AsmPrinter.cpp revision c006e1cc781b854bf6a8ebda79c222dc745753bb
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/DwarfWriter.h" 20#include "llvm/CodeGen/GCMetadataPrinter.h" 21#include "llvm/CodeGen/MachineConstantPool.h" 22#include "llvm/CodeGen/MachineFrameInfo.h" 23#include "llvm/CodeGen/MachineFunction.h" 24#include "llvm/CodeGen/MachineJumpTableInfo.h" 25#include "llvm/CodeGen/MachineLoopInfo.h" 26#include "llvm/CodeGen/MachineModuleInfo.h" 27#include "llvm/Analysis/DebugInfo.h" 28#include "llvm/MC/MCContext.h" 29#include "llvm/MC/MCInst.h" 30#include "llvm/MC/MCSection.h" 31#include "llvm/MC/MCStreamer.h" 32#include "llvm/MC/MCSymbol.h" 33#include "llvm/Support/CommandLine.h" 34#include "llvm/Support/ErrorHandling.h" 35#include "llvm/Support/Format.h" 36#include "llvm/Support/FormattedStream.h" 37#include "llvm/MC/MCAsmInfo.h" 38#include "llvm/Target/Mangler.h" 39#include "llvm/Target/TargetData.h" 40#include "llvm/Target/TargetInstrInfo.h" 41#include "llvm/Target/TargetLowering.h" 42#include "llvm/Target/TargetLoweringObjectFile.h" 43#include "llvm/Target/TargetOptions.h" 44#include "llvm/Target/TargetRegisterInfo.h" 45#include "llvm/ADT/SmallPtrSet.h" 46#include "llvm/ADT/SmallString.h" 47#include <cerrno> 48using namespace llvm; 49 50static cl::opt<cl::boolOrDefault> 51AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 52 cl::init(cl::BOU_UNSET)); 53 54static bool getVerboseAsm(bool VDef) { 55 switch (AsmVerbose) { 56 default: 57 case cl::BOU_UNSET: return VDef; 58 case cl::BOU_TRUE: return true; 59 case cl::BOU_FALSE: return false; 60 } 61} 62 63char AsmPrinter::ID = 0; 64AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm, 65 const MCAsmInfo *T, bool VDef) 66 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 67 TM(tm), MAI(T), TRI(tm.getRegisterInfo()), 68 69 OutContext(*new MCContext()), 70 // FIXME: Pass instprinter to streamer. 71 OutStreamer(*createAsmStreamer(OutContext, O, *T, 72 TM.getTargetData()->isLittleEndian(), 73 getVerboseAsm(VDef), 0)), 74 75 LastMI(0), LastFn(0), Counter(~0U), PrevDLT(NULL) { 76 DW = 0; MMI = 0; 77 VerboseAsm = getVerboseAsm(VDef); 78} 79 80AsmPrinter::~AsmPrinter() { 81 for (gcp_iterator I = GCMetadataPrinters.begin(), 82 E = GCMetadataPrinters.end(); I != E; ++I) 83 delete I->second; 84 85 delete &OutStreamer; 86 delete &OutContext; 87} 88 89TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 90 return TM.getTargetLowering()->getObjFileLowering(); 91} 92 93/// getCurrentSection() - Return the current section we are emitting to. 94const MCSection *AsmPrinter::getCurrentSection() const { 95 return OutStreamer.getCurrentSection(); 96} 97 98 99void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 100 AU.setPreservesAll(); 101 MachineFunctionPass::getAnalysisUsage(AU); 102 AU.addRequired<GCModuleInfo>(); 103 if (VerboseAsm) 104 AU.addRequired<MachineLoopInfo>(); 105} 106 107bool AsmPrinter::doInitialization(Module &M) { 108 // Initialize TargetLoweringObjectFile. 109 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 110 .Initialize(OutContext, TM); 111 112 Mang = new Mangler(*MAI); 113 114 // Allow the target to emit any magic that it wants at the start of the file. 115 EmitStartOfAsmFile(M); 116 117 if (MAI->hasSingleParameterDotFile()) { 118 /* Very minimal debug info. It is ignored if we emit actual 119 debug info. If we don't, this at least helps the user find where 120 a function came from. */ 121 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 122 } 123 124 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 125 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 126 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 127 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 128 MP->beginAssembly(O, *this, *MAI); 129 130 if (!M.getModuleInlineAsm().empty()) 131 O << MAI->getCommentString() << " Start of file scope inline assembly\n" 132 << M.getModuleInlineAsm() 133 << '\n' << MAI->getCommentString() 134 << " End of file scope inline assembly\n"; 135 136 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 137 if (MMI) 138 MMI->AnalyzeModule(M); 139 DW = getAnalysisIfAvailable<DwarfWriter>(); 140 if (DW) 141 DW->BeginModule(&M, MMI, O, this, MAI); 142 143 return false; 144} 145 146/// EmitGlobalVariable - Emit the specified global variable to the .s file. 147void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 148 if (!GV->hasInitializer()) // External globals require no code. 149 return; 150 151 // Check to see if this is a special global used by LLVM, if so, emit it. 152 if (EmitSpecialLLVMGlobal(GV)) 153 return; 154 155 MCSymbol *GVSym = GetGlobalValueSymbol(GV); 156 printVisibility(GVSym, GV->getVisibility()); 157 158 if (MAI->hasDotTypeDotSizeDirective()) { 159 O << "\t.type\t" << *GVSym; 160 if (MAI->getCommentString()[0] != '@') 161 O << ",@object\n"; 162 else 163 O << ",%object\n"; 164 } 165 166 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 167 168 const TargetData *TD = TM.getTargetData(); 169 unsigned Size = TD->getTypeAllocSize(GV->getType()->getElementType()); 170 unsigned AlignLog = TD->getPreferredAlignmentLog(GV); 171 172 // Handle common and BSS local symbols (.lcomm). 173 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 174 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 175 176 if (VerboseAsm) { 177 WriteAsOperand(OutStreamer.GetCommentOS(), GV, 178 /*PrintType=*/false, GV->getParent()); 179 OutStreamer.GetCommentOS() << '\n'; 180 } 181 182 // Handle common symbols. 183 if (GVKind.isCommon()) { 184 // .comm _foo, 42, 4 185 OutStreamer.EmitCommonSymbol(GVSym, Size, 1 << AlignLog); 186 return; 187 } 188 189 // Handle local BSS symbols. 190 if (MAI->hasMachoZeroFillDirective()) { 191 const MCSection *TheSection = 192 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 193 // .zerofill __DATA, __bss, _foo, 400, 5 194 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 195 return; 196 } 197 198 if (const char *LComm = MAI->getLCOMMDirective()) { 199 // .lcomm _foo, 42 200 O << LComm << *GVSym << ',' << Size; 201 O << '\n'; 202 return; 203 } 204 205 // .local _foo 206 O << "\t.local\t" << *GVSym << '\n'; 207 // .comm _foo, 42, 4 208 OutStreamer.EmitCommonSymbol(GVSym, Size, 1 << AlignLog); 209 return; 210 } 211 212 const MCSection *TheSection = 213 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 214 215 // Handle the zerofill directive on darwin, which is a special form of BSS 216 // emission. 217 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 218 // .globl _foo 219 OutStreamer.EmitSymbolAttribute(GVSym, MCStreamer::Global); 220 // .zerofill __DATA, __common, _foo, 400, 5 221 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 222 return; 223 } 224 225 OutStreamer.SwitchSection(TheSection); 226 227 // TODO: Factor into an 'emit linkage' thing that is shared with function 228 // bodies. 229 switch (GV->getLinkage()) { 230 case GlobalValue::CommonLinkage: 231 case GlobalValue::LinkOnceAnyLinkage: 232 case GlobalValue::LinkOnceODRLinkage: 233 case GlobalValue::WeakAnyLinkage: 234 case GlobalValue::WeakODRLinkage: 235 case GlobalValue::LinkerPrivateLinkage: 236 if (MAI->getWeakDefDirective() != 0) { 237 // .globl _foo 238 OutStreamer.EmitSymbolAttribute(GVSym, MCStreamer::Global); 239 // .weak_definition _foo 240 OutStreamer.EmitSymbolAttribute(GVSym, MCStreamer::WeakDefinition); 241 } else if (const char *LinkOnce = MAI->getLinkOnceDirective()) { 242 // .globl _foo 243 OutStreamer.EmitSymbolAttribute(GVSym, MCStreamer::Global); 244 // .linkonce same_size 245 O << LinkOnce; 246 } else { 247 // .weak _foo 248 OutStreamer.EmitSymbolAttribute(GVSym, MCStreamer::Weak); 249 } 250 break; 251 case GlobalValue::DLLExportLinkage: 252 case GlobalValue::AppendingLinkage: 253 // FIXME: appending linkage variables should go into a section of 254 // their name or something. For now, just emit them as external. 