AsmPrinter.cpp revision a87dea4f8c546ca748f1777a8d1cabcc06515d91
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineJumpTableInfo.h" 22#include "llvm/CodeGen/MachineModuleInfo.h" 23#include "llvm/CodeGen/DwarfWriter.h" 24#include "llvm/Analysis/DebugInfo.h" 25#include "llvm/MC/MCContext.h" 26#include "llvm/MC/MCInst.h" 27#include "llvm/MC/MCSection.h" 28#include "llvm/MC/MCStreamer.h" 29#include "llvm/Support/CommandLine.h" 30#include "llvm/Support/ErrorHandling.h" 31#include "llvm/Support/FormattedStream.h" 32#include "llvm/Support/Mangler.h" 33#include "llvm/Target/TargetAsmInfo.h" 34#include "llvm/Target/TargetData.h" 35#include "llvm/Target/TargetLowering.h" 36#include "llvm/Target/TargetLoweringObjectFile.h" 37#include "llvm/Target/TargetOptions.h" 38#include "llvm/Target/TargetRegisterInfo.h" 39#include "llvm/ADT/SmallPtrSet.h" 40#include "llvm/ADT/SmallString.h" 41#include "llvm/ADT/StringExtras.h" 42#include <cerrno> 43using namespace llvm; 44 45static cl::opt<cl::boolOrDefault> 46AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 47 cl::init(cl::BOU_UNSET)); 48 49char AsmPrinter::ID = 0; 50AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm, 51 const TargetAsmInfo *T, bool VDef) 52 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 53 TM(tm), TAI(T), TRI(tm.getRegisterInfo()), 54 55 OutContext(*new MCContext()), 56 OutStreamer(*createAsmStreamer(OutContext, O)), 57 58 IsInTextSection(false), LastMI(0), LastFn(0), Counter(~0U), 59 PrevDLT(0, ~0U, ~0U) { 60 DW = 0; MMI = 0; 61 switch (AsmVerbose) { 62 case cl::BOU_UNSET: VerboseAsm = VDef; break; 63 case cl::BOU_TRUE: VerboseAsm = true; break; 64 case cl::BOU_FALSE: VerboseAsm = false; break; 65 } 66} 67 68AsmPrinter::~AsmPrinter() { 69 for (gcp_iterator I = GCMetadataPrinters.begin(), 70 E = GCMetadataPrinters.end(); I != E; ++I) 71 delete I->second; 72 73 delete &OutStreamer; 74 delete &OutContext; 75} 76 77const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 78 return TM.getTargetLowering()->getObjFileLowering(); 79} 80 81 82/// SwitchToTextSection - Switch to the specified text section of the executable 83/// if we are not already in it! 84/// 85void AsmPrinter::SwitchToTextSection(const char *NewSection, 86 const GlobalValue *GV) { 87 std::string NS; 88 if (GV && GV->hasSection()) 89 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 90 else 91 NS = NewSection; 92 93 // If we're already in this section, we're done. 94 if (CurrentSection == NS) return; 95 96 // Close the current section, if applicable. 97 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 98 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 99 100 CurrentSection = NS; 101 102 if (!CurrentSection.empty()) 103 O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n'; 104 105 IsInTextSection = true; 106} 107 108/// SwitchToDataSection - Switch to the specified data section of the executable 109/// if we are not already in it! 110/// 111void AsmPrinter::SwitchToDataSection(const char *NewSection, 112 const GlobalValue *GV) { 113 std::string NS; 114 if (GV && GV->hasSection()) 115 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 116 else 117 NS = NewSection; 118 119 // If we're already in this section, we're done. 120 if (CurrentSection == NS) return; 121 122 // Close the current section, if applicable. 123 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 124 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 125 126 CurrentSection = NS; 127 128 if (!CurrentSection.empty()) 129 O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n'; 130 131 IsInTextSection = false; 132} 133 134/// SwitchToSection - Switch to the specified section of the executable if we 135/// are not already in it! 136void AsmPrinter::SwitchToSection(const MCSection *NS) { 137 const std::string &NewSection = NS->getName(); 138 139 // If we're already in this section, we're done. 140 if (CurrentSection == NewSection) return; 141 142 // Close the current section, if applicable. 143 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 144 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 145 146 // FIXME: Make CurrentSection a Section* in the future 147 CurrentSection = NewSection; 148 CurrentSection_ = NS; 149 150 if (!CurrentSection.empty()) { 151 // If section is named we need to switch into it via special '.section' 152 // directive and also append funky flags. Otherwise - section name is just 153 // some magic assembler directive. 154 if (NS->getKind().hasExplicitSection()) { 155 SmallString<32> FlagsStr; 156 157 getObjFileLowering().getSectionFlagsAsString(NS->getKind(), FlagsStr); 158 159 O << TAI->getSwitchToSectionDirective() 160 << CurrentSection 161 << FlagsStr.c_str(); 162 } else { 163 O << CurrentSection; 164 } 165 O << TAI->getDataSectionStartSuffix() << '\n'; 166 } 167 168 IsInTextSection = NS->getKind().isText(); 169} 170 171void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 172 MachineFunctionPass::getAnalysisUsage(AU); 173 AU.addRequired<GCModuleInfo>(); 174} 175 176bool AsmPrinter::doInitialization(Module &M) { 177 // Initialize TargetLoweringObjectFile. 178 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 179 .Initialize(OutContext, TM); 180 181 Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix(), 182 TAI->getLinkerPrivateGlobalPrefix()); 183 184 if (TAI->doesAllowQuotesInName()) 185 Mang->setUseQuotes(true); 186 187 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 188 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 189 190 if (TAI->hasSingleParameterDotFile()) { 191 /* Very minimal debug info. It is ignored if we emit actual 192 debug info. If we don't, this at helps the user find where 193 a function came from. */ 194 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 195 } 196 197 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 198 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 199 MP->beginAssembly(O, *this, *TAI); 200 201 if (!M.getModuleInlineAsm().empty()) 202 O << TAI->getCommentString() << " Start of file scope inline assembly\n" 203 << M.getModuleInlineAsm() 204 << '\n' << TAI->getCommentString() 205 << " End of file scope inline assembly\n"; 206 207 SwitchToDataSection(""); // Reset back to no section. 208 209 if (TAI->doesSupportDebugInformation() || 210 TAI->doesSupportExceptionHandling()) { 211 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 212 if (MMI) 213 MMI->AnalyzeModule(M); 214 DW = getAnalysisIfAvailable<DwarfWriter>(); 215 if (DW) 216 DW->BeginModule(&M, MMI, O, this, TAI); 217 } 218 219 return false; 220} 221 222bool AsmPrinter::doFinalization(Module &M) { 223 // Emit global variables. 224 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 225 I != E; ++I) 226 PrintGlobalVariable(I); 227 228 // Emit final debug information. 229 if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling()) 230 DW->EndModule(); 231 232 // If the target wants to know about weak references, print them all. 233 if (TAI->getWeakRefDirective()) { 234 // FIXME: This is not lazy, it would be nice to only print weak references 235 // to stuff that is actually used. Note that doing so would require targets 236 // to notice uses in operands (due to constant exprs etc). This should 237 // happen with the MC stuff eventually. 