AsmPrinter.cpp revision b5a32e2e8ce2f3de3a340c5a2dfcd3a159968466
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineJumpTableInfo.h" 22#include "llvm/CodeGen/MachineModuleInfo.h" 23#include "llvm/Support/Mangler.h" 24#include "llvm/Support/raw_ostream.h" 25#include "llvm/Target/TargetAsmInfo.h" 26#include "llvm/Target/TargetData.h" 27#include "llvm/Target/TargetLowering.h" 28#include "llvm/Target/TargetMachine.h" 29#include "llvm/Target/TargetOptions.h" 30#include "llvm/Target/TargetRegisterInfo.h" 31#include "llvm/ADT/SmallPtrSet.h" 32#include "llvm/ADT/SmallString.h" 33#include "llvm/ADT/StringExtras.h" 34#include <cerrno> 35using namespace llvm; 36 37char AsmPrinter::ID = 0; 38AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm, 39 const TargetAsmInfo *T) 40 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 41 TM(tm), TAI(T), TRI(tm.getRegisterInfo()), 42 IsInTextSection(false) 43{} 44 45AsmPrinter::~AsmPrinter() { 46 for (gcp_iterator I = GCMetadataPrinters.begin(), 47 E = GCMetadataPrinters.end(); I != E; ++I) 48 delete I->second; 49} 50 51std::string AsmPrinter::getSectionForFunction(const Function &F) const { 52 return TAI->getTextSection(); 53} 54 55 56/// SwitchToTextSection - Switch to the specified text section of the executable 57/// if we are not already in it! 58/// 59void AsmPrinter::SwitchToTextSection(const char *NewSection, 60 const GlobalValue *GV) { 61 std::string NS; 62 if (GV && GV->hasSection()) 63 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 64 else 65 NS = NewSection; 66 67 // If we're already in this section, we're done. 68 if (CurrentSection == NS) return; 69 70 // Close the current section, if applicable. 71 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 72 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 73 74 CurrentSection = NS; 75 76 if (!CurrentSection.empty()) 77 O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n'; 78 79 IsInTextSection = true; 80} 81 82/// SwitchToDataSection - Switch to the specified data section of the executable 83/// if we are not already in it! 84/// 85void AsmPrinter::SwitchToDataSection(const char *NewSection, 86 const GlobalValue *GV) { 87 std::string NS; 88 if (GV && GV->hasSection()) 89 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 90 else 91 NS = NewSection; 92 93 // If we're already in this section, we're done. 94 if (CurrentSection == NS) return; 95 96 // Close the current section, if applicable. 97 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 98 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 99 100 CurrentSection = NS; 101 102 if (!CurrentSection.empty()) 103 O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n'; 104 105 IsInTextSection = false; 106} 107 108/// SwitchToSection - Switch to the specified section of the executable if we 109/// are not already in it! 110void AsmPrinter::SwitchToSection(const Section* NS) { 111 const std::string& NewSection = NS->getName(); 112 113 // If we're already in this section, we're done. 114 if (CurrentSection == NewSection) return; 115 116 // Close the current section, if applicable. 117 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 118 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 119 120 // FIXME: Make CurrentSection a Section* in the future 121 CurrentSection = NewSection; 122 123 if (!CurrentSection.empty()) 124 O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n'; 125 126 IsInTextSection = (NS->getFlags() & SectionFlags::Code); 127} 128 129void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 130 MachineFunctionPass::getAnalysisUsage(AU); 131 AU.addRequired<GCModuleInfo>(); 132} 133 134bool AsmPrinter::doInitialization(Module &M) { 135 Mang = new Mangler(M, TAI->getGlobalPrefix()); 136 137 GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>(); 138 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 139 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 140 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 141 MP->beginAssembly(O, *this, *TAI); 142 143 if (!M.getModuleInlineAsm().empty()) 144 O << TAI->getCommentString() << " Start of file scope inline assembly\n" 145 << M.getModuleInlineAsm() 146 << '\n' << TAI->getCommentString() 147 << " End of file scope inline assembly\n"; 148 149 SwitchToDataSection(""); // Reset back to no section. 150 151 MMI = getAnalysisToUpdate<MachineModuleInfo>(); 152 if (MMI) MMI->AnalyzeModule(M); 153 154 return false; 155} 156 157bool AsmPrinter::doFinalization(Module &M) { 158 if (TAI->getWeakRefDirective()) { 159 if (!ExtWeakSymbols.empty()) 160 SwitchToDataSection(""); 161 162 for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(), 163 e = ExtWeakSymbols.end(); i != e; ++i) { 164 const GlobalValue *GV = *i; 165 std::string Name = Mang->getValueName(GV); 166 O << TAI->getWeakRefDirective() << Name << '\n'; 167 } 168 } 169 170 if (TAI->getSetDirective()) { 171 if (!M.alias_empty()) 172 SwitchToTextSection(TAI->getTextSection()); 173 174 O << '\n'; 175 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 176 I!=E; ++I) { 177 std::string Name = Mang->getValueName(I); 178 std::string Target; 179 180 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 181 Target = Mang->getValueName(GV); 182 183 if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) 184 O << "\t.globl\t" << Name << '\n'; 185 else if (I->hasWeakLinkage()) 186 O << TAI->getWeakRefDirective() << Name << '\n'; 187 else if (!I->hasInternalLinkage()) 188 assert(0 && "Invalid alias linkage"); 189 190 if (I->hasHiddenVisibility()) { 191 if (const char *Directive = TAI->getHiddenDirective()) 192 O << Directive << Name << '\n'; 193 } else if (I->hasProtectedVisibility()) { 194 if (const char *Directive = TAI->getProtectedDirective()) 195 O << Directive << Name << '\n'; 196 } 197 198 O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 199 200 // If the aliasee has external weak linkage it can be referenced only by 201 // alias itself. In this case it can be not in ExtWeakSymbols list. Emit 202 // weak reference in such case. 203 if (GV->hasExternalWeakLinkage()) { 204 if (TAI->getWeakRefDirective()) 205 O << TAI->getWeakRefDirective() << Target << '\n'; 206 else 207 O << "\t.globl\t" << Target << '\n'; 208 } 209 } 210 } 211 212 GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>(); 213 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 214 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 215 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 216 MP->finishAssembly(O, *this, *TAI); 217 218 // If we don't have any trampolines, then we don't require stack memory 219 // to be executable. Some