AsmPrinter.cpp revision a64f463fb90c66406033e3fd1dc912b648bad328
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineJumpTableInfo.h" 22#include "llvm/CodeGen/MachineModuleInfo.h" 23#include "llvm/Support/Mangler.h" 24#include "llvm/Support/raw_ostream.h" 25#include "llvm/Target/TargetAsmInfo.h" 26#include "llvm/Target/TargetData.h" 27#include "llvm/Target/TargetLowering.h" 28#include "llvm/Target/TargetMachine.h" 29#include "llvm/Target/TargetOptions.h" 30#include "llvm/Target/TargetRegisterInfo.h" 31#include "llvm/ADT/SmallPtrSet.h" 32#include "llvm/ADT/SmallString.h" 33#include "llvm/ADT/StringExtras.h" 34#include <cerrno> 35using namespace llvm; 36 37char AsmPrinter::ID = 0; 38AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm, 39 const TargetAsmInfo *T) 40 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 41 TM(tm), TAI(T), TRI(tm.getRegisterInfo()), 42 IsInTextSection(false) 43{} 44 45AsmPrinter::~AsmPrinter() { 46 for (gcp_iterator I = GCMetadataPrinters.begin(), 47 E = GCMetadataPrinters.end(); I != E; ++I) 48 delete I->second; 49} 50 51/// SwitchToTextSection - Switch to the specified text section of the executable 52/// if we are not already in it! 53/// 54void AsmPrinter::SwitchToTextSection(const char *NewSection, 55 const GlobalValue *GV) { 56 std::string NS; 57 if (GV && GV->hasSection()) 58 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 59 else 60 NS = NewSection; 61 62 // If we're already in this section, we're done. 63 if (CurrentSection == NS) return; 64 65 // Close the current section, if applicable. 66 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 67 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 68 69 CurrentSection = NS; 70 71 if (!CurrentSection.empty()) 72 O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n'; 73 74 IsInTextSection = true; 75} 76 77/// SwitchToDataSection - Switch to the specified data section of the executable 78/// if we are not already in it! 79/// 80void AsmPrinter::SwitchToDataSection(const char *NewSection, 81 const GlobalValue *GV) { 82 std::string NS; 83 if (GV && GV->hasSection()) 84 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 85 else 86 NS = NewSection; 87 88 // If we're already in this section, we're done. 89 if (CurrentSection == NS) return; 90 91 // Close the current section, if applicable. 92 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 93 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 94 95 CurrentSection = NS; 96 97 if (!CurrentSection.empty()) 98 O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n'; 99 100 IsInTextSection = false; 101} 102 103/// SwitchToSection - Switch to the specified section of the executable if we 104/// are not already in it! 105void AsmPrinter::SwitchToSection(const Section* NS) { 106 const std::string& NewSection = NS->getName(); 107 108 // If we're already in this section, we're done. 109 if (CurrentSection == NewSection) return; 110 111 // Close the current section, if applicable. 112 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 113 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 114 115 // FIXME: Make CurrentSection a Section* in the future 116 CurrentSection = NewSection; 117 CurrentSection_ = NS; 118 119 if (!CurrentSection.empty()) { 120 // If section is named we need to switch into it via special '.section' 121 // directive and also append funky flags. Otherwise - section name is just 122 // some magic assembler directive. 123 if (NS->isNamed()) 124 O << TAI->getSwitchToSectionDirective() 125 << CurrentSection 126 << TAI->getSectionFlags(NS->getFlags()); 127 else 128 O << CurrentSection; 129 O << TAI->getDataSectionStartSuffix() << '\n'; 130 } 131 132 IsInTextSection = (NS->getFlags() & SectionFlags::Code); 133} 134 135void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 136 MachineFunctionPass::getAnalysisUsage(AU); 137 AU.addRequired<GCModuleInfo>(); 138} 139 140bool AsmPrinter::doInitialization(Module &M) { 141 Mang = new Mangler(M, TAI->getGlobalPrefix()); 142 143 GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>(); 144 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 145 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 146 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 147 MP->beginAssembly(O, *this, *TAI); 148 149 if (!M.getModuleInlineAsm().empty()) 150 O << TAI->getCommentString() << " Start of file scope inline assembly\n" 151 << M.getModuleInlineAsm() 152 << '\n' << TAI->getCommentString() 153 << " End of file scope inline assembly\n"; 154 155 SwitchToDataSection(""); // Reset back to no section. 156 157 MMI = getAnalysisToUpdate<MachineModuleInfo>(); 158 if (MMI) MMI->AnalyzeModule(M); 159 160 return false; 161} 162 163bool AsmPrinter::doFinalization(Module &M) { 164 if (TAI->getWeakRefDirective()) { 165 if (!ExtWeakSymbols.empty()) 166 SwitchToDataSection(""); 167 168 for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(), 169 e = ExtWeakSymbols.end(); i != e; ++i) { 170 const GlobalValue *GV = *i; 171 std::string Name = Mang->getValueName(GV); 172 O << TAI->getWeakRefDirective() << Name << '\n'; 173 } 174 } 175 176 if (TAI->getSetDirective()) { 177 if (!M.alias_empty()) 178 SwitchToSection(TAI->getTextSection()); 179 180 O << '\n'; 181 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 182 I!=E; ++I) { 183 std::string Name = Mang->getValueName(I); 184 std::string Target; 185 186 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 187 Target = Mang->getValueName(GV); 188 189 if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) 190 O << "\t.globl\t" << Name << '\n'; 191 else if (I->hasWeakLinkage()) 192 O << TAI->getWeakRefDirective() << Name << '\n'; 193 else if (!I->hasInternalLinkage()) 194 assert(0 && "Invalid alias linkage"); 195 196 printVisibility(Name, I->getVisibility()); 197 198 O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 199 200 // If the aliasee has external weak linkage it can be referenced only by 201 // alias itself. In this case it can be not in ExtWeakSymbols list. Emit 202 // weak reference in such case. 203 if (GV->hasExternalWeakLinkage()) { 204 if (TAI->getWeakRefDirective()) 205 O << TAI->getWeakRefDirective() << Target << '\n'; 206 else 207 O << "\t.globl\t" << Target << '\n'; 208 } 209 } 210 } 211 212 GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>(); 213 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 214 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 215 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 216 MP->finishAssembly(O, *this, *TAI); 217 