AsmPrinter.cpp revision b8158acc23f5f0bf235fb1c6a8182a38ec9b00b2
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineJumpTableInfo.h" 22#include "llvm/CodeGen/MachineModuleInfo.h" 23#include "llvm/CodeGen/DwarfWriter.h" 24#include "llvm/Analysis/DebugInfo.h" 25#include "llvm/Support/CommandLine.h" 26#include "llvm/Support/ErrorHandling.h" 27#include "llvm/Support/FormattedStream.h" 28#include "llvm/Support/Mangler.h" 29#include "llvm/Support/raw_ostream.h" 30#include "llvm/Target/TargetAsmInfo.h" 31#include "llvm/Target/TargetData.h" 32#include "llvm/Target/TargetLowering.h" 33#include "llvm/Target/TargetOptions.h" 34#include "llvm/Target/TargetRegisterInfo.h" 35#include "llvm/ADT/SmallPtrSet.h" 36#include "llvm/ADT/SmallString.h" 37#include "llvm/ADT/StringExtras.h" 38#include <cerrno> 39using namespace llvm; 40 41static cl::opt<cl::boolOrDefault> 42AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 43 cl::init(cl::BOU_UNSET)); 44 45char AsmPrinter::ID = 0; 46AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm, 47 const TargetAsmInfo *T, bool VDef) 48 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 49 TM(tm), TAI(T), TRI(tm.getRegisterInfo()), 50 IsInTextSection(false), LastMI(0), LastFn(0), Counter(~0U), 51 PrevDLT(0, ~0U, ~0U) { 52 DW = 0; MMI = 0; 53 switch (AsmVerbose) { 54 case cl::BOU_UNSET: VerboseAsm = VDef; break; 55 case cl::BOU_TRUE: VerboseAsm = true; break; 56 case cl::BOU_FALSE: VerboseAsm = false; break; 57 } 58} 59 60AsmPrinter::~AsmPrinter() { 61 for (gcp_iterator I = GCMetadataPrinters.begin(), 62 E = GCMetadataPrinters.end(); I != E; ++I) 63 delete I->second; 64} 65 66/// SwitchToTextSection - Switch to the specified text section of the executable 67/// if we are not already in it! 68/// 69void AsmPrinter::SwitchToTextSection(const char *NewSection, 70 const GlobalValue *GV) { 71 std::string NS; 72 if (GV && GV->hasSection()) 73 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 74 else 75 NS = NewSection; 76 77 // If we're already in this section, we're done. 78 if (CurrentSection == NS) return; 79 80 // Close the current section, if applicable. 81 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 82 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 83 84 CurrentSection = NS; 85 86 if (!CurrentSection.empty()) 87 O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n'; 88 89 IsInTextSection = true; 90} 91 92/// SwitchToDataSection - Switch to the specified data section of the executable 93/// if we are not already in it! 94/// 95void AsmPrinter::SwitchToDataSection(const char *NewSection, 96 const GlobalValue *GV) { 97 std::string NS; 98 if (GV && GV->hasSection()) 99 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 100 else 101 NS = NewSection; 102 103 // If we're already in this section, we're done. 104 if (CurrentSection == NS) return; 105 106 // Close the current section, if applicable. 107 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 108 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 109 110 CurrentSection = NS; 111 112 if (!CurrentSection.empty()) 113 O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n'; 114 115 IsInTextSection = false; 116} 117 118/// SwitchToSection - Switch to the specified section of the executable if we 119/// are not already in it! 120void AsmPrinter::SwitchToSection(const Section* NS) { 121 const std::string& NewSection = NS->getName(); 122 123 // If we're already in this section, we're done. 124 if (CurrentSection == NewSection) return; 125 126 // Close the current section, if applicable. 127 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 128 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 129 130 // FIXME: Make CurrentSection a Section* in the future 131 CurrentSection = NewSection; 132 CurrentSection_ = NS; 133 134 if (!CurrentSection.empty()) { 135 // If section is named we need to switch into it via special '.section' 136 // directive and also append funky flags. Otherwise - section name is just 137 // some magic assembler directive. 138 if (NS->isNamed()) 139 O << TAI->getSwitchToSectionDirective() 140 << CurrentSection 141 << TAI->getSectionFlags(NS->getFlags()); 142 else 143 O << CurrentSection; 144 O << TAI->getDataSectionStartSuffix() << '\n'; 145 } 146 147 IsInTextSection = (NS->getFlags() & SectionFlags::Code); 148} 149 150void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 151 MachineFunctionPass::getAnalysisUsage(AU); 152 AU.addRequired<GCModuleInfo>(); 153} 154 155bool AsmPrinter::doInitialization(Module &M) { 156 Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix()); 157 158 if (TAI->doesAllowQuotesInName()) 159 Mang->setUseQuotes(true); 160 161 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 162 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 163 164 if (TAI->hasSingleParameterDotFile()) { 165 /* Very minimal debug info. It is ignored if we emit actual 166 debug info. If we don't, this at helps the user find where 167 a function came from. */ 168 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 169 } 170 171 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 172 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 173 MP->beginAssembly(O, *this, *TAI); 174 175 if (!M.getModuleInlineAsm().empty()) 176 O << TAI->getCommentString() << " Start of file scope inline assembly\n" 177 << M.getModuleInlineAsm() 178 << '\n' << TAI->getCommentString() 179 << " End of file scope inline assembly\n"; 180 181 SwitchToDataSection(""); // Reset back to no section. 182 183 if (TAI->doesSupportDebugInformation() || 184 TAI->doesSupportExceptionHandling()) { 185 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 186 if (MMI) 187 MMI->AnalyzeModule(M); 188 DW = getAnalysisIfAvailable<DwarfWriter>(); 189 if (DW) 190 DW->BeginModule(&M, MMI, O, this, TAI); 191 } 192 193 return false; 194} 195 196bool AsmPrinter::doFinalization(Module &M) { 197 // Emit final debug information. 198 if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling()) 199 DW->EndModule(); 200 201 // If the target wants to know about weak references, print them all. 202 if (TAI->getWeakRefDirective()) { 203 // FIXME: This is not lazy, it would be nice to only print weak references 204 // to stuff that is actually used. Note that doing so would require targets 205 // to notice uses in operands (due to constant exprs etc). This should 206 // happen with the MC stuff eventually. 