255 case GlobalValue::ExternalLinkage: 256 // If external or appending, declare as a global symbol. 257 // .globl _foo 258 OutStreamer.EmitSymbolAttribute(GVSym, MCStreamer::Global); 259 break; 260 case GlobalValue::PrivateLinkage: 261 case GlobalValue::InternalLinkage: 262 break; 263 default: 264 llvm_unreachable("Unknown linkage type!"); 265 } 266 267 EmitAlignment(AlignLog, GV); 268 if (VerboseAsm) { 269 WriteAsOperand(OutStreamer.GetCommentOS(), GV, 270 /*PrintType=*/false, GV->getParent()); 271 OutStreamer.GetCommentOS() << '\n'; 272 } 273 OutStreamer.EmitLabel(GVSym); 274 275 EmitGlobalConstant(GV->getInitializer()); 276 277 if (MAI->hasDotTypeDotSizeDirective()) 278 O << "\t.size\t" << *GVSym << ", " << Size << '\n'; 279 280 OutStreamer.AddBlankLine(); 281} 282 283 284bool AsmPrinter::doFinalization(Module &M) { 285 // Emit global variables. 286 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 287 I != E; ++I) 288 EmitGlobalVariable(I); 289 290 // Emit final debug information. 291 if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling()) 292 DW->EndModule(); 293 294 // If the target wants to know about weak references, print them all. 295 if (MAI->getWeakRefDirective()) { 296 // FIXME: This is not lazy, it would be nice to only print weak references 297 // to stuff that is actually used. Note that doing so would require targets 298 // to notice uses in operands (due to constant exprs etc). This should 299 // happen with the MC stuff eventually. 300 301 // Print out module-level global variables here. 302 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 303 I != E; ++I) { 304 if (!I->hasExternalWeakLinkage()) continue; 305 O << MAI->getWeakRefDirective() << *GetGlobalValueSymbol(I) << '\n'; 306 } 307 308 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 309 if (!I->hasExternalWeakLinkage()) continue; 310 O << MAI->getWeakRefDirective() << *GetGlobalValueSymbol(I) << '\n'; 311 } 312 } 313 314 if (MAI->getSetDirective()) { 315 O << '\n'; 316 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 317 I != E; ++I) { 318 MCSymbol *Name = GetGlobalValueSymbol(I); 319 320 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 321 MCSymbol *Target = GetGlobalValueSymbol(GV); 322 323 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 324 O << "\t.globl\t" << *Name << '\n'; 325 else if (I->hasWeakLinkage()) 326 O << MAI->getWeakRefDirective() << *Name << '\n'; 327 else 328 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 329 330 printVisibility(Name, I->getVisibility()); 331 332 O << MAI->getSetDirective() << ' ' << *Name << ", " << *Target << '\n'; 333 } 334 } 335 336 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 337 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 338 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 339 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 340 MP->finishAssembly(O, *this, *MAI); 341 342 // If we don't have any trampolines, then we don't require stack memory 343 // to be executable. Some targets have a directive to declare this. 344 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 345 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 346 if (MAI->getNonexecutableStackDirective()) 347 O << MAI->getNonexecutableStackDirective() << '\n'; 348 349 350 // Allow the target to emit any magic that it wants at the end of the file, 351 // after everything else has gone out. 352 EmitEndOfAsmFile(M); 353 354 delete Mang; Mang = 0; 355 DW = 0; MMI = 0; 356 357 OutStreamer.Finish(); 358 return false; 359} 360 361void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 362 // Get the function symbol. 363 CurrentFnSym = GetGlobalValueSymbol(MF.getFunction()); 364 IncrementFunctionNumber(); 365 366 if (VerboseAsm) 367 LI = &getAnalysis<MachineLoopInfo>(); 368} 369 370namespace { 371 // SectionCPs - Keep track the alignment, constpool entries per Section. 372 struct SectionCPs { 373 const MCSection *S; 374 unsigned Alignment; 375 SmallVector<unsigned, 4> CPEs; 376 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 377 }; 378} 379 380/// EmitConstantPool - Print to the current output stream assembly 381/// representations of the constants in the constant pool MCP. This is 382/// used to print out constants which have been "spilled to memory" by 383/// the code generator. 384/// 385void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 386 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 387 if (CP.empty()) return; 388 389 // Calculate sections for constant pool entries. We collect entries to go into 390 // the same section together to reduce amount of section switch statements. 391 SmallVector<SectionCPs, 4> CPSections; 392 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 393 const MachineConstantPoolEntry &CPE = CP[i]; 394 unsigned Align = CPE.getAlignment(); 395 396 SectionKind Kind; 397 switch (CPE.getRelocationInfo()) { 398 default: llvm_unreachable("Unknown section kind"); 399 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 400 case 1: 401 Kind = SectionKind::getReadOnlyWithRelLocal(); 402 break; 403 case 0: 404 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 405 case 4: Kind = SectionKind::getMergeableConst4(); break; 406 case 8: Kind = SectionKind::getMergeableConst8(); break; 407 case 16: Kind = SectionKind::getMergeableConst16();break; 408 default: Kind = SectionKind::getMergeableConst(); break; 409 } 410 } 411 412 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 413 414 // The number of sections are small, just do a linear search from the 415 // last section to the first. 416 bool Found = false; 417 unsigned SecIdx = CPSections.size(); 418 while (SecIdx != 0) { 419 if (CPSections[--SecIdx].S == S) { 420 Found = true; 421 break; 422 } 423 } 424 if (!Found) { 425 SecIdx = CPSections.size(); 426 CPSections.push_back(SectionCPs(S, Align)); 427 } 428 429 if (Align > CPSections[SecIdx].Alignment) 430 CPSections[SecIdx].Alignment = Align; 431 CPSections[SecIdx].CPEs.push_back(i); 432 } 433 434 // Now print stuff into the calculated sections. 435 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 436 OutStreamer.SwitchSection(CPSections[i].S); 437 EmitAlignment(Log2_32(CPSections[i].Alignment)); 438 439 unsigned Offset = 0; 440 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 441 unsigned CPI = CPSections[i].CPEs[j]; 442 MachineConstantPoolEntry CPE = CP[CPI]; 443 444 // Emit inter-object padding for alignment. 445 unsigned AlignMask = CPE.getAlignment() - 1; 446 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 447 OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/); 448 449 const Type *Ty = CPE.getType(); 450 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 451 452 O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 453 << CPI << ':'; 454 if (VerboseAsm) { 455 O.PadToColumn(MAI->getCommentColumn()); 456 O << MAI->getCommentString() << " constant "; 457 WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent()); 458 } 459 O << '\n'; 460 if (CPE.isMachineConstantPoolEntry()) 461 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 462 else 463 EmitGlobalConstant(CPE.Val.ConstVal); 464 } 465 } 466} 467 468/// EmitJumpTableInfo - Print assembly representations of the jump tables used 469/// by the current function to the current output stream. 