218 // If we don't have any trampolines, then we don't require stack memory 219 // to be executable. Some targets have a directive to declare this. 220 Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 221 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 222 if (TAI->getNonexecutableStackDirective()) 223 O << TAI->getNonexecutableStackDirective() << '\n'; 224 225 delete Mang; Mang = 0; 226 return false; 227} 228 229std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) { 230 assert(MF && "No machine function?"); 231 std::string Name = MF->getFunction()->getName(); 232 if (Name.empty()) 233 Name = Mang->getValueName(MF->getFunction()); 234 return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix()); 235} 236 237void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 238 // What's my mangled name? 239 CurrentFnName = Mang->getValueName(MF.getFunction()); 240 IncrementFunctionNumber(); 241} 242 243/// EmitConstantPool - Print to the current output stream assembly 244/// representations of the constants in the constant pool MCP. This is 245/// used to print out constants which have been "spilled to memory" by 246/// the code generator. 247/// 248void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 249 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 250 if (CP.empty()) return; 251 252 // Calculate sections for constant pool entries. We collect entries to go into 253 // the same section together to reduce amount of section switch statements. 254 typedef 255 std::multimap<const Section*, 256 std::pair<MachineConstantPoolEntry, unsigned> > CPMap; 257 CPMap CPs; 258 SmallPtrSet<const Section*, 5> Sections; 259 260 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 261 MachineConstantPoolEntry CPE = CP[i]; 262 const Section* S = TAI->SelectSectionForMachineConst(CPE.getType()); 263 CPs.insert(std::make_pair(S, std::make_pair(CPE, i))); 264 Sections.insert(S); 265 } 266 267 // Now print stuff into the calculated sections. 268 for (SmallPtrSet<const Section*, 5>::iterator IS = Sections.begin(), 269 ES = Sections.end(); IS != ES; ++IS) { 270 SwitchToSection(*IS); 271 EmitAlignment(MCP->getConstantPoolAlignment()); 272 273 std::pair<CPMap::iterator, CPMap::iterator> II = CPs.equal_range(*IS); 274 for (CPMap::iterator I = II.first, E = II.second; I != E; ++I) { 275 CPMap::iterator J = next(I); 276 MachineConstantPoolEntry Entry = I->second.first; 277 unsigned index = I->second.second; 278 279 O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 280 << index << ":\t\t\t\t\t"; 281 // O << TAI->getCommentString() << ' ' << 282 // WriteTypeSymbolic(O, CP[i].first.getType(), 0); 283 O << '\n'; 284 if (Entry.isMachineConstantPoolEntry()) 285 EmitMachineConstantPoolValue(Entry.Val.MachineCPVal); 286 else 287 EmitGlobalConstant(Entry.Val.ConstVal); 288 289 // Emit inter-object padding for alignment. 290 if (J != E) { 291 const Type *Ty = Entry.getType(); 292 unsigned EntSize = TM.getTargetData()->getABITypeSize(Ty); 293 unsigned ValEnd = Entry.getOffset() + EntSize; 294 EmitZeros(J->second.first.getOffset()-ValEnd); 295 } 296 } 297 } 298} 299 300/// EmitJumpTableInfo - Print assembly representations of the jump tables used 301/// by the current function to the current output stream. 302/// 303void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 304 MachineFunction &MF) { 305 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 306 if (JT.empty()) return; 307 308 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 309 310 // Pick the directive to use to print the jump table entries, and switch to 311 // the appropriate section. 312 TargetLowering *LoweringInfo = TM.getTargetLowering(); 313 314 const char* JumpTableDataSection = TAI->getJumpTableDataSection(); 315 const Function *F = MF.getFunction(); 316 unsigned SectionFlags = TAI->SectionFlagsForGlobal(F); 317 if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) || 318 !JumpTableDataSection || 319 SectionFlags & SectionFlags::Linkonce) { 320 // In PIC mode, we need to emit the jump table to the same section as the 321 // function body itself, otherwise the label differences won't make sense. 322 // We should also do if the section name is NULL or function is declared in 323 // discardable section. 324 SwitchToSection(TAI->SectionForGlobal(F)); 325 } else { 326 SwitchToDataSection(JumpTableDataSection); 327 } 328 329 EmitAlignment(Log2_32(MJTI->getAlignment())); 330 331 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 332 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 333 334 // If this jump table was deleted, ignore it. 335 if (JTBBs.empty()) continue; 336 337 // For PIC codegen, if possible we want to use the SetDirective to reduce 338 // the number of relocations the assembler will generate for the jump table. 339 // Set directives are all printed before the jump table itself. 340 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 341 if (TAI->getSetDirective() && IsPic) 342 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 343 if (EmittedSets.insert(JTBBs[ii])) 344 printPICJumpTableSetLabel(i, JTBBs[ii]); 345 346 // On some targets (e.g. darwin) we want to emit two consequtive labels 347 // before each jump table. The first label is never referenced, but tells 348 // the assembler and linker the extents of the jump table object. The 349 // second label is actually referenced by the code. 350 if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) 351 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 352 353 O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 354 << '_' << i << ":\n"; 355 356 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 357 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 358 O << '\n'; 359 } 360 } 361} 362 363void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 364 const MachineBasicBlock *MBB, 365 unsigned uid) const { 366 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 367 368 // Use JumpTableDirective otherwise honor the entry size from the jump table 369 // info. 370 const char *JTEntryDirective = TAI->getJumpTableDirective(); 371 bool HadJTEntryDirective = JTEntryDirective != NULL; 372 if (!HadJTEntryDirective) { 373 JTEntryDirective = MJTI->getEntrySize() == 4 ? 374 TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); 375 } 376 377 O << JTEntryDirective << ' '; 378 379 // If we have emitted set directives for the jump table entries, print 380 // them rather than the entries themselves. If we're emitting PIC, then 381 // emit the table entries as differences between two text section labels. 