AsmPrinter.cpp revision b5a32e2e8ce2f3de3a340c5a2dfcd3a159968466
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/Support/Mangler.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Target/TargetAsmInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34#include <cerrno>
35using namespace llvm;
36
37char AsmPrinter::ID = 0;
38AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
39                       const TargetAsmInfo *T)
40  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
41    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
42    IsInTextSection(false)
43{}
44
45AsmPrinter::~AsmPrinter() {
46  for (gcp_iterator I = GCMetadataPrinters.begin(),
47                    E = GCMetadataPrinters.end(); I != E; ++I)
48    delete I->second;
49}
50
51std::string AsmPrinter::getSectionForFunction(const Function &F) const {
52  return TAI->getTextSection();
53}
54
55
56/// SwitchToTextSection - Switch to the specified text section of the executable
57/// if we are not already in it!
58///
59void AsmPrinter::SwitchToTextSection(const char *NewSection,
60                                     const GlobalValue *GV) {
61  std::string NS;
62  if (GV && GV->hasSection())
63    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
64  else
65    NS = NewSection;
66
67  // If we're already in this section, we're done.
68  if (CurrentSection == NS) return;
69
70  // Close the current section, if applicable.
71  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
72    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
73
74  CurrentSection = NS;
75
76  if (!CurrentSection.empty())
77    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
78
79  IsInTextSection = true;
80}
81
82/// SwitchToDataSection - Switch to the specified data section of the executable
83/// if we are not already in it!
84///
85void AsmPrinter::SwitchToDataSection(const char *NewSection,
86                                     const GlobalValue *GV) {
87  std::string NS;
88  if (GV && GV->hasSection())
89    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
90  else
91    NS = NewSection;
92
93  // If we're already in this section, we're done.
94  if (CurrentSection == NS) return;
95
96  // Close the current section, if applicable.
97  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
98    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
99
100  CurrentSection = NS;
101
102  if (!CurrentSection.empty())
103    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
104
105  IsInTextSection = false;
106}
107
108/// SwitchToSection - Switch to the specified section of the executable if we
109/// are not already in it!
110void AsmPrinter::SwitchToSection(const Section* NS) {
111  const std::string& NewSection = NS->getName();
112
113  // If we're already in this section, we're done.
114  if (CurrentSection == NewSection) return;
115
116  // Close the current section, if applicable.
117  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
118    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
119
120  // FIXME: Make CurrentSection a Section* in the future
121  CurrentSection = NewSection;
122
123  if (!CurrentSection.empty())
124    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
125
126  IsInTextSection = (NS->getFlags() & SectionFlags::Code);
127}
128
129void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
130  MachineFunctionPass::getAnalysisUsage(AU);
131  AU.addRequired<GCModuleInfo>();
132}
133
134bool AsmPrinter::doInitialization(Module &M) {
135  Mang = new Mangler(M, TAI->getGlobalPrefix());
136
137  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
138  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
139  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
140    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
141      MP->beginAssembly(O, *this, *TAI);
142
143  if (!M.getModuleInlineAsm().empty())
144    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
145      << M.getModuleInlineAsm()
146      << '\n' << TAI->getCommentString()
147      << " End of file scope inline assembly\n";
148
149  SwitchToDataSection("");   // Reset back to no section.
150
151  MMI = getAnalysisToUpdate<MachineModuleInfo>();
152  if (MMI) MMI->AnalyzeModule(M);
153
154  return false;
155}
156
157bool AsmPrinter::doFinalization(Module &M) {
158  if (TAI->getWeakRefDirective()) {
159    if (!ExtWeakSymbols.empty())
160      SwitchToDataSection("");
161
162    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
163         e = ExtWeakSymbols.end(); i != e; ++i) {
164      const GlobalValue *GV = *i;
165      std::string Name = Mang->getValueName(GV);
166      O << TAI->getWeakRefDirective() << Name << '\n';
167    }
168  }
169
170  if (TAI->getSetDirective()) {
171    if (!M.alias_empty())
172      SwitchToTextSection(TAI->getTextSection());
173
174    O << '\n';
175    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
176         I!=E; ++I) {
177      std::string Name = Mang->getValueName(I);
178      std::string Target;
179
180      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
181      Target = Mang->getValueName(GV);
182
183      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
184        O << "\t.globl\t" << Name << '\n';
185      else if (I->hasWeakLinkage())
186        O << TAI->getWeakRefDirective() << Name << '\n';
187      else if (!I->hasInternalLinkage())
188        assert(0 && "Invalid alias linkage");
189
190      if (I->hasHiddenVisibility()) {
191        if (const char *Directive = TAI->getHiddenDirective())
192          O << Directive << Name << '\n';
193      } else if (I->hasProtectedVisibility()) {
194        if (const char *Directive = TAI->getProtectedDirective())
195          O << Directive << Name << '\n';
196      }
197
198      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
199
200      // If the aliasee has external weak linkage it can be referenced only by
201      // alias itself. In this case it can be not in ExtWeakSymbols list. Emit
202      // weak reference in such case.
203      if (GV->hasExternalWeakLinkage()) {
204        if (TAI->getWeakRefDirective())
205          O << TAI->getWeakRefDirective() << Target << '\n';
206        else
207          O << "\t.globl\t" << Target << '\n';
208      }
209    }
210  }
211
212  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
213  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
214  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
215    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
216      MP->finishAssembly(O, *this, *TAI);
217
218  // If we don't have any trampolines, then we don't require stack memory
219  // to be executable. Some targets have a directive to declare this.
220  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
221  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
222    if (TAI->getNonexecutableStackDirective())
223      O << TAI->getNonexecutableStackDirective() << '\n';
224
225  delete Mang; Mang = 0;
226  return false;
227}
228
229std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
230  assert(MF && "No machine function?");
231  std::string Name = MF->getFunction()->getName();
232  if (Name.empty())
233    Name = Mang->getValueName(MF->getFunction());
234  return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix());
235}
236
237void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
238  // What's my mangled name?
239  CurrentFnName = Mang->getValueName(MF.getFunction());
240  IncrementFunctionNumber();
241}
242
243/// EmitConstantPool - Print to the current output stream assembly
244/// representations of the constants in the constant pool MCP. This is
245/// used to print out constants which have been "spilled to memory" by
246/// the code generator.