238 SwitchToDataSection(""); 239 240 // Print out module-level global variables here. 241 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 242 I != E; ++I) { 243 if (I->hasExternalWeakLinkage()) 244 O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 245 } 246 247 for (Module::const_iterator I = M.begin(), E = M.end(); 248 I != E; ++I) { 249 if (I->hasExternalWeakLinkage()) 250 O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 251 } 252 } 253 254 if (TAI->getSetDirective()) { 255 O << '\n'; 256 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 257 I != E; ++I) { 258 std::string Name = Mang->getMangledName(I); 259 260 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 261 std::string Target = Mang->getMangledName(GV); 262 263 if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) 264 O << "\t.globl\t" << Name << '\n'; 265 else if (I->hasWeakLinkage()) 266 O << TAI->getWeakRefDirective() << Name << '\n'; 267 else if (!I->hasLocalLinkage()) 268 llvm_unreachable("Invalid alias linkage"); 269 270 printVisibility(Name, I->getVisibility()); 271 272 O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 273 } 274 } 275 276 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 277 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 278 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 279 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 280 MP->finishAssembly(O, *this, *TAI); 281 282 // If we don't have any trampolines, then we don't require stack memory 283 // to be executable. Some targets have a directive to declare this. 284 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 285 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 286 if (TAI->getNonexecutableStackDirective()) 287 O << TAI->getNonexecutableStackDirective() << '\n'; 288 289 delete Mang; Mang = 0; 290 DW = 0; MMI = 0; 291 292 OutStreamer.Finish(); 293 return false; 294} 295 296std::string 297AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const { 298 assert(MF && "No machine function?"); 299 return Mang->getMangledName(MF->getFunction(), ".eh", 300 TAI->is_EHSymbolPrivate()); 301} 302 303void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 304 // What's my mangled name? 305 CurrentFnName = Mang->getMangledName(MF.getFunction()); 306 IncrementFunctionNumber(); 307} 308 309namespace { 310 // SectionCPs - Keep track the alignment, constpool entries per Section. 311 struct SectionCPs { 312 const MCSection *S; 313 unsigned Alignment; 314 SmallVector<unsigned, 4> CPEs; 315 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}; 316 }; 317} 318 319/// EmitConstantPool - Print to the current output stream assembly 320/// representations of the constants in the constant pool MCP. This is 321/// used to print out constants which have been "spilled to memory" by 322/// the code generator. 323/// 324void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 325 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 326 if (CP.empty()) return; 327 328 // Calculate sections for constant pool entries. We collect entries to go into 329 // the same section together to reduce amount of section switch statements. 330 SmallVector<SectionCPs, 4> CPSections; 331 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 332 const MachineConstantPoolEntry &CPE = CP[i]; 333 unsigned Align = CPE.getAlignment(); 334 335 SectionKind Kind; 336 switch (CPE.getRelocationInfo()) { 337 default: llvm_unreachable("Unknown section kind"); 338 case 2: Kind = SectionKind::get(SectionKind::ReadOnlyWithRel, false); break; 339 case 1: 340 Kind = SectionKind::get(SectionKind::ReadOnlyWithRelLocal,false); 341 break; 342 case 0: 343 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 344 case 4: Kind = SectionKind::get(SectionKind::MergeableConst4,false); break; 345 case 8: Kind = SectionKind::get(SectionKind::MergeableConst8,false); break; 346 case 16: Kind = SectionKind::get(SectionKind::MergeableConst16,false);break; 347 default: Kind = SectionKind::get(SectionKind::MergeableConst,false); break; 348 } 349 } 350 351 const MCSection *S = 352 getObjFileLowering().getSectionForMergeableConstant(Kind); 353 354 // The number of sections are small, just do a linear search from the 355 // last section to the first. 356 bool Found = false; 357 unsigned SecIdx = CPSections.size(); 358 while (SecIdx != 0) { 359 if (CPSections[--SecIdx].S == S) { 360 Found = true; 361 break; 362 } 363 } 364 if (!Found) { 365 SecIdx = CPSections.size(); 366 CPSections.push_back(SectionCPs(S, Align)); 367 } 368 369 if (Align > CPSections[SecIdx].Alignment) 370 CPSections[SecIdx].Alignment = Align; 371 CPSections[SecIdx].CPEs.push_back(i); 372 } 373 374 // Now print stuff into the calculated sections. 375 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 376 SwitchToSection(CPSections[i].S); 377 EmitAlignment(Log2_32(CPSections[i].Alignment)); 378 379 unsigned Offset = 0; 380 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 381 unsigned CPI = CPSections[i].CPEs[j]; 382 MachineConstantPoolEntry CPE = CP[CPI]; 383 384 // Emit inter-object padding for alignment. 385 unsigned AlignMask = CPE.getAlignment() - 1; 386 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 387 EmitZeros(NewOffset - Offset); 388 389 const Type *Ty = CPE.getType(); 390 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 391 392 O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 393 << CPI << ":\t\t\t\t\t"; 394 if (VerboseAsm) { 395 O << TAI->getCommentString() << ' '; 396 WriteTypeSymbolic(O, CPE.getType(), 0); 397 } 398 O << '\n'; 399 if (CPE.isMachineConstantPoolEntry()) 400 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 401 else 402 EmitGlobalConstant(CPE.Val.ConstVal); 403 } 404 } 405} 406 407/// EmitJumpTableInfo - Print assembly representations of the jump tables used 408/// by the current function to the current output stream. 409/// 410void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 411 MachineFunction &MF) { 412 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 413 if (JT.empty()) return; 414 415 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 416 417 // Pick the directive to use to print the jump table entries, and switch to 418 // the appropriate section. 419 TargetLowering *LoweringInfo = TM.getTargetLowering(); 420 421 const char *JumpTableDataSection = TAI->getJumpTableDataSection(); 422 const Function *F = MF.getFunction(); 423 424 const MCSection *FuncSection = 425 getObjFileLowering().SectionForGlobal(F, Mang, TM); 426 427 bool JTInDiffSection = false; 428 if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) || 429 !JumpTableDataSection || 430 FuncSection->getKind().isWeak()) { 431 // In PIC mode, we need to emit the jump table to the same section as the 432 // function body itself, otherwise the label differences won't make sense. 433 // We should also do if the section name is NULL or function is declared in 434 // discardable section. 435 SwitchToSection(FuncSection); 436 } else { 437 SwitchToDataSection(JumpTableDataSection); 438 JTInDiffSection = true; 439 } 440 441 EmitAlignment(Log2_32(MJTI->getAlignment())); 442 443 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 444 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 445 446 // If this jump table was deleted, ignore it. 447 if (JTBBs.empty()) continue; 448 449 // For PIC codegen, if possible we want to use the SetDirective to reduce 450 // the number of relocations the assembler will generate for the jump table. 451 // Set directives are all printed before the jump table itself. 