207 SwitchToDataSection(""); 208 209 // Print out module-level global variables here. 210 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 211 I != E; ++I) { 212 if (I->hasExternalWeakLinkage()) 213 O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 214 } 215 216 for (Module::const_iterator I = M.begin(), E = M.end(); 217 I != E; ++I) { 218 if (I->hasExternalWeakLinkage()) 219 O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 220 } 221 } 222 223 if (TAI->getSetDirective()) { 224 if (!M.alias_empty()) 225 SwitchToSection(TAI->getTextSection()); 226 227 O << '\n'; 228 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 229 I != E; ++I) { 230 std::string Name = Mang->getMangledName(I); 231 232 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 233 std::string Target = Mang->getMangledName(GV); 234 235 if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) 236 O << "\t.globl\t" << Name << '\n'; 237 else if (I->hasWeakLinkage()) 238 O << TAI->getWeakRefDirective() << Name << '\n'; 239 else if (!I->hasLocalLinkage()) 240 llvm_unreachable("Invalid alias linkage"); 241 242 printVisibility(Name, I->getVisibility()); 243 244 O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 245 } 246 } 247 248 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 249 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 250 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 251 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 252 MP->finishAssembly(O, *this, *TAI); 253 254 // If we don't have any trampolines, then we don't require stack memory 255 // to be executable. Some targets have a directive to declare this. 256 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 257 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 258 if (TAI->getNonexecutableStackDirective()) 259 O << TAI->getNonexecutableStackDirective() << '\n'; 260 261 delete Mang; Mang = 0; 262 DW = 0; MMI = 0; 263 return false; 264} 265 266const std::string & 267AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF, 268 std::string &Name) const { 269 assert(MF && "No machine function?"); 270 Name = MF->getFunction()->getName(); 271 if (Name.empty()) 272 Name = Mang->getMangledName(MF->getFunction()); 273 274 // FIXME: THIS SEEMS REALLY WRONG, it will get two prefixes. 275 Name = Mang->makeNameProper(TAI->getEHGlobalPrefix() + Name + ".eh"); 276 return Name; 277} 278 279void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 280 // What's my mangled name? 281 CurrentFnName = Mang->getMangledName(MF.getFunction()); 282 IncrementFunctionNumber(); 283} 284 285namespace { 286 // SectionCPs - Keep track the alignment, constpool entries per Section. 287 struct SectionCPs { 288 const Section *S; 289 unsigned Alignment; 290 SmallVector<unsigned, 4> CPEs; 291 SectionCPs(const Section *s, unsigned a) : S(s), Alignment(a) {}; 292 }; 293} 294 295/// EmitConstantPool - Print to the current output stream assembly 296/// representations of the constants in the constant pool MCP. This is 297/// used to print out constants which have been "spilled to memory" by 298/// the code generator. 299/// 300void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 301 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 302 if (CP.empty()) return; 303 304 // Calculate sections for constant pool entries. We collect entries to go into 305 // the same section together to reduce amount of section switch statements. 306 SmallVector<SectionCPs, 4> CPSections; 307 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 308 MachineConstantPoolEntry CPE = CP[i]; 309 unsigned Align = CPE.getAlignment(); 310 const Section* S = TAI->SelectSectionForMachineConst(CPE.getType()); 311 // The number of sections are small, just do a linear search from the 312 // last section to the first. 313 bool Found = false; 314 unsigned SecIdx = CPSections.size(); 315 while (SecIdx != 0) { 316 if (CPSections[--SecIdx].S == S) { 317 Found = true; 318 break; 319 } 320 } 321 if (!Found) { 322 SecIdx = CPSections.size(); 323 CPSections.push_back(SectionCPs(S, Align)); 324 } 325 326 if (Align > CPSections[SecIdx].Alignment) 327 CPSections[SecIdx].Alignment = Align; 328 CPSections[SecIdx].CPEs.push_back(i); 329 } 330 331 // Now print stuff into the calculated sections. 332 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 333 SwitchToSection(CPSections[i].S); 334 EmitAlignment(Log2_32(CPSections[i].Alignment)); 335 336 unsigned Offset = 0; 337 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 338 unsigned CPI = CPSections[i].CPEs[j]; 339 MachineConstantPoolEntry CPE = CP[CPI]; 340 341 // Emit inter-object padding for alignment. 342 unsigned AlignMask = CPE.getAlignment() - 1; 343 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 344 EmitZeros(NewOffset - Offset); 345 346 const Type *Ty = CPE.getType(); 347 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 348 349 O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 350 << CPI << ":\t\t\t\t\t"; 351 if (VerboseAsm) { 352 O << TAI->getCommentString() << ' '; 353 WriteTypeSymbolic(O, CPE.getType(), 0); 354 } 355 O << '\n'; 356 if (CPE.isMachineConstantPoolEntry()) 357 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 358 else 359 EmitGlobalConstant(CPE.Val.ConstVal); 360 } 361 } 362} 363 364/// EmitJumpTableInfo - Print assembly representations of the jump tables used 365/// by the current function to the current output stream. 366/// 367void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 368 MachineFunction &MF) { 369 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 370 if (JT.empty()) return; 371 372 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 373 374 // Pick the directive to use to print the jump table entries, and switch to 375 // the appropriate section. 376 TargetLowering *LoweringInfo = TM.getTargetLowering(); 377 378 const char* JumpTableDataSection = TAI->getJumpTableDataSection(); 379 const Function *F = MF.getFunction(); 380 unsigned SectionFlags = TAI->SectionFlagsForGlobal(F); 381 bool JTInDiffSection = false; 382 if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) || 383 !JumpTableDataSection || 384 SectionFlags & SectionFlags::Linkonce) { 385 // In PIC mode, we need to emit the jump table to the same section as the 386 // function body itself, otherwise the label differences won't make sense. 387 // We should also do if the section name is NULL or function is declared in 388 // discardable section. 389 SwitchToSection(TAI->SectionForGlobal(F)); 390 } else { 391 SwitchToDataSection(JumpTableDataSection); 392 JTInDiffSection = true; 393 } 394 395 EmitAlignment(Log2_32(MJTI->getAlignment())); 396 397 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 398 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 399 400 // If this jump table was deleted, ignore it. 401 if (JTBBs.empty()) continue; 402 403 // For PIC codegen, if possible we want to use the SetDirective to reduce 404 // the number of relocations the assembler will generate for the jump table. 405 // Set directives are all printed before the jump table itself. 406 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 407 if (TAI->getSetDirective() && IsPic) 408 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 409 if (EmittedSets.insert(JTBBs[ii])) 410 printPICJumpTableSetLabel(i, JTBBs[ii]); 411 412 // On some targets (e.g. darwin) we want to emit two consequtive labels 413 // before each jump table. The first label is never referenced, but tells 414 // the assembler and linker the extents of the jump table object. The 415 // second label is actually referenced by the code. 416 if (JTInDiffSection) { 417 if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) 418 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 419 } 420 421 O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 422 << '_' << i << ":\n"; 423 424 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 425 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 426 O << '\n'; 427 } 428 } 429} 430 431void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 432 const MachineBasicBlock *MBB, 433 unsigned uid) const { 434 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 435 436 // Use JumpTableDirective otherwise honor the entry size from the jump table 437 // info. 438 const char *JTEntryDirective = TAI->getJumpTableDirective(); 439 bool HadJTEntryDirective = JTEntryDirective != NULL; 440 if (!HadJTEntryDirective) { 441 JTEntryDirective = MJTI->getEntrySize() == 4 ? 