targets have a directive to declare this. 220 Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 221 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 222 if (TAI->getNonexecutableStackDirective()) 223 O << TAI->getNonexecutableStackDirective() << '\n'; 224 225 delete Mang; Mang = 0; 226 return false; 227} 228 229std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) { 230 assert(MF && "No machine function?"); 231 std::string Name = MF->getFunction()->getName(); 232 if (Name.empty()) 233 Name = Mang->getValueName(MF->getFunction()); 234 return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix()); 235} 236 237void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 238 // What's my mangled name? 239 CurrentFnName = Mang->getValueName(MF.getFunction()); 240 IncrementFunctionNumber(); 241} 242 243/// EmitConstantPool - Print to the current output stream assembly 244/// representations of the constants in the constant pool MCP. This is 245/// used to print out constants which have been "spilled to memory" by 246/// the code generator. 247/// 248void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 249 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 250 if (CP.empty()) return; 251 252 // Some targets require 4-, 8-, and 16- byte constant literals to be placed 253 // in special sections. 254 std::vector<std::pair<MachineConstantPoolEntry,unsigned> > FourByteCPs; 255 std::vector<std::pair<MachineConstantPoolEntry,unsigned> > EightByteCPs; 256 std::vector<std::pair<MachineConstantPoolEntry,unsigned> > SixteenByteCPs; 257 std::vector<std::pair<MachineConstantPoolEntry,unsigned> > OtherCPs; 258 std::vector<std::pair<MachineConstantPoolEntry,unsigned> > TargetCPs; 259 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 260 MachineConstantPoolEntry CPE = CP[i]; 261 const Type *Ty = CPE.getType(); 262 if (TAI->getFourByteConstantSection() && 263 TM.getTargetData()->getABITypeSize(Ty) == 4) 264 FourByteCPs.push_back(std::make_pair(CPE, i)); 265 else if (TAI->getEightByteConstantSection() && 266 TM.getTargetData()->getABITypeSize(Ty) == 8) 267 EightByteCPs.push_back(std::make_pair(CPE, i)); 268 else if (TAI->getSixteenByteConstantSection() && 269 TM.getTargetData()->getABITypeSize(Ty) == 16) 270 SixteenByteCPs.push_back(std::make_pair(CPE, i)); 271 else 272 OtherCPs.push_back(std::make_pair(CPE, i)); 273 } 274 275 unsigned Alignment = MCP->getConstantPoolAlignment(); 276 EmitConstantPool(Alignment, TAI->getFourByteConstantSection(), FourByteCPs); 277 EmitConstantPool(Alignment, TAI->getEightByteConstantSection(), EightByteCPs); 278 EmitConstantPool(Alignment, TAI->getSixteenByteConstantSection(), 279 SixteenByteCPs); 280 EmitConstantPool(Alignment, TAI->getConstantPoolSection(), OtherCPs); 281} 282 283void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section, 284 std::vector<std::pair<MachineConstantPoolEntry,unsigned> > &CP) { 285 if (CP.empty()) return; 286 287 SwitchToDataSection(Section); 288 EmitAlignment(Alignment); 289 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 290 O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 291 << CP[i].second << ":\t\t\t\t\t"; 292 // O << TAI->getCommentString() << ' ' << 293 // WriteTypeSymbolic(O, CP[i].first.getType(), 0); 294 O << '\n'; 295 if (CP[i].first.isMachineConstantPoolEntry()) 296 EmitMachineConstantPoolValue(CP[i].first.Val.MachineCPVal); 297 else 298 EmitGlobalConstant(CP[i].first.Val.ConstVal); 299 if (i != e-1) { 300 const Type *Ty = CP[i].first.getType(); 301 unsigned EntSize = 302 TM.getTargetData()->getABITypeSize(Ty); 303 unsigned ValEnd = CP[i].first.getOffset() + EntSize; 304 // Emit inter-object padding for alignment. 305 EmitZeros(CP[i+1].first.getOffset()-ValEnd); 306 } 307 } 308} 309 310/// EmitJumpTableInfo - Print assembly representations of the jump tables used 311/// by the current function to the current output stream. 312/// 313void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 314 MachineFunction &MF) { 315 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 316 if (JT.empty()) return; 317 318 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 319 320 // Pick the directive to use to print the jump table entries, and switch to 321 // the appropriate section. 322 TargetLowering *LoweringInfo = TM.getTargetLowering(); 323 324 const char* JumpTableDataSection = TAI->getJumpTableDataSection(); 325 const Function *F = MF.getFunction(); 326 unsigned SectionFlags = TAI->SectionFlagsForGlobal(F); 327 if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) || 328 !JumpTableDataSection || 329 SectionFlags & SectionFlags::Linkonce) { 330 // In PIC mode, we need to emit the jump table to the same section as the 331 // function body itself, otherwise the label differences won't make sense. 332 // We should also do if the section name is NULL or function is declared in 333 // discardable section. 334 SwitchToTextSection(getSectionForFunction(*F).c_str(), F); 335 } else { 336 SwitchToDataSection(JumpTableDataSection); 337 } 338 339 EmitAlignment(Log2_32(MJTI->getAlignment())); 340 341 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 342 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 343 344 // If this jump table was deleted, ignore it. 345 if (JTBBs.empty()) continue; 346 347 // For PIC codegen, if possible we want to use the SetDirective to reduce 348 // the number of relocations the assembler will generate for the jump table. 349 // Set directives are all printed before the jump table itself. 350 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 351 if (TAI->getSetDirective() && IsPic) 352 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 353 if (EmittedSets.insert(JTBBs[ii])) 354 printPICJumpTableSetLabel(i, JTBBs[ii]); 355 356 // On some targets (e.g. darwin) we want to emit two consequtive labels 357 // before each jump table. The first label is never referenced, but tells 358 // the assembler and linker the extents of the jump table object. The 359 // second label is actually referenced by the code. 360 if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) 361 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 362 363 O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 364 << '_' << i << ":\n"; 365 366 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 367 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 368 O << '\n'; 369 } 370 } 371} 372 373void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 374 const MachineBasicBlock *MBB, 375 unsigned uid) const { 376 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 377 378 // Use JumpTableDirective otherwise honor the entry size from the jump table 379 // info. 380 const char *JTEntryDirective = TAI->getJumpTableDirective(); 381 bool HadJTEntryDirective = JTEntryDirective != NULL; 382 if (!HadJTEntryDirective) { 383 JTEntryDirective = MJTI->getEntrySize() == 4 ? 