452 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 453 if (TAI->getSetDirective() && IsPic) 454 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 455 if (EmittedSets.insert(JTBBs[ii])) 456 printPICJumpTableSetLabel(i, JTBBs[ii]); 457 458 // On some targets (e.g. darwin) we want to emit two consequtive labels 459 // before each jump table. The first label is never referenced, but tells 460 // the assembler and linker the extents of the jump table object. The 461 // second label is actually referenced by the code. 462 if (JTInDiffSection) { 463 if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) 464 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 465 } 466 467 O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 468 << '_' << i << ":\n"; 469 470 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 471 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 472 O << '\n'; 473 } 474 } 475} 476 477void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 478 const MachineBasicBlock *MBB, 479 unsigned uid) const { 480 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 481 482 // Use JumpTableDirective otherwise honor the entry size from the jump table 483 // info. 484 const char *JTEntryDirective = TAI->getJumpTableDirective(); 485 bool HadJTEntryDirective = JTEntryDirective != NULL; 486 if (!HadJTEntryDirective) { 487 JTEntryDirective = MJTI->getEntrySize() == 4 ? 488 TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); 489 } 490 491 O << JTEntryDirective << ' '; 492 493 // If we have emitted set directives for the jump table entries, print 494 // them rather than the entries themselves. If we're emitting PIC, then 495 // emit the table entries as differences between two text section labels. 496 // If we're emitting non-PIC code, then emit the entries as direct 497 // references to the target basic blocks. 498 if (IsPic) { 499 if (TAI->getSetDirective()) { 500 O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() 501 << '_' << uid << "_set_" << MBB->getNumber(); 502 } else { 503 printBasicBlockLabel(MBB, false, false, false); 504 // If the arch uses custom Jump Table directives, don't calc relative to 505 // JT 506 if (!HadJTEntryDirective) 507 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" 508 << getFunctionNumber() << '_' << uid; 509 } 510 } else { 511 printBasicBlockLabel(MBB, false, false, false); 512 } 513} 514 515 516/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 517/// special global used by LLVM. If so, emit it and return true, otherwise 518/// do nothing and return false. 519bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 520 if (GV->getName() == "llvm.used") { 521 if (TAI->getUsedDirective() != 0) // No need to emit this at all. 522 EmitLLVMUsedList(GV->getInitializer()); 523 return true; 524 } 525 526 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 527 if (GV->getSection() == "llvm.metadata" || 528 GV->hasAvailableExternallyLinkage()) 529 return true; 530 531 if (!GV->hasAppendingLinkage()) return false; 532 533 assert(GV->hasInitializer() && "Not a special LLVM global!"); 534 535 const TargetData *TD = TM.getTargetData(); 536 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 537 if (GV->getName() == "llvm.global_ctors") { 538 SwitchToDataSection(TAI->getStaticCtorsSection()); 539 EmitAlignment(Align, 0); 540 EmitXXStructorList(GV->getInitializer()); 541 return true; 542 } 543 544 if (GV->getName() == "llvm.global_dtors") { 545 SwitchToDataSection(TAI->getStaticDtorsSection()); 546 EmitAlignment(Align, 0); 547 EmitXXStructorList(GV->getInitializer()); 548 return true; 549 } 550 551 return false; 552} 553 554/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each 555/// global in the specified llvm.used list for which emitUsedDirectiveFor 556/// is true, as being used with this directive. 557void AsmPrinter::EmitLLVMUsedList(Constant *List) { 558 const char *Directive = TAI->getUsedDirective(); 559 560 // Should be an array of 'i8*'. 561 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 562 if (InitList == 0) return; 563 564 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 565 const GlobalValue *GV = 566 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 567 if (GV && TAI->emitUsedDirectiveFor(GV, Mang)) { 568 O << Directive; 569 EmitConstantValueOnly(InitList->getOperand(i)); 570 O << '\n'; 571 } 572 } 573} 574 575/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 576/// function pointers, ignoring the init priority. 577void AsmPrinter::EmitXXStructorList(Constant *List) { 578 // Should be an array of '{ int, void ()* }' structs. The first value is the 579 // init priority, which we ignore. 580 if (!isa<ConstantArray>(List)) return; 581 ConstantArray *InitList = cast<ConstantArray>(List); 582 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 583 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 584 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 585 586 if (CS->getOperand(1)->isNullValue()) 587 return; // Found a null terminator, exit printing. 588 // Emit the function pointer. 589 EmitGlobalConstant(CS->getOperand(1)); 590 } 591} 592 593/// getGlobalLinkName - Returns the asm/link name of of the specified 594/// global variable. Should be overridden by each target asm printer to 595/// generate the appropriate value. 596const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV, 597 std::string &LinkName) const { 598 if (isa<Function>(GV)) { 599 LinkName += TAI->getFunctionAddrPrefix(); 600 LinkName += Mang->getMangledName(GV); 601 LinkName += TAI->getFunctionAddrSuffix(); 602 } else { 603 LinkName += TAI->getGlobalVarAddrPrefix(); 604 LinkName += Mang->getMangledName(GV); 605 LinkName += TAI->getGlobalVarAddrSuffix(); 606 } 607 608 return LinkName; 609} 610 611/// EmitExternalGlobal - Emit the external reference to a global variable. 612/// Should be overridden if an indirect reference should be used. 613void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { 614 std::string GLN; 615 O << getGlobalLinkName(GV, GLN); 616} 617 618 619 620//===----------------------------------------------------------------------===// 621/// LEB 128 number encoding. 622 623/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) 624/// representing an unsigned leb128 value. 625void AsmPrinter::PrintULEB128(unsigned Value) const { 626 char Buffer[20]; 627 do { 628 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 629 Value >>= 7; 630 if (Value) Byte |= 0x80; 631 O << "0x" << utohex_buffer(Byte, Buffer+20); 632 if (Value) O << ", "; 633 } while (Value); 634} 635 636/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) 637/// representing a signed leb128 value. 638void AsmPrinter::PrintSLEB128(int Value) const { 639 int Sign = Value >> (8 * sizeof(Value) - 1); 640 bool IsMore; 641 char Buffer[20]; 642 643 do { 644 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 645 Value >>= 7; 646 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 647 if (IsMore) Byte |= 0x80; 648 O << "0x" << utohex_buffer(Byte, Buffer+20); 649 if (IsMore) O << ", "; 650 } while (IsMore); 651} 652 653//===--------------------------------------------------------------------===// 654// Emission and print routines 655// 656 657/// PrintHex - Print a value as a hexidecimal value. 658/// 659void AsmPrinter::PrintHex(int Value) const { 660 char Buffer[20]; 661 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); 662} 663 664/// EOL - Print a newline character to asm stream. If a comment is present 665/// then it will be printed first. Comments should not contain '\n'. 