442 TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); 443 } 444 445 O << JTEntryDirective << ' '; 446 447 // If we have emitted set directives for the jump table entries, print 448 // them rather than the entries themselves. If we're emitting PIC, then 449 // emit the table entries as differences between two text section labels. 450 // If we're emitting non-PIC code, then emit the entries as direct 451 // references to the target basic blocks. 452 if (IsPic) { 453 if (TAI->getSetDirective()) { 454 O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() 455 << '_' << uid << "_set_" << MBB->getNumber(); 456 } else { 457 printBasicBlockLabel(MBB, false, false, false); 458 // If the arch uses custom Jump Table directives, don't calc relative to 459 // JT 460 if (!HadJTEntryDirective) 461 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" 462 << getFunctionNumber() << '_' << uid; 463 } 464 } else { 465 printBasicBlockLabel(MBB, false, false, false); 466 } 467} 468 469 470/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 471/// special global used by LLVM. If so, emit it and return true, otherwise 472/// do nothing and return false. 473bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 474 if (GV->getName() == "llvm.used") { 475 if (TAI->getUsedDirective() != 0) // No need to emit this at all. 476 EmitLLVMUsedList(GV->getInitializer()); 477 return true; 478 } 479 480 // Ignore debug and non-emitted data. 481 if (GV->getSection() == "llvm.metadata" || 482 GV->hasAvailableExternallyLinkage()) 483 return true; 484 485 if (!GV->hasAppendingLinkage()) return false; 486 487 assert(GV->hasInitializer() && "Not a special LLVM global!"); 488 489 const TargetData *TD = TM.getTargetData(); 490 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 491 if (GV->getName() == "llvm.global_ctors") { 492 SwitchToDataSection(TAI->getStaticCtorsSection()); 493 EmitAlignment(Align, 0); 494 EmitXXStructorList(GV->getInitializer()); 495 return true; 496 } 497 498 if (GV->getName() == "llvm.global_dtors") { 499 SwitchToDataSection(TAI->getStaticDtorsSection()); 500 EmitAlignment(Align, 0); 501 EmitXXStructorList(GV->getInitializer()); 502 return true; 503 } 504 505 return false; 506} 507 508/// findGlobalValue - if CV is an expression equivalent to a single 509/// global value, return that value. 510const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) { 511 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 512 return GV; 513 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 514 const TargetData *TD = TM.getTargetData(); 515 unsigned Opcode = CE->getOpcode(); 516 switch (Opcode) { 517 case Instruction::GetElementPtr: { 518 const Constant *ptrVal = CE->getOperand(0); 519 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 520 if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size())) 521 return 0; 522 return findGlobalValue(ptrVal); 523 } 524 case Instruction::BitCast: 525 return findGlobalValue(CE->getOperand(0)); 526 default: 527 return 0; 528 } 529 } 530 return 0; 531} 532 533/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each 534/// global in the specified llvm.used list for which emitUsedDirectiveFor 535/// is true, as being used with this directive. 536 537void AsmPrinter::EmitLLVMUsedList(Constant *List) { 538 const char *Directive = TAI->getUsedDirective(); 539 540 // Should be an array of 'i8*'. 541 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 542 if (InitList == 0) return; 543 544 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 545 const GlobalValue *GV = findGlobalValue(InitList->getOperand(i)); 546 if (TAI->emitUsedDirectiveFor(GV, Mang)) { 547 O << Directive; 548 EmitConstantValueOnly(InitList->getOperand(i)); 549 O << '\n'; 550 } 551 } 552} 553 554/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 555/// function pointers, ignoring the init priority. 556void AsmPrinter::EmitXXStructorList(Constant *List) { 557 // Should be an array of '{ int, void ()* }' structs. The first value is the 558 // init priority, which we ignore. 559 if (!isa<ConstantArray>(List)) return; 560 ConstantArray *InitList = cast<ConstantArray>(List); 561 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 562 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 563 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 564 565 if (CS->getOperand(1)->isNullValue()) 566 return; // Found a null terminator, exit printing. 567 // Emit the function pointer. 568 EmitGlobalConstant(CS->getOperand(1)); 569 } 570} 571 572/// getGlobalLinkName - Returns the asm/link name of of the specified 573/// global variable. Should be overridden by each target asm printer to 574/// generate the appropriate value. 575const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV, 576 std::string &LinkName) const { 577 if (isa<Function>(GV)) { 578 LinkName += TAI->getFunctionAddrPrefix(); 579 LinkName += Mang->getMangledName(GV); 580 LinkName += TAI->getFunctionAddrSuffix(); 581 } else { 582 LinkName += TAI->getGlobalVarAddrPrefix(); 583 LinkName += Mang->getMangledName(GV); 584 LinkName += TAI->getGlobalVarAddrSuffix(); 585 } 586 587 return LinkName; 588} 589 590/// EmitExternalGlobal - Emit the external reference to a global variable. 591/// Should be overridden if an indirect reference should be used. 592void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { 593 std::string GLN; 594 O << getGlobalLinkName(GV, GLN); 595} 596 597 598 599//===----------------------------------------------------------------------===// 600/// LEB 128 number encoding. 601 602/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) 603/// representing an unsigned leb128 value. 604void AsmPrinter::PrintULEB128(unsigned Value) const { 605 char Buffer[20]; 606 do { 607 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 608 Value >>= 7; 609 if (Value) Byte |= 0x80; 610 O << "0x" << utohex_buffer(Byte, Buffer+20); 611 if (Value) O << ", "; 612 } while (Value); 613} 614 615/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) 616/// representing a signed leb128 value. 617void AsmPrinter::PrintSLEB128(int Value) const { 618 int Sign = Value >> (8 * sizeof(Value) - 1); 619 bool IsMore; 620 char Buffer[20]; 621 622 do { 623 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 624 Value >>= 7; 625 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 626 if (IsMore) Byte |= 0x80; 627 O << "0x" << utohex_buffer(Byte, Buffer+20); 628 if (IsMore) O << ", "; 629 } while (IsMore); 630} 631 632//===--------------------------------------------------------------------===// 633// Emission and print routines 634// 635 636/// PrintHex - Print a value as a hexidecimal value. 637/// 638void AsmPrinter::PrintHex(int Value) const { 639 char Buffer[20]; 640 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); 641} 642 643/// EOL - Print a newline character to asm stream. If a comment is present 644/// then it will be printed first. Comments should not contain '\n'. 