables.
1385/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1386/// entry into dwarf table.
1387void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1388  int FI = MI->getOperand(0).getIndex();
1389  GlobalValue *GV = MI->getOperand(1).getGlobal();
1390  MMI->RecordVariable(GV, FI);
1391}
1392
1393/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1394/// instruction, using the specified assembler variant.  Targets should
1395/// overried this to format as appropriate.
1396bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1397                                 unsigned AsmVariant, const char *ExtraCode) {
1398  // Target doesn't support this yet!
1399  return true;
1400}
1401
1402bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1403                                       unsigned AsmVariant,
1404                                       const char *ExtraCode) {
1405  // Target doesn't support this yet!
1406  return true;
1407}
1408
1409/// printBasicBlockLabel - This method prints the label for the specified
1410/// MachineBasicBlock
1411void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1412                                      bool printAlign,
1413                                      bool printColon,
1414                                      bool printComment) const {
1415  if (printAlign) {
1416    unsigned Align = MBB->getAlignment();
1417    if (Align)
1418      EmitAlignment(Log2_32(Align));
1419  }
1420
1421  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1422    << MBB->getNumber();
1423  if (printColon)
1424    O << ':';
1425  if (printComment && MBB->getBasicBlock())
1426    O << '\t' << TAI->getCommentString() << ' '
1427      << MBB->getBasicBlock()->getNameStart();
1428}
1429
1430/// printPICJumpTableSetLabel - This method prints a set label for the
1431/// specified MachineBasicBlock for a jumptable entry.
1432void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1433                                           const MachineBasicBlock *MBB) const {
1434  if (!TAI->getSetDirective())
1435    return;
1436
1437  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1438    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1439  printBasicBlockLabel(MBB, false, false, false);
1440  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1441    << '_' << uid << '\n';
1442}
1443
1444void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1445                                           const MachineBasicBlock *MBB) const {
1446  if (!TAI->getSetDirective())
1447    return;
1448
1449  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1450    << getFunctionNumber() << '_' << uid << '_' << uid2
1451    << "_set_" << MBB->getNumber() << ',';
1452  printBasicBlockLabel(MBB, false, false, false);
1453  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1454    << '_' << uid << '_' << uid2 << '\n';
1455}
1456
1457/// printDataDirective - This method prints the asm directive for the
1458/// specified type.
1459void AsmPrinter::printDataDirective(const Type *type) {
1460  const TargetData *TD = TM.getTargetData();
1461  switch (type->getTypeID()) {
1462  case Type::IntegerTyID: {
1463    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1464    if (BitWidth <= 8)
1465      O << TAI->getData8bitsDirective();
1466    else if (BitWidth <= 16)
1467      O << TAI->getData16bitsDirective();
1468    else if (BitWidth <= 32)
1469      O << TAI->getData32bitsDirective();
1470    else if (BitWidth <= 64) {
1471      assert(TAI->getData64bitsDirective() &&
1472             "Target cannot handle 64-bit constant exprs!");
1473      O << TAI->getData64bitsDirective();
1474    } else {
1475      assert(0 && "Target cannot handle given data directive width!");
1476    }
1477    break;
1478  }
1479  case Type::PointerTyID:
1480    if (TD->getPointerSize() == 8) {
1481      assert(TAI->getData64bitsDirective() &&
1482             "Target cannot handle 64-bit pointer exprs!");
1483      O << TAI->getData64bitsDirective();
1484    } else {
1485      O << TAI->getData32bitsDirective();
1486    }
1487    break;
1488  case Type::FloatTyID: case Type::DoubleTyID:
1489  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1490    assert (0 && "Should have already output floating point constant.");
1491  default:
1492    assert (0 && "Can't handle printing this type of thing");
1493    break;
1494  }
1495}
1496
1497void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1498                                   const char *Prefix) {
1499  if (Name[0]=='\"')
1500    O << '\"';
1501  O << TAI->getPrivateGlobalPrefix();
1502  if (Prefix) O << Prefix;
1503  if (Name[0]=='\"')
1504    O << '\"';
1505  if (Name[0]=='\"')
1506    O << Name[1];
1507  else
1508    O << Name;
1509  O << Suffix;
1510  if (Name[0]=='\"')
1511    O << '\"';
1512}
1513
1514void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1515  printSuffixedName(Name.c_str(), Suffix);
1516}
1517
1518void AsmPrinter::printVisibility(const std::string& Name,
1519                                 unsigned Visibility) const {
1520  if (Visibility == GlobalValue::HiddenVisibility) {
1521    if (const char *Directive = TAI->getHiddenDirective())
1522      O << Directive << Name << '\n';
1523  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1524    if (const char *Directive = TAI->getProtectedDirective())
1525      O << Directive << Name << '\n';
1526  }
1527}
1528
1529GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1530  if (!S->usesMetadata())
1531    return 0;
1532
1533  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1534  if (GCPI != GCMetadataPrinters.end())
1535    return GCPI->second;
1536
1537  const char *Name = S->getName().c_str();
1538
1539  for (GCMetadataPrinterRegistry::iterator
1540         I = GCMetadataPrinterRegistry::begin(),
1541         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1542    if (strcmp(Name, I->getName()) == 0) {
1543      GCMetadataPrinter *GMP = I->instantiate();
1544      GMP->S = S;
1545      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1546      return GMP;
1547    }
1548
1549  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1550  abort();
1551}
1552