247///
248void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
249  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
250  if (CP.empty()) return;
251
252  // Some targets require 4-, 8-, and 16- byte constant literals to be placed
253  // in special sections.
254  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > FourByteCPs;
255  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > EightByteCPs;
256  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > SixteenByteCPs;
257  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > OtherCPs;
258  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > TargetCPs;
259  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
260    MachineConstantPoolEntry CPE = CP[i];
261    const Type *Ty = CPE.getType();
262    if (TAI->getFourByteConstantSection() &&
263        TM.getTargetData()->getABITypeSize(Ty) == 4)
264      FourByteCPs.push_back(std::make_pair(CPE, i));
265    else if (TAI->getEightByteConstantSection() &&
266             TM.getTargetData()->getABITypeSize(Ty) == 8)
267      EightByteCPs.push_back(std::make_pair(CPE, i));
268    else if (TAI->getSixteenByteConstantSection() &&
269             TM.getTargetData()->getABITypeSize(Ty) == 16)
270      SixteenByteCPs.push_back(std::make_pair(CPE, i));
271    else
272      OtherCPs.push_back(std::make_pair(CPE, i));
273  }
274
275  unsigned Alignment = MCP->getConstantPoolAlignment();
276  EmitConstantPool(Alignment, TAI->getFourByteConstantSection(), FourByteCPs);
277  EmitConstantPool(Alignment, TAI->getEightByteConstantSection(), EightByteCPs);
278  EmitConstantPool(Alignment, TAI->getSixteenByteConstantSection(),
279                   SixteenByteCPs);
280  EmitConstantPool(Alignment, TAI->getConstantPoolSection(), OtherCPs);
281}
282
283void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section,
284               std::vector<std::pair<MachineConstantPoolEntry,unsigned> > &CP) {
285  if (CP.empty()) return;
286
287  SwitchToDataSection(Section);
288  EmitAlignment(Alignment);
289  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
290    O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
291      << CP[i].second << ":\t\t\t\t\t";
292    // O << TAI->getCommentString() << ' ' <<
293    //      WriteTypeSymbolic(O, CP[i].first.getType(), 0);
294    O << '\n';
295    if (CP[i].first.isMachineConstantPoolEntry())
296      EmitMachineConstantPoolValue(CP[i].first.Val.MachineCPVal);
297     else
298      EmitGlobalConstant(CP[i].first.Val.ConstVal);
299    if (i != e-1) {
300      const Type *Ty = CP[i].first.getType();
301      unsigned EntSize =
302        TM.getTargetData()->getABITypeSize(Ty);
303      unsigned ValEnd = CP[i].first.getOffset() + EntSize;
304      // Emit inter-object padding for alignment.
305      EmitZeros(CP[i+1].first.getOffset()-ValEnd);
306    }
307  }
308}
309
310/// EmitJumpTableInfo - Print assembly representations of the jump tables used
311/// by the current function to the current output stream.
312///
313void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
314                                   MachineFunction &MF) {
315  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
316  if (JT.empty()) return;
317
318  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
319
320  // Pick the directive to use to print the jump table entries, and switch to
321  // the appropriate section.
322  TargetLowering *LoweringInfo = TM.getTargetLowering();
323
324  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
325  const Function *F = MF.getFunction();
326  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
327  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
328     !JumpTableDataSection ||
329      SectionFlags & SectionFlags::Linkonce) {
330    // In PIC mode, we need to emit the jump table to the same section as the
331    // function body itself, otherwise the label differences won't make sense.
332    // We should also do if the section name is NULL or function is declared in
333    // discardable section.
334    SwitchToTextSection(getSectionForFunction(*F).c_str(), F);
335  } else {
336    SwitchToDataSection(JumpTableDataSection);
337  }
338
339  EmitAlignment(Log2_32(MJTI->getAlignment()));
340
341  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
342    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
343
344    // If this jump table was deleted, ignore it.
345    if (JTBBs.empty()) continue;
346
347    // For PIC codegen, if possible we want to use the SetDirective to reduce
348    // the number of relocations the assembler will generate for the jump table.
349    // Set directives are all printed before the jump table itself.
350    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
351    if (TAI->getSetDirective() && IsPic)
352      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
353        if (EmittedSets.insert(JTBBs[ii]))
354          printPICJumpTableSetLabel(i, JTBBs[ii]);
355
356    // On some targets (e.g. darwin) we want to emit two consequtive labels
357    // before each jump table.  The first label is never referenced, but tells
358    // the assembler and linker the extents of the jump table object.  The
359    // second label is actually referenced by the code.
360    if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
361      O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
362
363    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
364      << '_' << i << ":\n";
365
366    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
367      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
368      O << '\n';
369    }
370  }
371}
372
373void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
374                                        const MachineBasicBlock *MBB,
375                                        unsigned uid)  const {
376  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
377
378  // Use JumpTableDirective otherwise honor the entry size from the jump table
379  // info.
380  const char *JTEntryDirective = TAI->getJumpTableDirective();
381  bool HadJTEntryDirective = JTEntryDirective != NULL;
382  if (!HadJTEntryDirective) {
383    JTEntryDirective = MJTI->getEntrySize() == 4 ?
384      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
385  }
386
387  O << JTEntryDirective << ' ';
388
389  // If we have emitted set directives for the jump table entries, print
390  // them rather than the entries themselves.  If we're emitting PIC, then
391  // emit the table entries as differences between two text section labels.
392  // If we're emitting non-PIC code, then emit the entries as direct
393  // references to the target basic blocks.
394  if (IsPic) {
395    if (TAI->getSetDirective()) {
396      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
397        << '_' << uid << "_set_" << MBB->getNumber();
398    } else {
399      printBasicBlockLabel(MBB, false, false, false);
400      // If the arch uses custom Jump Table directives, don't calc relative to
401      // JT
402      if (!HadJTEntryDirective)
403        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
404          << getFunctionNumber() << '_' << uid;
405    }
406  } else {
407    printBasicBlockLabel(MBB, false, false, false);
408  }
409}
410
411
412/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
413/// special global used by LLVM.  If so, emit it and return true, otherwise
414/// do nothing and return false.
415bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
416  if (GV->getName() == "llvm.used") {
417    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
418      EmitLLVMUsedList(GV->getInitializer());
419    return true;
420  }
421
422  // Ignore debug and non-emitted data.
423  if (GV->getSection() == "llvm.metadata") return true;
424
425  if (!GV->hasAppendingLinkage()) return false;
426
427  assert(GV->hasInitializer() && "Not a special LLVM global!");
428
429  const TargetData *TD = TM.getTargetData();
430  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
431  if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
432    SwitchToDataSection(TAI->getStaticCtorsSection());
433    EmitAlignment(Align, 0);
434    EmitXXStructorList(GV->getInitializer());
435    return true;
436  }
437
438  if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
439    SwitchToDataSection(TAI->getStaticDtorsSection());
440    EmitAlignment(Align, 0);
441    EmitXXStructorList(GV->getInitializer());
442    return true;
443  }
444
445  return false;
446}
447
448/// findGlobalValue - if CV is an expression equivalent to a single
449/// global value, return that value.
450const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
451  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
452    return GV;
453  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
454    const TargetData *TD = TM.getTargetData();
455    unsigned Opcode = CE->getOpcode();
456    switch (Opcode) {
457    case Instruction::GetElementPtr: {
458      const Constant *ptrVal = CE->getOperand(0);
459      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
460      if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
461        return 0;
462      return findGlobalValue(ptrVal);
463    }
464    case Instruction::BitCast:
465      return findGlobalValue(CE->getOperand(0));
466    default:
467      return 0;
468    }
469  }
470  return 0;
471}
472
473/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
474/// global in the specified llvm.used list for which emitUsedDirectiveFor
475/// is true, as being used with this directive.
476
477void AsmPrinter::EmitLLVMUsedList(Constant *List) {
478  const char *Directive = TAI->getUsedDirective();
479
480  // Should be an array of 'sbyte*'.
481  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
482  if (InitList == 0) return;
483
484  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
485    const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
486    if (TAI->emitUsedDirectiveFor(GV, Mang)) {
487      O << Directive;
488      EmitConstantValueOnly(InitList->getOperand(i));
489      O << '\n';
490    }
491  }
492}
493
494/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
495/// function pointers, ignoring the init priority.
496void AsmPrinter::EmitXXStructorList(Constant *List) {
497  // Should be an array of '{ int, void ()* }' structs.  The first value is the
498  // init priority, which we ignore.
499  if (!isa<ConstantArray>(List)) return;
500  ConstantArray *InitList = cast<ConstantArray>(List);
501  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
502    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
503      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
504
505      if (CS->getOperand(1)->isNullValue())
506        return;  // Found a null terminator, exit printing.
507      // Emit the function pointer.
508      EmitGlobalConstant(CS->getOperand(1));
509    }
510}
511
512/// getGlobalLinkName - Returns the asm/link name of of the specified
513/// global variable.  Should be overridden by each target asm printer to
514/// generate the appropriate value.
515const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
516  std::string LinkName;
517
518  if (isa<Function>(GV)) {
519    LinkName += TAI->getFunctionAddrPrefix();
520    LinkName += Mang->getValueName(GV);
521    LinkName += TAI->getFunctionAddrSuffix();
522  } else {
523    LinkName += TAI->getGlobalVarAddrPrefix();
524    LinkName += Mang->getValueName(GV);
525    LinkName += TAI->getGlobalVarAddrSuffix();
526  }
527
528  return LinkName;
529}
530
531/// EmitExternalGlobal - Emit the external reference to a global variable.
532/// Should be overridden if an indirect reference should be used.
533void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
534  O << getGlobalLinkName(GV);
535}
536
537
538
539//===----------------------------------------------------------------------===//
540/// LEB 128 number encoding.
541
542/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
543/// representing an unsigned leb128 value.
544void AsmPrinter::PrintULEB128(unsigned Value) const {
545  do {
546    unsigned Byte = Value & 0x7f;
547    Value >>= 7;
548    if (Value) Byte |= 0x80;
549    O << "0x" <<  utohexstr(Byte);
550    if (Value) O << ", ";
551  } while (Value);
552}
553
554/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
555/// representing a signed leb128 value.
556void AsmPrinter::PrintSLEB128(int Value) const {
557  int Sign = Value >> (8 * sizeof(Value) - 1);
558  bool IsMore;
559
560  do {
561    unsigned Byte = Value & 0x7f;
562    Value >>= 7;
563    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
564    if (IsMore) Byte |= 0x80;
565    O << "0x" << utohexstr(Byte);
566    if (IsMore) O << ", ";
567  } while (IsMore);
568}
569
570//===--------------------------------------------------------------------===//
571// Emission and print routines
572//
573
574/// PrintHex - Print a value as a hexidecimal value.
575///
576void AsmPrinter::PrintHex(int Value) const {
577  O << "0x" << utohexstr(static_cast<unsigned>(Value));
578}
579
580/// EOL - Print a newline character to asm stream.  If a comment is present
581/// then it will be printed first.  Comments should not contain '\n'.
582void AsmPrinter::EOL() const {
583  O << '\n';
584}
585
586void AsmPrinter::EOL(const std::string &Comment) const {
587  if (VerboseAsm && !Comment.empty()) {
588    O << '\t'
589      << TAI->getCommentString()
590      << ' '
591      << Comment;
592  }
593  O << '\n';
594}
595
596void AsmPrinter::EOL(const char* Comment) const {
597  if (VerboseAsm && *Comment) {
598    O << '\t'
599      << TAI->getCommentString()
600      << ' '
601      << Comment;
602  }
603  O << '\n';
604}
605
606/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
607/// unsigned leb128 value.
608void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
609  if (TAI->hasLEB128()) {
610    O << "\t.uleb128\t"
611      << Value;
612  } else {
613    O << TAI->getData8bitsDirective();
614    PrintULEB128(Value);
615  }
616}
617
618/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
619/// signed leb128 value.
620void AsmPrinter::EmitSLEB128Bytes(int Value) const {
621  if (TAI->hasLEB128()) {
622    O << "\t.sleb128\t"
623      << Value;
624  } else {
625    O << TAI->getData8bitsDirective();
626    PrintSLEB128(Value);
627  }
628}
629
630/// EmitInt8 - Emit a byte directive and value.