382 // If we're emitting non-PIC code, then emit the entries as direct 383 // references to the target basic blocks. 384 if (IsPic) { 385 if (TAI->getSetDirective()) { 386 O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() 387 << '_' << uid << "_set_" << MBB->getNumber(); 388 } else { 389 printBasicBlockLabel(MBB, false, false, false); 390 // If the arch uses custom Jump Table directives, don't calc relative to 391 // JT 392 if (!HadJTEntryDirective) 393 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" 394 << getFunctionNumber() << '_' << uid; 395 } 396 } else { 397 printBasicBlockLabel(MBB, false, false, false); 398 } 399} 400 401 402/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 403/// special global used by LLVM. If so, emit it and return true, otherwise 404/// do nothing and return false. 405bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 406 if (GV->getName() == "llvm.used") { 407 if (TAI->getUsedDirective() != 0) // No need to emit this at all. 408 EmitLLVMUsedList(GV->getInitializer()); 409 return true; 410 } 411 412 // Ignore debug and non-emitted data. 413 if (GV->getSection() == "llvm.metadata") return true; 414 415 if (!GV->hasAppendingLinkage()) return false; 416 417 assert(GV->hasInitializer() && "Not a special LLVM global!"); 418 419 const TargetData *TD = TM.getTargetData(); 420 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 421 if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) { 422 SwitchToDataSection(TAI->getStaticCtorsSection()); 423 EmitAlignment(Align, 0); 424 EmitXXStructorList(GV->getInitializer()); 425 return true; 426 } 427 428 if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) { 429 SwitchToDataSection(TAI->getStaticDtorsSection()); 430 EmitAlignment(Align, 0); 431 EmitXXStructorList(GV->getInitializer()); 432 return true; 433 } 434 435 return false; 436} 437 438/// findGlobalValue - if CV is an expression equivalent to a single 439/// global value, return that value. 440const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) { 441 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 442 return GV; 443 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 444 const TargetData *TD = TM.getTargetData(); 445 unsigned Opcode = CE->getOpcode(); 446 switch (Opcode) { 447 case Instruction::GetElementPtr: { 448 const Constant *ptrVal = CE->getOperand(0); 449 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 450 if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size())) 451 return 0; 452 return findGlobalValue(ptrVal); 453 } 454 case Instruction::BitCast: 455 return findGlobalValue(CE->getOperand(0)); 456 default: 457 return 0; 458 } 459 } 460 return 0; 461} 462 463/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each 464/// global in the specified llvm.used list for which emitUsedDirectiveFor 465/// is true, as being used with this directive. 466 467void AsmPrinter::EmitLLVMUsedList(Constant *List) { 468 const char *Directive = TAI->getUsedDirective(); 469 470 // Should be an array of 'sbyte*'. 471 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 472 if (InitList == 0) return; 473 474 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 475 const GlobalValue *GV = findGlobalValue(InitList->getOperand(i)); 476 if (TAI->emitUsedDirectiveFor(GV, Mang)) { 477 O << Directive; 478 EmitConstantValueOnly(InitList->getOperand(i)); 479 O << '\n'; 480 } 481 } 482} 483 484/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 485/// function pointers, ignoring the init priority. 486void AsmPrinter::EmitXXStructorList(Constant *List) { 487 // Should be an array of '{ int, void ()* }' structs. The first value is the 488 // init priority, which we ignore. 489 if (!isa<ConstantArray>(List)) return; 490 ConstantArray *InitList = cast<ConstantArray>(List); 491 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 492 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 493 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 494 495 if (CS->getOperand(1)->isNullValue()) 496 return; // Found a null terminator, exit printing. 497 // Emit the function pointer. 498 EmitGlobalConstant(CS->getOperand(1)); 499 } 500} 501 502/// getGlobalLinkName - Returns the asm/link name of of the specified 503/// global variable. Should be overridden by each target asm printer to 504/// generate the appropriate value. 505const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{ 506 std::string LinkName; 507 508 if (isa<Function>(GV)) { 509 LinkName += TAI->getFunctionAddrPrefix(); 510 LinkName += Mang->getValueName(GV); 511 LinkName += TAI->getFunctionAddrSuffix(); 512 } else { 513 LinkName += TAI->getGlobalVarAddrPrefix(); 514 LinkName += Mang->getValueName(GV); 515 LinkName += TAI->getGlobalVarAddrSuffix(); 516 } 517 518 return LinkName; 519} 520 521/// EmitExternalGlobal - Emit the external reference to a global variable. 522/// Should be overridden if an indirect reference should be used. 523void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { 524 O << getGlobalLinkName(GV); 525} 526 527 528 529//===----------------------------------------------------------------------===// 530/// LEB 128 number encoding. 531 532/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) 533/// representing an unsigned leb128 value. 534void AsmPrinter::PrintULEB128(unsigned Value) const { 535 char Buffer[20]; 536 do { 537 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 538 Value >>= 7; 539 if (Value) Byte |= 0x80; 540 O << "0x" << utohex_buffer(Byte, Buffer+20); 541 if (Value) O << ", "; 542 } while (Value); 543} 544 545/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) 546/// representing a signed leb128 value. 547void AsmPrinter::PrintSLEB128(int Value) const { 548 int Sign = Value >> (8 * sizeof(Value) - 1); 549 bool IsMore; 550 char Buffer[20]; 551 552 do { 553 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 554 Value >>= 7; 555 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 556 if (IsMore) Byte |= 0x80; 557 O << "0x" << utohex_buffer(Byte, Buffer+20); 558 if (IsMore) O << ", "; 559 } while (IsMore); 560} 561 562//===--------------------------------------------------------------------===// 563// Emission and print routines 564// 565 566/// PrintHex - Print a value as a hexidecimal value. 567/// 568void AsmPrinter::PrintHex(int Value) const { 569 char Buffer[20]; 570 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); 571} 572 573/// EOL - Print a newline character to asm stream. If a comment is present 574/// then it will be printed first. Comments should not contain '\n'. 