645void AsmPrinter::EOL() const { 646 O << '\n'; 647} 648 649void AsmPrinter::EOL(const std::string &Comment) const { 650 if (VerboseAsm && !Comment.empty()) { 651 O << '\t' 652 << TAI->getCommentString() 653 << ' ' 654 << Comment; 655 } 656 O << '\n'; 657} 658 659void AsmPrinter::EOL(const char* Comment) const { 660 if (VerboseAsm && *Comment) { 661 O << '\t' 662 << TAI->getCommentString() 663 << ' ' 664 << Comment; 665 } 666 O << '\n'; 667} 668 669/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 670/// unsigned leb128 value. 671void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 672 if (TAI->hasLEB128()) { 673 O << "\t.uleb128\t" 674 << Value; 675 } else { 676 O << TAI->getData8bitsDirective(); 677 PrintULEB128(Value); 678 } 679} 680 681/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 682/// signed leb128 value. 683void AsmPrinter::EmitSLEB128Bytes(int Value) const { 684 if (TAI->hasLEB128()) { 685 O << "\t.sleb128\t" 686 << Value; 687 } else { 688 O << TAI->getData8bitsDirective(); 689 PrintSLEB128(Value); 690 } 691} 692 693/// EmitInt8 - Emit a byte directive and value. 694/// 695void AsmPrinter::EmitInt8(int Value) const { 696 O << TAI->getData8bitsDirective(); 697 PrintHex(Value & 0xFF); 698} 699 700/// EmitInt16 - Emit a short directive and value. 701/// 702void AsmPrinter::EmitInt16(int Value) const { 703 O << TAI->getData16bitsDirective(); 704 PrintHex(Value & 0xFFFF); 705} 706 707/// EmitInt32 - Emit a long directive and value. 708/// 709void AsmPrinter::EmitInt32(int Value) const { 710 O << TAI->getData32bitsDirective(); 711 PrintHex(Value); 712} 713 714/// EmitInt64 - Emit a long long directive and value. 715/// 716void AsmPrinter::EmitInt64(uint64_t Value) const { 717 if (TAI->getData64bitsDirective()) { 718 O << TAI->getData64bitsDirective(); 719 PrintHex(Value); 720 } else { 721 if (TM.getTargetData()->isBigEndian()) { 722 EmitInt32(unsigned(Value >> 32)); O << '\n'; 723 EmitInt32(unsigned(Value)); 724 } else { 725 EmitInt32(unsigned(Value)); O << '\n'; 726 EmitInt32(unsigned(Value >> 32)); 727 } 728 } 729} 730 731/// toOctal - Convert the low order bits of X into an octal digit. 732/// 733static inline char toOctal(int X) { 734 return (X&7)+'0'; 735} 736 737/// printStringChar - Print a char, escaped if necessary. 738/// 739static void printStringChar(raw_ostream &O, unsigned char C) { 740 if (C == '"') { 741 O << "\\\""; 742 } else if (C == '\\') { 743 O << "\\\\"; 744 } else if (isprint((unsigned char)C)) { 745 O << C; 746 } else { 747 switch(C) { 748 case '\b': O << "\\b"; break; 749 case '\f': O << "\\f"; break; 750 case '\n': O << "\\n"; break; 751 case '\r': O << "\\r"; break; 752 case '\t': O << "\\t"; break; 753 default: 754 O << '\\'; 755 O << toOctal(C >> 6); 756 O << toOctal(C >> 3); 757 O << toOctal(C >> 0); 758 break; 759 } 760 } 761} 762 763/// EmitString - Emit a string with quotes and a null terminator. 764/// Special characters are emitted properly. 765/// \literal (Eg. '\t') \endliteral 766void AsmPrinter::EmitString(const std::string &String) const { 767 EmitString(String.c_str(), String.size()); 768} 769 770void AsmPrinter::EmitString(const char *String, unsigned Size) const { 771 const char* AscizDirective = TAI->getAscizDirective(); 772 if (AscizDirective) 773 O << AscizDirective; 774 else 775 O << TAI->getAsciiDirective(); 776 O << '\"'; 777 for (unsigned i = 0; i < Size; ++i) 778 printStringChar(O, String[i]); 779 if (AscizDirective) 780 O << '\"'; 781 else 782 O << "\\0\""; 783} 784 785 786/// EmitFile - Emit a .file directive. 787void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 788 O << "\t.file\t" << Number << " \""; 789 for (unsigned i = 0, N = Name.size(); i < N; ++i) 790 printStringChar(O, Name[i]); 791 O << '\"'; 792} 793 794 795//===----------------------------------------------------------------------===// 796 797// EmitAlignment - Emit an alignment directive to the specified power of 798// two boundary. For example, if you pass in 3 here, you will get an 8 799// byte alignment. If a global value is specified, and if that global has 800// an explicit alignment requested, it will unconditionally override the 801// alignment request. However, if ForcedAlignBits is specified, this value 802// has final say: the ultimate alignment will be the max of ForcedAlignBits 803// and the alignment computed with NumBits and the global. 804// 805// The algorithm is: 806// Align = NumBits; 807// if (GV && GV->hasalignment) Align = GV->getalignment(); 808// Align = std::max(Align, ForcedAlignBits); 809// 810void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 811 unsigned ForcedAlignBits, 812 bool UseFillExpr) const { 813 if (GV && GV->getAlignment()) 814 NumBits = Log2_32(GV->getAlignment()); 815 NumBits = std::max(NumBits, ForcedAlignBits); 816 817 if (NumBits == 0) return; // No need to emit alignment. 818 if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; 819 O << TAI->getAlignDirective() << NumBits; 820 821 unsigned FillValue = TAI->getTextAlignFillValue(); 822 UseFillExpr &= IsInTextSection && FillValue; 823 if (UseFillExpr) { 824 O << ','; 825 PrintHex(FillValue); 826 } 827 O << '\n'; 828} 829 830 831/// EmitZeros - Emit a block of zeros. 832/// 833void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const { 834 if (NumZeros) { 835 if (TAI->getZeroDirective()) { 836 O << TAI->getZeroDirective() << NumZeros; 837 if (TAI->getZeroDirectiveSuffix()) 838 O << TAI->getZeroDirectiveSuffix(); 839 O << '\n'; 840 } else { 841 for (; NumZeros; --NumZeros) 842 O << TAI->getData8bitsDirective(AddrSpace) << "0\n"; 843 } 844 } 845} 846 847// Print out the specified constant, without a storage class. Only the 848// constants valid in constant expressions can occur here. 849void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 850 if (CV->isNullValue() || isa<UndefValue>(CV)) 851 O << '0'; 852 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 853 O << CI->getZExtValue(); 854 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 855 // This is a constant address for a global variable or function. Use the 856 // name of the variable or function as the address value, possibly 857 // decorating it with GlobalVarAddrPrefix/Suffix or 858 // FunctionAddrPrefix/Suffix (these all default to "" ) 859 if (isa<Function>(GV)) { 860 O << TAI->getFunctionAddrPrefix() 861 << Mang->getMangledName(GV) 862 << TAI->getFunctionAddrSuffix(); 863 } else { 864 O << TAI->getGlobalVarAddrPrefix() 865 << Mang->getMangledName(GV) 866 << TAI->getGlobalVarAddrSuffix(); 867 } 868 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 869 const TargetData *TD = TM.getTargetData(); 870 unsigned Opcode = CE->getOpcode(); 871 switch (Opcode) { 872 case Instruction::GetElementPtr: { 873 // generate a symbolic expression for the byte address 874 const Constant *ptrVal = CE->getOperand(0); 875 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 876 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 877 idxVec.size())) { 878 // Truncate/sext the offset to the pointer size. 879 if (TD->getPointerSizeInBits() != 64) { 880 int SExtAmount = 64-TD->getPointerSizeInBits(); 881 Offset = (Offset << SExtAmount) >> SExtAmount; 882 } 883 884 if (Offset) 885 O << '('; 886 EmitConstantValueOnly(ptrVal); 887 if (Offset > 0) 888 O << ") + " << Offset; 889 else if (Offset < 0) 890 O << ") - " << -Offset; 891 } else { 892 EmitConstantValueOnly(ptrVal); 893 } 894 break; 895 } 896 case Instruction::Trunc: 897 case Instruction::ZExt: 898 case Instruction::SExt: 899 case Instruction::FPTrunc: 900 case Instruction::FPExt: 901 case Instruction::UIToFP: 902 case Instruction::SIToFP: 903 case Instruction::FPToUI: 904 case Instruction::FPToSI: 905 llvm_unreachable("FIXME: Don't yet support this kind of constant cast expr"); 906 break; 907 case Instruction::BitCast: 908 return EmitConstantValueOnly(CE->getOperand(0)); 909 910 case Instruction::IntToPtr: { 911 // Handle casts to pointers by changing them into casts to the appropriate 912 // integer type. This promotes constant folding and simplifies this code. 913 Constant *Op = CE->getOperand(0); 914 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/); 915 return EmitConstantValueOnly(Op); 916 } 917 918 919 case Instruction::PtrToInt: { 920 // Support only foldable casts to/from pointers that can be eliminated by 921 // changing the pointer to the appropriately sized integer type. 922 Constant *Op = CE->getOperand(0); 923 const Type *Ty = CE->getType(); 924 925 // We can emit the pointer value into this slot if the slot is an 926 // integer slot greater or equal to the size of the pointer. 