AsmPrinter.cpp revision bd58edf59128d2acb5ae48c76ef8a108fd587db2
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineJumpTableInfo.h" 22#include "llvm/CodeGen/MachineModuleInfo.h" 23#include "llvm/CodeGen/DwarfWriter.h" 24#include "llvm/Analysis/DebugInfo.h" 25#include "llvm/Support/CommandLine.h" 26#include "llvm/Support/Mangler.h" 27#include "llvm/Support/raw_ostream.h" 28#include "llvm/Target/TargetAsmInfo.h" 29#include "llvm/Target/TargetData.h" 30#include "llvm/Target/TargetLowering.h" 31#include "llvm/Target/TargetOptions.h" 32#include "llvm/Target/TargetRegisterInfo.h" 33#include "llvm/ADT/SmallPtrSet.h" 34#include "llvm/ADT/SmallString.h" 35#include "llvm/ADT/StringExtras.h" 36#include <cerrno> 37using namespace llvm; 38 39static cl::opt<cl::boolOrDefault> 40AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 41 cl::init(cl::BOU_UNSET)); 42 43char AsmPrinter::ID = 0; 44AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm, 45 const TargetAsmInfo *T, CodeGenOpt::Level OL, bool VDef) 46 : MachineFunctionPass(&ID), FunctionNumber(0), OptLevel(OL), O(o), 47 TM(tm), TAI(T), TRI(tm.getRegisterInfo()), 48 IsInTextSection(false), LastMI(0), LastFn(0), Counter(~0U) { 49 DW = 0; MMI = 0; 50 switch (AsmVerbose) { 51 case cl::BOU_UNSET: VerboseAsm = VDef; break; 52 case cl::BOU_TRUE: VerboseAsm = true; break; 53 case cl::BOU_FALSE: VerboseAsm = false; break; 54 } 55} 56 57AsmPrinter::~AsmPrinter() { 58 for (gcp_iterator I = GCMetadataPrinters.begin(), 59 E = GCMetadataPrinters.end(); I != E; ++I) 60 delete I->second; 61} 62 63/// SwitchToTextSection - Switch to the specified text section of the executable 64/// if we are not already in it! 65/// 66void AsmPrinter::SwitchToTextSection(const char *NewSection, 67 const GlobalValue *GV) { 68 std::string NS; 69 if (GV && GV->hasSection()) 70 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 71 else 72 NS = NewSection; 73 74 // If we're already in this section, we're done. 75 if (CurrentSection == NS) return; 76 77 // Close the current section, if applicable. 78 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 79 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 80 81 CurrentSection = NS; 82 83 if (!CurrentSection.empty()) 84 O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n'; 85 86 IsInTextSection = true; 87} 88 89/// SwitchToDataSection - Switch to the specified data section of the executable 90/// if we are not already in it! 91/// 92void AsmPrinter::SwitchToDataSection(const char *NewSection, 93 const GlobalValue *GV) { 94 std::string NS; 95 if (GV && GV->hasSection()) 96 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 97 else 98 NS = NewSection; 99 100 // If we're already in this section, we're done. 101 if (CurrentSection == NS) return; 102 103 // Close the current section, if applicable. 104 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 105 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 106 107 CurrentSection = NS; 108 109 if (!CurrentSection.empty()) 110 O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n'; 111 112 IsInTextSection = false; 113} 114 115/// SwitchToSection - Switch to the specified section of the executable if we 116/// are not already in it! 117void AsmPrinter::SwitchToSection(const Section* NS) { 118 const std::string& NewSection = NS->getName(); 119 120 // If we're already in this section, we're done. 121 if (CurrentSection == NewSection) return; 122 123 // Close the current section, if applicable. 124 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 125 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 126 127 // FIXME: Make CurrentSection a Section* in the future 128 CurrentSection = NewSection; 129 CurrentSection_ = NS; 130 131 if (!CurrentSection.empty()) { 132 // If section is named we need to switch into it via special '.section' 133 // directive and also append funky flags. Otherwise - section name is just 134 // some magic assembler directive. 135 if (NS->isNamed()) 136 O << TAI->getSwitchToSectionDirective() 137 << CurrentSection 138 << TAI->getSectionFlags(NS->getFlags()); 139 else 140 O << CurrentSection; 141 O << TAI->getDataSectionStartSuffix() << '\n'; 142 } 143 144 IsInTextSection = (NS->getFlags() & SectionFlags::Code); 145} 146 147void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 148 MachineFunctionPass::getAnalysisUsage(AU); 149 AU.addRequired<GCModuleInfo>(); 150} 151 152bool AsmPrinter::doInitialization(Module &M) { 153 Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix()); 154 155 if (TAI->doesAllowQuotesInName()) 156 Mang->setUseQuotes(true); 157 158 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 159 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 160 161 if (TAI->hasSingleParameterDotFile()) { 162 /* Very minimal debug info. It is ignored if we emit actual 163 debug info. If we don't, this at helps the user find where 164 a function came from. */ 165 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 166 } 167 168 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 169 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 170 MP->beginAssembly(O, *this, *TAI); 171 172 if (!M.getModuleInlineAsm().empty()) 173 O << TAI->getCommentString() << " Start of file scope inline assembly\n" 174 << M.getModuleInlineAsm() 175 << '\n' << TAI->getCommentString() 176 << " End of file scope inline assembly\n"; 177 178 SwitchToDataSection(""); // Reset back to no section. 179 180 if (TAI->doesSupportDebugInformation() || 181 TAI->doesSupportExceptionHandling()) { 182 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 183 if (MMI) 184 MMI->AnalyzeModule(M); 185 DW = getAnalysisIfAvailable<DwarfWriter>(); 186 if (DW) 187 DW->BeginModule(&M, MMI, O, this, TAI); 188 } 189 190 return false; 191} 192 193bool AsmPrinter::doFinalization(Module &M) { 194 // Emit final debug information. 195 if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling()) 196 DW->EndModule(); 197 198 // If the target wants to know about weak references, print them all. 199 if (TAI->getWeakRefDirective()) { 200 // FIXME: This is not lazy, it would be nice to only print weak references 201 // to stuff that is actually used. Note that doing so would require targets 202 // to notice uses in operands (due to constant exprs etc). This should 203 // happen with the MC stuff eventually. 