384 TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); 385 } 386 387 O << JTEntryDirective << ' '; 388 389 // If we have emitted set directives for the jump table entries, print 390 // them rather than the entries themselves. If we're emitting PIC, then 391 // emit the table entries as differences between two text section labels. 392 // If we're emitting non-PIC code, then emit the entries as direct 393 // references to the target basic blocks. 394 if (IsPic) { 395 if (TAI->getSetDirective()) { 396 O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() 397 << '_' << uid << "_set_" << MBB->getNumber(); 398 } else { 399 printBasicBlockLabel(MBB, false, false, false); 400 // If the arch uses custom Jump Table directives, don't calc relative to 401 // JT 402 if (!HadJTEntryDirective) 403 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" 404 << getFunctionNumber() << '_' << uid; 405 } 406 } else { 407 printBasicBlockLabel(MBB, false, false, false); 408 } 409} 410 411 412/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 413/// special global used by LLVM. If so, emit it and return true, otherwise 414/// do nothing and return false. 415bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 416 if (GV->getName() == "llvm.used") { 417 if (TAI->getUsedDirective() != 0) // No need to emit this at all. 418 EmitLLVMUsedList(GV->getInitializer()); 419 return true; 420 } 421 422 // Ignore debug and non-emitted data. 423 if (GV->getSection() == "llvm.metadata") return true; 424 425 if (!GV->hasAppendingLinkage()) return false; 426 427 assert(GV->hasInitializer() && "Not a special LLVM global!"); 428 429 const TargetData *TD = TM.getTargetData(); 430 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 431 if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) { 432 SwitchToDataSection(TAI->getStaticCtorsSection()); 433 EmitAlignment(Align, 0); 434 EmitXXStructorList(GV->getInitializer()); 435 return true; 436 } 437 438 if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) { 439 SwitchToDataSection(TAI->getStaticDtorsSection()); 440 EmitAlignment(Align, 0); 441 EmitXXStructorList(GV->getInitializer()); 442 return true; 443 } 444 445 return false; 446} 447 448/// findGlobalValue - if CV is an expression equivalent to a single 449/// global value, return that value. 450const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) { 451 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 452 return GV; 453 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 454 const TargetData *TD = TM.getTargetData(); 455 unsigned Opcode = CE->getOpcode(); 456 switch (Opcode) { 457 case Instruction::GetElementPtr: { 458 const Constant *ptrVal = CE->getOperand(0); 459 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 460 if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size())) 461 return 0; 462 return findGlobalValue(ptrVal); 463 } 464 case Instruction::BitCast: 465 return findGlobalValue(CE->getOperand(0)); 466 default: 467 return 0; 468 } 469 } 470 return 0; 471} 472 473/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each 474/// global in the specified llvm.used list for which emitUsedDirectiveFor 475/// is true, as being used with this directive. 476 477void AsmPrinter::EmitLLVMUsedList(Constant *List) { 478 const char *Directive = TAI->getUsedDirective(); 479 480 // Should be an array of 'sbyte*'. 481 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 482 if (InitList == 0) return; 483 484 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 485 const GlobalValue *GV = findGlobalValue(InitList->getOperand(i)); 486 if (TAI->emitUsedDirectiveFor(GV, Mang)) { 487 O << Directive; 488 EmitConstantValueOnly(InitList->getOperand(i)); 489 O << '\n'; 490 } 491 } 492} 493 494/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 495/// function pointers, ignoring the init priority. 496void AsmPrinter::EmitXXStructorList(Constant *List) { 497 // Should be an array of '{ int, void ()* }' structs. The first value is the 498 // init priority, which we ignore. 499 if (!isa<ConstantArray>(List)) return; 500 ConstantArray *InitList = cast<ConstantArray>(List); 501 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 502 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 503 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 504 505 if (CS->getOperand(1)->isNullValue()) 506 return; // Found a null terminator, exit printing. 507 // Emit the function pointer. 508 EmitGlobalConstant(CS->getOperand(1)); 509 } 510} 511 512/// getGlobalLinkName - Returns the asm/link name of of the specified 513/// global variable. Should be overridden by each target asm printer to 514/// generate the appropriate value. 515const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{ 516 std::string LinkName; 517 518 if (isa<Function>(GV)) { 519 LinkName += TAI->getFunctionAddrPrefix(); 520 LinkName += Mang->getValueName(GV); 521 LinkName += TAI->getFunctionAddrSuffix(); 522 } else { 523 LinkName += TAI->getGlobalVarAddrPrefix(); 524 LinkName += Mang->getValueName(GV); 525 LinkName += TAI->getGlobalVarAddrSuffix(); 526 } 527 528 return LinkName; 529} 530 531/// EmitExternalGlobal - Emit the external reference to a global variable. 532/// Should be overridden if an indirect reference should be used. 533void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { 534 O << getGlobalLinkName(GV); 535} 536 537 538 539//===----------------------------------------------------------------------===// 540/// LEB 128 number encoding. 541 542/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) 543/// representing an unsigned leb128 value. 544void AsmPrinter::PrintULEB128(unsigned Value) const { 545 do { 546 unsigned Byte = Value & 0x7f; 547 Value >>= 7; 548 if (Value) Byte |= 0x80; 549 O << "0x" << utohexstr(Byte); 550 if (Value) O << ", "; 551 } while (Value); 552} 553 554/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) 555/// representing a signed leb128 value. 556void AsmPrinter::PrintSLEB128(int Value) const { 557 int Sign = Value >> (8 * sizeof(Value) - 1); 558 bool IsMore; 559 560 do { 561 unsigned Byte = Value & 0x7f; 562 Value >>= 7; 563 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 564 if (IsMore) Byte |= 0x80; 565 O << "0x" << utohexstr(Byte); 566 if (IsMore) O << ", "; 567 } while (IsMore); 568} 569 570//===--------------------------------------------------------------------===// 571// Emission and print routines 572// 573 574/// PrintHex - Print a value as a hexidecimal value. 