575void AsmPrinter::EOL() const { 576 O << '\n'; 577} 578 579void AsmPrinter::EOL(const std::string &Comment) const { 580 if (VerboseAsm && !Comment.empty()) { 581 O << '\t' 582 << TAI->getCommentString() 583 << ' ' 584 << Comment; 585 } 586 O << '\n'; 587} 588 589void AsmPrinter::EOL(const char* Comment) const { 590 if (VerboseAsm && *Comment) { 591 O << '\t' 592 << TAI->getCommentString() 593 << ' ' 594 << Comment; 595 } 596 O << '\n'; 597} 598 599/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 600/// unsigned leb128 value. 601void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 602 if (TAI->hasLEB128()) { 603 O << "\t.uleb128\t" 604 << Value; 605 } else { 606 O << TAI->getData8bitsDirective(); 607 PrintULEB128(Value); 608 } 609} 610 611/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 612/// signed leb128 value. 613void AsmPrinter::EmitSLEB128Bytes(int Value) const { 614 if (TAI->hasLEB128()) { 615 O << "\t.sleb128\t" 616 << Value; 617 } else { 618 O << TAI->getData8bitsDirective(); 619 PrintSLEB128(Value); 620 } 621} 622 623/// EmitInt8 - Emit a byte directive and value. 624/// 625void AsmPrinter::EmitInt8(int Value) const { 626 O << TAI->getData8bitsDirective(); 627 PrintHex(Value & 0xFF); 628} 629 630/// EmitInt16 - Emit a short directive and value. 631/// 632void AsmPrinter::EmitInt16(int Value) const { 633 O << TAI->getData16bitsDirective(); 634 PrintHex(Value & 0xFFFF); 635} 636 637/// EmitInt32 - Emit a long directive and value. 638/// 639void AsmPrinter::EmitInt32(int Value) const { 640 O << TAI->getData32bitsDirective(); 641 PrintHex(Value); 642} 643 644/// EmitInt64 - Emit a long long directive and value. 645/// 646void AsmPrinter::EmitInt64(uint64_t Value) const { 647 if (TAI->getData64bitsDirective()) { 648 O << TAI->getData64bitsDirective(); 649 PrintHex(Value); 650 } else { 651 if (TM.getTargetData()->isBigEndian()) { 652 EmitInt32(unsigned(Value >> 32)); O << '\n'; 653 EmitInt32(unsigned(Value)); 654 } else { 655 EmitInt32(unsigned(Value)); O << '\n'; 656 EmitInt32(unsigned(Value >> 32)); 657 } 658 } 659} 660 661/// toOctal - Convert the low order bits of X into an octal digit. 662/// 663static inline char toOctal(int X) { 664 return (X&7)+'0'; 665} 666 667/// printStringChar - Print a char, escaped if necessary. 668/// 669static void printStringChar(raw_ostream &O, char C) { 670 if (C == '"') { 671 O << "\\\""; 672 } else if (C == '\\') { 673 O << "\\\\"; 674 } else if (isprint(C)) { 675 O << C; 676 } else { 677 switch(C) { 678 case '\b': O << "\\b"; break; 679 case '\f': O << "\\f"; break; 680 case '\n': O << "\\n"; break; 681 case '\r': O << "\\r"; break; 682 case '\t': O << "\\t"; break; 683 default: 684 O << '\\'; 685 O << toOctal(C >> 6); 686 O << toOctal(C >> 3); 687 O << toOctal(C >> 0); 688 break; 689 } 690 } 691} 692 693/// EmitString - Emit a string with quotes and a null terminator. 694/// Special characters are emitted properly. 695/// \literal (Eg. '\t') \endliteral 696void AsmPrinter::EmitString(const std::string &String) const { 697 const char* AscizDirective = TAI->getAscizDirective(); 698 if (AscizDirective) 699 O << AscizDirective; 700 else 701 O << TAI->getAsciiDirective(); 702 O << '\"'; 703 for (unsigned i = 0, N = String.size(); i < N; ++i) { 704 unsigned char C = String[i]; 705 printStringChar(O, C); 706 } 707 if (AscizDirective) 708 O << '\"'; 709 else 710 O << "\\0\""; 711} 712 713 714/// EmitFile - Emit a .file directive. 715void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 716 O << "\t.file\t" << Number << " \""; 717 for (unsigned i = 0, N = Name.size(); i < N; ++i) { 718 unsigned char C = Name[i]; 719 printStringChar(O, C); 720 } 721 O << '\"'; 722} 723 724 725//===----------------------------------------------------------------------===// 726 727// EmitAlignment - Emit an alignment directive to the specified power of 728// two boundary. For example, if you pass in 3 here, you will get an 8 729// byte alignment. If a global value is specified, and if that global has 730// an explicit alignment requested, it will unconditionally override the 731// alignment request. However, if ForcedAlignBits is specified, this value 732// has final say: the ultimate alignment will be the max of ForcedAlignBits 733// and the alignment computed with NumBits and the global. 734// 735// The algorithm is: 736// Align = NumBits; 737// if (GV && GV->hasalignment) Align = GV->getalignment(); 738// Align = std::max(Align, ForcedAlignBits); 739// 740void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 741 unsigned ForcedAlignBits, 742 bool UseFillExpr) const { 743 if (GV && GV->getAlignment()) 744 NumBits = Log2_32(GV->getAlignment()); 745 NumBits = std::max(NumBits, ForcedAlignBits); 746 747 if (NumBits == 0) return; // No need to emit alignment. 748 if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; 749 O << TAI->getAlignDirective() << NumBits; 750 751 unsigned FillValue = TAI->getTextAlignFillValue(); 752 UseFillExpr &= IsInTextSection && FillValue; 753 if (UseFillExpr) { 754 O << ','; 755 PrintHex(FillValue); 756 } 757 O << '\n'; 758} 759 760 761/// EmitZeros - Emit a block of zeros. 762/// 763void AsmPrinter::EmitZeros(uint64_t NumZeros) const { 764 if (NumZeros) { 765 if (TAI->getZeroDirective()) { 766 O << TAI->getZeroDirective() << NumZeros; 767 if (TAI->getZeroDirectiveSuffix()) 768 O << TAI->getZeroDirectiveSuffix(); 769 O << '\n'; 770 } else { 771 for (; NumZeros; --NumZeros) 772 O << TAI->getData8bitsDirective() << "0\n"; 773 } 774 } 775} 776 777// Print out the specified constant, without a storage class. Only the 778// constants valid in constant expressions can occur here. 779void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 780 if (CV->isNullValue() || isa<UndefValue>(CV)) 781 O << '0'; 782 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 783 O << CI->getZExtValue(); 784 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 785 // This is a constant address for a global variable or function. Use the 786 // name of the variable or function as the address value, possibly 787 // decorating it with GlobalVarAddrPrefix/Suffix or 788 // FunctionAddrPrefix/Suffix (these all default to "" ) 789 if (isa<Function>(GV)) { 790 O << TAI->getFunctionAddrPrefix() 791 << Mang->getValueName(GV) 792 << TAI->getFunctionAddrSuffix(); 793 } else { 794 O << TAI->getGlobalVarAddrPrefix() 795 << Mang->getValueName(GV) 796 << TAI->getGlobalVarAddrSuffix(); 797 } 798 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 799 const