631///
632void AsmPrinter::EmitInt8(int Value) const {
633  O << TAI->getData8bitsDirective();
634  PrintHex(Value & 0xFF);
635}
636
637/// EmitInt16 - Emit a short directive and value.
638///
639void AsmPrinter::EmitInt16(int Value) const {
640  O << TAI->getData16bitsDirective();
641  PrintHex(Value & 0xFFFF);
642}
643
644/// EmitInt32 - Emit a long directive and value.
645///
646void AsmPrinter::EmitInt32(int Value) const {
647  O << TAI->getData32bitsDirective();
648  PrintHex(Value);
649}
650
651/// EmitInt64 - Emit a long long directive and value.
652///
653void AsmPrinter::EmitInt64(uint64_t Value) const {
654  if (TAI->getData64bitsDirective()) {
655    O << TAI->getData64bitsDirective();
656    PrintHex(Value);
657  } else {
658    if (TM.getTargetData()->isBigEndian()) {
659      EmitInt32(unsigned(Value >> 32)); O << '\n';
660      EmitInt32(unsigned(Value));
661    } else {
662      EmitInt32(unsigned(Value)); O << '\n';
663      EmitInt32(unsigned(Value >> 32));
664    }
665  }
666}
667
668/// toOctal - Convert the low order bits of X into an octal digit.
669///
670static inline char toOctal(int X) {
671  return (X&7)+'0';
672}
673
674/// printStringChar - Print a char, escaped if necessary.
675///
676static void printStringChar(raw_ostream &O, char C) {
677  if (C == '"') {
678    O << "\\\"";
679  } else if (C == '\\') {
680    O << "\\\\";
681  } else if (isprint(C)) {
682    O << C;
683  } else {
684    switch(C) {
685    case '\b': O << "\\b"; break;
686    case '\f': O << "\\f"; break;
687    case '\n': O << "\\n"; break;
688    case '\r': O << "\\r"; break;
689    case '\t': O << "\\t"; break;
690    default:
691      O << '\\';
692      O << toOctal(C >> 6);
693      O << toOctal(C >> 3);
694      O << toOctal(C >> 0);
695      break;
696    }
697  }
698}
699
700/// EmitString - Emit a string with quotes and a null terminator.
701/// Special characters are emitted properly.
702/// \literal (Eg. '\t') \endliteral
703void AsmPrinter::EmitString(const std::string &String) const {
704  const char* AscizDirective = TAI->getAscizDirective();
705  if (AscizDirective)
706    O << AscizDirective;
707  else
708    O << TAI->getAsciiDirective();
709  O << '\"';
710  for (unsigned i = 0, N = String.size(); i < N; ++i) {
711    unsigned char C = String[i];
712    printStringChar(O, C);
713  }
714  if (AscizDirective)
715    O << '\"';
716  else
717    O << "\\0\"";
718}
719
720
721/// EmitFile - Emit a .file directive.
722void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
723  O << "\t.file\t" << Number << " \"";
724  for (unsigned i = 0, N = Name.size(); i < N; ++i) {
725    unsigned char C = Name[i];
726    printStringChar(O, C);
727  }
728  O << '\"';
729}
730
731
732//===----------------------------------------------------------------------===//
733
734// EmitAlignment - Emit an alignment directive to the specified power of
735// two boundary.  For example, if you pass in 3 here, you will get an 8
736// byte alignment.  If a global value is specified, and if that global has
737// an explicit alignment requested, it will unconditionally override the
738// alignment request.  However, if ForcedAlignBits is specified, this value
739// has final say: the ultimate alignment will be the max of ForcedAlignBits
740// and the alignment computed with NumBits and the global.
741//
742// The algorithm is:
743//     Align = NumBits;
744//     if (GV && GV->hasalignment) Align = GV->getalignment();
745//     Align = std::max(Align, ForcedAlignBits);
746//
747void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
748                               unsigned ForcedAlignBits,
749                               bool UseFillExpr) const {
750  if (GV && GV->getAlignment())
751    NumBits = Log2_32(GV->getAlignment());
752  NumBits = std::max(NumBits, ForcedAlignBits);
753
754  if (NumBits == 0) return;   // No need to emit alignment.
755  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
756  O << TAI->getAlignDirective() << NumBits;
757
758  unsigned FillValue = TAI->getTextAlignFillValue();
759  UseFillExpr &= IsInTextSection && FillValue;
760  if (UseFillExpr) O << ",0x" << utohexstr(FillValue);
761  O << '\n';
762}
763
764
765/// EmitZeros - Emit a block of zeros.
766///
767void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
768  if (NumZeros) {
769    if (TAI->getZeroDirective()) {
770      O << TAI->getZeroDirective() << NumZeros;
771      if (TAI->getZeroDirectiveSuffix())
772        O << TAI->getZeroDirectiveSuffix();
773      O << '\n';
774    } else {
775      for (; NumZeros; --NumZeros)
776        O << TAI->getData8bitsDirective() << "0\n";
777    }
778  }
779}
780
781// Print out the specified constant, without a storage class.  Only the
782// constants valid in constant expressions can occur here.
783void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
784  if (CV->isNullValue() || isa<UndefValue>(CV))
785    O << '0';
786  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
787    O << CI->getZExtValue();
788  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
789    // This is a constant address for a global variable or function. Use the
790    // name of the variable or function as the address value, possibly
791    // decorating it with GlobalVarAddrPrefix/Suffix or
792    // FunctionAddrPrefix/Suffix (these all default to "" )
793    if (isa<Function>(GV)) {
794      O << TAI->getFunctionAddrPrefix()
795        << Mang->getValueName(GV)
796        << TAI->getFunctionAddrSuffix();
797    } else {
798      O << TAI->getGlobalVarAddrPrefix()
799        << Mang->getValueName(GV)
800        << TAI->getGlobalVarAddrSuffix();
801    }
802  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
803    const TargetData *TD = TM.getTargetData();
804    unsigned Opcode = CE->getOpcode();
805    switch (Opcode) {
806    case Instruction::GetElementPtr: {
807      // generate a symbolic expression for the byte address
808      const Constant *ptrVal = CE->getOperand(0);
809      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
810      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
811                                                idxVec.size())) {
812        if (Offset)
813          O << '(';
814        EmitConstantValueOnly(ptrVal);
815        if (Offset > 0)
816          O << ") + " << Offset;
817        else if (Offset < 0)
818          O << ") - " << -Offset;
819      } else {
820        EmitConstantValueOnly(ptrVal);
821      }
822      break;
823    }
824    case Instruction::Trunc:
825    case Instruction::ZExt:
826    case Instruction::SExt:
827    case Instruction::FPTrunc:
828    case Instruction::FPExt:
829    case Instruction::UIToFP:
830    case Instruction::SIToFP:
831    case Instruction::FPToUI:
832    case Instruction::FPToSI:
833      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
834      break;
835    case Instruction::BitCast:
836      return EmitConstantValueOnly(CE->getOperand(0));
837
838    case Instruction::IntToPtr: {
839      // Handle casts to pointers by changing them into casts to the appropriate
840      // integer type.  This promotes constant folding and simplifies this code.