666void AsmPrinter::EOL() const { 667 O << '\n'; 668} 669 670void AsmPrinter::EOL(const std::string &Comment) const { 671 if (VerboseAsm && !Comment.empty()) { 672 O << '\t' 673 << TAI->getCommentString() 674 << ' ' 675 << Comment; 676 } 677 O << '\n'; 678} 679 680void AsmPrinter::EOL(const char* Comment) const { 681 if (VerboseAsm && *Comment) { 682 O << '\t' 683 << TAI->getCommentString() 684 << ' ' 685 << Comment; 686 } 687 O << '\n'; 688} 689 690/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 691/// unsigned leb128 value. 692void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 693 if (TAI->hasLEB128()) { 694 O << "\t.uleb128\t" 695 << Value; 696 } else { 697 O << TAI->getData8bitsDirective(); 698 PrintULEB128(Value); 699 } 700} 701 702/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 703/// signed leb128 value. 704void AsmPrinter::EmitSLEB128Bytes(int Value) const { 705 if (TAI->hasLEB128()) { 706 O << "\t.sleb128\t" 707 << Value; 708 } else { 709 O << TAI->getData8bitsDirective(); 710 PrintSLEB128(Value); 711 } 712} 713 714/// EmitInt8 - Emit a byte directive and value. 715/// 716void AsmPrinter::EmitInt8(int Value) const { 717 O << TAI->getData8bitsDirective(); 718 PrintHex(Value & 0xFF); 719} 720 721/// EmitInt16 - Emit a short directive and value. 722/// 723void AsmPrinter::EmitInt16(int Value) const { 724 O << TAI->getData16bitsDirective(); 725 PrintHex(Value & 0xFFFF); 726} 727 728/// EmitInt32 - Emit a long directive and value. 729/// 730void AsmPrinter::EmitInt32(int Value) const { 731 O << TAI->getData32bitsDirective(); 732 PrintHex(Value); 733} 734 735/// EmitInt64 - Emit a long long directive and value. 736/// 737void AsmPrinter::EmitInt64(uint64_t Value) const { 738 if (TAI->getData64bitsDirective()) { 739 O << TAI->getData64bitsDirective(); 740 PrintHex(Value); 741 } else { 742 if (TM.getTargetData()->isBigEndian()) { 743 EmitInt32(unsigned(Value >> 32)); O << '\n'; 744 EmitInt32(unsigned(Value)); 745 } else { 746 EmitInt32(unsigned(Value)); O << '\n'; 747 EmitInt32(unsigned(Value >> 32)); 748 } 749 } 750} 751 752/// toOctal - Convert the low order bits of X into an octal digit. 753/// 754static inline char toOctal(int X) { 755 return (X&7)+'0'; 756} 757 758/// printStringChar - Print a char, escaped if necessary. 759/// 760static void printStringChar(formatted_raw_ostream &O, unsigned char C) { 761 if (C == '"') { 762 O << "\\\""; 763 } else if (C == '\\') { 764 O << "\\\\"; 765 } else if (isprint((unsigned char)C)) { 766 O << C; 767 } else { 768 switch(C) { 769 case '\b': O << "\\b"; break; 770 case '\f': O << "\\f"; break; 771 case '\n': O << "\\n"; break; 772 case '\r': O << "\\r"; break; 773 case '\t': O << "\\t"; break; 774 default: 775 O << '\\'; 776 O << toOctal(C >> 6); 777 O << toOctal(C >> 3); 778 O << toOctal(C >> 0); 779 break; 780 } 781 } 782} 783 784/// EmitString - Emit a string with quotes and a null terminator. 785/// Special characters are emitted properly. 786/// \literal (Eg. '\t') \endliteral 787void AsmPrinter::EmitString(const std::string &String) const { 788 EmitString(String.c_str(), String.size()); 789} 790 791void AsmPrinter::EmitString(const char *String, unsigned Size) const { 792 const char* AscizDirective = TAI->getAscizDirective(); 793 if (AscizDirective) 794 O << AscizDirective; 795 else 796 O << TAI->getAsciiDirective(); 797 O << '\"'; 798 for (unsigned i = 0; i < Size; ++i) 799 printStringChar(O, String[i]); 800 if (AscizDirective) 801 O << '\"'; 802 else 803 O << "\\0\""; 804} 805 806 807/// EmitFile - Emit a .file directive. 808void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 809 O << "\t.file\t" << Number << " \""; 810 for (unsigned i = 0, N = Name.size(); i < N; ++i) 811 printStringChar(O, Name[i]); 812 O << '\"'; 813} 814 815 816//===----------------------------------------------------------------------===// 817 818// EmitAlignment - Emit an alignment directive to the specified power of 819// two boundary. For example, if you pass in 3 here, you will get an 8 820// byte alignment. If a global value is specified, and if that global has 821// an explicit alignment requested, it will unconditionally override the 822// alignment request. However, if ForcedAlignBits is specified, this value 823// has final say: the ultimate alignment will be the max of ForcedAlignBits 824// and the alignment computed with NumBits and the global. 825// 826// The algorithm is: 827// Align = NumBits; 828// if (GV && GV->hasalignment) Align = GV->getalignment(); 829// Align = std::max(Align, ForcedAlignBits); 830// 831void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 832 unsigned ForcedAlignBits, 833 bool UseFillExpr) const { 834 if (GV && GV->getAlignment()) 835 NumBits = Log2_32(GV->getAlignment()); 836 NumBits = std::max(NumBits, ForcedAlignBits); 837 838 if (NumBits == 0) return; // No need to emit alignment. 839 if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; 840 O << TAI->getAlignDirective() << NumBits; 841 842 unsigned FillValue = TAI->getTextAlignFillValue(); 843 UseFillExpr &= IsInTextSection && FillValue; 844 if (UseFillExpr) { 845 O << ','; 846 PrintHex(FillValue); 847 } 848 O << '\n'; 849} 850 851 852/// EmitZeros - Emit a block of zeros. 853/// 854void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const { 855 if (NumZeros) { 856 if (TAI->getZeroDirective()) { 857 O << TAI->getZeroDirective() << NumZeros; 858 if (TAI->getZeroDirectiveSuffix()) 859 O << TAI->getZeroDirectiveSuffix(); 860 O << '\n'; 861 } else { 862 for (; NumZeros; --NumZeros) 863 O << TAI->getData8bitsDirective(AddrSpace) << "0\n"; 864 } 865 } 866} 867 868// Print out the specified constant, without a storage class. Only the 869// constants valid in constant expressions can occur here. 870void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 871 if (CV->isNullValue() || isa<UndefValue>(CV)) 872 O << '0'; 873 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 874 O << CI->getZExtValue(); 875 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 876 // This is a constant address for a global variable or function. Use the 877 // name of the variable or function as the address value, possibly 878 // decorating it with GlobalVarAddrPrefix/Suffix or 879 // FunctionAddrPrefix/Suffix (these all default to "" ) 880 if (isa<Function>(GV)) { 881 O << TAI->getFunctionAddrPrefix() 882 << Mang->getMangledName(GV) 883 << TAI->getFunctionAddrSuffix(); 884 } else { 885 O << TAI->getGlobalVarAddrPrefix() 886 << Mang->getMangledName(GV) 887 << TAI->getGlobalVarAddrSuffix(); 888 } 889 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 890 const TargetData *TD = TM.getTargetData(); 891 unsigned Opcode = CE->getOpcode(); 892 switch (Opcode) { 893 case Instruction::GetElementPtr: { 894 // generate a symbolic expression for the byte address 895 const Constant *ptrVal = CE->getOperand(0); 896 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 897 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 898 idxVec.size())) { 899 // Truncate/sext the offset to the pointer size. 900 if (TD->getPointerSizeInBits() != 64) { 901 int SExtAmount = 64-TD->getPointerSizeInBits(); 902 Offset = (Offset << SExtAmount) >> SExtAmount; 903 } 904 905 if (Offset) 906 O << '('; 907 EmitConstantValueOnly(ptrVal); 908 if (Offset > 0) 909 O << ") + " << Offset; 910 else if (Offset < 0) 911 O << ") - " << -Offset; 912 } else { 913 EmitConstantValueOnly(ptrVal); 914 } 915 break; 916 } 917 case Instruction::Trunc: 918 case Instruction::ZExt: 919 case Instruction::SExt: 920 case Instruction::FPTrunc: 921 case Instruction::FPExt: 922 case Instruction::UIToFP: 923 case Instruction::SIToFP: 924 case Instruction::FPToUI: 925 case Instruction::FPToSI: 926 llvm_unreachable("FIXME: Don't yet support this kind of constant cast expr"); 927 break; 928 case Instruction::BitCast: 929 return EmitConstantValueOnly(CE->getOperand(0)); 930 931 case Instruction::IntToPtr: { 932 // Handle casts to pointers by changing them into casts to the appropriate 933 // integer type. This promotes constant folding and simplifies this code. 934 Constant *Op = CE->getOperand(0); 935 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/); 936 return EmitConstantValueOnly(Op); 937 } 938 939 940 case Instruction::PtrToInt: { 941 // Support only foldable casts to/from pointers that can be eliminated by 942 // changing the pointer to the appropriately sized integer type. 943 Constant *Op = CE->getOperand(0); 944 const Type *Ty = CE->getType(); 945 946 // We can emit the pointer value into this slot if the slot is an 947 // integer slot greater or equal to the size of the pointer. 