204 SwitchToDataSection(""); 205 206 // Print out module-level global variables here. 207 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 208 I != E; ++I) { 209 if (I->hasExternalWeakLinkage()) 210 O << TAI->getWeakRefDirective() << Mang->getValueName(I) << '\n'; 211 } 212 213 for (Module::const_iterator I = M.begin(), E = M.end(); 214 I != E; ++I) { 215 if (I->hasExternalWeakLinkage()) 216 O << TAI->getWeakRefDirective() << Mang->getValueName(I) << '\n'; 217 } 218 } 219 220 if (TAI->getSetDirective()) { 221 if (!M.alias_empty()) 222 SwitchToSection(TAI->getTextSection()); 223 224 O << '\n'; 225 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 226 I != E; ++I) { 227 std::string Name = Mang->getValueName(I); 228 std::string Target; 229 230 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 231 Target = Mang->getValueName(GV); 232 233 if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) 234 O << "\t.globl\t" << Name << '\n'; 235 else if (I->hasWeakLinkage()) 236 O << TAI->getWeakRefDirective() << Name << '\n'; 237 else if (!I->hasLocalLinkage()) 238 assert(0 && "Invalid alias linkage"); 239 240 printVisibility(Name, I->getVisibility()); 241 242 O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 243 } 244 } 245 246 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 247 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 248 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 249 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 250 MP->finishAssembly(O, *this, *TAI); 251 252 // If we don't have any trampolines, then we don't require stack memory 253 // to be executable. Some targets have a directive to declare this. 254 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 255 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 256 if (TAI->getNonexecutableStackDirective()) 257 O << TAI->getNonexecutableStackDirective() << '\n'; 258 259 delete Mang; Mang = 0; 260 DW = 0; MMI = 0; 261 return false; 262} 263 264const std::string & 265AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF, 266 std::string &Name) const { 267 assert(MF && "No machine function?"); 268 Name = MF->getFunction()->getName(); 269 if (Name.empty()) 270 Name = Mang->getValueName(MF->getFunction()); 271 Name = Mang->makeNameProper(TAI->getEHGlobalPrefix() + 272 Name + ".eh", TAI->getGlobalPrefix()); 273 return Name; 274} 275 276void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 277 // What's my mangled name? 278 CurrentFnName = Mang->getValueName(MF.getFunction()); 279 IncrementFunctionNumber(); 280} 281 282namespace { 283 // SectionCPs - Keep track the alignment, constpool entries per Section. 284 struct SectionCPs { 285 const Section *S; 286 unsigned Alignment; 287 SmallVector<unsigned, 4> CPEs; 288 SectionCPs(const Section *s, unsigned a) : S(s), Alignment(a) {}; 289 }; 290} 291 292/// EmitConstantPool - Print to the current output stream assembly 293/// representations of the constants in the constant pool MCP. This is 294/// used to print out constants which have been "spilled to memory" by 295/// the code generator. 296/// 297void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 298 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 299 if (CP.empty()) return; 300 301 // Calculate sections for constant pool entries. We collect entries to go into 302 // the same section together to reduce amount of section switch statements. 303 SmallVector<SectionCPs, 4> CPSections; 304 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 305 MachineConstantPoolEntry CPE = CP[i]; 306 unsigned Align = CPE.getAlignment(); 307 const Section* S = TAI->SelectSectionForMachineConst(CPE.getType()); 308 // The number of sections are small, just do a linear search from the 309 // last section to the first. 310 bool Found = false; 311 unsigned SecIdx = CPSections.size(); 312 while (SecIdx != 0) { 313 if (CPSections[--SecIdx].S == S) { 314 Found = true; 315 break; 316 } 317 } 318 if (!Found) { 319 SecIdx = CPSections.size(); 320 CPSections.push_back(SectionCPs(S, Align)); 321 } 322 323 if (Align > CPSections[SecIdx].Alignment) 324 CPSections[SecIdx].Alignment = Align; 325 CPSections[SecIdx].CPEs.push_back(i); 326 } 327 328 // Now print stuff into the calculated sections. 329 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 330 SwitchToSection(CPSections[i].S); 331 EmitAlignment(Log2_32(CPSections[i].Alignment)); 332 333 unsigned Offset = 0; 334 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 335 unsigned CPI = CPSections[i].CPEs[j]; 336 MachineConstantPoolEntry CPE = CP[CPI]; 337 338 // Emit inter-object padding for alignment. 339 unsigned AlignMask = CPE.getAlignment() - 1; 340 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 341 EmitZeros(NewOffset - Offset); 342 343 const Type *Ty = CPE.getType(); 344 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 345 346 O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 347 << CPI << ":\t\t\t\t\t"; 348 if (VerboseAsm) { 349 O << TAI->getCommentString() << ' '; 350 WriteTypeSymbolic(O, CPE.getType(), 0); 351 } 352 O << '\n'; 353 if (CPE.isMachineConstantPoolEntry()) 354 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 355 else 356 EmitGlobalConstant(CPE.Val.ConstVal); 357 } 358 } 359} 360 361/// EmitJumpTableInfo - Print assembly representations of the jump tables used 362/// by the current function to the current output stream. 363/// 364void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 365 MachineFunction &MF) { 366 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 367 if (JT.empty()) return; 368 369 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 370 371 // Pick the directive to use to print the jump table entries, and switch to 372 // the appropriate section. 373 TargetLowering *LoweringInfo = TM.getTargetLowering(); 374 375 const char* JumpTableDataSection = TAI->getJumpTableDataSection(); 376 const Function *F = MF.getFunction(); 377 unsigned SectionFlags = TAI->SectionFlagsForGlobal(F); 378 bool JTInDiffSection = false; 379 if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) || 380 !JumpTableDataSection || 381 SectionFlags & SectionFlags::Linkonce) { 382 // In PIC mode, we need to emit the jump table to the same section as the 383 // function body itself, otherwise the label differences won't make sense. 384 // We should also do if the section name is NULL or function is declared in 385 // discardable section. 386 SwitchToSection(TAI->SectionForGlobal(F)); 387 } else { 388 SwitchToDataSection(JumpTableDataSection); 389 JTInDiffSection = true; 390 } 391 392 EmitAlignment(Log2_32(MJTI->getAlignment())); 393 394 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 395 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 396 397 // If this jump table was deleted, ignore it. 398 if (JTBBs.empty()) continue; 399 400 // For PIC codegen, if possible we want to use the SetDirective to reduce 401 // the number of relocations the assembler will generate for the jump table. 402 // Set directives are all printed before the jump table itself. 403 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 404 if (TAI->getSetDirective() && IsPic) 405 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 406 if (EmittedSets.insert(JTBBs[ii])) 407 printPICJumpTableSetLabel(i, JTBBs[ii]); 408 409 // On some targets (e.g. darwin) we want to emit two consequtive labels 410 // before each jump table. The first label is never referenced, but tells 411 // the assembler and linker the extents of the jump table object. The 412 // second label is actually referenced by the code. 413 if (JTInDiffSection) { 414 if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) 415 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 416 } 417 418 O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 419 << '_' << i << ":\n"; 420 421 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 422 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 423 O << '\n'; 424 } 425 } 426} 427 428void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 429 const MachineBasicBlock *MBB, 430 unsigned uid) const { 431 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 432 433 // Use JumpTableDirective otherwise honor the entry size from the jump table 434 // info. 435 const char *JTEntryDirective = TAI->getJumpTableDirective(); 436 bool HadJTEntryDirective = JTEntryDirective != NULL; 437 if (!HadJTEntryDirective) { 438 JTEntryDirective = MJTI->getEntrySize() == 4 ? 