470/// 471void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 472 MachineFunction &MF) { 473 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 474 if (JT.empty()) return; 475 476 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 477 478 // Pick the directive to use to print the jump table entries, and switch to 479 // the appropriate section. 480 TargetLowering *LoweringInfo = TM.getTargetLowering(); 481 482 const Function *F = MF.getFunction(); 483 bool JTInDiffSection = false; 484 if (F->isWeakForLinker() || 485 (IsPic && !LoweringInfo->usesGlobalOffsetTable())) { 486 // In PIC mode, we need to emit the jump table to the same section as the 487 // function body itself, otherwise the label differences won't make sense. 488 // We should also do if the section name is NULL or function is declared in 489 // discardable section. 490 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, 491 TM)); 492 } else { 493 // Otherwise, drop it in the readonly section. 494 const MCSection *ReadOnlySection = 495 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 496 OutStreamer.SwitchSection(ReadOnlySection); 497 JTInDiffSection = true; 498 } 499 500 EmitAlignment(Log2_32(MJTI->getAlignment())); 501 502 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 503 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 504 505 // If this jump table was deleted, ignore it. 506 if (JTBBs.empty()) continue; 507 508 // For PIC codegen, if possible we want to use the SetDirective to reduce 509 // the number of relocations the assembler will generate for the jump table. 510 // Set directives are all printed before the jump table itself. 511 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 512 if (MAI->getSetDirective() && IsPic) 513 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 514 if (EmittedSets.insert(JTBBs[ii])) 515 printPICJumpTableSetLabel(i, JTBBs[ii]); 516 517 // On some targets (e.g. Darwin) we want to emit two consequtive labels 518 // before each jump table. The first label is never referenced, but tells 519 // the assembler and linker the extents of the jump table object. The 520 // second label is actually referenced by the code. 521 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) { 522 O << MAI->getLinkerPrivateGlobalPrefix() 523 << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 524 } 525 526 O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 527 << '_' << i << ":\n"; 528 529 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 530 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 531 O << '\n'; 532 } 533 } 534} 535 536void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 537 const MachineBasicBlock *MBB, 538 unsigned uid) const { 539 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 540 541 // Use JumpTableDirective otherwise honor the entry size from the jump table 542 // info. 543 const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC); 544 bool HadJTEntryDirective = JTEntryDirective != NULL; 545 if (!HadJTEntryDirective) { 546 JTEntryDirective = MJTI->getEntrySize() == 4 ? 547 MAI->getData32bitsDirective() : MAI->getData64bitsDirective(); 548 } 549 550 O << JTEntryDirective << ' '; 551 552 // If we have emitted set directives for the jump table entries, print 553 // them rather than the entries themselves. If we're emitting PIC, then 554 // emit the table entries as differences between two text section labels. 555 // If we're emitting non-PIC code, then emit the entries as direct 556 // references to the target basic blocks. 557 if (!isPIC) { 558 O << *GetMBBSymbol(MBB->getNumber()); 559 } else if (MAI->getSetDirective()) { 560 O << MAI->getPrivateGlobalPrefix() << getFunctionNumber() 561 << '_' << uid << "_set_" << MBB->getNumber(); 562 } else { 563 O << *GetMBBSymbol(MBB->getNumber()); 564 // If the arch uses custom Jump Table directives, don't calc relative to 565 // JT 566 if (!HadJTEntryDirective) 567 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" 568 << getFunctionNumber() << '_' << uid; 569 } 570} 571 572 573/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 574/// special global used by LLVM. If so, emit it and return true, otherwise 575/// do nothing and return false. 576bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 577 if (GV->getName() == "llvm.used") { 578 if (MAI->getUsedDirective() != 0) // No need to emit this at all. 579 EmitLLVMUsedList(GV->getInitializer()); 580 return true; 581 } 582 583 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 584 if (GV->getSection() == "llvm.metadata" || 585 GV->hasAvailableExternallyLinkage()) 586 return true; 587 588 if (!GV->hasAppendingLinkage()) return false; 589 590 assert(GV->hasInitializer() && "Not a special LLVM global!"); 591 592 const TargetData *TD = TM.getTargetData(); 593 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 594 if (GV->getName() == "llvm.global_ctors") { 595 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection()); 596 EmitAlignment(Align, 0); 597 EmitXXStructorList(GV->getInitializer()); 598 599 if (TM.getRelocationModel() == Reloc::Static && 600 MAI->hasStaticCtorDtorReferenceInStaticMode()) 601 O << ".reference .constructors_used\n"; 602 return true; 603 } 604 605 if (GV->getName() == "llvm.global_dtors") { 606 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection()); 607 EmitAlignment(Align, 0); 608 EmitXXStructorList(GV->getInitializer()); 609 610 if (TM.getRelocationModel() == Reloc::Static && 611 MAI->hasStaticCtorDtorReferenceInStaticMode()) 612 O << ".reference .destructors_used\n"; 613 return true; 614 } 615 616 return false; 617} 618 619/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 620/// global in the specified llvm.used list for which emitUsedDirectiveFor 621/// is true, as being used with this directive. 622void AsmPrinter::EmitLLVMUsedList(Constant *List) { 623 const char *Directive = MAI->getUsedDirective(); 624 625 // Should be an array of 'i8*'. 626 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 627 if (InitList == 0) return; 628 629 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 630 const GlobalValue *GV = 631 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 632 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) { 633 O << Directive; 634 EmitConstantValueOnly(InitList->getOperand(i)); 635 O << '\n'; 636 } 637 } 638} 639 640/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 641/// function pointers, ignoring the init priority. 642void AsmPrinter::EmitXXStructorList(Constant *List) { 643 // Should be an array of '{ int, void ()* }' structs. The first value is the 644 // init priority, which we ignore. 645 if (!isa<ConstantArray>(List)) return; 646 ConstantArray *InitList = cast<ConstantArray>(List); 647 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 648 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 649 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 650 651 if (CS->getOperand(1)->isNullValue()) 652 return; // Found a null terminator, exit printing. 653 // Emit the function pointer. 654 EmitGlobalConstant(CS->getOperand(1)); 655 } 656} 657 658 659//===----------------------------------------------------------------------===// 660/// LEB 128 number encoding. 661 662/// PrintULEB128 - Print a series of hexadecimal values (separated by commas) 663/// representing an unsigned leb128 value. 