948 if (TD->getTypeAllocSize(Ty) >= TD->getTypeAllocSize(Op->getType())) 949 return EmitConstantValueOnly(Op); 950 951 O << "(("; 952 EmitConstantValueOnly(Op); 953 APInt ptrMask = APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Ty)); 954 955 SmallString<40> S; 956 ptrMask.toStringUnsigned(S); 957 O << ") & " << S.c_str() << ')'; 958 break; 959 } 960 case Instruction::Add: 961 case Instruction::Sub: 962 case Instruction::And: 963 case Instruction::Or: 964 case Instruction::Xor: 965 O << '('; 966 EmitConstantValueOnly(CE->getOperand(0)); 967 O << ')'; 968 switch (Opcode) { 969 case Instruction::Add: 970 O << " + "; 971 break; 972 case Instruction::Sub: 973 O << " - "; 974 break; 975 case Instruction::And: 976 O << " & "; 977 break; 978 case Instruction::Or: 979 O << " | "; 980 break; 981 case Instruction::Xor: 982 O << " ^ "; 983 break; 984 default: 985 break; 986 } 987 O << '('; 988 EmitConstantValueOnly(CE->getOperand(1)); 989 O << ')'; 990 break; 991 default: 992 llvm_unreachable("Unsupported operator!"); 993 } 994 } else { 995 llvm_unreachable("Unknown constant value!"); 996 } 997} 998 999/// printAsCString - Print the specified array as a C compatible string, only if 1000/// the predicate isString is true. 1001/// 1002static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA, 1003 unsigned LastElt) { 1004 assert(CVA->isString() && "Array is not string compatible!"); 1005 1006 O << '\"'; 1007 for (unsigned i = 0; i != LastElt; ++i) { 1008 unsigned char C = 1009 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 1010 printStringChar(O, C); 1011 } 1012 O << '\"'; 1013} 1014 1015/// EmitString - Emit a zero-byte-terminated string constant. 1016/// 1017void AsmPrinter::EmitString(const ConstantArray *CVA) const { 1018 unsigned NumElts = CVA->getNumOperands(); 1019 if (TAI->getAscizDirective() && NumElts && 1020 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 1021 O << TAI->getAscizDirective(); 1022 printAsCString(O, CVA, NumElts-1); 1023 } else { 1024 O << TAI->getAsciiDirective(); 1025 printAsCString(O, CVA, NumElts); 1026 } 1027 O << '\n'; 1028} 1029 1030void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA, 1031 unsigned AddrSpace) { 1032 if (CVA->isString()) { 1033 EmitString(CVA); 1034 } else { // Not a string. Print the values in successive locations 1035 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 1036 EmitGlobalConstant(CVA->getOperand(i), AddrSpace); 1037 } 1038} 1039 1040void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) { 1041 const VectorType *PTy = CP->getType(); 1042 1043 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 1044 EmitGlobalConstant(CP->getOperand(I)); 1045} 1046 1047void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS, 1048 unsigned AddrSpace) { 1049 // Print the fields in successive locations. Pad to align if needed! 1050 const TargetData *TD = TM.getTargetData(); 1051 unsigned Size = TD->getTypeAllocSize(CVS->getType()); 1052 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 1053 uint64_t sizeSoFar = 0; 1054 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 1055 const Constant* field = CVS->getOperand(i); 1056 1057 // Check if padding is needed and insert one or more 0s. 1058 uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); 1059 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 1060 - cvsLayout->getElementOffset(i)) - fieldSize; 1061 sizeSoFar += fieldSize + padSize; 1062 1063 // Now print the actual field value. 1064 EmitGlobalConstant(field, AddrSpace); 1065 1066 // Insert padding - this may include padding to increase the size of the 1067 // current field up to the ABI size (if the struct is not packed) as well 1068 // as padding to ensure that the next field starts at the right offset. 1069 EmitZeros(padSize, AddrSpace); 1070 } 1071 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 1072 "Layout of constant struct may be incorrect!"); 1073} 1074 1075void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP, 1076 unsigned AddrSpace) { 1077 // FP Constants are printed as integer constants to avoid losing 1078 // precision... 1079 const TargetData *TD = TM.getTargetData(); 1080 if (CFP->getType() == Type::DoubleTy) { 1081 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 1082 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1083 if (TAI->getData64bitsDirective(AddrSpace)) { 1084 O << TAI->getData64bitsDirective(AddrSpace) << i; 1085 if (VerboseAsm) 1086 O << '\t' << TAI->getCommentString() << " double value: " << Val; 1087 O << '\n'; 1088 } else if (TD->isBigEndian()) { 1089 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1090 if (VerboseAsm) 1091 O << '\t' << TAI->getCommentString() 1092 << " double most significant word " << Val; 1093 O << '\n'; 1094 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1095 if (VerboseAsm) 1096 O << '\t' << TAI->getCommentString() 1097 << " double least significant word " << Val; 1098 O << '\n'; 1099 } else { 1100 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1101 if (VerboseAsm) 1102 O << '\t' << TAI->getCommentString() 1103 << " double least significant word " << Val; 1104 O << '\n'; 1105 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1106 if (VerboseAsm) 1107 O << '\t' << TAI->getCommentString() 1108 << " double most significant word " << Val; 1109 O << '\n'; 1110 } 1111 return; 1112 } else if (CFP->getType() == Type::FloatTy) { 1113 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1114 O << TAI->getData32bitsDirective(AddrSpace) 1115 << CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1116 if (VerboseAsm) 1117 O << '\t' << TAI->getCommentString() << " float " << Val; 1118 O << '\n'; 1119 return; 1120 } else if (CFP->getType() == Type::X86_FP80Ty) { 1121 // all long double variants are printed as hex 1122 // api needed to prevent premature destruction 1123 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1124 const uint64_t *p = api.getRawData(); 1125 // Convert to double so we can print the approximate val as a comment. 