575/// 576void AsmPrinter::PrintHex(int Value) const { 577 O << "0x" << utohexstr(static_cast<unsigned>(Value)); 578} 579 580/// EOL - Print a newline character to asm stream. If a comment is present 581/// then it will be printed first. Comments should not contain '\n'. 582void AsmPrinter::EOL() const { 583 O << '\n'; 584} 585 586void AsmPrinter::EOL(const std::string &Comment) const { 587 if (VerboseAsm && !Comment.empty()) { 588 O << '\t' 589 << TAI->getCommentString() 590 << ' ' 591 << Comment; 592 } 593 O << '\n'; 594} 595 596void AsmPrinter::EOL(const char* Comment) const { 597 if (VerboseAsm && *Comment) { 598 O << '\t' 599 << TAI->getCommentString() 600 << ' ' 601 << Comment; 602 } 603 O << '\n'; 604} 605 606/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 607/// unsigned leb128 value. 608void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 609 if (TAI->hasLEB128()) { 610 O << "\t.uleb128\t" 611 << Value; 612 } else { 613 O << TAI->getData8bitsDirective(); 614 PrintULEB128(Value); 615 } 616} 617 618/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 619/// signed leb128 value. 620void AsmPrinter::EmitSLEB128Bytes(int Value) const { 621 if (TAI->hasLEB128()) { 622 O << "\t.sleb128\t" 623 << Value; 624 } else { 625 O << TAI->getData8bitsDirective(); 626 PrintSLEB128(Value); 627 } 628} 629 630/// EmitInt8 - Emit a byte directive and value. 631/// 632void AsmPrinter::EmitInt8(int Value) const { 633 O << TAI->getData8bitsDirective(); 634 PrintHex(Value & 0xFF); 635} 636 637/// EmitInt16 - Emit a short directive and value. 638/// 639void AsmPrinter::EmitInt16(int Value) const { 640 O << TAI->getData16bitsDirective(); 641 PrintHex(Value & 0xFFFF); 642} 643 644/// EmitInt32 - Emit a long directive and value. 645/// 646void AsmPrinter::EmitInt32(int Value) const { 647 O << TAI->getData32bitsDirective(); 648 PrintHex(Value); 649} 650 651/// EmitInt64 - Emit a long long directive and value. 652/// 653void AsmPrinter::EmitInt64(uint64_t Value) const { 654 if (TAI->getData64bitsDirective()) { 655 O << TAI->getData64bitsDirective(); 656 PrintHex(Value); 657 } else { 658 if (TM.getTargetData()->isBigEndian()) { 659 EmitInt32(unsigned(Value >> 32)); O << '\n'; 660 EmitInt32(unsigned(Value)); 661 } else { 662 EmitInt32(unsigned(Value)); O << '\n'; 663 EmitInt32(unsigned(Value >> 32)); 664 } 665 } 666} 667 668/// toOctal - Convert the low order bits of X into an octal digit. 669/// 670static inline char toOctal(int X) { 671 return (X&7)+'0'; 672} 673 674/// printStringChar - Print a char, escaped if necessary. 675/// 676static void printStringChar(raw_ostream &O, char C) { 677 if (C == '"') { 678 O << "\\\""; 679 } else if (C == '\\') { 680 O << "\\\\"; 681 } else if (isprint(C)) { 682 O << C; 683 } else { 684 switch(C) { 685 case '\b': O << "\\b"; break; 686 case '\f': O << "\\f"; break; 687 case '\n': O << "\\n"; break; 688 case '\r': O << "\\r"; break; 689 case '\t': O << "\\t"; break; 690 default: 691 O << '\\'; 692 O << toOctal(C >> 6); 693 O << toOctal(C >> 3); 694 O << toOctal(C >> 0); 695 break; 696 } 697 } 698} 699 700/// EmitString - Emit a string with quotes and a null terminator. 701/// Special characters are emitted properly. 702/// \literal (Eg. '\t') \endliteral 703void AsmPrinter::EmitString(const std::string &String) const { 704 const char* AscizDirective = TAI->getAscizDirective(); 705 if (AscizDirective) 706 O << AscizDirective; 707 else 708 O << TAI->getAsciiDirective(); 709 O << '\"'; 710 for (unsigned i = 0, N = String.size(); i < N; ++i) { 711 unsigned char C = String[i]; 712 printStringChar(O, C); 713 } 714 if (AscizDirective) 715 O << '\"'; 716 else 717 O << "\\0\""; 718} 719 720 721/// EmitFile - Emit a .file directive. 722void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 723 O << "\t.file\t" << Number << " \""; 724 for (unsigned i = 0, N = Name.size(); i < N; ++i) { 725 unsigned char C = Name[i]; 726 printStringChar(O, C); 727 } 728 O << '\"'; 729} 730 731 732//===----------------------------------------------------------------------===// 733 734// EmitAlignment - Emit an alignment directive to the specified power of 735// two boundary. For example, if you pass in 3 here, you will get an 8 736// byte alignment. If a global value is specified, and if that global has 737// an explicit alignment requested, it will unconditionally override the 738// alignment request. However, if ForcedAlignBits is specified, this value 739// has final say: the ultimate alignment will be the max of ForcedAlignBits 740// and the alignment computed with NumBits and the global. 741// 742// The algorithm is: 743// Align = NumBits; 744// if (GV && GV->hasalignment) Align = GV->getalignment(); 745// Align = std::max(Align, ForcedAlignBits); 746// 747void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 748 unsigned ForcedAlignBits, 749 bool UseFillExpr) const { 750 if (GV && GV->getAlignment()) 751 NumBits = Log2_32(GV->getAlignment()); 752 NumBits = std::max(NumBits, ForcedAlignBits); 753 754 if (NumBits == 0) return; // No need to emit alignment. 755 if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; 756 O << TAI->getAlignDirective() << NumBits; 757 758 unsigned FillValue = TAI->getTextAlignFillValue(); 759 UseFillExpr &= IsInTextSection && FillValue; 760 if (UseFillExpr) O << ",0x" << utohexstr(FillValue); 761 O << '\n'; 762} 763 764 765/// EmitZeros - Emit a block of zeros. 766/// 767void AsmPrinter::EmitZeros(uint64_t NumZeros) const { 768 if (NumZeros) { 769 if (TAI->getZeroDirective()) { 770 O << TAI->getZeroDirective() << NumZeros; 771 if (TAI->getZeroDirectiveSuffix()) 772 O << TAI->getZeroDirectiveSuffix(); 773 O << '\n'; 774 } else { 775 for (; NumZeros; --NumZeros) 776 O << TAI->getData8bitsDirective() << "0\n"; 777 } 778 } 779} 780 781// Print out the specified constant, without a storage class. Only the 782// constants valid in constant expressions can occur here. 783void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 784 if (CV->isNullValue() || isa<UndefValue>(CV)) 785 O << '0'; 786 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 787 O << CI->getZExtValue(); 788 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 789 // This is a constant address for a global variable or function. Use the 790 // name of the variable or function as the address value, possibly 791 // decorating it with GlobalVarAddrPrefix/Suffix or 792 // FunctionAddrPrefix/Suffix (these all default to "" ) 793 if (isa<Function>(GV)) { 794 O << TAI->getFunctionAddrPrefix() 