664void AsmPrinter::PrintULEB128(unsigned Value) const { 665 do { 666 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 667 Value >>= 7; 668 if (Value) Byte |= 0x80; 669 PrintHex(Byte); 670 if (Value) O << ", "; 671 } while (Value); 672} 673 674/// PrintSLEB128 - Print a series of hexadecimal values (separated by commas) 675/// representing a signed leb128 value. 676void AsmPrinter::PrintSLEB128(int Value) const { 677 int Sign = Value >> (8 * sizeof(Value) - 1); 678 bool IsMore; 679 680 do { 681 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 682 Value >>= 7; 683 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 684 if (IsMore) Byte |= 0x80; 685 PrintHex(Byte); 686 if (IsMore) O << ", "; 687 } while (IsMore); 688} 689 690//===--------------------------------------------------------------------===// 691// Emission and print routines 692// 693 694/// PrintHex - Print a value as a hexadecimal value. 695/// 696void AsmPrinter::PrintHex(uint64_t Value) const { 697 O << "0x"; 698 O.write_hex(Value); 699} 700 701/// EOL - Print a newline character to asm stream. If a comment is present 702/// then it will be printed first. Comments should not contain '\n'. 703void AsmPrinter::EOL() const { 704 O << '\n'; 705} 706 707void AsmPrinter::EOL(const Twine &Comment) const { 708 if (VerboseAsm && !Comment.isTriviallyEmpty()) { 709 O.PadToColumn(MAI->getCommentColumn()); 710 O << MAI->getCommentString() << ' ' << Comment; 711 } 712 O << '\n'; 713} 714 715static const char *DecodeDWARFEncoding(unsigned Encoding) { 716 switch (Encoding) { 717 case dwarf::DW_EH_PE_absptr: 718 return "absptr"; 719 case dwarf::DW_EH_PE_omit: 720 return "omit"; 721 case dwarf::DW_EH_PE_pcrel: 722 return "pcrel"; 723 case dwarf::DW_EH_PE_udata4: 724 return "udata4"; 725 case dwarf::DW_EH_PE_udata8: 726 return "udata8"; 727 case dwarf::DW_EH_PE_sdata4: 728 return "sdata4"; 729 case dwarf::DW_EH_PE_sdata8: 730 return "sdata8"; 731 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4: 732 return "pcrel udata4"; 733 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4: 734 return "pcrel sdata4"; 735 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8: 736 return "pcrel udata8"; 737 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8: 738 return "pcrel sdata8"; 739 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4: 740 return "indirect pcrel udata4"; 741 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4: 742 return "indirect pcrel sdata4"; 743 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8: 744 return "indirect pcrel udata8"; 745 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8: 746 return "indirect pcrel sdata8"; 747 } 748 749 return 0; 750} 751 752void AsmPrinter::EOL(const Twine &Comment, unsigned Encoding) const { 753 if (VerboseAsm && !Comment.isTriviallyEmpty()) { 754 O.PadToColumn(MAI->getCommentColumn()); 755 O << MAI->getCommentString() 756 << ' ' 757 << Comment; 758 759 if (const char *EncStr = DecodeDWARFEncoding(Encoding)) 760 O << " (" << EncStr << ')'; 761 } 762 O << '\n'; 763} 764 765/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 766/// unsigned leb128 value. 767void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 768 if (MAI->hasLEB128()) { 769 O << "\t.uleb128\t" 770 << Value; 771 } else { 772 O << MAI->getData8bitsDirective(); 773 PrintULEB128(Value); 774 } 775} 776 777/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 778/// signed leb128 value. 779void AsmPrinter::EmitSLEB128Bytes(int Value) const { 780 if (MAI->hasLEB128()) { 781 O << "\t.sleb128\t" 782 << Value; 783 } else { 784 O << MAI->getData8bitsDirective(); 785 PrintSLEB128(Value); 786 } 787} 788 789/// EmitInt8 - Emit a byte directive and value. 790/// 791void AsmPrinter::EmitInt8(int Value) const { 792 OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/); 793} 794 795/// EmitInt16 - Emit a short directive and value. 796/// 797void AsmPrinter::EmitInt16(int Value) const { 798 OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/); 799} 800 801/// EmitInt32 - Emit a long directive and value. 802/// 803void AsmPrinter::EmitInt32(int Value) const { 804 OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/); 805} 806 807/// EmitInt64 - Emit a long long directive and value. 808/// 809void AsmPrinter::EmitInt64(uint64_t Value) const { 810 OutStreamer.EmitIntValue(Value, 8, 0/*addrspace*/); 811} 812 813/// toOctal - Convert the low order bits of X into an octal digit. 814/// 815static inline char toOctal(int X) { 816 return (X&7)+'0'; 817} 818 819/// printStringChar - Print a char, escaped if necessary. 820/// 821static void printStringChar(formatted_raw_ostream &O, unsigned char C) { 822 if (C == '"') { 823 O << "\\\""; 824 } else if (C == '\\') { 825 O << "\\\\"; 826 } else if (isprint((unsigned char)C)) { 827 O << C; 828 } else { 829 switch(C) { 830 case '\b': O << "\\b"; break; 831 case '\f': O << "\\f"; break; 832 case '\n': O << "\\n"; break; 833 case '\r': O << "\\r"; break; 834 case '\t': O << "\\t"; break; 835 default: 836 O << '\\'; 837 O << toOctal(C >> 6); 838 O << toOctal(C >> 3); 839 O << toOctal(C >> 0); 840 break; 841 } 842 } 843} 844 845/// EmitString - Emit a string with quotes and a null terminator. 846/// Special characters are emitted properly. 847/// \literal (Eg. '\t') \endliteral 848void AsmPrinter::EmitString(const StringRef String) const { 849 EmitString(String.data(), String.size()); 850} 851 852void AsmPrinter::EmitString(const char *String, unsigned Size) const { 853 const char* AscizDirective = MAI->getAscizDirective(); 854 if (AscizDirective) 855 O << AscizDirective; 856 else 857 O << MAI->getAsciiDirective(); 858 O << '\"'; 859 for (unsigned i = 0; i < Size; ++i) 860 printStringChar(O, String[i]); 861 if (AscizDirective) 862 O << '\"'; 863 else 864 O << "\\0\""; 865} 866 867 868/// EmitFile - Emit a .file directive. 869void AsmPrinter::EmitFile(unsigned Number, StringRef Name) const { 870 O << "\t.file\t" << Number << " \""; 871 for (unsigned i = 0, N = Name.size(); i < N; ++i) 872 printStringChar(O, Name[i]); 873 O << '\"'; 874} 875 876 877//===----------------------------------------------------------------------===// 878 879// EmitAlignment - Emit an alignment directive to the specified power of 880// two boundary. For example, if you pass in 3 here, you will get an 8 881// byte alignment. If a global value is specified, and if that global has 882// an explicit alignment requested, it will unconditionally override the 883// alignment request. However, if ForcedAlignBits is specified, this value 884// has final say: the ultimate alignment will be the max of ForcedAlignBits 885// and the alignment computed with NumBits and the global. 886// 887// The algorithm is: 888// Align = NumBits; 889// if (GV && GV->hasalignment) Align = GV->getalignment(); 890// Align = std::max(Align, ForcedAlignBits); 891// 892void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 893 unsigned ForcedAlignBits, 894 bool UseFillExpr) const { 895 if (GV && GV->getAlignment()) 896 NumBits = Log2_32(GV->getAlignment()); 897 NumBits = std::max(NumBits, ForcedAlignBits); 898 899 if (NumBits == 0) return; // No need to emit alignment. 900 901 unsigned FillValue = 0; 902 if (getCurrentSection()->getKind().isText()) 903 FillValue = MAI->getTextAlignFillValue(); 904 905 OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0); 906} 907 908// Print out the specified constant, without a storage class. Only the 909// constants valid in constant expressions can occur here. 910void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 911 if (CV->isNullValue() || isa<UndefValue>(CV)) { 912 O << '0'; 913 return; 914 } 915 916 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 917 O << CI->getZExtValue(); 918 return; 919 } 920 921 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 922 // This is a constant address for a global variable or function. Use the 923 // name of the variable or function as the address value. 