439 TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); 440 } 441 442 O << JTEntryDirective << ' '; 443 444 // If we have emitted set directives for the jump table entries, print 445 // them rather than the entries themselves. If we're emitting PIC, then 446 // emit the table entries as differences between two text section labels. 447 // If we're emitting non-PIC code, then emit the entries as direct 448 // references to the target basic blocks. 449 if (IsPic) { 450 if (TAI->getSetDirective()) { 451 O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() 452 << '_' << uid << "_set_" << MBB->getNumber(); 453 } else { 454 printBasicBlockLabel(MBB, false, false, false); 455 // If the arch uses custom Jump Table directives, don't calc relative to 456 // JT 457 if (!HadJTEntryDirective) 458 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" 459 << getFunctionNumber() << '_' << uid; 460 } 461 } else { 462 printBasicBlockLabel(MBB, false, false, false); 463 } 464} 465 466 467/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 468/// special global used by LLVM. If so, emit it and return true, otherwise 469/// do nothing and return false. 470bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 471 if (GV->getName() == "llvm.used") { 472 if (TAI->getUsedDirective() != 0) // No need to emit this at all. 473 EmitLLVMUsedList(GV->getInitializer()); 474 return true; 475 } 476 477 // Ignore debug and non-emitted data. 478 if (GV->getSection() == "llvm.metadata" || 479 GV->hasAvailableExternallyLinkage()) 480 return true; 481 482 if (!GV->hasAppendingLinkage()) return false; 483 484 assert(GV->hasInitializer() && "Not a special LLVM global!"); 485 486 const TargetData *TD = TM.getTargetData(); 487 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 488 if (GV->getName() == "llvm.global_ctors") { 489 SwitchToDataSection(TAI->getStaticCtorsSection()); 490 EmitAlignment(Align, 0); 491 EmitXXStructorList(GV->getInitializer()); 492 return true; 493 } 494 495 if (GV->getName() == "llvm.global_dtors") { 496 SwitchToDataSection(TAI->getStaticDtorsSection()); 497 EmitAlignment(Align, 0); 498 EmitXXStructorList(GV->getInitializer()); 499 return true; 500 } 501 502 return false; 503} 504 505/// findGlobalValue - if CV is an expression equivalent to a single 506/// global value, return that value. 507const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) { 508 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 509 return GV; 510 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 511 const TargetData *TD = TM.getTargetData(); 512 unsigned Opcode = CE->getOpcode(); 513 switch (Opcode) { 514 case Instruction::GetElementPtr: { 515 const Constant *ptrVal = CE->getOperand(0); 516 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 517 if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size())) 518 return 0; 519 return findGlobalValue(ptrVal); 520 } 521 case Instruction::BitCast: 522 return findGlobalValue(CE->getOperand(0)); 523 default: 524 return 0; 525 } 526 } 527 return 0; 528} 529 530/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each 531/// global in the specified llvm.used list for which emitUsedDirectiveFor 532/// is true, as being used with this directive. 533 534void AsmPrinter::EmitLLVMUsedList(Constant *List) { 535 const char *Directive = TAI->getUsedDirective(); 536 537 // Should be an array of 'i8*'. 538 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 539 if (InitList == 0) return; 540 541 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 542 const GlobalValue *GV = findGlobalValue(InitList->getOperand(i)); 543 if (TAI->emitUsedDirectiveFor(GV, Mang)) { 544 O << Directive; 545 EmitConstantValueOnly(InitList->getOperand(i)); 546 O << '\n'; 547 } 548 } 549} 550 551/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 552/// function pointers, ignoring the init priority. 553void AsmPrinter::EmitXXStructorList(Constant *List) { 554 // Should be an array of '{ int, void ()* }' structs. The first value is the 555 // init priority, which we ignore. 556 if (!isa<ConstantArray>(List)) return; 557 ConstantArray *InitList = cast<ConstantArray>(List); 558 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 559 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 560 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 561 562 if (CS->getOperand(1)->isNullValue()) 563 return; // Found a null terminator, exit printing. 564 // Emit the function pointer. 565 EmitGlobalConstant(CS->getOperand(1)); 566 } 567} 568 569/// getGlobalLinkName - Returns the asm/link name of of the specified 570/// global variable. Should be overridden by each target asm printer to 571/// generate the appropriate value. 572const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV, 573 std::string &LinkName) const { 574 if (isa<Function>(GV)) { 575 LinkName += TAI->getFunctionAddrPrefix(); 576 LinkName += Mang->getValueName(GV); 577 LinkName += TAI->getFunctionAddrSuffix(); 578 } else { 579 LinkName += TAI->getGlobalVarAddrPrefix(); 580 LinkName += Mang->getValueName(GV); 581 LinkName += TAI->getGlobalVarAddrSuffix(); 582 } 583 584 return LinkName; 585} 586 587/// EmitExternalGlobal - Emit the external reference to a global variable. 588/// Should be overridden if an indirect reference should be used. 589void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { 590 std::string GLN; 591 O << getGlobalLinkName(GV, GLN); 592} 593 594 595 596//===----------------------------------------------------------------------===// 597/// LEB 128 number encoding. 598 599/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) 600/// representing an unsigned leb128 value. 601void AsmPrinter::PrintULEB128(unsigned Value) const { 602 char Buffer[20]; 603 do { 604 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 605 Value >>= 7; 606 if (Value) Byte |= 0x80; 607 O << "0x" << utohex_buffer(Byte, Buffer+20); 608 if (Value) O << ", "; 609 } while (Value); 610} 611 612/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) 613/// representing a signed leb128 value. 614void AsmPrinter::PrintSLEB128(int Value) const { 615 int Sign = Value >> (8 * sizeof(Value) - 1); 616 bool IsMore; 617 char Buffer[20]; 618 619 do { 620 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 621 Value >>= 7; 622 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 623 if (IsMore) Byte |= 0x80; 624 O << "0x" << utohex_buffer(Byte, Buffer+20); 625 if (IsMore) O << ", "; 626 } while (IsMore); 627} 628 629//===--------------------------------------------------------------------===// 630// Emission and print routines 631// 632 633/// PrintHex - Print a value as a hexidecimal value. 634/// 635void AsmPrinter::PrintHex(int Value) const { 636 char Buffer[20]; 637 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); 638} 639 640/// EOL - Print a newline character to asm stream. If a comment is present 641/// then it will be printed first. Comments should not contain '\n'. 