795 << Mang->getValueName(GV) 796 << TAI->getFunctionAddrSuffix(); 797 } else { 798 O << TAI->getGlobalVarAddrPrefix() 799 << Mang->getValueName(GV) 800 << TAI->getGlobalVarAddrSuffix(); 801 } 802 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 803 const TargetData *TD = TM.getTargetData(); 804 unsigned Opcode = CE->getOpcode(); 805 switch (Opcode) { 806 case Instruction::GetElementPtr: { 807 // generate a symbolic expression for the byte address 808 const Constant *ptrVal = CE->getOperand(0); 809 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 810 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 811 idxVec.size())) { 812 if (Offset) 813 O << '('; 814 EmitConstantValueOnly(ptrVal); 815 if (Offset > 0) 816 O << ") + " << Offset; 817 else if (Offset < 0) 818 O << ") - " << -Offset; 819 } else { 820 EmitConstantValueOnly(ptrVal); 821 } 822 break; 823 } 824 case Instruction::Trunc: 825 case Instruction::ZExt: 826 case Instruction::SExt: 827 case Instruction::FPTrunc: 828 case Instruction::FPExt: 829 case Instruction::UIToFP: 830 case Instruction::SIToFP: 831 case Instruction::FPToUI: 832 case Instruction::FPToSI: 833 assert(0 && "FIXME: Don't yet support this kind of constant cast expr"); 834 break; 835 case Instruction::BitCast: 836 return EmitConstantValueOnly(CE->getOperand(0)); 837 838 case Instruction::IntToPtr: { 839 // Handle casts to pointers by changing them into casts to the appropriate 840 // integer type. This promotes constant folding and simplifies this code. 841 Constant *Op = CE->getOperand(0); 842 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/); 843 return EmitConstantValueOnly(Op); 844 } 845 846 847 case Instruction::PtrToInt: { 848 // Support only foldable casts to/from pointers that can be eliminated by 849 // changing the pointer to the appropriately sized integer type. 850 Constant *Op = CE->getOperand(0); 851 const Type *Ty = CE->getType(); 852 853 // We can emit the pointer value into this slot if the slot is an 854 // integer slot greater or equal to the size of the pointer. 855 if (TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType())) 856 return EmitConstantValueOnly(Op); 857 858 O << "(("; 859 EmitConstantValueOnly(Op); 860 APInt ptrMask = APInt::getAllOnesValue(TD->getABITypeSizeInBits(Ty)); 861 862 SmallString<40> S; 863 ptrMask.toStringUnsigned(S); 864 O << ") & " << S.c_str() << ')'; 865 break; 866 } 867 case Instruction::Add: 868 case Instruction::Sub: 869 case Instruction::And: 870 case Instruction::Or: 871 case Instruction::Xor: 872 O << '('; 873 EmitConstantValueOnly(CE->getOperand(0)); 874 O << ')'; 875 switch (Opcode) { 876 case Instruction::Add: 877 O << " + "; 878 break; 879 case Instruction::Sub: 880 O << " - "; 881 break; 882 case Instruction::And: 883 O << " & "; 884 break; 885 case Instruction::Or: 886 O << " | "; 887 break; 888 case Instruction::Xor: 889 O << " ^ "; 890 break; 891 default: 892 break; 893 } 894 O << '('; 895 EmitConstantValueOnly(CE->getOperand(1)); 896 O << ')'; 897 break; 898 default: 899 assert(0 && "Unsupported operator!"); 900 } 901 } else { 902 assert(0 && "Unknown constant value!"); 903 } 904} 905 906/// printAsCString - Print the specified array as a C compatible string, only if 907/// the predicate isString is true. 908/// 909static void printAsCString(raw_ostream &O, const ConstantArray *CVA, 910 unsigned LastElt) { 911 assert(CVA->isString() && "Array is not string compatible!"); 912 913 O << '\"'; 914 for (unsigned i = 0; i != LastElt; ++i) { 915 unsigned char C = 916 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 917 printStringChar(O, C); 918 } 919 O << '\"'; 920} 921 922/// EmitString - Emit a zero-byte-terminated string constant. 923/// 924void AsmPrinter::EmitString(const ConstantArray *CVA) const { 925 unsigned NumElts = CVA->getNumOperands(); 926 if (TAI->getAscizDirective() && NumElts && 927 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 928 O << TAI->getAscizDirective(); 929 printAsCString(O, CVA, NumElts-1); 930 } else { 931 O << TAI->getAsciiDirective(); 932 printAsCString(O, CVA, NumElts); 933 } 934 O << '\n'; 935} 936 937/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 938void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 939 const TargetData *TD = TM.getTargetData(); 940 unsigned Size = TD->getABITypeSize(CV->getType()); 941 942 if (CV->isNullValue() || isa<UndefValue>(CV)) { 943 EmitZeros(Size); 944 return; 945 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 946 if (CVA->isString()) { 947 EmitString(CVA); 948 } else { // Not a string. Print the values in successive locations 949 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 950 EmitGlobalConstant(CVA->getOperand(i)); 951 } 952 return; 953 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 954 // Print the fields in successive locations. Pad to align if needed! 955 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 956 uint64_t sizeSoFar = 0; 957 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 958 const Constant* field = CVS->getOperand(i); 959 960 // Check if padding is needed and insert one or more 0s. 961 uint64_t fieldSize = TD->getABITypeSize(field->getType()); 962 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 963 - cvsLayout->getElementOffset(i)) - fieldSize; 964 sizeSoFar += fieldSize + padSize; 965 966 // Now print the actual field value. 967 EmitGlobalConstant(field); 968 969 // Insert padding - this may include padding to increase the size of the 970 // current field up to the ABI size (if the struct is not packed) as well 971 // as padding to ensure that the next field starts at the right offset. 972 EmitZeros(padSize); 973 } 974 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 975 "Layout of constant struct may be incorrect!"); 976 return; 977 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 978 // FP Constants are printed as integer constants to avoid losing 979 // precision... 