924 O << *GetGlobalValueSymbol(GV); 925 return; 926 } 927 928 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 929 O << *GetBlockAddressSymbol(BA); 930 return; 931 } 932 933 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 934 if (CE == 0) { 935 llvm_unreachable("Unknown constant value!"); 936 O << '0'; 937 return; 938 } 939 940 switch (CE->getOpcode()) { 941 case Instruction::ZExt: 942 case Instruction::SExt: 943 case Instruction::FPTrunc: 944 case Instruction::FPExt: 945 case Instruction::UIToFP: 946 case Instruction::SIToFP: 947 case Instruction::FPToUI: 948 case Instruction::FPToSI: 949 default: 950 llvm_unreachable("FIXME: Don't support this constant cast expr"); 951 case Instruction::GetElementPtr: { 952 // generate a symbolic expression for the byte address 953 const TargetData *TD = TM.getTargetData(); 954 const Constant *ptrVal = CE->getOperand(0); 955 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 956 int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 957 idxVec.size()); 958 if (Offset == 0) 959 return EmitConstantValueOnly(ptrVal); 960 961 // Truncate/sext the offset to the pointer size. 962 if (TD->getPointerSizeInBits() != 64) { 963 int SExtAmount = 64-TD->getPointerSizeInBits(); 964 Offset = (Offset << SExtAmount) >> SExtAmount; 965 } 966 967 if (Offset) 968 O << '('; 969 EmitConstantValueOnly(ptrVal); 970 if (Offset > 0) 971 O << ") + " << Offset; 972 else 973 O << ") - " << -Offset; 974 return; 975 } 976 case Instruction::BitCast: 977 return EmitConstantValueOnly(CE->getOperand(0)); 978 979 case Instruction::IntToPtr: { 980 // Handle casts to pointers by changing them into casts to the appropriate 981 // integer type. This promotes constant folding and simplifies this code. 982 const TargetData *TD = TM.getTargetData(); 983 Constant *Op = CE->getOperand(0); 984 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()), 985 false/*ZExt*/); 986 return EmitConstantValueOnly(Op); 987 } 988 989 case Instruction::PtrToInt: { 990 // Support only foldable casts to/from pointers that can be eliminated by 991 // changing the pointer to the appropriately sized integer type. 992 Constant *Op = CE->getOperand(0); 993 const Type *Ty = CE->getType(); 994 const TargetData *TD = TM.getTargetData(); 995 996 // We can emit the pointer value into this slot if the slot is an 997 // integer slot greater or equal to the size of the pointer. 998 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType())) 999 return EmitConstantValueOnly(Op); 1000 1001 O << "(("; 1002 EmitConstantValueOnly(Op); 1003 APInt ptrMask = 1004 APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType())); 1005 1006 SmallString<40> S; 1007 ptrMask.toStringUnsigned(S); 1008 O << ") & " << S.str() << ')'; 1009 return; 1010 } 1011 1012 case Instruction::Trunc: 1013 // We emit the value and depend on the assembler to truncate the generated 1014 // expression properly. This is important for differences between 1015 // blockaddress labels. Since the two labels are in the same function, it 1016 // is reasonable to treat their delta as a 32-bit value. 1017 return EmitConstantValueOnly(CE->getOperand(0)); 1018 1019 case Instruction::Add: 1020 case Instruction::Sub: 1021 case Instruction::And: 1022 case Instruction::Or: 1023 case Instruction::Xor: 1024 O << '('; 1025 EmitConstantValueOnly(CE->getOperand(0)); 1026 O << ')'; 1027 switch (CE->getOpcode()) { 1028 case Instruction::Add: 1029 O << " + "; 1030 break; 1031 case Instruction::Sub: 1032 O << " - "; 1033 break; 1034 case Instruction::And: 1035 O << " & "; 1036 break; 1037 case Instruction::Or: 1038 O << " | "; 1039 break; 1040 case Instruction::Xor: 1041 O << " ^ "; 1042 break; 1043 default: 1044 break; 1045 } 1046 O << '('; 1047 EmitConstantValueOnly(CE->getOperand(1)); 1048 O << ')'; 1049 break; 1050 } 1051} 1052 1053/// printAsCString - Print the specified array as a C compatible string, only if 1054/// the predicate isString is true. 1055/// 1056static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA, 1057 unsigned LastElt) { 1058 assert(CVA->isString() && "Array is not string compatible!"); 1059 1060 O << '\"'; 1061 for (unsigned i = 0; i != LastElt; ++i) { 1062 unsigned char C = 1063 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 1064 printStringChar(O, C); 1065 } 1066 O << '\"'; 1067} 1068 1069/// EmitString - Emit a zero-byte-terminated string constant. 1070/// 1071void AsmPrinter::EmitString(const ConstantArray *CVA) const { 1072 unsigned NumElts = CVA->getNumOperands(); 1073 if (MAI->getAscizDirective() && NumElts && 1074 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 1075 O << MAI->getAscizDirective(); 1076 printAsCString(O, CVA, NumElts-1); 1077 } else { 1078 O << MAI->getAsciiDirective(); 1079 printAsCString(O, CVA, NumElts); 1080 } 1081 O << '\n'; 1082} 1083 1084static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace, 1085 AsmPrinter &AP) { 1086 if (AddrSpace == 0 && CA->isString()) { 1087 AP.EmitString(CA); 1088 } else { // Not a string. Print the values in successive locations 1089 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1090 AP.EmitGlobalConstant(CA->getOperand(i), AddrSpace); 1091 } 1092} 1093 1094static void EmitGlobalConstantVector(const ConstantVector *CV, 1095 unsigned AddrSpace, AsmPrinter &AP) { 1096 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1097 AP.EmitGlobalConstant(CV->getOperand(i), AddrSpace); 1098} 1099 1100static void EmitGlobalConstantStruct(const ConstantStruct *CS, 1101 unsigned AddrSpace, AsmPrinter &AP) { 1102 // Print the fields in successive locations. Pad to align if needed! 1103 const TargetData *TD = AP.TM.getTargetData(); 1104 unsigned Size = TD->getTypeAllocSize(CS->getType()); 1105 const StructLayout *Layout = TD->getStructLayout(CS->getType()); 1106 uint64_t SizeSoFar = 0; 1107 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1108 const Constant *Field = CS->getOperand(i); 1109 1110 // Check if padding is needed and insert one or more 0s. 1111 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType()); 1112 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1113 - Layout->getElementOffset(i)) - FieldSize; 1114 SizeSoFar += FieldSize + PadSize; 1115 1116 // Now print the actual field value. 1117 AP.EmitGlobalConstant(Field, AddrSpace); 1118 1119 // Insert padding - this may include padding to increase the size of the 1120 // current field up to the ABI size (if the struct is not packed) as well 1121 // as padding to ensure that the next field starts at the right offset. 1122 AP.OutStreamer.EmitZeros(PadSize, AddrSpace); 1123 } 1124 assert(SizeSoFar == Layout->getSizeInBytes() && 1125 "Layout of constant struct may be incorrect!"); 1126} 1127 1128static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace, 1129 AsmPrinter &AP) { 1130 // FP Constants are printed as integer constants to avoid losing 1131 // precision. 