642void AsmPrinter::EOL() const { 643 O << '\n'; 644} 645 646void AsmPrinter::EOL(const std::string &Comment) const { 647 if (VerboseAsm && !Comment.empty()) { 648 O << '\t' 649 << TAI->getCommentString() 650 << ' ' 651 << Comment; 652 } 653 O << '\n'; 654} 655 656void AsmPrinter::EOL(const char* Comment) const { 657 if (VerboseAsm && *Comment) { 658 O << '\t' 659 << TAI->getCommentString() 660 << ' ' 661 << Comment; 662 } 663 O << '\n'; 664} 665 666/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 667/// unsigned leb128 value. 668void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 669 if (TAI->hasLEB128()) { 670 O << "\t.uleb128\t" 671 << Value; 672 } else { 673 O << TAI->getData8bitsDirective(); 674 PrintULEB128(Value); 675 } 676} 677 678/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 679/// signed leb128 value. 680void AsmPrinter::EmitSLEB128Bytes(int Value) const { 681 if (TAI->hasLEB128()) { 682 O << "\t.sleb128\t" 683 << Value; 684 } else { 685 O << TAI->getData8bitsDirective(); 686 PrintSLEB128(Value); 687 } 688} 689 690/// EmitInt8 - Emit a byte directive and value. 691/// 692void AsmPrinter::EmitInt8(int Value) const { 693 O << TAI->getData8bitsDirective(); 694 PrintHex(Value & 0xFF); 695} 696 697/// EmitInt16 - Emit a short directive and value. 698/// 699void AsmPrinter::EmitInt16(int Value) const { 700 O << TAI->getData16bitsDirective(); 701 PrintHex(Value & 0xFFFF); 702} 703 704/// EmitInt32 - Emit a long directive and value. 705/// 706void AsmPrinter::EmitInt32(int Value) const { 707 O << TAI->getData32bitsDirective(); 708 PrintHex(Value); 709} 710 711/// EmitInt64 - Emit a long long directive and value. 712/// 713void AsmPrinter::EmitInt64(uint64_t Value) const { 714 if (TAI->getData64bitsDirective()) { 715 O << TAI->getData64bitsDirective(); 716 PrintHex(Value); 717 } else { 718 if (TM.getTargetData()->isBigEndian()) { 719 EmitInt32(unsigned(Value >> 32)); O << '\n'; 720 EmitInt32(unsigned(Value)); 721 } else { 722 EmitInt32(unsigned(Value)); O << '\n'; 723 EmitInt32(unsigned(Value >> 32)); 724 } 725 } 726} 727 728/// toOctal - Convert the low order bits of X into an octal digit. 729/// 730static inline char toOctal(int X) { 731 return (X&7)+'0'; 732} 733 734/// printStringChar - Print a char, escaped if necessary. 735/// 736static void printStringChar(raw_ostream &O, unsigned char C) { 737 if (C == '"') { 738 O << "\\\""; 739 } else if (C == '\\') { 740 O << "\\\\"; 741 } else if (isprint((unsigned char)C)) { 742 O << C; 743 } else { 744 switch(C) { 745 case '\b': O << "\\b"; break; 746 case '\f': O << "\\f"; break; 747 case '\n': O << "\\n"; break; 748 case '\r': O << "\\r"; break; 749 case '\t': O << "\\t"; break; 750 default: 751 O << '\\'; 752 O << toOctal(C >> 6); 753 O << toOctal(C >> 3); 754 O << toOctal(C >> 0); 755 break; 756 } 757 } 758} 759 760/// EmitString - Emit a string with quotes and a null terminator. 761/// Special characters are emitted properly. 762/// \literal (Eg. '\t') \endliteral 763void AsmPrinter::EmitString(const std::string &String) const { 764 EmitString(String.c_str(), String.size()); 765} 766 767void AsmPrinter::EmitString(const char *String, unsigned Size) const { 768 const char* AscizDirective = TAI->getAscizDirective(); 769 if (AscizDirective) 770 O << AscizDirective; 771 else 772 O << TAI->getAsciiDirective(); 773 O << '\"'; 774 for (unsigned i = 0; i < Size; ++i) 775 printStringChar(O, String[i]); 776 if (AscizDirective) 777 O << '\"'; 778 else 779 O << "\\0\""; 780} 781 782 783/// EmitFile - Emit a .file directive. 784void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 785 O << "\t.file\t" << Number << " \""; 786 for (unsigned i = 0, N = Name.size(); i < N; ++i) 787 printStringChar(O, Name[i]); 788 O << '\"'; 789} 790 791 792//===----------------------------------------------------------------------===// 793 794// EmitAlignment - Emit an alignment directive to the specified power of 795// two boundary. For example, if you pass in 3 here, you will get an 8 796// byte alignment. If a global value is specified, and if that global has 797// an explicit alignment requested, it will unconditionally override the 798// alignment request. However, if ForcedAlignBits is specified, this value 799// has final say: the ultimate alignment will be the max of ForcedAlignBits 800// and the alignment computed with NumBits and the global. 801// 802// The algorithm is: 803// Align = NumBits; 804// if (GV && GV->hasalignment) Align = GV->getalignment(); 805// Align = std::max(Align, ForcedAlignBits); 806// 807void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 808 unsigned ForcedAlignBits, 809 bool UseFillExpr) const { 810 if (GV && GV->getAlignment()) 811 NumBits = Log2_32(GV->getAlignment()); 812 NumBits = std::max(NumBits, ForcedAlignBits); 813 814 if (NumBits == 0) return; // No need to emit alignment. 815 if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; 816 O << TAI->getAlignDirective() << NumBits; 817 818 unsigned FillValue = TAI->getTextAlignFillValue(); 819 UseFillExpr &= IsInTextSection && FillValue; 820 if (UseFillExpr) { 821 O << ','; 822 PrintHex(FillValue); 823 } 824 O << '\n'; 825} 826 827 828/// EmitZeros - Emit a block of zeros. 829/// 830void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const { 831 if (NumZeros) { 832 if (TAI->getZeroDirective()) { 833 O << TAI->getZeroDirective() << NumZeros; 834 if (TAI->getZeroDirectiveSuffix()) 835 O << TAI->getZeroDirectiveSuffix(); 836 O << '\n'; 837 } else { 838 for (; NumZeros; --NumZeros) 839 O << TAI->getData8bitsDirective(AddrSpace) << "0\n"; 840 } 841 } 842} 843 844// Print out the specified constant, without a storage class. Only the 845// constants valid in constant expressions can occur here. 846void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 847 if (CV->isNullValue() || isa<UndefValue>(CV)) 848 O << '0'; 849 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 850 O << CI->getZExtValue(); 851 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 852 // This is a constant address for a global variable or function. Use the 853 // name of the variable or function as the address value, possibly 854 // decorating it with GlobalVarAddrPrefix/Suffix or 855 // FunctionAddrPrefix/Suffix (these all default to "" ) 856 if (isa<Function>(GV)) { 857 O << TAI->getFunctionAddrPrefix() 858 << Mang->getValueName(GV) 859 << TAI->getFunctionAddrSuffix(); 860 } else { 861 O << TAI->getGlobalVarAddrPrefix() 862 << Mang->getValueName(GV) 863 << TAI->getGlobalVarAddrSuffix(); 864 } 865 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 866 const TargetData *TD = TM.getTargetData(); 867 unsigned Opcode = CE->getOpcode(); 868 switch (Opcode) { 869 case Instruction::GetElementPtr: { 870 // generate a symbolic expression for the byte address 871 const Constant *ptrVal = CE->getOperand(0); 872 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 873 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 874 idxVec.size())) { 875 // Truncate/sext the offset to the pointer size. 876 if (TD->getPointerSizeInBits() != 64) { 877 int SExtAmount = 64-TD->getPointerSizeInBits(); 878 Offset = (Offset << SExtAmount) >> SExtAmount; 879 } 880 881 if (Offset) 882 O << '('; 883 EmitConstantValueOnly(ptrVal); 884 if (Offset > 0) 885 O << ") + " << Offset; 886 else if (Offset < 0) 887 O << ") - " << -Offset; 888 } else { 889 EmitConstantValueOnly(ptrVal); 