927 if (TD->getTypeAllocSize(Ty) >= TD->getTypeAllocSize(Op->getType())) 928 return EmitConstantValueOnly(Op); 929 930 O << "(("; 931 EmitConstantValueOnly(Op); 932 APInt ptrMask = APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Ty)); 933 934 SmallString<40> S; 935 ptrMask.toStringUnsigned(S); 936 O << ") & " << S.c_str() << ')'; 937 break; 938 } 939 case Instruction::Add: 940 case Instruction::Sub: 941 case Instruction::And: 942 case Instruction::Or: 943 case Instruction::Xor: 944 O << '('; 945 EmitConstantValueOnly(CE->getOperand(0)); 946 O << ')'; 947 switch (Opcode) { 948 case Instruction::Add: 949 O << " + "; 950 break; 951 case Instruction::Sub: 952 O << " - "; 953 break; 954 case Instruction::And: 955 O << " & "; 956 break; 957 case Instruction::Or: 958 O << " | "; 959 break; 960 case Instruction::Xor: 961 O << " ^ "; 962 break; 963 default: 964 break; 965 } 966 O << '('; 967 EmitConstantValueOnly(CE->getOperand(1)); 968 O << ')'; 969 break; 970 default: 971 llvm_unreachable("Unsupported operator!"); 972 } 973 } else { 974 llvm_unreachable("Unknown constant value!"); 975 } 976} 977 978/// printAsCString - Print the specified array as a C compatible string, only if 979/// the predicate isString is true. 980/// 981static void printAsCString(raw_ostream &O, const ConstantArray *CVA, 982 unsigned LastElt) { 983 assert(CVA->isString() && "Array is not string compatible!"); 984 985 O << '\"'; 986 for (unsigned i = 0; i != LastElt; ++i) { 987 unsigned char C = 988 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 989 printStringChar(O, C); 990 } 991 O << '\"'; 992} 993 994/// EmitString - Emit a zero-byte-terminated string constant. 995/// 996void AsmPrinter::EmitString(const ConstantArray *CVA) const { 997 unsigned NumElts = CVA->getNumOperands(); 998 if (TAI->getAscizDirective() && NumElts && 999 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 1000 O << TAI->getAscizDirective(); 1001 printAsCString(O, CVA, NumElts-1); 1002 } else { 1003 O << TAI->getAsciiDirective(); 1004 printAsCString(O, CVA, NumElts); 1005 } 1006 O << '\n'; 1007} 1008 1009void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA, 1010 unsigned AddrSpace) { 1011 if (CVA->isString()) { 1012 EmitString(CVA); 1013 } else { // Not a string. Print the values in successive locations 1014 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 1015 EmitGlobalConstant(CVA->getOperand(i), AddrSpace); 1016 } 1017} 1018 1019void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) { 1020 const VectorType *PTy = CP->getType(); 1021 1022 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 1023 EmitGlobalConstant(CP->getOperand(I)); 1024} 1025 1026void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS, 1027 unsigned AddrSpace) { 1028 // Print the fields in successive locations. Pad to align if needed! 1029 const TargetData *TD = TM.getTargetData(); 1030 unsigned Size = TD->getTypeAllocSize(CVS->getType()); 1031 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 1032 uint64_t sizeSoFar = 0; 1033 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 1034 const Constant* field = CVS->getOperand(i); 1035 1036 // Check if padding is needed and insert one or more 0s. 1037 uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); 1038 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 1039 - cvsLayout->getElementOffset(i)) - fieldSize; 1040 sizeSoFar += fieldSize + padSize; 1041 1042 // Now print the actual field value. 1043 EmitGlobalConstant(field, AddrSpace); 1044 1045 // Insert padding - this may include padding to increase the size of the 1046 // current field up to the ABI size (if the struct is not packed) as well 1047 // as padding to ensure that the next field starts at the right offset. 1048 EmitZeros(padSize, AddrSpace); 1049 } 1050 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 1051 "Layout of constant struct may be incorrect!"); 1052} 1053 1054void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP, 1055 unsigned AddrSpace) { 1056 // FP Constants are printed as integer constants to avoid losing 1057 // precision... 1058 const TargetData *TD = TM.getTargetData(); 1059 if (CFP->getType() == Type::DoubleTy) { 1060 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 1061 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1062 if (TAI->getData64bitsDirective(AddrSpace)) { 1063 O << TAI->getData64bitsDirective(AddrSpace) << i; 1064 if (VerboseAsm) 1065 O << '\t' << TAI->getCommentString() << " double value: " << Val; 1066 O << '\n'; 1067 } else if (TD->isBigEndian()) { 1068 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1069 if (VerboseAsm) 1070 O << '\t' << TAI->getCommentString() 1071 << " double most significant word " << Val; 1072 O << '\n'; 1073 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1074 if (VerboseAsm) 1075 O << '\t' << TAI->getCommentString() 1076 << " double least significant word " << Val; 1077 O << '\n'; 1078 } else { 1079 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1080 if (VerboseAsm) 1081 O << '\t' << TAI->getCommentString() 1082 << " double least significant word " << Val; 1083 O << '\n'; 1084 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1085 if (VerboseAsm) 1086 O << '\t' << TAI->getCommentString() 1087 << " double most significant word " << Val; 1088 O << '\n'; 1089 } 1090 return; 1091 } else if (CFP->getType() == Type::FloatTy) { 1092 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1093 O << TAI->getData32bitsDirective(AddrSpace) 1094 << CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1095 if (VerboseAsm) 1096 O << '\t' << TAI->getCommentString() << " float " << Val; 1097 O << '\n'; 1098 return; 1099 } else if (CFP->getType() == Type::X86_FP80Ty) { 1100 // all long double variants are printed as hex 1101 // api needed to prevent premature destruction 1102 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1103 const uint64_t *p = api.getRawData(); 1104 // Convert to double so we can print the approximate val as a comment. 