1132 if (CFP->getType()->isDoubleTy()) { 1133 if (AP.VerboseAsm) { 1134 double Val = CFP->getValueAPF().convertToDouble(); 1135 AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'; 1136 } 1137 1138 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1139 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1140 return; 1141 } 1142 1143 if (CFP->getType()->isFloatTy()) { 1144 if (AP.VerboseAsm) { 1145 float Val = CFP->getValueAPF().convertToFloat(); 1146 AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'; 1147 } 1148 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1149 AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace); 1150 return; 1151 } 1152 1153 if (CFP->getType()->isX86_FP80Ty()) { 1154 // all long double variants are printed as hex 1155 // api needed to prevent premature destruction 1156 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1157 const uint64_t *p = API.getRawData(); 1158 if (AP.VerboseAsm) { 1159 // Convert to double so we can print the approximate val as a comment. 1160 APFloat DoubleVal = CFP->getValueAPF(); 1161 bool ignored; 1162 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1163 &ignored); 1164 AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= " 1165 << DoubleVal.convertToDouble() << '\n'; 1166 } 1167 1168 if (AP.TM.getTargetData()->isBigEndian()) { 1169 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1170 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1171 } else { 1172 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1173 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1174 } 1175 1176 // Emit the tail padding for the long double. 1177 const TargetData &TD = *AP.TM.getTargetData(); 1178 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - 1179 TD.getTypeStoreSize(CFP->getType()), AddrSpace); 1180 return; 1181 } 1182 1183 assert(CFP->getType()->isPPC_FP128Ty() && 1184 "Floating point constant type not handled"); 1185 // All long double variants are printed as hex api needed to prevent 1186 // premature destruction. 1187 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1188 const uint64_t *p = API.getRawData(); 1189 if (AP.TM.getTargetData()->isBigEndian()) { 1190 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1191 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1192 } else { 1193 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1194 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1195 } 1196} 1197 1198static void EmitGlobalConstantLargeInt(const ConstantInt *CI, 1199 unsigned AddrSpace, AsmPrinter &AP) { 1200 const TargetData *TD = AP.TM.getTargetData(); 1201 unsigned BitWidth = CI->getBitWidth(); 1202 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); 1203 1204 // We don't expect assemblers to support integer data directives 1205 // for more than 64 bits, so we emit the data in at most 64-bit 1206 // quantities at a time. 1207 const uint64_t *RawData = CI->getValue().getRawData(); 1208 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1209 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1210 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1211 } 1212} 1213 1214/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1215void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1216 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) { 1217 uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); 1218 return OutStreamer.EmitZeros(Size, AddrSpace); 1219 } 1220 1221 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1222 unsigned Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); 1223 switch (Size) { 1224 case 1: 1225 case 2: 1226 case 4: 1227 case 8: 1228 if (VerboseAsm) 1229 OutStreamer.GetCommentOS() << format("0x%llx\n", CI->getZExtValue()); 1230 OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace); 1231 return; 1232 default: 1233 EmitGlobalConstantLargeInt(CI, AddrSpace, *this); 1234 return; 1235 } 1236 } 1237 1238 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1239 return EmitGlobalConstantArray(CVA, AddrSpace, *this); 1240 1241 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1242 return EmitGlobalConstantStruct(CVS, AddrSpace, *this); 1243 1244 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1245 return EmitGlobalConstantFP(CFP, AddrSpace, *this); 1246 1247 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1248 return EmitGlobalConstantVector(V, AddrSpace, *this); 1249 1250 if (isa<ConstantPointerNull>(CV)) { 1251 unsigned Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); 1252 OutStreamer.EmitIntValue(0, Size, AddrSpace); 1253 return; 1254 } 1255 1256 // Otherwise, it must be a ConstantExpr. Emit the data directive, then emit 1257 // the expression value. 1258 switch (TM.getTargetData()->getTypeAllocSize(CV->getType())) { 1259 case 0: return; 1260 case 1: O << MAI->getData8bitsDirective(AddrSpace); break; 1261 case 2: O << MAI->getData16bitsDirective(AddrSpace); break; 1262 case 4: O << MAI->getData32bitsDirective(AddrSpace); break; 1263 case 8: 1264 if (const char *Dir = MAI->getData64bitsDirective(AddrSpace)) { 1265 O << Dir; 1266 break; 1267 } 1268 // FALL THROUGH. 1269 default: 1270 llvm_unreachable("Target cannot handle given data directive width!"); 1271 return; 1272 } 1273 1274 EmitConstantValueOnly(CV); 1275 O << '\n'; 1276} 1277 1278void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1279 // Target doesn't support this yet! 1280 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1281} 1282 1283/// PrintSpecial - Print information related to the specified machine instr 1284/// that is independent of the operand, and may be independent of the instr 1285/// itself. This can be useful for portably encoding the comment character 1286/// or other bits of target-specific knowledge into the asmstrings. The 1287/// syntax used is ${:comment}. Targets can override this to add support 1288/// for their own strange codes. 1289void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1290 if (!strcmp(Code, "private")) { 1291 O << MAI->getPrivateGlobalPrefix(); 1292 } else if (!strcmp(Code, "comment")) { 1293 if (VerboseAsm) 1294 O << MAI->getCommentString(); 1295 } else if (!strcmp(Code, "uid")) { 1296 // Comparing the address of MI isn't sufficient, because machineinstrs may 1297 // be allocated to the same address across functions. 1298 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1299 1300 // If this is a new LastFn instruction, bump the counter. 1301 if (LastMI != MI || LastFn != ThisF) { 1302 ++Counter; 1303 LastMI = MI; 1304 LastFn = ThisF; 1305 } 1306 O << Counter; 1307 } else { 1308 std::string msg; 1309 raw_string_ostream Msg(msg); 1310 Msg << "Unknown special formatter '" << Code 1311 << "' for machine instr: " << *MI; 1312 llvm_report_error(Msg.str()); 1313 } 1314} 1315 1316/// processDebugLoc - Processes the debug information of each machine 1317/// instruction's DebugLoc. 1318void AsmPrinter::processDebugLoc(const MachineInstr *MI, 1319 bool BeforePrintingInsn) { 1320 if (!MAI || !DW || !MAI->doesSupportDebugInformation() 1321 || !DW->ShouldEmitDwarfDebug()) 1322 return; 1323 DebugLoc DL = MI->getDebugLoc(); 1324 if (DL.isUnknown()) 1325 return; 1326 DILocation CurDLT = MF->getDILocation(DL); 1327 if (CurDLT.getScope().isNull()) 1328 return; 1329 1330 if (!BeforePrintingInsn) { 1331 // After printing instruction 1332 DW->EndScope(MI); 1333 } else if (CurDLT.getNode() != PrevDLT) { 1334 unsigned L = DW->RecordSourceLine(CurDLT.getLineNumber(), 1335 CurDLT.getColumnNumber(), 1336 CurDLT.getScope().getNode()); 1337 printLabel(L); 1338 O << '\n'; 1339 DW->BeginScope(MI, L); 1340 PrevDLT = CurDLT.getNode(); 1341 } 1342} 1343 1344 1345/// printInlineAsm - This method formats and prints the specified machine 1346/// instruction that is an inline asm. 1347void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1348 unsigned NumOperands = MI->getNumOperands(); 1349 1350 // Count the number of register definitions. 