1126 APFloat DoubleVal = CFP->getValueAPF(); 1127 bool ignored; 1128 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1129 &ignored); 1130 if (TD->isBigEndian()) { 1131 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1132 if (VerboseAsm) 1133 O << '\t' << TAI->getCommentString() 1134 << " long double most significant halfword of ~" 1135 << DoubleVal.convertToDouble(); 1136 O << '\n'; 1137 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1138 if (VerboseAsm) 1139 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1140 O << '\n'; 1141 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1142 if (VerboseAsm) 1143 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1144 O << '\n'; 1145 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1146 if (VerboseAsm) 1147 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1148 O << '\n'; 1149 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1150 if (VerboseAsm) 1151 O << '\t' << TAI->getCommentString() 1152 << " long double least significant halfword"; 1153 O << '\n'; 1154 } else { 1155 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1156 if (VerboseAsm) 1157 O << '\t' << TAI->getCommentString() 1158 << " long double least significant halfword of ~" 1159 << DoubleVal.convertToDouble(); 1160 O << '\n'; 1161 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1162 if (VerboseAsm) 1163 O << '\t' << TAI->getCommentString() 1164 << " long double next halfword"; 1165 O << '\n'; 1166 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1167 if (VerboseAsm) 1168 O << '\t' << TAI->getCommentString() 1169 << " long double next halfword"; 1170 O << '\n'; 1171 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1172 if (VerboseAsm) 1173 O << '\t' << TAI->getCommentString() 1174 << " long double next halfword"; 1175 O << '\n'; 1176 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1177 if (VerboseAsm) 1178 O << '\t' << TAI->getCommentString() 1179 << " long double most significant halfword"; 1180 O << '\n'; 1181 } 1182 EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) - 1183 TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace); 1184 return; 1185 } else if (CFP->getType() == Type::PPC_FP128Ty) { 1186 // all long double variants are printed as hex 1187 // api needed to prevent premature destruction 1188 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1189 const uint64_t *p = api.getRawData(); 1190 if (TD->isBigEndian()) { 1191 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1192 if (VerboseAsm) 1193 O << '\t' << TAI->getCommentString() 1194 << " long double most significant word"; 1195 O << '\n'; 1196 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1197 if (VerboseAsm) 1198 O << '\t' << TAI->getCommentString() 1199 << " long double next word"; 1200 O << '\n'; 1201 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1202 if (VerboseAsm) 1203 O << '\t' << TAI->getCommentString() 1204 << " long double next word"; 1205 O << '\n'; 1206 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1207 if (VerboseAsm) 1208 O << '\t' << TAI->getCommentString() 1209 << " long double least significant word"; 1210 O << '\n'; 1211 } else { 1212 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1213 if (VerboseAsm) 1214 O << '\t' << TAI->getCommentString() 1215 << " long double least significant word"; 1216 O << '\n'; 1217 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1218 if (VerboseAsm) 1219 O << '\t' << TAI->getCommentString() 1220 << " long double next word"; 1221 O << '\n'; 1222 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1223 if (VerboseAsm) 1224 O << '\t' << TAI->getCommentString() 1225 << " long double next word"; 1226 O << '\n'; 1227 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1228 if (VerboseAsm) 1229 O << '\t' << TAI->getCommentString() 1230 << " long double most significant word"; 1231 O << '\n'; 1232 } 1233 return; 1234 } else llvm_unreachable("Floating point constant type not handled"); 1235} 1236 1237void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 1238 unsigned AddrSpace) { 1239 const TargetData *TD = TM.getTargetData(); 1240 unsigned BitWidth = CI->getBitWidth(); 1241 assert(isPowerOf2_32(BitWidth) && 1242 "Non-power-of-2-sized integers not handled!"); 1243 1244 // We don't expect assemblers to support integer data directives 1245 // for more than 64 bits, so we emit the data in at most 64-bit 1246 // quantities at a time. 1247 const uint64_t *RawData = CI->getValue().getRawData(); 1248 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1249 uint64_t Val; 1250 if (TD->isBigEndian()) 1251 Val = RawData[e - i - 1]; 1252 else 1253 Val = RawData[i]; 1254 1255 if (TAI->getData64bitsDirective(AddrSpace)) 1256 O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n'; 1257 else if (TD->isBigEndian()) { 1258 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1259 if (VerboseAsm) 1260 O << '\t' << TAI->getCommentString() 1261 << " Double-word most significant word " << Val; 1262 O << '\n'; 1263 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1264 if (VerboseAsm) 1265 O << '\t' << TAI->getCommentString() 1266 << " Double-word least significant word " << Val; 1267 O << '\n'; 1268 } else { 1269 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1270 if (VerboseAsm) 1271 O << '\t' << TAI->getCommentString() 1272 << " Double-word least significant word " << Val; 1273 O << '\n'; 1274 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1275 if (VerboseAsm) 1276 O << '\t' << TAI->getCommentString() 1277 << " Double-word most significant word " << Val; 1278 O << '\n'; 1279 } 1280 } 1281} 1282 1283/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1284void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1285 const TargetData *TD = TM.getTargetData(); 1286 const Type *type = CV->getType(); 1287 unsigned Size = TD->getTypeAllocSize(type); 1288 1289 if (CV->isNullValue() || isa<UndefValue>(CV)) { 1290 EmitZeros(Size, AddrSpace); 1291 return; 1292 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 1293 EmitGlobalConstantArray(CVA , AddrSpace); 1294 return; 1295 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 1296 EmitGlobalConstantStruct(CVS, AddrSpace); 1297 return; 1298 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1299 EmitGlobalConstantFP(CFP, AddrSpace); 1300 return; 1301 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1302 // Small integers are handled below; large integers are handled here. 1303 if (Size > 4) { 1304 EmitGlobalConstantLargeInt(CI, AddrSpace); 1305 return; 1306 } 1307 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1308 EmitGlobalConstantVector(CP); 1309 return; 1310 } 1311 1312 printDataDirective(type, AddrSpace); 1313 EmitConstantValueOnly(CV); 1314 if (VerboseAsm) { 1315 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1316 SmallString<40> S; 1317 CI->getValue().toStringUnsigned(S, 16); 1318 O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str(); 1319 } 1320 } 1321 O << '\n'; 1322} 1323 1324void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1325 // Target doesn't support this yet! 1326 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1327} 1328 1329/// PrintSpecial - Print information related to the specified machine instr 1330/// that is independent of the operand, and may be independent of the instr 1331/// itself. This can be useful for portably encoding the comment character 1332/// or other bits of target-specific knowledge into the asmstrings. The 1333/// syntax used is ${:comment}. Targets can override this to add support 1334/// for their own strange codes. 1335void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1336 if (!strcmp(Code, "private")) { 1337 O << TAI->getPrivateGlobalPrefix(); 1338 } else if (!strcmp(Code, "comment")) { 1339 if (VerboseAsm) 1340 O << TAI->getCommentString(); 1341 } else if (!strcmp(Code, "uid")) { 1342 // Comparing the address of MI isn't sufficient, because machineinstrs may 1343 // be allocated to the same address across functions. 1344 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1345 1346 // If this is a new LastFn instruction, bump the counter. 