841      Constant *Op = CE->getOperand(0);
842      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
843      return EmitConstantValueOnly(Op);
844    }
845
846
847    case Instruction::PtrToInt: {
848      // Support only foldable casts to/from pointers that can be eliminated by
849      // changing the pointer to the appropriately sized integer type.
850      Constant *Op = CE->getOperand(0);
851      const Type *Ty = CE->getType();
852
853      // We can emit the pointer value into this slot if the slot is an
854      // integer slot greater or equal to the size of the pointer.
855      if (TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType()))
856        return EmitConstantValueOnly(Op);
857
858      O << "((";
859      EmitConstantValueOnly(Op);
860      APInt ptrMask = APInt::getAllOnesValue(TD->getABITypeSizeInBits(Ty));
861
862      SmallString<40> S;
863      ptrMask.toStringUnsigned(S);
864      O << ") & " << S.c_str() << ')';
865      break;
866    }
867    case Instruction::Add:
868    case Instruction::Sub:
869    case Instruction::And:
870    case Instruction::Or:
871    case Instruction::Xor:
872      O << '(';
873      EmitConstantValueOnly(CE->getOperand(0));
874      O << ')';
875      switch (Opcode) {
876      case Instruction::Add:
877       O << " + ";
878       break;
879      case Instruction::Sub:
880       O << " - ";
881       break;
882      case Instruction::And:
883       O << " & ";
884       break;
885      case Instruction::Or:
886       O << " | ";
887       break;
888      case Instruction::Xor:
889       O << " ^ ";
890       break;
891      default:
892       break;
893      }
894      O << '(';
895      EmitConstantValueOnly(CE->getOperand(1));
896      O << ')';
897      break;
898    default:
899      assert(0 && "Unsupported operator!");
900    }
901  } else {
902    assert(0 && "Unknown constant value!");
903  }
904}
905
906/// printAsCString - Print the specified array as a C compatible string, only if
907/// the predicate isString is true.
908///
909static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
910                           unsigned LastElt) {
911  assert(CVA->isString() && "Array is not string compatible!");
912
913  O << '\"';
914  for (unsigned i = 0; i != LastElt; ++i) {
915    unsigned char C =
916        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
917    printStringChar(O, C);
918  }
919  O << '\"';
920}
921
922/// EmitString - Emit a zero-byte-terminated string constant.
923///
924void AsmPrinter::EmitString(const ConstantArray *CVA) const {
925  unsigned NumElts = CVA->getNumOperands();
926  if (TAI->getAscizDirective() && NumElts &&
927      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
928    O << TAI->getAscizDirective();
929    printAsCString(O, CVA, NumElts-1);
930  } else {
931    O << TAI->getAsciiDirective();
932    printAsCString(O, CVA, NumElts);
933  }
934  O << '\n';
935}
936
937/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
938void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
939  const TargetData *TD = TM.getTargetData();
940  unsigned Size = TD->getABITypeSize(CV->getType());
941
942  if (CV->isNullValue() || isa<UndefValue>(CV)) {
943    EmitZeros(Size);
944    return;
945  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
946    if (CVA->isString()) {
947      EmitString(CVA);
948    } else { // Not a string.  Print the values in successive locations
949      for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
950        EmitGlobalConstant(CVA->getOperand(i));
951    }
952    return;
953  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
954    // Print the fields in successive locations. Pad to align if needed!
955    const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
956    uint64_t sizeSoFar = 0;
957    for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
958      const Constant* field = CVS->getOperand(i);
959
960      // Check if padding is needed and insert one or more 0s.
961      uint64_t fieldSize = TD->getABITypeSize(field->getType());
962      uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
963                          - cvsLayout->getElementOffset(i)) - fieldSize;
964      sizeSoFar += fieldSize + padSize;
965
966      // Now print the actual field value.
967      EmitGlobalConstant(field);
968
969      // Insert padding - this may include padding to increase the size of the
970      // current field up to the ABI size (if the struct is not packed) as well
971      // as padding to ensure that the next field starts at the right offset.
972      EmitZeros(padSize);
973    }
974    assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
975           "Layout of constant struct may be incorrect!");
976    return;
977  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
978    // FP Constants are printed as integer constants to avoid losing
979    // precision...