1351 unsigned NumDefs = 0; 1352 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1353 ++NumDefs) 1354 assert(NumDefs != NumOperands-1 && "No asm string?"); 1355 1356 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1357 1358 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1359 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1360 1361 O << '\t'; 1362 1363 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1364 // These are useful to see where empty asm's wound up. 1365 if (AsmStr[0] == 0) { 1366 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1367 O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n'; 1368 return; 1369 } 1370 1371 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1372 1373 // The variant of the current asmprinter. 1374 int AsmPrinterVariant = MAI->getAssemblerDialect(); 1375 1376 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1377 const char *LastEmitted = AsmStr; // One past the last character emitted. 1378 1379 while (*LastEmitted) { 1380 switch (*LastEmitted) { 1381 default: { 1382 // Not a special case, emit the string section literally. 1383 const char *LiteralEnd = LastEmitted+1; 1384 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1385 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1386 ++LiteralEnd; 1387 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1388 O.write(LastEmitted, LiteralEnd-LastEmitted); 1389 LastEmitted = LiteralEnd; 1390 break; 1391 } 1392 case '\n': 1393 ++LastEmitted; // Consume newline character. 1394 O << '\n'; // Indent code with newline. 1395 break; 1396 case '$': { 1397 ++LastEmitted; // Consume '$' character. 1398 bool Done = true; 1399 1400 // Handle escapes. 1401 switch (*LastEmitted) { 1402 default: Done = false; break; 1403 case '$': // $$ -> $ 1404 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1405 O << '$'; 1406 ++LastEmitted; // Consume second '$' character. 1407 break; 1408 case '(': // $( -> same as GCC's { character. 1409 ++LastEmitted; // Consume '(' character. 1410 if (CurVariant != -1) { 1411 llvm_report_error("Nested variants found in inline asm string: '" 1412 + std::string(AsmStr) + "'"); 1413 } 1414 CurVariant = 0; // We're in the first variant now. 1415 break; 1416 case '|': 1417 ++LastEmitted; // consume '|' character. 1418 if (CurVariant == -1) 1419 O << '|'; // this is gcc's behavior for | outside a variant 1420 else 1421 ++CurVariant; // We're in the next variant. 1422 break; 1423 case ')': // $) -> same as GCC's } char. 1424 ++LastEmitted; // consume ')' character. 1425 if (CurVariant == -1) 1426 O << '}'; // this is gcc's behavior for } outside a variant 1427 else 1428 CurVariant = -1; 1429 break; 1430 } 1431 if (Done) break; 1432 1433 bool HasCurlyBraces = false; 1434 if (*LastEmitted == '{') { // ${variable} 1435 ++LastEmitted; // Consume '{' character. 1436 HasCurlyBraces = true; 1437 } 1438 1439 // If we have ${:foo}, then this is not a real operand reference, it is a 1440 // "magic" string reference, just like in .td files. Arrange to call 1441 // PrintSpecial. 1442 if (HasCurlyBraces && *LastEmitted == ':') { 1443 ++LastEmitted; 1444 const char *StrStart = LastEmitted; 1445 const char *StrEnd = strchr(StrStart, '}'); 1446 if (StrEnd == 0) { 1447 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '" 1448 + std::string(AsmStr) + "'"); 1449 } 1450 1451 std::string Val(StrStart, StrEnd); 1452 PrintSpecial(MI, Val.c_str()); 1453 LastEmitted = StrEnd+1; 1454 break; 1455 } 1456 1457 const char *IDStart = LastEmitted; 1458 char *IDEnd; 1459 errno = 0; 1460 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1461 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1462 llvm_report_error("Bad $ operand number in inline asm string: '" 1463 + std::string(AsmStr) + "'"); 1464 } 1465 LastEmitted = IDEnd; 1466 1467 char Modifier[2] = { 0, 0 }; 1468 1469 if (HasCurlyBraces) { 1470 // If we have curly braces, check for a modifier character. This 1471 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1472 if (*LastEmitted == ':') { 1473 ++LastEmitted; // Consume ':' character. 1474 if (*LastEmitted == 0) { 1475 llvm_report_error("Bad ${:} expression in inline asm string: '" 1476 + std::string(AsmStr) + "'"); 1477 } 1478 1479 Modifier[0] = *LastEmitted; 1480 ++LastEmitted; // Consume modifier character. 1481 } 1482 1483 if (*LastEmitted != '}') { 1484 llvm_report_error("Bad ${} expression in inline asm string: '" 1485 + std::string(AsmStr) + "'"); 1486 } 1487 ++LastEmitted; // Consume '}' character. 1488 } 1489 1490 if ((unsigned)Val >= NumOperands-1) { 1491 llvm_report_error("Invalid $ operand number in inline asm string: '" 1492 + std::string(AsmStr) + "'"); 1493 } 1494 1495 // Okay, we finally have a value number. Ask the target to print this 1496 // operand! 1497 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1498 unsigned OpNo = 1; 1499 1500 bool Error = false; 1501 1502 // Scan to find the machine operand number for the operand. 1503 for (; Val; --Val) { 1504 if (OpNo >= MI->getNumOperands()) break; 1505 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1506 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1507 } 1508 1509 if (OpNo >= MI->getNumOperands()) { 1510 Error = true; 1511 } else { 1512 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1513 ++OpNo; // Skip over the ID number. 1514 1515 if (Modifier[0] == 'l') // labels are target independent 1516 O << *GetMBBSymbol(MI->getOperand(OpNo).getMBB()->getNumber()); 1517 else { 1518 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1519 if ((OpFlags & 7) == 4) { 1520 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1521 Modifier[0] ? Modifier : 0); 1522 } else { 1523 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1524 Modifier[0] ? Modifier : 0); 1525 } 1526 } 1527 } 1528 if (Error) { 1529 std::string msg; 1530 raw_string_ostream Msg(msg); 1531 Msg << "Invalid operand found in inline asm: '" << AsmStr << "'\n"; 1532 MI->print(Msg); 1533 llvm_report_error(Msg.str()); 1534 } 1535 } 1536 break; 1537 } 1538 } 1539 } 1540 O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd(); 1541} 1542 1543/// printImplicitDef - This method prints the specified machine instruction 1544/// that is an implicit def. 1545void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1546 if (!VerboseAsm) return; 1547 O.PadToColumn(MAI->getCommentColumn()); 1548 O << MAI->getCommentString() << " implicit-def: " 1549 << TRI->getName(MI->getOperand(0).getReg()); 1550} 1551 1552void AsmPrinter::printKill(const MachineInstr *MI) const { 1553 if (!VerboseAsm) return; 1554 O.PadToColumn(MAI->getCommentColumn()); 1555 O << MAI->getCommentString() << " kill:"; 1556 for (unsigned n = 0, e = MI->getNumOperands(); n != e; ++n) { 1557 const MachineOperand &op = MI->getOperand(n); 1558 assert(op.isReg() && "KILL instruction must have only register operands"); 1559 O << ' ' << TRI->getName(op.getReg()) << (op.isDef() ? "<def>" : "<kill>"); 1560 } 1561} 1562 1563/// printLabel - This method prints a local label used by debug and 1564/// exception handling tables. 1565void AsmPrinter::printLabel(const MachineInstr *MI) const { 1566 printLabel(MI->getOperand(0).getImm()); 1567} 1568 1569void AsmPrinter::printLabel(unsigned Id) const { 1570 O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':'; 1571} 1572 1573/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1574/// instruction, using the specified assembler variant. Targets should 1575/// override this to format as appropriate. 