1105 APFloat DoubleVal = CFP->getValueAPF(); 1106 bool ignored; 1107 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1108 &ignored); 1109 if (TD->isBigEndian()) { 1110 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1111 if (VerboseAsm) 1112 O << '\t' << TAI->getCommentString() 1113 << " long double most significant halfword of ~" 1114 << DoubleVal.convertToDouble(); 1115 O << '\n'; 1116 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1117 if (VerboseAsm) 1118 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1119 O << '\n'; 1120 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1121 if (VerboseAsm) 1122 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1123 O << '\n'; 1124 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1125 if (VerboseAsm) 1126 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1127 O << '\n'; 1128 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1129 if (VerboseAsm) 1130 O << '\t' << TAI->getCommentString() 1131 << " long double least significant halfword"; 1132 O << '\n'; 1133 } else { 1134 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1135 if (VerboseAsm) 1136 O << '\t' << TAI->getCommentString() 1137 << " long double least significant halfword of ~" 1138 << DoubleVal.convertToDouble(); 1139 O << '\n'; 1140 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1141 if (VerboseAsm) 1142 O << '\t' << TAI->getCommentString() 1143 << " long double next halfword"; 1144 O << '\n'; 1145 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1146 if (VerboseAsm) 1147 O << '\t' << TAI->getCommentString() 1148 << " long double next halfword"; 1149 O << '\n'; 1150 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1151 if (VerboseAsm) 1152 O << '\t' << TAI->getCommentString() 1153 << " long double next halfword"; 1154 O << '\n'; 1155 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1156 if (VerboseAsm) 1157 O << '\t' << TAI->getCommentString() 1158 << " long double most significant halfword"; 1159 O << '\n'; 1160 } 1161 EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) - 1162 TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace); 1163 return; 1164 } else if (CFP->getType() == Type::PPC_FP128Ty) { 1165 // all long double variants are printed as hex 1166 // api needed to prevent premature destruction 1167 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1168 const uint64_t *p = api.getRawData(); 1169 if (TD->isBigEndian()) { 1170 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1171 if (VerboseAsm) 1172 O << '\t' << TAI->getCommentString() 1173 << " long double most significant word"; 1174 O << '\n'; 1175 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1176 if (VerboseAsm) 1177 O << '\t' << TAI->getCommentString() 1178 << " long double next word"; 1179 O << '\n'; 1180 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1181 if (VerboseAsm) 1182 O << '\t' << TAI->getCommentString() 1183 << " long double next word"; 1184 O << '\n'; 1185 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1186 if (VerboseAsm) 1187 O << '\t' << TAI->getCommentString() 1188 << " long double least significant word"; 1189 O << '\n'; 1190 } else { 1191 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1192 if (VerboseAsm) 1193 O << '\t' << TAI->getCommentString() 1194 << " long double least significant word"; 1195 O << '\n'; 1196 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1197 if (VerboseAsm) 1198 O << '\t' << TAI->getCommentString() 1199 << " long double next word"; 1200 O << '\n'; 1201 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1202 if (VerboseAsm) 1203 O << '\t' << TAI->getCommentString() 1204 << " long double next word"; 1205 O << '\n'; 1206 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1207 if (VerboseAsm) 1208 O << '\t' << TAI->getCommentString() 1209 << " long double most significant word"; 1210 O << '\n'; 1211 } 1212 return; 1213 } else llvm_unreachable("Floating point constant type not handled"); 1214} 1215 1216void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 1217 unsigned AddrSpace) { 1218 const TargetData *TD = TM.getTargetData(); 1219 unsigned BitWidth = CI->getBitWidth(); 1220 assert(isPowerOf2_32(BitWidth) && 1221 "Non-power-of-2-sized integers not handled!"); 1222 1223 // We don't expect assemblers to support integer data directives 1224 // for more than 64 bits, so we emit the data in at most 64-bit 1225 // quantities at a time. 1226 const uint64_t *RawData = CI->getValue().getRawData(); 1227 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1228 uint64_t Val; 1229 if (TD->isBigEndian()) 1230 Val = RawData[e - i - 1]; 1231 else 1232 Val = RawData[i]; 1233 1234 if (TAI->getData64bitsDirective(AddrSpace)) 1235 O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n'; 1236 else if (TD->isBigEndian()) { 1237 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1238 if (VerboseAsm) 1239 O << '\t' << TAI->getCommentString() 1240 << " Double-word most significant word " << Val; 1241 O << '\n'; 1242 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1243 if (VerboseAsm) 1244 O << '\t' << TAI->getCommentString() 1245 << " Double-word least significant word " << Val; 1246 O << '\n'; 1247 } else { 1248 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1249 if (VerboseAsm) 1250 O << '\t' << TAI->getCommentString() 1251 << " Double-word least significant word " << Val; 1252 O << '\n'; 1253 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1254 if (VerboseAsm) 1255 O << '\t' << TAI->getCommentString() 1256 << " Double-word most significant word " << Val; 1257 O << '\n'; 1258 } 1259 } 1260} 1261 1262/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1263void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1264 const TargetData *TD = TM.getTargetData(); 1265 const Type *type = CV->getType(); 1266 unsigned Size = TD->getTypeAllocSize(type); 1267 1268 if (CV->isNullValue() || isa<UndefValue>(CV)) { 1269 EmitZeros(Size, AddrSpace); 1270 return; 1271 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 1272 EmitGlobalConstantArray(CVA , AddrSpace); 1273 return; 1274 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 1275 EmitGlobalConstantStruct(CVS, AddrSpace); 1276 return; 1277 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1278 EmitGlobalConstantFP(CFP, AddrSpace); 1279 return; 1280 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1281 // Small integers are handled below; large integers are handled here. 1282 if (Size > 4) { 1283 EmitGlobalConstantLargeInt(CI, AddrSpace); 1284 return; 1285 } 1286 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1287 EmitGlobalConstantVector(CP); 1288 return; 1289 } 1290 1291 printDataDirective(type, AddrSpace); 1292 EmitConstantValueOnly(CV); 1293 if (VerboseAsm) { 1294 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1295 SmallString<40> S; 1296 CI->getValue().toStringUnsigned(S, 16); 1297 O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str(); 1298 } 1299 } 1300 O << '\n'; 1301} 1302 1303void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1304 // Target doesn't support this yet! 1305 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1306} 1307 1308/// PrintSpecial - Print information related to the specified machine instr 1309/// that is independent of the operand, and may be independent of the instr 1310/// itself. This can be useful for portably encoding the comment character 1311/// or other bits of target-specific knowledge into the asmstrings. The 1312/// syntax used is ${:comment}. Targets can override this to add support 1313/// for their own strange codes. 