TargetData *TD = TM.getTargetData(); 800 unsigned Opcode = CE->getOpcode(); 801 switch (Opcode) { 802 case Instruction::GetElementPtr: { 803 // generate a symbolic expression for the byte address 804 const Constant *ptrVal = CE->getOperand(0); 805 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 806 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 807 idxVec.size())) { 808 if (Offset) 809 O << '('; 810 EmitConstantValueOnly(ptrVal); 811 if (Offset > 0) 812 O << ") + " << Offset; 813 else if (Offset < 0) 814 O << ") - " << -Offset; 815 } else { 816 EmitConstantValueOnly(ptrVal); 817 } 818 break; 819 } 820 case Instruction::Trunc: 821 case Instruction::ZExt: 822 case Instruction::SExt: 823 case Instruction::FPTrunc: 824 case Instruction::FPExt: 825 case Instruction::UIToFP: 826 case Instruction::SIToFP: 827 case Instruction::FPToUI: 828 case Instruction::FPToSI: 829 assert(0 && "FIXME: Don't yet support this kind of constant cast expr"); 830 break; 831 case Instruction::BitCast: 832 return EmitConstantValueOnly(CE->getOperand(0)); 833 834 case Instruction::IntToPtr: { 835 // Handle casts to pointers by changing them into casts to the appropriate 836 // integer type. This promotes constant folding and simplifies this code. 837 Constant *Op = CE->getOperand(0); 838 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/); 839 return EmitConstantValueOnly(Op); 840 } 841 842 843 case Instruction::PtrToInt: { 844 // Support only foldable casts to/from pointers that can be eliminated by 845 // changing the pointer to the appropriately sized integer type. 846 Constant *Op = CE->getOperand(0); 847 const Type *Ty = CE->getType(); 848 849 // We can emit the pointer value into this slot if the slot is an 850 // integer slot greater or equal to the size of the pointer. 851 if (TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType())) 852 return EmitConstantValueOnly(Op); 853 854 O << "(("; 855 EmitConstantValueOnly(Op); 856 APInt ptrMask = APInt::getAllOnesValue(TD->getABITypeSizeInBits(Ty)); 857 858 SmallString<40> S; 859 ptrMask.toStringUnsigned(S); 860 O << ") & " << S.c_str() << ')'; 861 break; 862 } 863 case Instruction::Add: 864 case Instruction::Sub: 865 case Instruction::And: 866 case Instruction::Or: 867 case Instruction::Xor: 868 O << '('; 869 EmitConstantValueOnly(CE->getOperand(0)); 870 O << ')'; 871 switch (Opcode) { 872 case Instruction::Add: 873 O << " + "; 874 break; 875 case Instruction::Sub: 876 O << " - "; 877 break; 878 case Instruction::And: 879 O << " & "; 880 break; 881 case Instruction::Or: 882 O << " | "; 883 break; 884 case Instruction::Xor: 885 O << " ^ "; 886 break; 887 default: 888 break; 889 } 890 O << '('; 891 EmitConstantValueOnly(CE->getOperand(1)); 892 O << ')'; 893 break; 894 default: 895 assert(0 && "Unsupported operator!"); 896 } 897 } else { 898 assert(0 && "Unknown constant value!"); 899 } 900} 901 902/// printAsCString - Print the specified array as a C compatible string, only if 903/// the predicate isString is true. 904/// 905static void printAsCString(raw_ostream &O, const ConstantArray *CVA, 906 unsigned LastElt) { 907 assert(CVA->isString() && "Array is not string compatible!"); 908 909 O << '\"'; 910 for (unsigned i = 0; i != LastElt; ++i) { 911 unsigned char C = 912 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 913 printStringChar(O, C); 914 } 915 O << '\"'; 916} 917 918/// EmitString - Emit a zero-byte-terminated string constant. 919/// 920void AsmPrinter::EmitString(const ConstantArray *CVA) const { 921 unsigned NumElts = CVA->getNumOperands(); 922 if (TAI->getAscizDirective() && NumElts && 923 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 924 O << TAI->getAscizDirective(); 925 printAsCString(O, CVA, NumElts-1); 926 } else { 927 O << TAI->getAsciiDirective(); 928 printAsCString(O, CVA, NumElts); 929 } 930 O << '\n'; 931} 932 933/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 934void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 935 const TargetData *TD = TM.getTargetData(); 936 unsigned Size = TD->getABITypeSize(CV->getType()); 937 938 if (CV->isNullValue() || isa<UndefValue>(CV)) { 939 EmitZeros(Size); 940 return; 941 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 942 if (CVA->isString()) { 943 EmitString(CVA); 944 } else { // Not a string. Print the values in successive locations 945 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 946 EmitGlobalConstant(CVA->getOperand(i)); 947 } 948 return; 949 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 950 // Print the fields in successive locations. Pad to align if needed! 951 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 952 uint64_t sizeSoFar = 0; 953 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 954 const Constant* field = CVS->getOperand(i); 955 956 // Check if padding is needed and insert one or more 0s. 957 uint64_t fieldSize = TD->getABITypeSize(field->getType()); 958 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 959 - cvsLayout->getElementOffset(i)) - fieldSize; 960 sizeSoFar += fieldSize + padSize; 961 962 // Now print the actual field value. 963 EmitGlobalConstant(field); 964 965 // Insert padding - this may include padding to increase the size of the 966 // current field up to the ABI size (if the struct is not packed) as well 967 // as padding to ensure that the next field starts at the right offset. 968 EmitZeros(padSize); 969 } 970 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 971 "Layout of constant struct may be incorrect!"); 972 return; 973 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 974 // FP Constants are printed as integer constants to avoid losing 975 // precision... 976 if (CFP->getType() == Type::DoubleTy) { 977 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 978 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 979 if (TAI->getData64bitsDirective()) 980 O << TAI->getData64bitsDirective() << i << '\t' 981 << TAI->getCommentString() << " double value: " << Val << '\n'; 982 else if (TD->isBigEndian()) { 983 O << TAI->getData32bitsDirective() << unsigned(i >> 32) 984 << '\t' << TAI->getCommentString() 985 << " double most significant word " << Val << '\n'; 986 O << TAI->getData32bitsDirective() << unsigned(i) 987 << '\t' << TAI->getCommentString() 988 << " double least significant word " << Val << '\n'; 989 } else { 990 O << TAI->getData32bitsDirective() << unsigned(i) 991 << '\t' << TAI->getCommentString() 992 << " double least significant word " << Val << '\n'; 993 O << TAI->getData32bitsDirective() << unsigned(i >> 32) 994 << '\t' << TAI->getCommentString() 995 << " double most significant word " << Val << '\n'; 996 } 997 return; 998 } else if (CFP->getType() == Type::FloatTy) { 999 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1000 O << TAI->getData32bitsDirective() 1001 << CFP->getValueAPF().bitcastToAPInt().getZExtValue() 1002 << '\t' << TAI->getCommentString() << " float " << Val << '\n'; 1003 return; 1004 } else if (CFP->getType() == Type::X86_FP80Ty) { 1005 // all long double variants are printed as hex 1006 // api needed to prevent premature destruction 1007 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1008 const uint64_t *p = api.getRawData(); 1009 // Convert to double so we can print the approximate val as a comment. 