890 } 891 break; 892 } 893 case Instruction::Trunc: 894 case Instruction::ZExt: 895 case Instruction::SExt: 896 case Instruction::FPTrunc: 897 case Instruction::FPExt: 898 case Instruction::UIToFP: 899 case Instruction::SIToFP: 900 case Instruction::FPToUI: 901 case Instruction::FPToSI: 902 assert(0 && "FIXME: Don't yet support this kind of constant cast expr"); 903 break; 904 case Instruction::BitCast: 905 return EmitConstantValueOnly(CE->getOperand(0)); 906 907 case Instruction::IntToPtr: { 908 // Handle casts to pointers by changing them into casts to the appropriate 909 // integer type. This promotes constant folding and simplifies this code. 910 Constant *Op = CE->getOperand(0); 911 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/); 912 return EmitConstantValueOnly(Op); 913 } 914 915 916 case Instruction::PtrToInt: { 917 // Support only foldable casts to/from pointers that can be eliminated by 918 // changing the pointer to the appropriately sized integer type. 919 Constant *Op = CE->getOperand(0); 920 const Type *Ty = CE->getType(); 921 922 // We can emit the pointer value into this slot if the slot is an 923 // integer slot greater or equal to the size of the pointer. 924 if (TD->getTypeAllocSize(Ty) >= TD->getTypeAllocSize(Op->getType())) 925 return EmitConstantValueOnly(Op); 926 927 O << "(("; 928 EmitConstantValueOnly(Op); 929 APInt ptrMask = APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Ty)); 930 931 SmallString<40> S; 932 ptrMask.toStringUnsigned(S); 933 O << ") & " << S.c_str() << ')'; 934 break; 935 } 936 case Instruction::Add: 937 case Instruction::Sub: 938 case Instruction::And: 939 case Instruction::Or: 940 case Instruction::Xor: 941 O << '('; 942 EmitConstantValueOnly(CE->getOperand(0)); 943 O << ')'; 944 switch (Opcode) { 945 case Instruction::Add: 946 O << " + "; 947 break; 948 case Instruction::Sub: 949 O << " - "; 950 break; 951 case Instruction::And: 952 O << " & "; 953 break; 954 case Instruction::Or: 955 O << " | "; 956 break; 957 case Instruction::Xor: 958 O << " ^ "; 959 break; 960 default: 961 break; 962 } 963 O << '('; 964 EmitConstantValueOnly(CE->getOperand(1)); 965 O << ')'; 966 break; 967 default: 968 assert(0 && "Unsupported operator!"); 969 } 970 } else { 971 assert(0 && "Unknown constant value!"); 972 } 973} 974 975/// printAsCString - Print the specified array as a C compatible string, only if 976/// the predicate isString is true. 977/// 978static void printAsCString(raw_ostream &O, const ConstantArray *CVA, 979 unsigned LastElt) { 980 assert(CVA->isString() && "Array is not string compatible!"); 981 982 O << '\"'; 983 for (unsigned i = 0; i != LastElt; ++i) { 984 unsigned char C = 985 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 986 printStringChar(O, C); 987 } 988 O << '\"'; 989} 990 991/// EmitString - Emit a zero-byte-terminated string constant. 992/// 993void AsmPrinter::EmitString(const ConstantArray *CVA) const { 994 unsigned NumElts = CVA->getNumOperands(); 995 if (TAI->getAscizDirective() && NumElts && 996 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 997 O << TAI->getAscizDirective(); 998 printAsCString(O, CVA, NumElts-1); 999 } else { 1000 O << TAI->getAsciiDirective(); 1001 printAsCString(O, CVA, NumElts); 1002 } 1003 O << '\n'; 1004} 1005 1006void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA, 1007 unsigned AddrSpace) { 1008 if (CVA->isString()) { 1009 EmitString(CVA); 1010 } else { // Not a string. Print the values in successive locations 1011 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 1012 EmitGlobalConstant(CVA->getOperand(i), AddrSpace); 1013 } 1014} 1015 1016void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) { 1017 const VectorType *PTy = CP->getType(); 1018 1019 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 1020 EmitGlobalConstant(CP->getOperand(I)); 1021} 1022 1023void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS, 1024 unsigned AddrSpace) { 1025 // Print the fields in successive locations. Pad to align if needed! 1026 const TargetData *TD = TM.getTargetData(); 1027 unsigned Size = TD->getTypeAllocSize(CVS->getType()); 1028 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 1029 uint64_t sizeSoFar = 0; 1030 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 1031 const Constant* field = CVS->getOperand(i); 1032 1033 // Check if padding is needed and insert one or more 0s. 1034 uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); 1035 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 1036 - cvsLayout->getElementOffset(i)) - fieldSize; 1037 sizeSoFar += fieldSize + padSize; 1038 1039 // Now print the actual field value. 1040 EmitGlobalConstant(field, AddrSpace); 1041 1042 // Insert padding - this may include padding to increase the size of the 1043 // current field up to the ABI size (if the struct is not packed) as well 1044 // as padding to ensure that the next field starts at the right offset. 1045 EmitZeros(padSize, AddrSpace); 1046 } 1047 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 1048 "Layout of constant struct may be incorrect!"); 1049} 1050 1051void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP, 1052 unsigned AddrSpace) { 1053 // FP Constants are printed as integer constants to avoid losing 1054 // precision... 1055 const TargetData *TD = TM.getTargetData(); 1056 if (CFP->getType() == Type::DoubleTy) { 1057 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 1058 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1059 if (TAI->getData64bitsDirective(AddrSpace)) { 1060 O << TAI->getData64bitsDirective(AddrSpace) << i; 1061 if (VerboseAsm) 1062 O << '\t' << TAI->getCommentString() << " double value: " << Val; 1063 O << '\n'; 1064 } else if (TD->isBigEndian()) { 1065 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1066 if (VerboseAsm) 1067 O << '\t' << TAI->getCommentString() 1068 << " double most significant word " << Val; 1069 O << '\n'; 1070 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1071 if (VerboseAsm) 1072 O << '\t' << TAI->getCommentString() 1073 << " double least significant word " << Val; 1074 O << '\n'; 1075 } else { 1076 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1077 if (VerboseAsm) 1078 O << '\t' << TAI->getCommentString() 1079 << " double least significant word " << Val; 1080 O << '\n'; 1081 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1082 if (VerboseAsm) 1083 O << '\t' << TAI->getCommentString() 1084 << " double most significant word " << Val; 1085 O << '\n'; 1086 } 1087 return; 1088 } else if (CFP->getType() == Type::FloatTy) { 1089 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1090 O << TAI->getData32bitsDirective(AddrSpace) 1091 << CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1092 if (VerboseAsm) 1093 O << '\t' << TAI->getCommentString() << " float " << Val; 1094 O << '\n'; 1095 return; 1096 } else if (CFP->getType() == Type::X86_FP80Ty) { 1097 // all long double variants are printed as hex 1098 // api needed to prevent premature destruction 1099 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1100 const uint64_t *p = api.getRawData(); 1101 // Convert to double so we can print the approximate val as a comment. 