1314void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1315 if (!strcmp(Code, "private")) { 1316 O << TAI->getPrivateGlobalPrefix(); 1317 } else if (!strcmp(Code, "comment")) { 1318 if (VerboseAsm) 1319 O << TAI->getCommentString(); 1320 } else if (!strcmp(Code, "uid")) { 1321 // Comparing the address of MI isn't sufficient, because machineinstrs may 1322 // be allocated to the same address across functions. 1323 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1324 1325 // If this is a new LastFn instruction, bump the counter. 1326 if (LastMI != MI || LastFn != ThisF) { 1327 ++Counter; 1328 LastMI = MI; 1329 LastFn = ThisF; 1330 } 1331 O << Counter; 1332 } else { 1333 std::string msg; 1334 raw_string_ostream Msg(msg); 1335 Msg << "Unknown special formatter '" << Code 1336 << "' for machine instr: " << *MI; 1337 llvm_report_error(Msg.str()); 1338 } 1339} 1340 1341/// processDebugLoc - Processes the debug information of each machine 1342/// instruction's DebugLoc. 1343void AsmPrinter::processDebugLoc(DebugLoc DL) { 1344 if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) { 1345 if (!DL.isUnknown()) { 1346 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL); 1347 1348 if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT) 1349 printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col, 1350 DICompileUnit(CurDLT.CompileUnit))); 1351 1352 PrevDLT = CurDLT; 1353 } 1354 } 1355} 1356 1357/// printInlineAsm - This method formats and prints the specified machine 1358/// instruction that is an inline asm. 1359void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1360 unsigned NumOperands = MI->getNumOperands(); 1361 1362 // Count the number of register definitions. 1363 unsigned NumDefs = 0; 1364 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1365 ++NumDefs) 1366 assert(NumDefs != NumOperands-1 && "No asm string?"); 1367 1368 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1369 1370 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1371 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1372 1373 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1374 // These are useful to see where empty asm's wound up. 1375 if (AsmStr[0] == 0) { 1376 O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1377 return; 1378 } 1379 1380 O << TAI->getInlineAsmStart() << "\n\t"; 1381 1382 // The variant of the current asmprinter. 1383 int AsmPrinterVariant = TAI->getAssemblerDialect(); 1384 1385 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1386 const char *LastEmitted = AsmStr; // One past the last character emitted. 1387 1388 while (*LastEmitted) { 1389 switch (*LastEmitted) { 1390 default: { 1391 // Not a special case, emit the string section literally. 1392 const char *LiteralEnd = LastEmitted+1; 1393 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1394 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1395 ++LiteralEnd; 1396 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1397 O.write(LastEmitted, LiteralEnd-LastEmitted); 1398 LastEmitted = LiteralEnd; 1399 break; 1400 } 1401 case '\n': 1402 ++LastEmitted; // Consume newline character. 1403 O << '\n'; // Indent code with newline. 1404 break; 1405 case '$': { 1406 ++LastEmitted; // Consume '$' character. 1407 bool Done = true; 1408 1409 // Handle escapes. 1410 switch (*LastEmitted) { 1411 default: Done = false; break; 1412 case '$': // $$ -> $ 1413 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1414 O << '$'; 1415 ++LastEmitted; // Consume second '$' character. 1416 break; 1417 case '(': // $( -> same as GCC's { character. 1418 ++LastEmitted; // Consume '(' character. 1419 if (CurVariant != -1) { 1420 llvm_report_error("Nested variants found in inline asm string: '" 1421 + std::string(AsmStr) + "'"); 1422 } 1423 CurVariant = 0; // We're in the first variant now. 1424 break; 1425 case '|': 1426 ++LastEmitted; // consume '|' character. 1427 if (CurVariant == -1) 1428 O << '|'; // this is gcc's behavior for | outside a variant 1429 else 1430 ++CurVariant; // We're in the next variant. 1431 break; 1432 case ')': // $) -> same as GCC's } char. 1433 ++LastEmitted; // consume ')' character. 1434 if (CurVariant == -1) 1435 O << '}'; // this is gcc's behavior for } outside a variant 1436 else 1437 CurVariant = -1; 1438 break; 1439 } 1440 if (Done) break; 1441 1442 bool HasCurlyBraces = false; 1443 if (*LastEmitted == '{') { // ${variable} 1444 ++LastEmitted; // Consume '{' character. 1445 HasCurlyBraces = true; 1446 } 1447 1448 // If we have ${:foo}, then this is not a real operand reference, it is a 1449 // "magic" string reference, just like in .td files. Arrange to call 1450 // PrintSpecial. 1451 if (HasCurlyBraces && *LastEmitted == ':') { 1452 ++LastEmitted; 1453 const char *StrStart = LastEmitted; 1454 const char *StrEnd = strchr(StrStart, '}'); 1455 if (StrEnd == 0) { 1456 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '" 1457 + std::string(AsmStr) + "'"); 1458 } 1459 1460 std::string Val(StrStart, StrEnd); 1461 PrintSpecial(MI, Val.c_str()); 1462 LastEmitted = StrEnd+1; 1463 break; 1464 } 1465 1466 const char *IDStart = LastEmitted; 1467 char *IDEnd; 1468 errno = 0; 1469 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1470 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1471 llvm_report_error("Bad $ operand number in inline asm string: '" 1472 + std::string(AsmStr) + "'"); 1473 } 1474 LastEmitted = IDEnd; 1475 1476 char Modifier[2] = { 0, 0 }; 1477 1478 if (HasCurlyBraces) { 1479 // If we have curly braces, check for a modifier character. This 1480 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1481 if (*LastEmitted == ':') { 1482 ++LastEmitted; // Consume ':' character. 1483 if (*LastEmitted == 0) { 1484 llvm_report_error("Bad ${:} expression in inline asm string: '" 1485 + std::string(AsmStr) + "'"); 1486 } 1487 1488 Modifier[0] = *LastEmitted; 1489 ++LastEmitted; // Consume modifier character. 1490 } 1491 1492 if (*LastEmitted != '}') { 1493 llvm_report_error("Bad ${} expression in inline asm string: '" 1494 + std::string(AsmStr) + "'"); 1495 } 1496 ++LastEmitted; // Consume '}' character. 1497 } 1498 1499 if ((unsigned)Val >= NumOperands-1) { 1500 llvm_report_error("Invalid $ operand number in inline asm string: '" 1501 + std::string(AsmStr) + "'"); 1502 } 1503 1504 // Okay, we finally have a value number. Ask the target to print this 1505 // operand! 1506 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1507 unsigned OpNo = 1; 1508 1509 bool Error = false; 1510 1511 // Scan to find the machine operand number for the operand. 1512 for (; Val; --Val) { 1513 if (OpNo >= MI->getNumOperands()) break; 1514 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1515 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1516 } 1517 1518 if (OpNo >= MI->getNumOperands()) { 1519 Error = true; 1520 } else { 1521 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1522 ++OpNo; // Skip over the ID number. 