1010 APFloat DoubleVal = CFP->getValueAPF(); 1011 bool ignored; 1012 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1013 &ignored); 1014 if (TD->isBigEndian()) { 1015 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48) 1016 << '\t' << TAI->getCommentString() 1017 << " long double most significant halfword of ~" 1018 << DoubleVal.convertToDouble() << '\n'; 1019 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32) 1020 << '\t' << TAI->getCommentString() 1021 << " long double next halfword\n"; 1022 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16) 1023 << '\t' << TAI->getCommentString() 1024 << " long double next halfword\n"; 1025 O << TAI->getData16bitsDirective() << uint16_t(p[0]) 1026 << '\t' << TAI->getCommentString() 1027 << " long double next halfword\n"; 1028 O << TAI->getData16bitsDirective() << uint16_t(p[1]) 1029 << '\t' << TAI->getCommentString() 1030 << " long double least significant halfword\n"; 1031 } else { 1032 O << TAI->getData16bitsDirective() << uint16_t(p[1]) 1033 << '\t' << TAI->getCommentString() 1034 << " long double least significant halfword of ~" 1035 << DoubleVal.convertToDouble() << '\n'; 1036 O << TAI->getData16bitsDirective() << uint16_t(p[0]) 1037 << '\t' << TAI->getCommentString() 1038 << " long double next halfword\n"; 1039 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16) 1040 << '\t' << TAI->getCommentString() 1041 << " long double next halfword\n"; 1042 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32) 1043 << '\t' << TAI->getCommentString() 1044 << " long double next halfword\n"; 1045 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48) 1046 << '\t' << TAI->getCommentString() 1047 << " long double most significant halfword\n"; 1048 } 1049 EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty)); 1050 return; 1051 } else if (CFP->getType() == Type::PPC_FP128Ty) { 1052 // all long double variants are printed as hex 1053 // api needed to prevent premature destruction 1054 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1055 const uint64_t *p = api.getRawData(); 1056 if (TD->isBigEndian()) { 1057 O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32) 1058 << '\t' << TAI->getCommentString() 1059 << " long double most significant word\n"; 1060 O << TAI->getData32bitsDirective() << uint32_t(p[0]) 1061 << '\t' << TAI->getCommentString() 1062 << " long double next word\n"; 1063 O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32) 1064 << '\t' << TAI->getCommentString() 1065 << " long double next word\n"; 1066 O << TAI->getData32bitsDirective() << uint32_t(p[1]) 1067 << '\t' << TAI->getCommentString() 1068 << " long double least significant word\n"; 1069 } else { 1070 O << TAI->getData32bitsDirective() << uint32_t(p[1]) 1071 << '\t' << TAI->getCommentString() 1072 << " long double least significant word\n"; 1073 O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32) 1074 << '\t' << TAI->getCommentString() 1075 << " long double next word\n"; 1076 O << TAI->getData32bitsDirective() << uint32_t(p[0]) 1077 << '\t' << TAI->getCommentString() 1078 << " long double next word\n"; 1079 O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32) 1080 << '\t' << TAI->getCommentString() 1081 << " long double most significant word\n"; 1082 } 1083 return; 1084 } else assert(0 && "Floating point constant type not handled"); 1085 } else if (CV->getType()->isInteger() && 1086 cast<IntegerType>(CV->getType())->getBitWidth() >= 64) { 1087 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1088 unsigned BitWidth = CI->getBitWidth(); 1089 assert(isPowerOf2_32(BitWidth) && 1090 "Non-power-of-2-sized integers not handled!"); 1091 1092 // We don't expect assemblers to support integer data directives 1093 // for more than 64 bits, so we emit the data in at most 64-bit 1094 // quantities at a time. 1095 const uint64_t *RawData = CI->getValue().getRawData(); 1096 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1097 uint64_t Val; 1098 if (TD->isBigEndian()) 1099 Val = RawData[e - i - 1]; 1100 else 1101 Val = RawData[i]; 1102 1103 if (TAI->getData64bitsDirective()) 1104 O << TAI->getData64bitsDirective() << Val << '\n'; 1105 else if (TD->isBigEndian()) { 1106 O << TAI->getData32bitsDirective() << unsigned(Val >> 32) 1107 << '\t' << TAI->getCommentString() 1108 << " Double-word most significant word " << Val << '\n'; 1109 O << TAI->getData32bitsDirective() << unsigned(Val) 1110 << '\t' << TAI->getCommentString() 1111 << " Double-word least significant word " << Val << '\n'; 1112 } else { 1113 O << TAI->getData32bitsDirective() << unsigned(Val) 1114 << '\t' << TAI->getCommentString() 1115 << " Double-word least significant word " << Val << '\n'; 1116 O << TAI->getData32bitsDirective() << unsigned(Val >> 32) 1117 << '\t' << TAI->getCommentString() 1118 << " Double-word most significant word " << Val << '\n'; 1119 } 1120 } 1121 return; 1122 } 1123 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1124 const VectorType *PTy = CP->getType(); 1125 1126 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 1127 EmitGlobalConstant(CP->getOperand(I)); 1128 1129 return; 1130 } 1131 1132 const Type *type = CV->getType(); 1133 printDataDirective(type); 1134 EmitConstantValueOnly(CV); 1135 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1136 SmallString<40> S; 1137 CI->getValue().toStringUnsigned(S, 16); 1138 O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str(); 1139 } 1140 O << '\n'; 1141} 1142 1143void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1144 // Target doesn't support this yet! 1145 abort(); 1146} 1147 1148/// PrintSpecial - Print information related to the specified machine instr 1149/// that is independent of the operand, and may be independent of the instr 1150/// itself. This can be useful for portably encoding the comment character 1151/// or other bits of target-specific knowledge into the asmstrings. The 1152/// syntax used is ${:comment}. Targets can override this to add support 1153/// for their own strange codes. 