980 if (CFP->getType() == Type::DoubleTy) { 981 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 982 uint64_t i = CFP->getValueAPF().convertToAPInt().getZExtValue(); 983 if (TAI->getData64bitsDirective()) 984 O << TAI->getData64bitsDirective() << i << '\t' 985 << TAI->getCommentString() << " double value: " << Val << '\n'; 986 else if (TD->isBigEndian()) { 987 O << TAI->getData32bitsDirective() << unsigned(i >> 32) 988 << '\t' << TAI->getCommentString() 989 << " double most significant word " << Val << '\n'; 990 O << TAI->getData32bitsDirective() << unsigned(i) 991 << '\t' << TAI->getCommentString() 992 << " double least significant word " << Val << '\n'; 993 } else { 994 O << TAI->getData32bitsDirective() << unsigned(i) 995 << '\t' << TAI->getCommentString() 996 << " double least significant word " << Val << '\n'; 997 O << TAI->getData32bitsDirective() << unsigned(i >> 32) 998 << '\t' << TAI->getCommentString() 999 << " double most significant word " << Val << '\n'; 1000 } 1001 return; 1002 } else if (CFP->getType() == Type::FloatTy) { 1003 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1004 O << TAI->getData32bitsDirective() 1005 << CFP->getValueAPF().convertToAPInt().getZExtValue() 1006 << '\t' << TAI->getCommentString() << " float " << Val << '\n'; 1007 return; 1008 } else if (CFP->getType() == Type::X86_FP80Ty) { 1009 // all long double variants are printed as hex 1010 // api needed to prevent premature destruction 1011 APInt api = CFP->getValueAPF().convertToAPInt(); 1012 const uint64_t *p = api.getRawData(); 1013 APFloat DoubleVal = CFP->getValueAPF(); 1014 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven); 1015 if (TD->isBigEndian()) { 1016 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48) 1017 << '\t' << TAI->getCommentString() 1018 << " long double most significant halfword of ~" 1019 << DoubleVal.convertToDouble() << '\n'; 1020 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32) 1021 << '\t' << TAI->getCommentString() 1022 << " long double next halfword\n"; 1023 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16) 1024 << '\t' << TAI->getCommentString() 1025 << " long double next halfword\n"; 1026 O << TAI->getData16bitsDirective() << uint16_t(p[0]) 1027 << '\t' << TAI->getCommentString() 1028 << " long double next halfword\n"; 1029 O << TAI->getData16bitsDirective() << uint16_t(p[1]) 1030 << '\t' << TAI->getCommentString() 1031 << " long double least significant halfword\n"; 1032 } else { 1033 O << TAI->getData16bitsDirective() << uint16_t(p[1]) 1034 << '\t' << TAI->getCommentString() 1035 << " long double least significant halfword of ~" 1036 << DoubleVal.convertToDouble() << '\n'; 1037 O << TAI->getData16bitsDirective() << uint16_t(p[0]) 1038 << '\t' << TAI->getCommentString() 1039 << " long double next halfword\n"; 1040 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16) 1041 << '\t' << TAI->getCommentString() 1042 << " long double next halfword\n"; 1043 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32) 1044 << '\t' << TAI->getCommentString() 1045 << " long double next halfword\n"; 1046 O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48) 1047 << '\t' << TAI->getCommentString() 1048 << " long double most significant halfword\n"; 1049 } 1050 EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty)); 1051 return; 1052 } else if (CFP->getType() == Type::PPC_FP128Ty) { 1053 // all long double variants are printed as hex 1054 // api needed to prevent premature destruction 1055 APInt api = CFP->getValueAPF().convertToAPInt(); 1056 const uint64_t *p = api.getRawData(); 1057 if (TD->isBigEndian()) { 1058 O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32) 1059 << '\t' << TAI->getCommentString() 1060 << " long double most significant word\n"; 1061 O << TAI->getData32bitsDirective() << uint32_t(p[0]) 1062 << '\t' << TAI->getCommentString() 1063 << " long double next word\n"; 1064 O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32) 1065 << '\t' << TAI->getCommentString() 1066 << " long double next word\n"; 1067 O << TAI->getData32bitsDirective() << uint32_t(p[1]) 1068 << '\t' << TAI->getCommentString() 1069 << " long double least significant word\n"; 1070 } else { 1071 O << TAI->getData32bitsDirective() << uint32_t(p[1]) 1072 << '\t' << TAI->getCommentString() 1073 << " long double least significant word\n"; 1074 O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32) 1075 << '\t' << TAI->getCommentString() 1076 << " long double next word\n"; 1077 O << TAI->getData32bitsDirective() << uint32_t(p[0]) 1078 << '\t' << TAI->getCommentString() 1079 << " long double next word\n"; 1080 O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32) 1081 << '\t' << TAI->getCommentString() 1082 << " long double most significant word\n"; 1083 } 1084 return; 1085 } else assert(0 && "Floating point constant type not handled"); 1086 } else if (CV->getType()->isInteger() && 1087 cast<IntegerType>(CV->getType())->getBitWidth() >= 64) { 1088 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1089 unsigned BitWidth = CI->getBitWidth(); 1090 assert(isPowerOf2_32(BitWidth) && 1091 "Non-power-of-2-sized integers not handled!"); 1092 1093 // We don't expect assemblers to support integer data directives 1094 // for more than 64 bits, so we emit the data in at most 64-bit 1095 // quantities at a time. 1096 const uint64_t *RawData = CI->getValue().getRawData(); 1097 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1098 uint64_t Val; 1099 if (TD->isBigEndian()) 1100 Val = RawData[e - i - 1]; 1101 else 1102 Val = RawData[i]; 1103 1104 if (TAI->getData64bitsDirective()) 1105 O << TAI->getData64bitsDirective() << Val << '\n'; 1106 else if (TD->isBigEndian()) { 1107 O << TAI->getData32bitsDirective() << unsigned(Val >> 32) 1108 << '\t' << TAI->getCommentString() 1109 << " Double-word most significant word " << Val << '\n'; 1110 O << TAI->getData32bitsDirective() << unsigned(Val) 1111 << '\t' << TAI->getCommentString() 1112 << " Double-word least significant word " << Val << '\n'; 1113 } else { 1114 O << TAI->getData32bitsDirective() << unsigned(Val) 1115 << '\t' << TAI->getCommentString() 1116 << " Double-word least significant word " << Val << '\n'; 1117 O << TAI->getData32bitsDirective() << unsigned(Val >> 32) 1118 << '\t' << TAI->getCommentString() 1119 << " Double-word most significant word " << Val << '\n'; 1120 } 1121 } 1122 return; 1123 } 1124 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1125 const VectorType *PTy = CP->getType(); 1126 1127 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 1128 EmitGlobalConstant(CP->getOperand(I)); 1129 1130 return; 1131 } 1132 1133 const Type *type = CV->getType(); 1134 printDataDirective(type); 1135 EmitConstantValueOnly(CV); 1136 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1137 SmallString<40> S; 1138 CI->getValue().toStringUnsigned(S, 16); 1139 O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str(); 1140 } 1141 O << '\n'; 1142} 1143 1144void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1145 // Target doesn't support this yet! 1146 abort(); 1147} 1148 1149/// PrintSpecial - Print information related to the specified machine instr 1150/// that is independent of the operand, and may be independent of the instr 1151/// itself. This can be useful for portably encoding the comment character 1152/// or other bits of target-specific knowledge into the asmstrings. The 1153/// syntax used is ${:comment}. Targets can override this to add support 1154/// for their own strange codes. 