980    if (CFP->getType() == Type::DoubleTy) {
981      double Val = CFP->getValueAPF().convertToDouble();  // for comment only
982      uint64_t i = CFP->getValueAPF().convertToAPInt().getZExtValue();
983      if (TAI->getData64bitsDirective())
984        O << TAI->getData64bitsDirective() << i << '\t'
985          << TAI->getCommentString() << " double value: " << Val << '\n';
986      else if (TD->isBigEndian()) {
987        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
988          << '\t' << TAI->getCommentString()
989          << " double most significant word " << Val << '\n';
990        O << TAI->getData32bitsDirective() << unsigned(i)
991          << '\t' << TAI->getCommentString()
992          << " double least significant word " << Val << '\n';
993      } else {
994        O << TAI->getData32bitsDirective() << unsigned(i)
995          << '\t' << TAI->getCommentString()
996          << " double least significant word " << Val << '\n';
997        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
998          << '\t' << TAI->getCommentString()
999          << " double most significant word " << Val << '\n';
1000      }
1001      return;
1002    } else if (CFP->getType() == Type::FloatTy) {
1003      float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1004      O << TAI->getData32bitsDirective()
1005        << CFP->getValueAPF().convertToAPInt().getZExtValue()
1006        << '\t' << TAI->getCommentString() << " float " << Val << '\n';
1007      return;
1008    } else if (CFP->getType() == Type::X86_FP80Ty) {
1009      // all long double variants are printed as hex
1010      // api needed to prevent premature destruction
1011      APInt api = CFP->getValueAPF().convertToAPInt();
1012      const uint64_t *p = api.getRawData();
1013      APFloat DoubleVal = CFP->getValueAPF();
1014      DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
1015      if (TD->isBigEndian()) {
1016        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1017          << '\t' << TAI->getCommentString()
1018          << " long double most significant halfword of ~"
1019          << DoubleVal.convertToDouble() << '\n';
1020        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1021          << '\t' << TAI->getCommentString()
1022          << " long double next halfword\n";
1023        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1024          << '\t' << TAI->getCommentString()
1025          << " long double next halfword\n";
1026        O << TAI->getData16bitsDirective() << uint16_t(p[0])
1027          << '\t' << TAI->getCommentString()
1028          << " long double next halfword\n";
1029        O << TAI->getData16bitsDirective() << uint16_t(p[1])
1030          << '\t' << TAI->getCommentString()
1031          << " long double least significant halfword\n";
1032       } else {
1033        O << TAI->getData16bitsDirective() << uint16_t(p[1])
1034          << '\t' << TAI->getCommentString()
1035          << " long double least significant halfword of ~"
1036          << DoubleVal.convertToDouble() << '\n';
1037        O << TAI->getData16bitsDirective() << uint16_t(p[0])
1038          << '\t' << TAI->getCommentString()
1039          << " long double next halfword\n";
1040        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1041          << '\t' << TAI->getCommentString()
1042          << " long double next halfword\n";
1043        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1044          << '\t' << TAI->getCommentString()
1045          << " long double next halfword\n";
1046        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1047          << '\t' << TAI->getCommentString()
1048          << " long double most significant halfword\n";
1049      }
1050      EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty));
1051      return;
1052    } else if (CFP->getType() == Type::PPC_FP128Ty) {
1053      // all long double variants are printed as hex
1054      // api needed to prevent premature destruction
1055      APInt api = CFP->getValueAPF().convertToAPInt();
1056      const uint64_t *p = api.getRawData();
1057      if (TD->isBigEndian()) {
1058        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1059          << '\t' << TAI->getCommentString()
1060          << " long double most significant word\n";
1061        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1062          << '\t' << TAI->getCommentString()
1063          << " long double next word\n";
1064        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1065          << '\t' << TAI->getCommentString()
1066          << " long double next word\n";
1067        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1068          << '\t' << TAI->getCommentString()
1069          << " long double least significant word\n";
1070       } else {
1071        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1072          << '\t' << TAI->getCommentString()
1073          << " long double least significant word\n";
1074        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1075          << '\t' << TAI->getCommentString()
1076          << " long double next word\n";
1077        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1078          << '\t' << TAI->getCommentString()
1079          << " long double next word\n";
1080        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1081          << '\t' << TAI->getCommentString()
1082          << " long double most significant word\n";
1083      }
1084      return;
1085    } else assert(0 && "Floating point constant type not handled");
1086  } else if (CV->getType()->isInteger() &&
1087             cast<IntegerType>(CV->getType())->getBitWidth() >= 64) {
1088    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1089      unsigned BitWidth = CI->getBitWidth();
1090      assert(isPowerOf2_32(BitWidth) &&
1091             "Non-power-of-2-sized integers not handled!");
1092
1093      // We don't expect assemblers to support integer data directives
1094      // for more than 64 bits, so we emit the data in at most 64-bit
1095      // quantities at a time.
1096      const uint64_t *RawData = CI->getValue().getRawData();
1097      for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1098        uint64_t Val;
1099        if (TD->isBigEndian())
1100          Val = RawData[e - i - 1];
1101        else
1102          Val = RawData[i];
1103
1104        if (TAI->getData64bitsDirective())
1105          O << TAI->getData64bitsDirective() << Val << '\n';
1106        else if (TD->isBigEndian()) {
1107          O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1108            << '\t' << TAI->getCommentString()
1109            << " Double-word most significant word " << Val << '\n';
1110          O << TAI->getData32bitsDirective() << unsigned(Val)
1111            << '\t' << TAI->getCommentString()
1112            << " Double-word least significant word " << Val << '\n';
1113        } else {
1114          O << TAI->getData32bitsDirective() << unsigned(Val)
1115            << '\t' << TAI->getCommentString()
1116            << " Double-word least significant word " << Val << '\n';
1117          O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1118            << '\t' << TAI->getCommentString()
1119            << " Double-word most significant word " << Val << '\n';
1120        }
1121      }
1122      return;
1123    }
1124  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1125    const VectorType *PTy = CP->getType();
1126
1127    for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
1128      EmitGlobalConstant(CP->getOperand(I));
1129
1130    return;
1131  }
1132
1133  const Type *type = CV->getType();
1134  printDataDirective(type);
1135  EmitConstantValueOnly(CV);
1136  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1137    SmallString<40> S;
1138    CI->getValue().toStringUnsigned(S, 16);
1139    O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1140  }
1141  O << '\n';
1142}
1143
1144void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1145  // Target doesn't support this yet!
1146  abort();
1147}
1148
1149/// PrintSpecial - Print information related to the specified machine instr
1150/// that is independent of the operand, and may be independent of the instr
1151/// itself.  This can be useful for portably encoding the comment character
1152/// or other bits of target-specific knowledge into the asmstrings.  The
1153/// syntax used is ${:comment}.  Targets can override this to add support
1154/// for their own strange codes.
1155void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
1156  if (!strcmp(Code, "private")) {
1157    O << TAI->getPrivateGlobalPrefix();
1158  } else if (!strcmp(Code, "comment")) {
1159    O << TAI->getCommentString();
1160  } else if (!strcmp(Code, "uid")) {
1161    // Assign a unique ID to this machine instruction.
1162    static const MachineInstr *LastMI = 0;
1163    static const Function *F = 0;
1164    static unsigned Counter = 0U-1;
1165
1166    // Comparing the address of MI isn't sufficient, because machineinstrs may
1167    // be allocated to the same address across functions.