1154void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) { 1155 if (!strcmp(Code, "private")) { 1156 O << TAI->getPrivateGlobalPrefix(); 1157 } else if (!strcmp(Code, "comment")) { 1158 O << TAI->getCommentString(); 1159 } else if (!strcmp(Code, "uid")) { 1160 // Assign a unique ID to this machine instruction. 1161 static const MachineInstr *LastMI = 0; 1162 static const Function *F = 0; 1163 static unsigned Counter = 0U-1; 1164 1165 // Comparing the address of MI isn't sufficient, because machineinstrs may 1166 // be allocated to the same address across functions. 1167 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1168 1169 // If this is a new machine instruction, bump the counter. 1170 if (LastMI != MI || F != ThisF) { 1171 ++Counter; 1172 LastMI = MI; 1173 F = ThisF; 1174 } 1175 O << Counter; 1176 } else { 1177 cerr << "Unknown special formatter '" << Code 1178 << "' for machine instr: " << *MI; 1179 exit(1); 1180 } 1181} 1182 1183 1184/// printInlineAsm - This method formats and prints the specified machine 1185/// instruction that is an inline asm. 1186void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1187 unsigned NumOperands = MI->getNumOperands(); 1188 1189 // Count the number of register definitions. 1190 unsigned NumDefs = 0; 1191 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1192 ++NumDefs) 1193 assert(NumDefs != NumOperands-1 && "No asm string?"); 1194 1195 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1196 1197 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1198 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1199 1200 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1201 // These are useful to see where empty asm's wound up. 1202 if (AsmStr[0] == 0) { 1203 O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1204 return; 1205 } 1206 1207 O << TAI->getInlineAsmStart() << "\n\t"; 1208 1209 // The variant of the current asmprinter. 1210 int AsmPrinterVariant = TAI->getAssemblerDialect(); 1211 1212 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1213 const char *LastEmitted = AsmStr; // One past the last character emitted. 1214 1215 while (*LastEmitted) { 1216 switch (*LastEmitted) { 1217 default: { 1218 // Not a special case, emit the string section literally. 1219 const char *LiteralEnd = LastEmitted+1; 1220 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1221 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1222 ++LiteralEnd; 1223 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1224 O.write(LastEmitted, LiteralEnd-LastEmitted); 1225 LastEmitted = LiteralEnd; 1226 break; 1227 } 1228 case '\n': 1229 ++LastEmitted; // Consume newline character. 1230 O << '\n'; // Indent code with newline. 1231 break; 1232 case '$': { 1233 ++LastEmitted; // Consume '$' character. 1234 bool Done = true; 1235 1236 // Handle escapes. 1237 switch (*LastEmitted) { 1238 default: Done = false; break; 1239 case '$': // $$ -> $ 1240 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1241 O << '$'; 1242 ++LastEmitted; // Consume second '$' character. 1243 break; 1244 case '(': // $( -> same as GCC's { character. 1245 ++LastEmitted; // Consume '(' character. 1246 if (CurVariant != -1) { 1247 cerr << "Nested variants found in inline asm string: '" 1248 << AsmStr << "'\n"; 1249 exit(1); 1250 } 1251 CurVariant = 0; // We're in the first variant now. 1252 break; 1253 case '|': 1254 ++LastEmitted; // consume '|' character. 1255 if (CurVariant == -1) 1256 O << '|'; // this is gcc's behavior for | outside a variant 1257 else 1258 ++CurVariant; // We're in the next variant. 1259 break; 1260 case ')': // $) -> same as GCC's } char. 1261 ++LastEmitted; // consume ')' character. 1262 if (CurVariant == -1) 1263 O << '}'; // this is gcc's behavior for } outside a variant 1264 else 1265 CurVariant = -1; 1266 break; 1267 } 1268 if (Done) break; 1269 1270 bool HasCurlyBraces = false; 1271 if (*LastEmitted == '{') { // ${variable} 1272 ++LastEmitted; // Consume '{' character. 1273 HasCurlyBraces = true; 1274 } 1275 1276 const char *IDStart = LastEmitted; 1277 char *IDEnd; 1278 errno = 0; 1279 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1280 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1281 cerr << "Bad $ operand number in inline asm string: '" 1282 << AsmStr << "'\n"; 1283 exit(1); 1284 } 1285 LastEmitted = IDEnd; 1286 1287 char Modifier[2] = { 0, 0 }; 1288 1289 if (HasCurlyBraces) { 1290 // If we have curly braces, check for a modifier character. This 1291 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1292 if (*LastEmitted == ':') { 1293 ++LastEmitted; // Consume ':' character. 1294 if (*LastEmitted == 0) { 1295 cerr << "Bad ${:} expression in inline asm string: '" 1296 << AsmStr << "'\n"; 1297 exit(1); 1298 } 1299 1300 Modifier[0] = *LastEmitted; 1301 ++LastEmitted; // Consume modifier character. 1302 } 1303 1304 if (*LastEmitted != '}') { 1305 cerr << "Bad ${} expression in inline asm string: '" 1306 << AsmStr << "'\n"; 1307 exit(1); 1308 } 1309 ++LastEmitted; // Consume '}' character. 1310 } 1311 1312 if ((unsigned)Val >= NumOperands-1) { 1313 cerr << "Invalid $ operand number in inline asm string: '" 1314 << AsmStr << "'\n"; 1315 exit(1); 1316 } 1317 1318 // Okay, we finally have a value number. Ask the target to print this 1319 // operand! 1320 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1321 unsigned OpNo = 1; 1322 1323 bool Error = false; 1324 1325 // Scan to find the machine operand number for the operand. 1326 for (; Val; --Val) { 1327 if (OpNo >= MI->getNumOperands()) break; 1328 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1329 OpNo += (OpFlags >> 3) + 1; 1330 } 1331 1332 if (OpNo >= MI->getNumOperands()) { 1333 Error = true; 1334 } else { 1335 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1336 ++OpNo; // Skip over the ID number. 