1102 APFloat DoubleVal = CFP->getValueAPF(); 1103 bool ignored; 1104 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1105 &ignored); 1106 if (TD->isBigEndian()) { 1107 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1108 if (VerboseAsm) 1109 O << '\t' << TAI->getCommentString() 1110 << " long double most significant halfword of ~" 1111 << DoubleVal.convertToDouble(); 1112 O << '\n'; 1113 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1114 if (VerboseAsm) 1115 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1116 O << '\n'; 1117 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1118 if (VerboseAsm) 1119 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1120 O << '\n'; 1121 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1122 if (VerboseAsm) 1123 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1124 O << '\n'; 1125 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1126 if (VerboseAsm) 1127 O << '\t' << TAI->getCommentString() 1128 << " long double least significant halfword"; 1129 O << '\n'; 1130 } else { 1131 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1132 if (VerboseAsm) 1133 O << '\t' << TAI->getCommentString() 1134 << " long double least significant halfword of ~" 1135 << DoubleVal.convertToDouble(); 1136 O << '\n'; 1137 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1138 if (VerboseAsm) 1139 O << '\t' << TAI->getCommentString() 1140 << " long double next halfword"; 1141 O << '\n'; 1142 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1143 if (VerboseAsm) 1144 O << '\t' << TAI->getCommentString() 1145 << " long double next halfword"; 1146 O << '\n'; 1147 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1148 if (VerboseAsm) 1149 O << '\t' << TAI->getCommentString() 1150 << " long double next halfword"; 1151 O << '\n'; 1152 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1153 if (VerboseAsm) 1154 O << '\t' << TAI->getCommentString() 1155 << " long double most significant halfword"; 1156 O << '\n'; 1157 } 1158 EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) - 1159 TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace); 1160 return; 1161 } else if (CFP->getType() == Type::PPC_FP128Ty) { 1162 // all long double variants are printed as hex 1163 // api needed to prevent premature destruction 1164 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1165 const uint64_t *p = api.getRawData(); 1166 if (TD->isBigEndian()) { 1167 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1168 if (VerboseAsm) 1169 O << '\t' << TAI->getCommentString() 1170 << " long double most significant word"; 1171 O << '\n'; 1172 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1173 if (VerboseAsm) 1174 O << '\t' << TAI->getCommentString() 1175 << " long double next word"; 1176 O << '\n'; 1177 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1178 if (VerboseAsm) 1179 O << '\t' << TAI->getCommentString() 1180 << " long double next word"; 1181 O << '\n'; 1182 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1183 if (VerboseAsm) 1184 O << '\t' << TAI->getCommentString() 1185 << " long double least significant word"; 1186 O << '\n'; 1187 } else { 1188 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1189 if (VerboseAsm) 1190 O << '\t' << TAI->getCommentString() 1191 << " long double least significant word"; 1192 O << '\n'; 1193 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1194 if (VerboseAsm) 1195 O << '\t' << TAI->getCommentString() 1196 << " long double next word"; 1197 O << '\n'; 1198 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1199 if (VerboseAsm) 1200 O << '\t' << TAI->getCommentString() 1201 << " long double next word"; 1202 O << '\n'; 1203 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1204 if (VerboseAsm) 1205 O << '\t' << TAI->getCommentString() 1206 << " long double most significant word"; 1207 O << '\n'; 1208 } 1209 return; 1210 } else assert(0 && "Floating point constant type not handled"); 1211} 1212 1213void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 1214 unsigned AddrSpace) { 1215 const TargetData *TD = TM.getTargetData(); 1216 unsigned BitWidth = CI->getBitWidth(); 1217 assert(isPowerOf2_32(BitWidth) && 1218 "Non-power-of-2-sized integers not handled!"); 1219 1220 // We don't expect assemblers to support integer data directives 1221 // for more than 64 bits, so we emit the data in at most 64-bit 1222 // quantities at a time. 1223 const uint64_t *RawData = CI->getValue().getRawData(); 1224 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1225 uint64_t Val; 1226 if (TD->isBigEndian()) 1227 Val = RawData[e - i - 1]; 1228 else 1229 Val = RawData[i]; 1230 1231 if (TAI->getData64bitsDirective(AddrSpace)) 1232 O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n'; 1233 else if (TD->isBigEndian()) { 1234 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1235 if (VerboseAsm) 1236 O << '\t' << TAI->getCommentString() 1237 << " Double-word most significant word " << Val; 1238 O << '\n'; 1239 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1240 if (VerboseAsm) 1241 O << '\t' << TAI->getCommentString() 1242 << " Double-word least significant word " << Val; 1243 O << '\n'; 1244 } else { 1245 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1246 if (VerboseAsm) 1247 O << '\t' << TAI->getCommentString() 1248 << " Double-word least significant word " << Val; 1249 O << '\n'; 1250 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1251 if (VerboseAsm) 1252 O << '\t' << TAI->getCommentString() 1253 << " Double-word most significant word " << Val; 1254 O << '\n'; 1255 } 1256 } 1257} 1258 1259/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1260void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1261 const TargetData *TD = TM.getTargetData(); 1262 const Type *type = CV->getType(); 1263 unsigned Size = TD->getTypeAllocSize(type); 1264 1265 if (CV->isNullValue() || isa<UndefValue>(CV)) { 1266 EmitZeros(Size, AddrSpace); 1267 return; 1268 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 1269 EmitGlobalConstantArray(CVA , AddrSpace); 1270 return; 1271 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 1272 EmitGlobalConstantStruct(CVS, AddrSpace); 1273 return; 1274 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1275 EmitGlobalConstantFP(CFP, AddrSpace); 1276 return; 1277 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1278 // Small integers are handled below; large integers are handled here. 1279 if (Size > 4) { 1280 EmitGlobalConstantLargeInt(CI, AddrSpace); 1281 return; 1282 } 1283 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1284 EmitGlobalConstantVector(CP); 1285 return; 1286 } 1287 1288 printDataDirective(type, AddrSpace); 1289 EmitConstantValueOnly(CV); 1290 if (VerboseAsm) { 1291 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1292 SmallString<40> S; 1293 CI->getValue().toStringUnsigned(S, 16); 1294 O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str(); 1295 } 1296 } 1297 O << '\n'; 1298} 1299 1300void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1301 // Target doesn't support this yet! 1302 abort(); 1303} 1304 1305/// PrintSpecial - Print information related to the specified machine instr 1306/// that is independent of the operand, and may be independent of the instr 1307/// itself. This can be useful for portably encoding the comment character 1308/// or other bits of target-specific knowledge into the asmstrings. The 1309/// syntax used is ${:comment}. Targets can override this to add support 1310/// for their own strange codes. 