1168    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1169
1170    // If this is a new machine instruction, bump the counter.
1171    if (LastMI != MI || F != ThisF) {
1172      ++Counter;
1173      LastMI = MI;
1174      F = ThisF;
1175    }
1176    O << Counter;
1177  } else {
1178    cerr << "Unknown special formatter '" << Code
1179         << "' for machine instr: " << *MI;
1180    exit(1);
1181  }
1182}
1183
1184
1185/// printInlineAsm - This method formats and prints the specified machine
1186/// instruction that is an inline asm.
1187void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1188  unsigned NumOperands = MI->getNumOperands();
1189
1190  // Count the number of register definitions.
1191  unsigned NumDefs = 0;
1192  for (; MI->getOperand(NumDefs).isRegister() && MI->getOperand(NumDefs).isDef();
1193       ++NumDefs)
1194    assert(NumDefs != NumOperands-1 && "No asm string?");
1195
1196  assert(MI->getOperand(NumDefs).isExternalSymbol() && "No asm string?");
1197
1198  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1199  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1200
1201  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1202  // These are useful to see where empty asm's wound up.
1203  if (AsmStr[0] == 0) {
1204    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1205    return;
1206  }
1207
1208  O << TAI->getInlineAsmStart() << "\n\t";
1209
1210  // The variant of the current asmprinter.
1211  int AsmPrinterVariant = TAI->getAssemblerDialect();
1212
1213  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1214  const char *LastEmitted = AsmStr; // One past the last character emitted.
1215
1216  while (*LastEmitted) {
1217    switch (*LastEmitted) {
1218    default: {
1219      // Not a special case, emit the string section literally.
1220      const char *LiteralEnd = LastEmitted+1;
1221      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1222             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1223        ++LiteralEnd;
1224      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1225        O.write(LastEmitted, LiteralEnd-LastEmitted);
1226      LastEmitted = LiteralEnd;
1227      break;
1228    }
1229    case '\n':
1230      ++LastEmitted;   // Consume newline character.
1231      O << '\n';       // Indent code with newline.
1232      break;
1233    case '$': {
1234      ++LastEmitted;   // Consume '$' character.
1235      bool Done = true;
1236
1237      // Handle escapes.
1238      switch (*LastEmitted) {
1239      default: Done = false; break;
1240      case '$':     // $$ -> $
1241        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1242          O << '$';
1243        ++LastEmitted;  // Consume second '$' character.
1244        break;
1245      case '(':             // $( -> same as GCC's { character.
1246        ++LastEmitted;      // Consume '(' character.
1247        if (CurVariant != -1) {
1248          cerr << "Nested variants found in inline asm string: '"
1249               << AsmStr << "'\n";
1250          exit(1);
1251        }
1252        CurVariant = 0;     // We're in the first variant now.
1253        break;
1254      case '|':
1255        ++LastEmitted;  // consume '|' character.
1256        if (CurVariant == -1) {
1257          cerr << "Found '|' character outside of variant in inline asm "
1258               << "string: '" << AsmStr << "'\n";
1259          exit(1);
1260        }
1261        ++CurVariant;   // We're in the next variant.
1262        break;
1263      case ')':         // $) -> same as GCC's } char.
1264        ++LastEmitted;  // consume ')' character.
1265        if (CurVariant == -1) {
1266          cerr << "Found '}' character outside of variant in inline asm "
1267               << "string: '" << AsmStr << "'\n";
1268          exit(1);
1269        }
1270        CurVariant = -1;
1271        break;
1272      }
1273      if (Done) break;
1274
1275      bool HasCurlyBraces = false;
1276      if (*LastEmitted == '{') {     // ${variable}
1277        ++LastEmitted;               // Consume '{' character.
1278        HasCurlyBraces = true;
1279      }
1280
1281      const char *IDStart = LastEmitted;
1282      char *IDEnd;
1283      errno = 0;
1284      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1285      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1286        cerr << "Bad $ operand number in inline asm string: '"
1287             << AsmStr << "'\n";
1288        exit(1);
1289      }
1290      LastEmitted = IDEnd;
1291
1292      char Modifier[2] = { 0, 0 };
1293
1294      if (HasCurlyBraces) {
1295        // If we have curly braces, check for a modifier character.  This
1296        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1297        if (*LastEmitted == ':') {
1298          ++LastEmitted;    // Consume ':' character.
1299          if (*LastEmitted == 0) {
1300            cerr << "Bad ${:} expression in inline asm string: '"
1301                 << AsmStr << "'\n";
1302            exit(1);
1303          }
1304
1305          Modifier[0] = *LastEmitted;
1306          ++LastEmitted;    // Consume modifier character.
1307        }
1308
1309        if (*LastEmitted != '}') {
1310          cerr << "Bad ${} expression in inline asm string: '"
1311               << AsmStr << "'\n";
1312          exit(1);
1313        }
1314        ++LastEmitted;    // Consume '}' character.
1315      }
1316
1317      if ((unsigned)Val >= NumOperands-1) {
1318        cerr << "Invalid $ operand number in inline asm string: '"
1319             << AsmStr << "'\n";
1320        exit(1);
1321      }
1322
1323      // Okay, we finally have a value number.  Ask the target to print this
1324      // operand!
1325      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1326        unsigned OpNo = 1;
1327
1328        bool Error = false;
1329
1330        // Scan to find the machine operand number for the operand.
1331        for (; Val; --Val) {
1332          if (OpNo >= MI->getNumOperands()) break;
1333          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1334          OpNo += (OpFlags >> 3) + 1;
1335        }
1336
1337        if (OpNo >= MI->getNumOperands()) {
1338          Error = true;
1339        } else {
1340          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1341          ++OpNo;  // Skip over the ID number.
1342
1343          if (Modifier[0]=='l')  // labels are target independent
1344            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1345                                 false, false, false);
1346          else {
1347            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1348            if ((OpFlags & 7) == 4) {
1349              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1350                                                Modifier[0] ? Modifier : 0);
1351            } else {
1352              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1353                                          Modifier[0] ? Modifier : 0);
1354            }
1355          }
1356        }
1357        if (Error) {
1358          cerr << "Invalid operand found in inline asm: '"
1359               << AsmStr << "'\n";
1360          MI->dump();
1361          exit(1);
1362        }
1363      }
1364      break;
1365    }
1366    }
1367  }
1368  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1369}
1370
1371/// printImplicitDef - This method prints the specified machine instruction
1372/// that is an implicit def.