1347 if (LastMI != MI || LastFn != ThisF) { 1348 ++Counter; 1349 LastMI = MI; 1350 LastFn = ThisF; 1351 } 1352 O << Counter; 1353 } else { 1354 std::string msg; 1355 raw_string_ostream Msg(msg); 1356 Msg << "Unknown special formatter '" << Code 1357 << "' for machine instr: " << *MI; 1358 llvm_report_error(Msg.str()); 1359 } 1360} 1361 1362/// processDebugLoc - Processes the debug information of each machine 1363/// instruction's DebugLoc. 1364void AsmPrinter::processDebugLoc(DebugLoc DL) { 1365 if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) { 1366 if (!DL.isUnknown()) { 1367 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL); 1368 1369 if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT) 1370 printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col, 1371 DICompileUnit(CurDLT.CompileUnit))); 1372 1373 PrevDLT = CurDLT; 1374 } 1375 } 1376} 1377 1378/// printInlineAsm - This method formats and prints the specified machine 1379/// instruction that is an inline asm. 1380void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1381 unsigned NumOperands = MI->getNumOperands(); 1382 1383 // Count the number of register definitions. 1384 unsigned NumDefs = 0; 1385 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1386 ++NumDefs) 1387 assert(NumDefs != NumOperands-1 && "No asm string?"); 1388 1389 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1390 1391 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1392 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1393 1394 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1395 // These are useful to see where empty asm's wound up. 1396 if (AsmStr[0] == 0) { 1397 O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1398 return; 1399 } 1400 1401 O << TAI->getInlineAsmStart() << "\n\t"; 1402 1403 // The variant of the current asmprinter. 1404 int AsmPrinterVariant = TAI->getAssemblerDialect(); 1405 1406 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1407 const char *LastEmitted = AsmStr; // One past the last character emitted. 1408 1409 while (*LastEmitted) { 1410 switch (*LastEmitted) { 1411 default: { 1412 // Not a special case, emit the string section literally. 1413 const char *LiteralEnd = LastEmitted+1; 1414 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1415 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1416 ++LiteralEnd; 1417 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1418 O.write(LastEmitted, LiteralEnd-LastEmitted); 1419 LastEmitted = LiteralEnd; 1420 break; 1421 } 1422 case '\n': 1423 ++LastEmitted; // Consume newline character. 1424 O << '\n'; // Indent code with newline. 1425 break; 1426 case '$': { 1427 ++LastEmitted; // Consume '$' character. 1428 bool Done = true; 1429 1430 // Handle escapes. 1431 switch (*LastEmitted) { 1432 default: Done = false; break; 1433 case '$': // $$ -> $ 1434 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1435 O << '$'; 1436 ++LastEmitted; // Consume second '$' character. 1437 break; 1438 case '(': // $( -> same as GCC's { character. 1439 ++LastEmitted; // Consume '(' character. 1440 if (CurVariant != -1) { 1441 llvm_report_error("Nested variants found in inline asm string: '" 1442 + std::string(AsmStr) + "'"); 1443 } 1444 CurVariant = 0; // We're in the first variant now. 1445 break; 1446 case '|': 1447 ++LastEmitted; // consume '|' character. 1448 if (CurVariant == -1) 1449 O << '|'; // this is gcc's behavior for | outside a variant 1450 else 1451 ++CurVariant; // We're in the next variant. 1452 break; 1453 case ')': // $) -> same as GCC's } char. 1454 ++LastEmitted; // consume ')' character. 1455 if (CurVariant == -1) 1456 O << '}'; // this is gcc's behavior for } outside a variant 1457 else 1458 CurVariant = -1; 1459 break; 1460 } 1461 if (Done) break; 1462 1463 bool HasCurlyBraces = false; 1464 if (*LastEmitted == '{') { // ${variable} 1465 ++LastEmitted; // Consume '{' character. 1466 HasCurlyBraces = true; 1467 } 1468 1469 // If we have ${:foo}, then this is not a real operand reference, it is a 1470 // "magic" string reference, just like in .td files. Arrange to call 1471 // PrintSpecial. 1472 if (HasCurlyBraces && *LastEmitted == ':') { 1473 ++LastEmitted; 1474 const char *StrStart = LastEmitted; 1475 const char *StrEnd = strchr(StrStart, '}'); 1476 if (StrEnd == 0) { 1477 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '" 1478 + std::string(AsmStr) + "'"); 1479 } 1480 1481 std::string Val(StrStart, StrEnd); 1482 PrintSpecial(MI, Val.c_str()); 1483 LastEmitted = StrEnd+1; 1484 break; 1485 } 1486 1487 const char *IDStart = LastEmitted; 1488 char *IDEnd; 1489 errno = 0; 1490 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1491 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1492 llvm_report_error("Bad $ operand number in inline asm string: '" 1493 + std::string(AsmStr) + "'"); 1494 } 1495 LastEmitted = IDEnd; 1496 1497 char Modifier[2] = { 0, 0 }; 1498 1499 if (HasCurlyBraces) { 1500 // If we have curly braces, check for a modifier character. This 1501 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1502 if (*LastEmitted == ':') { 1503 ++LastEmitted; // Consume ':' character. 1504 if (*LastEmitted == 0) { 1505 llvm_report_error("Bad ${:} expression in inline asm string: '" 1506 + std::string(AsmStr) + "'"); 1507 } 1508 1509 Modifier[0] = *LastEmitted; 1510 ++LastEmitted; // Consume modifier character. 1511 } 1512 1513 if (*LastEmitted != '}') { 1514 llvm_report_error("Bad ${} expression in inline asm string: '" 1515 + std::string(AsmStr) + "'"); 1516 } 1517 ++LastEmitted; // Consume '}' character. 1518 } 1519 1520 if ((unsigned)Val >= NumOperands-1) { 1521 llvm_report_error("Invalid $ operand number in inline asm string: '" 1522 + std::string(AsmStr) + "'"); 1523 } 1524 1525 // Okay, we finally have a value number. Ask the target to print this 1526 // operand! 1527 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1528 unsigned OpNo = 1; 1529 1530 bool Error = false; 1531 1532 // Scan to find the machine operand number for the operand. 1533 for (; Val; --Val) { 1534 if (OpNo >= MI->getNumOperands()) break; 1535 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1536 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1537 } 1538 1539 if (OpNo >= MI->getNumOperands()) { 1540 Error = true; 1541 } else { 1542 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1543 ++OpNo; // Skip over the ID number. 1544 1545 if (Modifier[0]=='l') // labels are target independent 1546 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), 1547 false, false, false); 1548 else { 1549 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1550 if ((OpFlags & 7) == 4) { 1551 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1552 Modifier[0] ? Modifier : 0); 1553 } else { 1554 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1555 Modifier[0] ? Modifier : 0); 1556 } 1557 } 1558 } 1559 if (Error) { 1560 std::string msg; 1561 raw_string_ostream Msg(msg); 1562 Msg << "Invalid operand found in inline asm: '" 1563 << AsmStr << "'\n"; 1564 MI->print(Msg); 1565 llvm_report_error(Msg.str()); 1566 } 1567 } 1568 break; 1569 } 1570 } 1571 } 1572 O << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1573} 1574 1575/// printImplicitDef - This method prints the specified machine instruction 1576/// that is an implicit def. 1577void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1578 if (VerboseAsm) 1579 O << '\t' << TAI->getCommentString() << " implicit-def: " 1580 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; 1581} 1582 1583/// printLabel - This method prints a local label used by debug and 1584/// exception handling tables. 