1311void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1312 if (!strcmp(Code, "private")) { 1313 O << TAI->getPrivateGlobalPrefix(); 1314 } else if (!strcmp(Code, "comment")) { 1315 if (VerboseAsm) 1316 O << TAI->getCommentString(); 1317 } else if (!strcmp(Code, "uid")) { 1318 // Comparing the address of MI isn't sufficient, because machineinstrs may 1319 // be allocated to the same address across functions. 1320 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1321 1322 // If this is a new LastFn instruction, bump the counter. 1323 if (LastMI != MI || LastFn != ThisF) { 1324 ++Counter; 1325 LastMI = MI; 1326 LastFn = ThisF; 1327 } 1328 O << Counter; 1329 } else { 1330 cerr << "Unknown special formatter '" << Code 1331 << "' for machine instr: " << *MI; 1332 exit(1); 1333 } 1334} 1335 1336/// processDebugLoc - Processes the debug information of each machine 1337/// instruction's DebugLoc. 1338void AsmPrinter::processDebugLoc(DebugLoc DL) { 1339 if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) { 1340 if (!DL.isUnknown()) { 1341 static DebugLocTuple PrevDLT(0, ~0U, ~0U); 1342 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL); 1343 1344 if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT) 1345 printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col, 1346 DICompileUnit(CurDLT.CompileUnit))); 1347 1348 PrevDLT = CurDLT; 1349 } 1350 } 1351} 1352 1353/// printInlineAsm - This method formats and prints the specified machine 1354/// instruction that is an inline asm. 1355void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1356 unsigned NumOperands = MI->getNumOperands(); 1357 1358 // Count the number of register definitions. 1359 unsigned NumDefs = 0; 1360 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1361 ++NumDefs) 1362 assert(NumDefs != NumOperands-1 && "No asm string?"); 1363 1364 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1365 1366 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1367 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1368 1369 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1370 // These are useful to see where empty asm's wound up. 1371 if (AsmStr[0] == 0) { 1372 O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1373 return; 1374 } 1375 1376 O << TAI->getInlineAsmStart() << "\n\t"; 1377 1378 // The variant of the current asmprinter. 1379 int AsmPrinterVariant = TAI->getAssemblerDialect(); 1380 1381 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1382 const char *LastEmitted = AsmStr; // One past the last character emitted. 1383 1384 while (*LastEmitted) { 1385 switch (*LastEmitted) { 1386 default: { 1387 // Not a special case, emit the string section literally. 1388 const char *LiteralEnd = LastEmitted+1; 1389 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1390 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1391 ++LiteralEnd; 1392 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1393 O.write(LastEmitted, LiteralEnd-LastEmitted); 1394 LastEmitted = LiteralEnd; 1395 break; 1396 } 1397 case '\n': 1398 ++LastEmitted; // Consume newline character. 1399 O << '\n'; // Indent code with newline. 1400 break; 1401 case '$': { 1402 ++LastEmitted; // Consume '$' character. 1403 bool Done = true; 1404 1405 // Handle escapes. 1406 switch (*LastEmitted) { 1407 default: Done = false; break; 1408 case '$': // $$ -> $ 1409 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1410 O << '$'; 1411 ++LastEmitted; // Consume second '$' character. 1412 break; 1413 case '(': // $( -> same as GCC's { character. 1414 ++LastEmitted; // Consume '(' character. 1415 if (CurVariant != -1) { 1416 cerr << "Nested variants found in inline asm string: '" 1417 << AsmStr << "'\n"; 1418 exit(1); 1419 } 1420 CurVariant = 0; // We're in the first variant now. 1421 break; 1422 case '|': 1423 ++LastEmitted; // consume '|' character. 1424 if (CurVariant == -1) 1425 O << '|'; // this is gcc's behavior for | outside a variant 1426 else 1427 ++CurVariant; // We're in the next variant. 1428 break; 1429 case ')': // $) -> same as GCC's } char. 1430 ++LastEmitted; // consume ')' character. 1431 if (CurVariant == -1) 1432 O << '}'; // this is gcc's behavior for } outside a variant 1433 else 1434 CurVariant = -1; 1435 break; 1436 } 1437 if (Done) break; 1438 1439 bool HasCurlyBraces = false; 1440 if (*LastEmitted == '{') { // ${variable} 1441 ++LastEmitted; // Consume '{' character. 1442 HasCurlyBraces = true; 1443 } 1444 1445 // If we have ${:foo}, then this is not a real operand reference, it is a 1446 // "magic" string reference, just like in .td files. Arrange to call 1447 // PrintSpecial. 1448 if (HasCurlyBraces && *LastEmitted == ':') { 1449 ++LastEmitted; 1450 const char *StrStart = LastEmitted; 1451 const char *StrEnd = strchr(StrStart, '}'); 1452 if (StrEnd == 0) { 1453 cerr << "Unterminated ${:foo} operand in inline asm string: '" 1454 << AsmStr << "'\n"; 1455 exit(1); 1456 } 1457 1458 std::string Val(StrStart, StrEnd); 1459 PrintSpecial(MI, Val.c_str()); 1460 LastEmitted = StrEnd+1; 1461 break; 1462 } 1463 1464 const char *IDStart = LastEmitted; 1465 char *IDEnd; 1466 errno = 0; 1467 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1468 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1469 cerr << "Bad $ operand number in inline asm string: '" 1470 << AsmStr << "'\n"; 1471 exit(1); 1472 } 1473 LastEmitted = IDEnd; 1474 1475 char Modifier[2] = { 0, 0 }; 1476 1477 if (HasCurlyBraces) { 1478 // If we have curly braces, check for a modifier character. This 1479 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1480 if (*LastEmitted == ':') { 1481 ++LastEmitted; // Consume ':' character. 1482 if (*LastEmitted == 0) { 1483 cerr << "Bad ${:} expression in inline asm string: '" 1484 << AsmStr << "'\n"; 1485 exit(1); 1486 } 1487 1488 Modifier[0] = *LastEmitted; 1489 ++LastEmitted; // Consume modifier character. 1490 } 1491 1492 if (*LastEmitted != '}') { 1493 cerr << "Bad ${} expression in inline asm string: '" 1494 << AsmStr << "'\n"; 1495 exit(1); 1496 } 1497 ++LastEmitted; // Consume '}' character. 1498 } 1499 1500 if ((unsigned)Val >= NumOperands-1) { 1501 cerr << "Invalid $ operand number in inline asm string: '" 1502 << AsmStr << "'\n"; 1503 exit(1); 1504 } 1505 1506 // Okay, we finally have a value number. Ask the target to print this 1507 // operand! 1508 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1509 unsigned OpNo = 1; 1510 1511 bool Error = false; 1512 1513 // Scan to find the machine operand number for the operand. 1514 for (; Val; --Val) { 1515 if (OpNo >= MI->getNumOperands()) break; 1516 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1517 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1518 } 1519 1520 if (OpNo >= MI->getNumOperands()) { 1521 Error = true; 1522 } else { 1523 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1524 ++OpNo; // Skip over the ID number. 