1373void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1374  O << '\t' << TAI->getCommentString() << " implicit-def: "
1375    << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1376}
1377
1378/// printLabel - This method prints a local label used by debug and
1379/// exception handling tables.
1380void AsmPrinter::printLabel(const MachineInstr *MI) const {
1381  printLabel(MI->getOperand(0).getImm());
1382}
1383
1384void AsmPrinter::printLabel(unsigned Id) const {
1385  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1386}
1387
1388/// printDeclare - This method prints a local variable declaration used by
1389/// debug tables.
1390/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1391/// entry into dwarf table.
1392void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1393  int FI = MI->getOperand(0).getIndex();
1394  GlobalValue *GV = MI->getOperand(1).getGlobal();
1395  MMI->RecordVariable(GV, FI);
1396}
1397
1398/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1399/// instruction, using the specified assembler variant.  Targets should
1400/// overried this to format as appropriate.
1401bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1402                                 unsigned AsmVariant, const char *ExtraCode) {
1403  // Target doesn't support this yet!
1404  return true;
1405}
1406
1407bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1408                                       unsigned AsmVariant,
1409                                       const char *ExtraCode) {
1410  // Target doesn't support this yet!
1411  return true;
1412}
1413
1414/// printBasicBlockLabel - This method prints the label for the specified
1415/// MachineBasicBlock
1416void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1417                                      bool printAlign,
1418                                      bool printColon,
1419                                      bool printComment) const {
1420  if (printAlign) {
1421    unsigned Align = MBB->getAlignment();
1422    if (Align)
1423      EmitAlignment(Log2_32(Align));
1424  }
1425
1426  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1427    << MBB->getNumber();
1428  if (printColon)
1429    O << ':';
1430  if (printComment && MBB->getBasicBlock())
1431    O << '\t' << TAI->getCommentString() << ' '
1432      << MBB->getBasicBlock()->getNameStart();
1433}
1434
1435/// printPICJumpTableSetLabel - This method prints a set label for the
1436/// specified MachineBasicBlock for a jumptable entry.
1437void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1438                                           const MachineBasicBlock *MBB) const {
1439  if (!TAI->getSetDirective())
1440    return;
1441
1442  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1443    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1444  printBasicBlockLabel(MBB, false, false, false);
1445  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1446    << '_' << uid << '\n';
1447}
1448
1449void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1450                                           const MachineBasicBlock *MBB) const {
1451  if (!TAI->getSetDirective())
1452    return;
1453
1454  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1455    << getFunctionNumber() << '_' << uid << '_' << uid2
1456    << "_set_" << MBB->getNumber() << ',';
1457  printBasicBlockLabel(MBB, false, false, false);
1458  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1459    << '_' << uid << '_' << uid2 << '\n';
1460}
1461
1462/// printDataDirective - This method prints the asm directive for the
1463/// specified type.
1464void AsmPrinter::printDataDirective(const Type *type) {
1465  const TargetData *TD = TM.getTargetData();
1466  switch (type->getTypeID()) {
1467  case Type::IntegerTyID: {
1468    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1469    if (BitWidth <= 8)
1470      O << TAI->getData8bitsDirective();
1471    else if (BitWidth <= 16)
1472      O << TAI->getData16bitsDirective();
1473    else if (BitWidth <= 32)
1474      O << TAI->getData32bitsDirective();
1475    else if (BitWidth <= 64) {
1476      assert(TAI->getData64bitsDirective() &&
1477             "Target cannot handle 64-bit constant exprs!");
1478      O << TAI->getData64bitsDirective();
1479    } else {
1480      assert(0 && "Target cannot handle given data directive width!");
1481    }
1482    break;
1483  }
1484  case Type::PointerTyID:
1485    if (TD->getPointerSize() == 8) {
1486      assert(TAI->getData64bitsDirective() &&
1487             "Target cannot handle 64-bit pointer exprs!");
1488      O << TAI->getData64bitsDirective();
1489    } else {
1490      O << TAI->getData32bitsDirective();
1491    }
1492    break;
1493  case Type::FloatTyID: case Type::DoubleTyID:
1494  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1495    assert (0 && "Should have already output floating point constant.");
1496  default:
1497    assert (0 && "Can't handle printing this type of thing");
1498    break;
1499  }
1500}
1501
1502void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1503                                   const char *Prefix) {
1504  if (Name[0]=='\"')
1505    O << '\"';
1506  O << TAI->getPrivateGlobalPrefix();
1507  if (Prefix) O << Prefix;
1508  if (Name[0]=='\"')
1509    O << '\"';
1510  if (Name[0]=='\"')
1511    O << Name[1];
1512  else
1513    O << Name;
1514  O << Suffix;
1515  if (Name[0]=='\"')
1516    O << '\"';
1517}
1518
1519void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1520  printSuffixedName(Name.c_str(), Suffix);
1521}
1522
1523void AsmPrinter::printVisibility(const std::string& Name,
1524                                 unsigned Visibility) const {
1525  if (Visibility == GlobalValue::HiddenVisibility) {
1526    if (const char *Directive = TAI->getHiddenDirective())
1527      O << Directive << Name << '\n';
1528  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1529    if (const char *Directive = TAI->getProtectedDirective())
1530      O << Directive << Name << '\n';
1531  }
1532}
1533
1534GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1535  if (!S->usesMetadata())
1536    return 0;
1537
1538  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1539  if (GCPI != GCMetadataPrinters.end())
1540    return GCPI->second;
1541
1542  const char *Name = S->getName().c_str();
1543
1544  for (GCMetadataPrinterRegistry::iterator
1545         I = GCMetadataPrinterRegistry::begin(),
1546         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1547    if (strcmp(Name, I->getName()) == 0) {
1548      GCMetadataPrinter *GMP = I->instantiate();
1549      GMP->S = S;
1550      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1551      return GMP;
1552    }
1553
1554  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1555  abort();
1556}
1557