1155void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) { 1156 if (!strcmp(Code, "private")) { 1157 O << TAI->getPrivateGlobalPrefix(); 1158 } else if (!strcmp(Code, "comment")) { 1159 O << TAI->getCommentString(); 1160 } else if (!strcmp(Code, "uid")) { 1161 // Assign a unique ID to this machine instruction. 1162 static const MachineInstr *LastMI = 0; 1163 static const Function *F = 0; 1164 static unsigned Counter = 0U-1; 1165 1166 // Comparing the address of MI isn't sufficient, because machineinstrs may 1167 // be allocated to the same address across functions. 1168 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1169 1170 // If this is a new machine instruction, bump the counter. 1171 if (LastMI != MI || F != ThisF) { 1172 ++Counter; 1173 LastMI = MI; 1174 F = ThisF; 1175 } 1176 O << Counter; 1177 } else { 1178 cerr << "Unknown special formatter '" << Code 1179 << "' for machine instr: " << *MI; 1180 exit(1); 1181 } 1182} 1183 1184 1185/// printInlineAsm - This method formats and prints the specified machine 1186/// instruction that is an inline asm. 1187void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1188 unsigned NumOperands = MI->getNumOperands(); 1189 1190 // Count the number of register definitions. 1191 unsigned NumDefs = 0; 1192 for (; MI->getOperand(NumDefs).isRegister() && MI->getOperand(NumDefs).isDef(); 1193 ++NumDefs) 1194 assert(NumDefs != NumOperands-1 && "No asm string?"); 1195 1196 assert(MI->getOperand(NumDefs).isExternalSymbol() && "No asm string?"); 1197 1198 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1199 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1200 1201 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1202 // These are useful to see where empty asm's wound up. 1203 if (AsmStr[0] == 0) { 1204 O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1205 return; 1206 } 1207 1208 O << TAI->getInlineAsmStart() << "\n\t"; 1209 1210 // The variant of the current asmprinter. 1211 int AsmPrinterVariant = TAI->getAssemblerDialect(); 1212 1213 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1214 const char *LastEmitted = AsmStr; // One past the last character emitted. 1215 1216 while (*LastEmitted) { 1217 switch (*LastEmitted) { 1218 default: { 1219 // Not a special case, emit the string section literally. 1220 const char *LiteralEnd = LastEmitted+1; 1221 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1222 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1223 ++LiteralEnd; 1224 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1225 O.write(LastEmitted, LiteralEnd-LastEmitted); 1226 LastEmitted = LiteralEnd; 1227 break; 1228 } 1229 case '\n': 1230 ++LastEmitted; // Consume newline character. 1231 O << '\n'; // Indent code with newline. 1232 break; 1233 case '$': { 1234 ++LastEmitted; // Consume '$' character. 1235 bool Done = true; 1236 1237 // Handle escapes. 1238 switch (*LastEmitted) { 1239 default: Done = false; break; 1240 case '$': // $$ -> $ 1241 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1242 O << '$'; 1243 ++LastEmitted; // Consume second '$' character. 1244 break; 1245 case '(': // $( -> same as GCC's { character. 1246 ++LastEmitted; // Consume '(' character. 1247 if (CurVariant != -1) { 1248 cerr << "Nested variants found in inline asm string: '" 1249 << AsmStr << "'\n"; 1250 exit(1); 1251 } 1252 CurVariant = 0; // We're in the first variant now. 1253 break; 1254 case '|': 1255 ++LastEmitted; // consume '|' character. 1256 if (CurVariant == -1) { 1257 cerr << "Found '|' character outside of variant in inline asm " 1258 << "string: '" << AsmStr << "'\n"; 1259 exit(1); 1260 } 1261 ++CurVariant; // We're in the next variant. 1262 break; 1263 case ')': // $) -> same as GCC's } char. 1264 ++LastEmitted; // consume ')' character. 1265 if (CurVariant == -1) { 1266 cerr << "Found '}' character outside of variant in inline asm " 1267 << "string: '" << AsmStr << "'\n"; 1268 exit(1); 1269 } 1270 CurVariant = -1; 1271 break; 1272 } 1273 if (Done) break; 1274 1275 bool HasCurlyBraces = false; 1276 if (*LastEmitted == '{') { // ${variable} 1277 ++LastEmitted; // Consume '{' character. 1278 HasCurlyBraces = true; 1279 } 1280 1281 const char *IDStart = LastEmitted; 1282 char *IDEnd; 1283 errno = 0; 1284 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1285 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1286 cerr << "Bad $ operand number in inline asm string: '" 1287 << AsmStr << "'\n"; 1288 exit(1); 1289 } 1290 LastEmitted = IDEnd; 1291 1292 char Modifier[2] = { 0, 0 }; 1293 1294 if (HasCurlyBraces) { 1295 // If we have curly braces, check for a modifier character. This 1296 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1297 if (*LastEmitted == ':') { 1298 ++LastEmitted; // Consume ':' character. 1299 if (*LastEmitted == 0) { 1300 cerr << "Bad ${:} expression in inline asm string: '" 1301 << AsmStr << "'\n"; 1302 exit(1); 1303 } 1304 1305 Modifier[0] = *LastEmitted; 1306 ++LastEmitted; // Consume modifier character. 1307 } 1308 1309 if (*LastEmitted != '}') { 1310 cerr << "Bad ${} expression in inline asm string: '" 1311 << AsmStr << "'\n"; 1312 exit(1); 1313 } 1314 ++LastEmitted; // Consume '}' character. 1315 } 1316 1317 if ((unsigned)Val >= NumOperands-1) { 1318 cerr << "Invalid $ operand number in inline asm string: '" 1319 << AsmStr << "'\n"; 1320 exit(1); 1321 } 1322 1323 // Okay, we finally have a value number. Ask the target to print this 1324 // operand! 1325 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1326 unsigned OpNo = 1; 1327 1328 bool Error = false; 1329 1330 // Scan to find the machine operand number for the operand. 1331 for (; Val; --Val) { 1332 if (OpNo >= MI->getNumOperands()) break; 1333 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1334 OpNo += (OpFlags >> 3) + 1; 1335 } 1336 1337 if (OpNo >= MI->getNumOperands()) { 1338 Error = true; 1339 } else { 1340 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1341 ++OpNo; // Skip over the ID number. 