1523 1524 if (Modifier[0]=='l') // labels are target independent 1525 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), 1526 false, false, false); 1527 else { 1528 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1529 if ((OpFlags & 7) == 4) { 1530 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1531 Modifier[0] ? Modifier : 0); 1532 } else { 1533 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1534 Modifier[0] ? Modifier : 0); 1535 } 1536 } 1537 } 1538 if (Error) { 1539 std::string msg; 1540 raw_string_ostream Msg(msg); 1541 Msg << "Invalid operand found in inline asm: '" 1542 << AsmStr << "'\n"; 1543 MI->print(Msg); 1544 llvm_report_error(Msg.str()); 1545 } 1546 } 1547 break; 1548 } 1549 } 1550 } 1551 O << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1552} 1553 1554/// printImplicitDef - This method prints the specified machine instruction 1555/// that is an implicit def. 1556void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1557 if (VerboseAsm) 1558 O << '\t' << TAI->getCommentString() << " implicit-def: " 1559 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; 1560} 1561 1562/// printLabel - This method prints a local label used by debug and 1563/// exception handling tables. 1564void AsmPrinter::printLabel(const MachineInstr *MI) const { 1565 printLabel(MI->getOperand(0).getImm()); 1566} 1567 1568void AsmPrinter::printLabel(unsigned Id) const { 1569 O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; 1570} 1571 1572/// printDeclare - This method prints a local variable declaration used by 1573/// debug tables. 1574/// FIXME: It doesn't really print anything rather it inserts a DebugVariable 1575/// entry into dwarf table. 1576void AsmPrinter::printDeclare(const MachineInstr *MI) const { 1577 unsigned FI = MI->getOperand(0).getIndex(); 1578 GlobalValue *GV = MI->getOperand(1).getGlobal(); 1579 DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI); 1580} 1581 1582/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1583/// instruction, using the specified assembler variant. Targets should 1584/// overried this to format as appropriate. 1585bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1586 unsigned AsmVariant, const char *ExtraCode) { 1587 // Target doesn't support this yet! 1588 return true; 1589} 1590 1591bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1592 unsigned AsmVariant, 1593 const char *ExtraCode) { 1594 // Target doesn't support this yet! 1595 return true; 1596} 1597 1598/// printBasicBlockLabel - This method prints the label for the specified 1599/// MachineBasicBlock 1600void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, 1601 bool printAlign, 1602 bool printColon, 1603 bool printComment) const { 1604 if (printAlign) { 1605 unsigned Align = MBB->getAlignment(); 1606 if (Align) 1607 EmitAlignment(Log2_32(Align)); 1608 } 1609 1610 O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' 1611 << MBB->getNumber(); 1612 if (printColon) 1613 O << ':'; 1614 if (printComment && MBB->getBasicBlock()) 1615 O << '\t' << TAI->getCommentString() << ' ' 1616 << MBB->getBasicBlock()->getNameStart(); 1617} 1618 1619/// printPICJumpTableSetLabel - This method prints a set label for the 1620/// specified MachineBasicBlock for a jumptable entry. 1621void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1622 const MachineBasicBlock *MBB) const { 1623 if (!TAI->getSetDirective()) 1624 return; 1625 1626 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1627 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1628 printBasicBlockLabel(MBB, false, false, false); 1629 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1630 << '_' << uid << '\n'; 1631} 1632 1633void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1634 const MachineBasicBlock *MBB) const { 1635 if (!TAI->getSetDirective()) 1636 return; 1637 1638 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1639 << getFunctionNumber() << '_' << uid << '_' << uid2 1640 << "_set_" << MBB->getNumber() << ','; 1641 printBasicBlockLabel(MBB, false, false, false); 1642 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1643 << '_' << uid << '_' << uid2 << '\n'; 1644} 1645 1646/// printDataDirective - This method prints the asm directive for the 1647/// specified type. 1648void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { 1649 const TargetData *TD = TM.getTargetData(); 1650 switch (type->getTypeID()) { 1651 case Type::IntegerTyID: { 1652 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1653 if (BitWidth <= 8) 1654 O << TAI->getData8bitsDirective(AddrSpace); 1655 else if (BitWidth <= 16) 1656 O << TAI->getData16bitsDirective(AddrSpace); 1657 else if (BitWidth <= 32) 1658 O << TAI->getData32bitsDirective(AddrSpace); 1659 else if (BitWidth <= 64) { 1660 assert(TAI->getData64bitsDirective(AddrSpace) && 1661 "Target cannot handle 64-bit constant exprs!"); 1662 O << TAI->getData64bitsDirective(AddrSpace); 1663 } else { 1664 llvm_unreachable("Target cannot handle given data directive width!"); 1665 } 1666 break; 1667 } 1668 case Type::PointerTyID: 1669 if (TD->getPointerSize() == 8) { 1670 assert(TAI->getData64bitsDirective(AddrSpace) && 1671 "Target cannot handle 64-bit pointer exprs!"); 1672 O << TAI->getData64bitsDirective(AddrSpace); 1673 } else if (TD->getPointerSize() == 2) { 1674 O << TAI->getData16bitsDirective(AddrSpace); 1675 } else if (TD->getPointerSize() == 1) { 1676 O << TAI->getData8bitsDirective(AddrSpace); 1677 } else { 1678 O << TAI->getData32bitsDirective(AddrSpace); 1679 } 1680 break; 1681 case Type::FloatTyID: case Type::DoubleTyID: 1682 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1683 assert (0 && "Should have already output floating point constant."); 1684 default: 1685 assert (0 && "Can't handle printing this type of thing"); 1686 break; 1687 } 1688} 1689 1690void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix, 1691 const char *Prefix) { 1692 if (Name[0]=='\"') 1693 O << '\"'; 1694 O << TAI->getPrivateGlobalPrefix(); 1695 if (Prefix) O << Prefix; 1696 if (Name[0]=='\"') 1697 O << '\"'; 1698 if (Name[0]=='\"') 1699 O << Name[1]; 1700 else 1701 O << Name; 1702 O << Suffix; 1703 if (Name[0]=='\"') 1704 O << '\"'; 1705} 1706 1707void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) { 1708 printSuffixedName(Name.c_str(), Suffix); 1709} 1710 1711void AsmPrinter::printVisibility(const std::string& Name, 1712 unsigned Visibility) const { 1713 if (Visibility == GlobalValue::HiddenVisibility) { 1714 if (const char *Directive = TAI->getHiddenDirective()) 1715 O << Directive << Name << '\n'; 1716 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1717 if (const char *Directive = TAI->getProtectedDirective()) 1718 O << Directive << Name << '\n'; 1719 } 1720} 1721 1722void AsmPrinter::printOffset(int64_t Offset) const { 1723 if (Offset > 0) 1724 O << '+' << Offset; 1725 else if (Offset < 0) 1726 O << Offset; 1727} 1728 1729GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1730 if (!S->usesMetadata()) 1731 return 0; 1732 1733 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1734 if (GCPI != GCMetadataPrinters.end()) 1735 return GCPI->second; 1736 1737 const char *Name = S->getName().c_str(); 1738 1739 for (GCMetadataPrinterRegistry::iterator 1740 I = GCMetadataPrinterRegistry::begin(), 1741 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1742 if (strcmp(Name, I->getName()) == 0) { 1743 GCMetadataPrinter *GMP = I->instantiate(); 1744 GMP->S = S; 1745 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1746 return GMP; 1747 } 1748 1749 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1750 llvm_unreachable(0); 1751} 1752 1753/// EmitComments - Pretty-print comments for instructions 1754void AsmPrinter::EmitComments(const MachineInstr &MI) const 1755{ 1756 // No comments in MachineInstr yet 1757} 1758 1759/// EmitComments - Pretty-print comments for instructions 1760void AsmPrinter::EmitComments(const MCInst &MI) const 1761{ 1762 // No comments in MCInst yet 1763} 1764