1585void AsmPrinter::printLabel(const MachineInstr *MI) const { 1586 printLabel(MI->getOperand(0).getImm()); 1587} 1588 1589void AsmPrinter::printLabel(unsigned Id) const { 1590 O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; 1591} 1592 1593/// printDeclare - This method prints a local variable declaration used by 1594/// debug tables. 1595/// FIXME: It doesn't really print anything rather it inserts a DebugVariable 1596/// entry into dwarf table. 1597void AsmPrinter::printDeclare(const MachineInstr *MI) const { 1598 unsigned FI = MI->getOperand(0).getIndex(); 1599 GlobalValue *GV = MI->getOperand(1).getGlobal(); 1600 DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI); 1601} 1602 1603/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1604/// instruction, using the specified assembler variant. Targets should 1605/// overried this to format as appropriate. 1606bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1607 unsigned AsmVariant, const char *ExtraCode) { 1608 // Target doesn't support this yet! 1609 return true; 1610} 1611 1612bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1613 unsigned AsmVariant, 1614 const char *ExtraCode) { 1615 // Target doesn't support this yet! 1616 return true; 1617} 1618 1619/// printBasicBlockLabel - This method prints the label for the specified 1620/// MachineBasicBlock 1621void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, 1622 bool printAlign, 1623 bool printColon, 1624 bool printComment) const { 1625 if (printAlign) { 1626 unsigned Align = MBB->getAlignment(); 1627 if (Align) 1628 EmitAlignment(Log2_32(Align)); 1629 } 1630 1631 O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' 1632 << MBB->getNumber(); 1633 if (printColon) 1634 O << ':'; 1635 if (printComment && MBB->getBasicBlock()) 1636 O << '\t' << TAI->getCommentString() << ' ' 1637 << MBB->getBasicBlock()->getNameStr(); 1638} 1639 1640/// printPICJumpTableSetLabel - This method prints a set label for the 1641/// specified MachineBasicBlock for a jumptable entry. 1642void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1643 const MachineBasicBlock *MBB) const { 1644 if (!TAI->getSetDirective()) 1645 return; 1646 1647 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1648 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1649 printBasicBlockLabel(MBB, false, false, false); 1650 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1651 << '_' << uid << '\n'; 1652} 1653 1654void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1655 const MachineBasicBlock *MBB) const { 1656 if (!TAI->getSetDirective()) 1657 return; 1658 1659 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1660 << getFunctionNumber() << '_' << uid << '_' << uid2 1661 << "_set_" << MBB->getNumber() << ','; 1662 printBasicBlockLabel(MBB, false, false, false); 1663 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1664 << '_' << uid << '_' << uid2 << '\n'; 1665} 1666 1667/// printDataDirective - This method prints the asm directive for the 1668/// specified type. 1669void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { 1670 const TargetData *TD = TM.getTargetData(); 1671 switch (type->getTypeID()) { 1672 case Type::FloatTyID: case Type::DoubleTyID: 1673 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1674 assert(0 && "Should have already output floating point constant."); 1675 default: 1676 assert(0 && "Can't handle printing this type of thing"); 1677 case Type::IntegerTyID: { 1678 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1679 if (BitWidth <= 8) 1680 O << TAI->getData8bitsDirective(AddrSpace); 1681 else if (BitWidth <= 16) 1682 O << TAI->getData16bitsDirective(AddrSpace); 1683 else if (BitWidth <= 32) 1684 O << TAI->getData32bitsDirective(AddrSpace); 1685 else if (BitWidth <= 64) { 1686 assert(TAI->getData64bitsDirective(AddrSpace) && 1687 "Target cannot handle 64-bit constant exprs!"); 1688 O << TAI->getData64bitsDirective(AddrSpace); 1689 } else { 1690 llvm_unreachable("Target cannot handle given data directive width!"); 1691 } 1692 break; 1693 } 1694 case Type::PointerTyID: 1695 if (TD->getPointerSize() == 8) { 1696 assert(TAI->getData64bitsDirective(AddrSpace) && 1697 "Target cannot handle 64-bit pointer exprs!"); 1698 O << TAI->getData64bitsDirective(AddrSpace); 1699 } else if (TD->getPointerSize() == 2) { 1700 O << TAI->getData16bitsDirective(AddrSpace); 1701 } else if (TD->getPointerSize() == 1) { 1702 O << TAI->getData8bitsDirective(AddrSpace); 1703 } else { 1704 O << TAI->getData32bitsDirective(AddrSpace); 1705 } 1706 break; 1707 } 1708} 1709 1710void AsmPrinter::printVisibility(const std::string& Name, 1711 unsigned Visibility) const { 1712 if (Visibility == GlobalValue::HiddenVisibility) { 1713 if (const char *Directive = TAI->getHiddenDirective()) 1714 O << Directive << Name << '\n'; 1715 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1716 if (const char *Directive = TAI->getProtectedDirective()) 1717 O << Directive << Name << '\n'; 1718 } 1719} 1720 1721void AsmPrinter::printOffset(int64_t Offset) const { 1722 if (Offset > 0) 1723 O << '+' << Offset; 1724 else if (Offset < 0) 1725 O << Offset; 1726} 1727 1728GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1729 if (!S->usesMetadata()) 1730 return 0; 1731 1732 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1733 if (GCPI != GCMetadataPrinters.end()) 1734 return GCPI->second; 1735 1736 const char *Name = S->getName().c_str(); 1737 1738 for (GCMetadataPrinterRegistry::iterator 1739 I = GCMetadataPrinterRegistry::begin(), 1740 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1741 if (strcmp(Name, I->getName()) == 0) { 1742 GCMetadataPrinter *GMP = I->instantiate(); 1743 GMP->S = S; 1744 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1745 return GMP; 1746 } 1747 1748 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1749 llvm_unreachable(0); 1750} 1751 1752/// EmitComments - Pretty-print comments for instructions 1753void AsmPrinter::EmitComments(const MachineInstr &MI) const 1754{ 1755 if (VerboseAsm) { 1756 if (!MI.getDebugLoc().isUnknown()) { 1757 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); 1758 1759 // Print source line info 1760 O.PadToColumn(TAI->getCommentColumn(), 1); 1761 O << TAI->getCommentString() << " SrcLine "; 1762 if (DLT.CompileUnit->hasInitializer()) { 1763 Constant *Name = DLT.CompileUnit->getInitializer(); 1764 if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name)) 1765 if (NameString->isString()) { 1766 O << NameString->getAsString() << " "; 1767 } 1768 } 1769 O << DLT.Line; 1770 if (DLT.Col != 0) 1771 O << ":" << DLT.Col; 1772 } 1773 } 1774} 1775 1776/// EmitComments - Pretty-print comments for instructions 1777void AsmPrinter::EmitComments(const MCInst &MI) const 1778{ 1779 if (VerboseAsm) { 1780 if (!MI.getDebugLoc().isUnknown()) { 1781 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); 1782 1783 // Print source line info 1784 O.PadToColumn(TAI->getCommentColumn(), 1); 1785 O << TAI->getCommentString() << " SrcLine "; 1786 if (DLT.CompileUnit->hasInitializer()) { 1787 Constant *Name = DLT.CompileUnit->getInitializer(); 1788 if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name)) 1789 if (NameString->isString()) { 1790 O << NameString->getAsString() << " "; 1791 } 1792 } 1793 O << DLT.Line; 1794 if (DLT.Col != 0) 1795 O << ":" << DLT.Col; 1796 } 1797 } 1798} 1799