1342 1343 if (Modifier[0]=='l') // labels are target independent 1344 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), 1345 false, false, false); 1346 else { 1347 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1348 if ((OpFlags & 7) == 4) { 1349 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1350 Modifier[0] ? Modifier : 0); 1351 } else { 1352 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1353 Modifier[0] ? Modifier : 0); 1354 } 1355 } 1356 } 1357 if (Error) { 1358 cerr << "Invalid operand found in inline asm: '" 1359 << AsmStr << "'\n"; 1360 MI->dump(); 1361 exit(1); 1362 } 1363 } 1364 break; 1365 } 1366 } 1367 } 1368 O << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1369} 1370 1371/// printImplicitDef - This method prints the specified machine instruction 1372/// that is an implicit def. 1373void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1374 O << '\t' << TAI->getCommentString() << " implicit-def: " 1375 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; 1376} 1377 1378/// printLabel - This method prints a local label used by debug and 1379/// exception handling tables. 1380void AsmPrinter::printLabel(const MachineInstr *MI) const { 1381 printLabel(MI->getOperand(0).getImm()); 1382} 1383 1384void AsmPrinter::printLabel(unsigned Id) const { 1385 O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; 1386} 1387 1388/// printDeclare - This method prints a local variable declaration used by 1389/// debug tables. 1390/// FIXME: It doesn't really print anything rather it inserts a DebugVariable 1391/// entry into dwarf table. 1392void AsmPrinter::printDeclare(const MachineInstr *MI) const { 1393 int FI = MI->getOperand(0).getIndex(); 1394 GlobalValue *GV = MI->getOperand(1).getGlobal(); 1395 MMI->RecordVariable(GV, FI); 1396} 1397 1398/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1399/// instruction, using the specified assembler variant. Targets should 1400/// overried this to format as appropriate. 1401bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1402 unsigned AsmVariant, const char *ExtraCode) { 1403 // Target doesn't support this yet! 1404 return true; 1405} 1406 1407bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1408 unsigned AsmVariant, 1409 const char *ExtraCode) { 1410 // Target doesn't support this yet! 1411 return true; 1412} 1413 1414/// printBasicBlockLabel - This method prints the label for the specified 1415/// MachineBasicBlock 1416void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, 1417 bool printAlign, 1418 bool printColon, 1419 bool printComment) const { 1420 if (printAlign) { 1421 unsigned Align = MBB->getAlignment(); 1422 if (Align) 1423 EmitAlignment(Log2_32(Align)); 1424 } 1425 1426 O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' 1427 << MBB->getNumber(); 1428 if (printColon) 1429 O << ':'; 1430 if (printComment && MBB->getBasicBlock()) 1431 O << '\t' << TAI->getCommentString() << ' ' 1432 << MBB->getBasicBlock()->getNameStart(); 1433} 1434 1435/// printPICJumpTableSetLabel - This method prints a set label for the 1436/// specified MachineBasicBlock for a jumptable entry. 1437void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1438 const MachineBasicBlock *MBB) const { 1439 if (!TAI->getSetDirective()) 1440 return; 1441 1442 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1443 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1444 printBasicBlockLabel(MBB, false, false, false); 1445 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1446 << '_' << uid << '\n'; 1447} 1448 1449void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1450 const MachineBasicBlock *MBB) const { 1451 if (!TAI->getSetDirective()) 1452 return; 1453 1454 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1455 << getFunctionNumber() << '_' << uid << '_' << uid2 1456 << "_set_" << MBB->getNumber() << ','; 1457 printBasicBlockLabel(MBB, false, false, false); 1458 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1459 << '_' << uid << '_' << uid2 << '\n'; 1460} 1461 1462/// printDataDirective - This method prints the asm directive for the 1463/// specified type. 1464void AsmPrinter::printDataDirective(const Type *type) { 1465 const TargetData *TD = TM.getTargetData(); 1466 switch (type->getTypeID()) { 1467 case Type::IntegerTyID: { 1468 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1469 if (BitWidth <= 8) 1470 O << TAI->getData8bitsDirective(); 1471 else if (BitWidth <= 16) 1472 O << TAI->getData16bitsDirective(); 1473 else if (BitWidth <= 32) 1474 O << TAI->getData32bitsDirective(); 1475 else if (BitWidth <= 64) { 1476 assert(TAI->getData64bitsDirective() && 1477 "Target cannot handle 64-bit constant exprs!"); 1478 O << TAI->getData64bitsDirective(); 1479 } else { 1480 assert(0 && "Target cannot handle given data directive width!"); 1481 } 1482 break; 1483 } 1484 case Type::PointerTyID: 1485 if (TD->getPointerSize() == 8) { 1486 assert(TAI->getData64bitsDirective() && 1487 "Target cannot handle 64-bit pointer exprs!"); 1488 O << TAI->getData64bitsDirective(); 1489 } else { 1490 O << TAI->getData32bitsDirective(); 1491 } 1492 break; 1493 case Type::FloatTyID: case Type::DoubleTyID: 1494 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1495 assert (0 && "Should have already output floating point constant."); 1496 default: 1497 assert (0 && "Can't handle printing this type of thing"); 1498 break; 1499 } 1500} 1501 1502void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix, 1503 const char *Prefix) { 1504 if (Name[0]=='\"') 1505 O << '\"'; 1506 O << TAI->getPrivateGlobalPrefix(); 1507 if (Prefix) O << Prefix; 1508 if (Name[0]=='\"') 1509 O << '\"'; 1510 if (Name[0]=='\"') 1511 O << Name[1]; 1512 else 1513 O << Name; 1514 O << Suffix; 1515 if (Name[0]=='\"') 1516 O << '\"'; 1517} 1518 1519void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) { 1520 printSuffixedName(Name.c_str(), Suffix); 1521} 1522 1523void AsmPrinter::printVisibility(const std::string& Name, 1524 unsigned Visibility) const { 1525 if (Visibility == GlobalValue::HiddenVisibility) { 1526 if (const char *Directive = TAI->getHiddenDirective()) 1527 O << Directive << Name << '\n'; 1528 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1529 if (const char *Directive = TAI->getProtectedDirective()) 1530 O << Directive << Name << '\n'; 1531 } 1532} 1533 1534GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1535 if (!S->usesMetadata()) 1536 return 0; 1537 1538 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1539 if (GCPI != GCMetadataPrinters.end()) 1540 return GCPI->second; 1541 1542 const char *Name = S->getName().c_str(); 1543 1544 for (GCMetadataPrinterRegistry::iterator 1545 I = GCMetadataPrinterRegistry::begin(), 1546 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1547 if (strcmp(Name, I->getName()) == 0) { 1548 GCMetadataPrinter *GMP = I->instantiate(); 1549 GMP->S = S; 1550 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1551 return GMP; 1552 } 1553 1554 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1555 abort(); 1556} 1557