1525 1526 if (Modifier[0]=='l') // labels are target independent 1527 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), 1528 false, false, false); 1529 else { 1530 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1531 if ((OpFlags & 7) == 4) { 1532 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1533 Modifier[0] ? Modifier : 0); 1534 } else { 1535 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1536 Modifier[0] ? Modifier : 0); 1537 } 1538 } 1539 } 1540 if (Error) { 1541 cerr << "Invalid operand found in inline asm: '" 1542 << AsmStr << "'\n"; 1543 MI->dump(); 1544 exit(1); 1545 } 1546 } 1547 break; 1548 } 1549 } 1550 } 1551 O << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1552} 1553 1554/// printImplicitDef - This method prints the specified machine instruction 1555/// that is an implicit def. 1556void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1557 if (VerboseAsm) 1558 O << '\t' << TAI->getCommentString() << " implicit-def: " 1559 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; 1560} 1561 1562/// printLabel - This method prints a local label used by debug and 1563/// exception handling tables. 1564void AsmPrinter::printLabel(const MachineInstr *MI) const { 1565 printLabel(MI->getOperand(0).getImm()); 1566} 1567 1568void AsmPrinter::printLabel(unsigned Id) const { 1569 O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; 1570} 1571 1572/// printDeclare - This method prints a local variable declaration used by 1573/// debug tables. 1574/// FIXME: It doesn't really print anything rather it inserts a DebugVariable 1575/// entry into dwarf table. 1576void AsmPrinter::printDeclare(const MachineInstr *MI) const { 1577 unsigned FI = MI->getOperand(0).getIndex(); 1578 GlobalValue *GV = MI->getOperand(1).getGlobal(); 1579 DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI); 1580} 1581 1582/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1583/// instruction, using the specified assembler variant. Targets should 1584/// overried this to format as appropriate. 1585bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1586 unsigned AsmVariant, const char *ExtraCode) { 1587 // Target doesn't support this yet! 1588 return true; 1589} 1590 1591bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1592 unsigned AsmVariant, 1593 const char *ExtraCode) { 1594 // Target doesn't support this yet! 1595 return true; 1596} 1597 1598/// printBasicBlockLabel - This method prints the label for the specified 1599/// MachineBasicBlock 1600void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, 1601 bool printAlign, 1602 bool printColon, 1603 bool printComment) const { 1604 if (printAlign) { 1605 unsigned Align = MBB->getAlignment(); 1606 if (Align) 1607 EmitAlignment(Log2_32(Align)); 1608 } 1609 1610 O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' 1611 << MBB->getNumber(); 1612 if (printColon) 1613 O << ':'; 1614 if (printComment && MBB->getBasicBlock()) 1615 O << '\t' << TAI->getCommentString() << ' ' 1616 << MBB->getBasicBlock()->getNameStart(); 1617} 1618 1619/// printPICJumpTableSetLabel - This method prints a set label for the 1620/// specified MachineBasicBlock for a jumptable entry. 1621void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1622 const MachineBasicBlock *MBB) const { 1623 if (!TAI->getSetDirective()) 1624 return; 1625 1626 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1627 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1628 printBasicBlockLabel(MBB, false, false, false); 1629 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1630 << '_' << uid << '\n'; 1631} 1632 1633void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1634 const MachineBasicBlock *MBB) const { 1635 if (!TAI->getSetDirective()) 1636 return; 1637 1638 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1639 << getFunctionNumber() << '_' << uid << '_' << uid2 1640 << "_set_" << MBB->getNumber() << ','; 1641 printBasicBlockLabel(MBB, false, false, false); 1642 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1643 << '_' << uid << '_' << uid2 << '\n'; 1644} 1645 1646/// printDataDirective - This method prints the asm directive for the 1647/// specified type. 1648void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { 1649 const TargetData *TD = TM.getTargetData(); 1650 switch (type->getTypeID()) { 1651 case Type::IntegerTyID: { 1652 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1653 if (BitWidth <= 8) 1654 O << TAI->getData8bitsDirective(AddrSpace); 1655 else if (BitWidth <= 16) 1656 O << TAI->getData16bitsDirective(AddrSpace); 1657 else if (BitWidth <= 32) 1658 O << TAI->getData32bitsDirective(AddrSpace); 1659 else if (BitWidth <= 64) { 1660 assert(TAI->getData64bitsDirective(AddrSpace) && 1661 "Target cannot handle 64-bit constant exprs!"); 1662 O << TAI->getData64bitsDirective(AddrSpace); 1663 } else { 1664 assert(0 && "Target cannot handle given data directive width!"); 1665 } 1666 break; 1667 } 1668 case Type::PointerTyID: 1669 if (TD->getPointerSize() == 8) { 1670 assert(TAI->getData64bitsDirective(AddrSpace) && 1671 "Target cannot handle 64-bit pointer exprs!"); 1672 O << TAI->getData64bitsDirective(AddrSpace); 1673 } else if (TD->getPointerSize() == 2) { 1674 O << TAI->getData16bitsDirective(AddrSpace); 1675 } else if (TD->getPointerSize() == 1) { 1676 O << TAI->getData8bitsDirective(AddrSpace); 1677 } else { 1678 O << TAI->getData32bitsDirective(AddrSpace); 1679 } 1680 break; 1681 case Type::FloatTyID: case Type::DoubleTyID: 1682 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1683 assert (0 && "Should have already output floating point constant."); 1684 default: 1685 assert (0 && "Can't handle printing this type of thing"); 1686 break; 1687 } 1688} 1689 1690void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix, 1691 const char *Prefix) { 1692 if (Name[0]=='\"') 1693 O << '\"'; 1694 O << TAI->getPrivateGlobalPrefix(); 1695 if (Prefix) O << Prefix; 1696 if (Name[0]=='\"') 1697 O << '\"'; 1698 if (Name[0]=='\"') 1699 O << Name[1]; 1700 else 1701 O << Name; 1702 O << Suffix; 1703 if (Name[0]=='\"') 1704 O << '\"'; 1705} 1706 1707void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) { 1708 printSuffixedName(Name.c_str(), Suffix); 1709} 1710 1711void AsmPrinter::printVisibility(const std::string& Name, 1712 unsigned Visibility) const { 1713 if (Visibility == GlobalValue::HiddenVisibility) { 1714 if (const char *Directive = TAI->getHiddenDirective()) 1715 O << Directive << Name << '\n'; 1716 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1717 if (const char *Directive = TAI->getProtectedDirective()) 1718 O << Directive << Name << '\n'; 1719 } 1720} 1721 1722void AsmPrinter::printOffset(int64_t Offset) const { 1723 if (Offset > 0) 1724 O << '+' << Offset; 1725 else if (Offset < 0) 1726 O << Offset; 1727} 1728 1729GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1730 if (!S->usesMetadata()) 1731 return 0; 1732 1733 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1734 if (GCPI != GCMetadataPrinters.end()) 1735 return GCPI->second; 1736 1737 const char *Name = S->getName().c_str(); 1738 1739 for (GCMetadataPrinterRegistry::iterator 1740 I = GCMetadataPrinterRegistry::begin(), 1741 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1742 if (strcmp(Name, I->getName()) == 0) { 1743 GCMetadataPrinter *GMP = I->instantiate(); 1744 GMP->S = S; 1745 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1746 return GMP; 1747 } 1748 1749 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1750 abort(); 1751} 1752