1337 1338 if (Modifier[0]=='l') // labels are target independent 1339 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), 1340 false, false, false); 1341 else { 1342 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1343 if ((OpFlags & 7) == 4) { 1344 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1345 Modifier[0] ? Modifier : 0); 1346 } else { 1347 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1348 Modifier[0] ? Modifier : 0); 1349 } 1350 } 1351 } 1352 if (Error) { 1353 cerr << "Invalid operand found in inline asm: '" 1354 << AsmStr << "'\n"; 1355 MI->dump(); 1356 exit(1); 1357 } 1358 } 1359 break; 1360 } 1361 } 1362 } 1363 O << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1364} 1365 1366/// printImplicitDef - This method prints the specified machine instruction 1367/// that is an implicit def. 1368void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1369 O << '\t' << TAI->getCommentString() << " implicit-def: " 1370 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; 1371} 1372 1373/// printLabel - This method prints a local label used by debug and 1374/// exception handling tables. 1375void AsmPrinter::printLabel(const MachineInstr *MI) const { 1376 printLabel(MI->getOperand(0).getImm()); 1377} 1378 1379void AsmPrinter::printLabel(unsigned Id) const { 1380 O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; 1381} 1382 1383/// printDeclare - This method prints a local variable declaration used by 1384/// debug tables. 1385/// FIXME: It doesn't really print anything rather it inserts a DebugVariable 1386/// entry into dwarf table. 1387void AsmPrinter::printDeclare(const MachineInstr *MI) const { 1388 int FI = MI->getOperand(0).getIndex(); 1389 GlobalValue *GV = MI->getOperand(1).getGlobal(); 1390 MMI->RecordVariable(GV, FI); 1391} 1392 1393/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1394/// instruction, using the specified assembler variant. Targets should 1395/// overried this to format as appropriate. 1396bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1397 unsigned AsmVariant, const char *ExtraCode) { 1398 // Target doesn't support this yet! 1399 return true; 1400} 1401 1402bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1403 unsigned AsmVariant, 1404 const char *ExtraCode) { 1405 // Target doesn't support this yet! 1406 return true; 1407} 1408 1409/// printBasicBlockLabel - This method prints the label for the specified 1410/// MachineBasicBlock 1411void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, 1412 bool printAlign, 1413 bool printColon, 1414 bool printComment) const { 1415 if (printAlign) { 1416 unsigned Align = MBB->getAlignment(); 1417 if (Align) 1418 EmitAlignment(Log2_32(Align)); 1419 } 1420 1421 O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' 1422 << MBB->getNumber(); 1423 if (printColon) 1424 O << ':'; 1425 if (printComment && MBB->getBasicBlock()) 1426 O << '\t' << TAI->getCommentString() << ' ' 1427 << MBB->getBasicBlock()->getNameStart(); 1428} 1429 1430/// printPICJumpTableSetLabel - This method prints a set label for the 1431/// specified MachineBasicBlock for a jumptable entry. 1432void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1433 const MachineBasicBlock *MBB) const { 1434 if (!TAI->getSetDirective()) 1435 return; 1436 1437 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1438 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1439 printBasicBlockLabel(MBB, false, false, false); 1440 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1441 << '_' << uid << '\n'; 1442} 1443 1444void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1445 const MachineBasicBlock *MBB) const { 1446 if (!TAI->getSetDirective()) 1447 return; 1448 1449 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1450 << getFunctionNumber() << '_' << uid << '_' << uid2 1451 << "_set_" << MBB->getNumber() << ','; 1452 printBasicBlockLabel(MBB, false, false, false); 1453 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1454 << '_' << uid << '_' << uid2 << '\n'; 1455} 1456 1457/// printDataDirective - This method prints the asm directive for the 1458/// specified type. 1459void AsmPrinter::printDataDirective(const Type *type) { 1460 const TargetData *TD = TM.getTargetData(); 1461 switch (type->getTypeID()) { 1462 case Type::IntegerTyID: { 1463 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1464 if (BitWidth <= 8) 1465 O << TAI->getData8bitsDirective(); 1466 else if (BitWidth <= 16) 1467 O << TAI->getData16bitsDirective(); 1468 else if (BitWidth <= 32) 1469 O << TAI->getData32bitsDirective(); 1470 else if (BitWidth <= 64) { 1471 assert(TAI->getData64bitsDirective() && 1472 "Target cannot handle 64-bit constant exprs!"); 1473 O << TAI->getData64bitsDirective(); 1474 } else { 1475 assert(0 && "Target cannot handle given data directive width!"); 1476 } 1477 break; 1478 } 1479 case Type::PointerTyID: 1480 if (TD->getPointerSize() == 8) { 1481 assert(TAI->getData64bitsDirective() && 1482 "Target cannot handle 64-bit pointer exprs!"); 1483 O << TAI->getData64bitsDirective(); 1484 } else { 1485 O << TAI->getData32bitsDirective(); 1486 } 1487 break; 1488 case Type::FloatTyID: case Type::DoubleTyID: 1489 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1490 assert (0 && "Should have already output floating point constant."); 1491 default: 1492 assert (0 && "Can't handle printing this type of thing"); 1493 break; 1494 } 1495} 1496 1497void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix, 1498 const char *Prefix) { 1499 if (Name[0]=='\"') 1500 O << '\"'; 1501 O << TAI->getPrivateGlobalPrefix(); 1502 if (Prefix) O << Prefix; 1503 if (Name[0]=='\"') 1504 O << '\"'; 1505 if (Name[0]=='\"') 1506 O << Name[1]; 1507 else 1508 O << Name; 1509 O << Suffix; 1510 if (Name[0]=='\"') 1511 O << '\"'; 1512} 1513 1514void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) { 1515 printSuffixedName(Name.c_str(), Suffix); 1516} 1517 1518void AsmPrinter::printVisibility(const std::string& Name, 1519 unsigned Visibility) const { 1520 if (Visibility == GlobalValue::HiddenVisibility) { 1521 if (const char *Directive = TAI->getHiddenDirective()) 1522 O << Directive << Name << '\n'; 1523 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1524 if (const char *Directive = TAI->getProtectedDirective()) 1525 O << Directive << Name << '\n'; 1526 } 1527} 1528 1529GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1530 if (!S->usesMetadata()) 1531 return 0; 1532 1533 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1534 if (GCPI != GCMetadataPrinters.end()) 1535 return GCPI->second; 1536 1537 const char *Name = S->getName().c_str(); 1538 1539 for (GCMetadataPrinterRegistry::iterator 1540 I = GCMetadataPrinterRegistry::begin(), 1541 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1542 if (strcmp(Name, I->getName()) == 0) { 1543 GCMetadataPrinter *GMP = I->instantiate(); 1544 GMP->S = S; 1545 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1546 return GMP; 1547 } 1548 1549 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1550 abort(); 1551} 1552