1576bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1577 unsigned AsmVariant, const char *ExtraCode) { 1578 // Target doesn't support this yet! 1579 return true; 1580} 1581 1582bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1583 unsigned AsmVariant, 1584 const char *ExtraCode) { 1585 // Target doesn't support this yet! 1586 return true; 1587} 1588 1589MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA, 1590 const char *Suffix) const { 1591 return GetBlockAddressSymbol(BA->getFunction(), BA->getBasicBlock(), Suffix); 1592} 1593 1594MCSymbol *AsmPrinter::GetBlockAddressSymbol(const Function *F, 1595 const BasicBlock *BB, 1596 const char *Suffix) const { 1597 assert(BB->hasName() && 1598 "Address of anonymous basic block not supported yet!"); 1599 1600 // This code must use the function name itself, and not the function number, 1601 // since it must be possible to generate the label name from within other 1602 // functions. 1603 SmallString<60> FnName; 1604 Mang->getNameWithPrefix(FnName, F, false); 1605 1606 // FIXME: THIS IS BROKEN IF THE LLVM BASIC BLOCK DOESN'T HAVE A NAME! 1607 SmallString<60> NameResult; 1608 Mang->getNameWithPrefix(NameResult, 1609 StringRef("BA") + Twine((unsigned)FnName.size()) + 1610 "_" + FnName.str() + "_" + BB->getName() + Suffix, 1611 Mangler::Private); 1612 1613 return OutContext.GetOrCreateSymbol(NameResult.str()); 1614} 1615 1616MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const { 1617 SmallString<60> Name; 1618 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB" 1619 << getFunctionNumber() << '_' << MBBID; 1620 1621 return OutContext.GetOrCreateSymbol(Name.str()); 1622} 1623 1624/// GetGlobalValueSymbol - Return the MCSymbol for the specified global 1625/// value. 1626MCSymbol *AsmPrinter::GetGlobalValueSymbol(const GlobalValue *GV) const { 1627 SmallString<60> NameStr; 1628 Mang->getNameWithPrefix(NameStr, GV, false); 1629 return OutContext.GetOrCreateSymbol(NameStr.str()); 1630} 1631 1632/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with 1633/// global value name as its base, with the specified suffix, and where the 1634/// symbol is forced to have private linkage if ForcePrivate is true. 1635MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, 1636 StringRef Suffix, 1637 bool ForcePrivate) const { 1638 SmallString<60> NameStr; 1639 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); 1640 NameStr.append(Suffix.begin(), Suffix.end()); 1641 return OutContext.GetOrCreateSymbol(NameStr.str()); 1642} 1643 1644/// GetExternalSymbolSymbol - Return the MCSymbol for the specified 1645/// ExternalSymbol. 1646MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 1647 SmallString<60> NameStr; 1648 Mang->getNameWithPrefix(NameStr, Sym); 1649 return OutContext.GetOrCreateSymbol(NameStr.str()); 1650} 1651 1652 1653/// EmitBasicBlockStart - This method prints the label for the specified 1654/// MachineBasicBlock, an alignment (if present) and a comment describing 1655/// it if appropriate. 1656void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 1657 // Emit an alignment directive for this block, if needed. 1658 if (unsigned Align = MBB->getAlignment()) 1659 EmitAlignment(Log2_32(Align)); 1660 1661 // If the block has its address taken, emit a special label to satisfy 1662 // references to the block. This is done so that we don't need to 1663 // remember the number of this label, and so that we can make 1664 // forward references to labels without knowing what their numbers 1665 // will be. 1666 if (MBB->hasAddressTaken()) { 1667 const BasicBlock *BB = MBB->getBasicBlock(); 1668 if (VerboseAsm) 1669 OutStreamer.AddComment("Address Taken"); 1670 OutStreamer.EmitLabel(GetBlockAddressSymbol(BB->getParent(), BB)); 1671 } 1672 1673 // Print the main label for the block. 1674 if (MBB->pred_empty() || MBB->isOnlyReachableByFallthrough()) { 1675 if (VerboseAsm) { 1676 O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':'; 1677 if (const BasicBlock *BB = MBB->getBasicBlock()) 1678 if (BB->hasName()) 1679 OutStreamer.AddComment("%" + BB->getName()); 1680 OutStreamer.AddBlankLine(); 1681 } 1682 } else { 1683 if (VerboseAsm) { 1684 if (const BasicBlock *BB = MBB->getBasicBlock()) 1685 if (BB->hasName()) 1686 OutStreamer.AddComment("%" + BB->getName()); 1687 } 1688 OutStreamer.EmitLabel(GetMBBSymbol(MBB->getNumber())); 1689 } 1690 1691 // Print some comments to accompany the label. 1692 // FIXME: REENABLE. 1693 if (0 && VerboseAsm) { 1694 EmitComments(*MBB); 1695 O << '\n'; 1696 } 1697} 1698 1699/// printPICJumpTableSetLabel - This method prints a set label for the 1700/// specified MachineBasicBlock for a jumptable entry. 1701void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1702 const MachineBasicBlock *MBB) const { 1703 if (!MAI->getSetDirective()) 1704 return; 1705 1706 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1707 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',' 1708 << *GetMBBSymbol(MBB->getNumber()) 1709 << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1710 << '_' << uid << '\n'; 1711} 1712 1713void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1714 const MachineBasicBlock *MBB) const { 1715 if (!MAI->getSetDirective()) 1716 return; 1717 1718 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1719 << getFunctionNumber() << '_' << uid << '_' << uid2 1720 << "_set_" << MBB->getNumber() << ',' 1721 << *GetMBBSymbol(MBB->getNumber()) 1722 << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1723 << '_' << uid << '_' << uid2 << '\n'; 1724} 1725 1726void AsmPrinter::printVisibility(const MCSymbol *Sym, 1727 unsigned Visibility) const { 1728 if (Visibility == GlobalValue::HiddenVisibility) { 1729 if (const char *Directive = MAI->getHiddenDirective()) 1730 O << Directive << *Sym << '\n'; 1731 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1732 if (const char *Directive = MAI->getProtectedDirective()) 1733 O << Directive << *Sym << '\n'; 1734 } 1735} 1736 1737void AsmPrinter::printOffset(int64_t Offset) const { 1738 if (Offset > 0) 1739 O << '+' << Offset; 1740 else if (Offset < 0) 1741 O << Offset; 1742} 1743 1744GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1745 if (!S->usesMetadata()) 1746 return 0; 1747 1748 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1749 if (GCPI != GCMetadataPrinters.end()) 1750 return GCPI->second; 1751 1752 const char *Name = S->getName().c_str(); 1753 1754 for (GCMetadataPrinterRegistry::iterator 1755 I = GCMetadataPrinterRegistry::begin(), 1756 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1757 if (strcmp(Name, I->getName()) == 0) { 1758 GCMetadataPrinter *GMP = I->instantiate(); 1759 GMP->S = S; 1760 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1761 return GMP; 1762 } 1763 1764 errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1765 llvm_unreachable(0); 1766} 1767 1768/// EmitComments - Pretty-print comments for instructions 1769void AsmPrinter::EmitComments(const MachineInstr &MI) const { 1770 if (!VerboseAsm) 1771 return; 1772 1773 bool Newline = false; 1774 1775 if (!MI.getDebugLoc().isUnknown()) { 1776 DILocation DLT = MF->getDILocation(MI.getDebugLoc()); 1777 1778 // Print source line info. 1779 O.PadToColumn(MAI->getCommentColumn()); 1780 O << MAI->getCommentString() << ' '; 1781 DIScope Scope = DLT.getScope(); 1782 // Omit the directory, because it's likely to be long and uninteresting. 1783 if (!Scope.isNull()) 1784 O << Scope.getFilename(); 1785 else 1786 O << "<unknown>"; 1787 O << ':' << DLT.getLineNumber(); 1788 if (DLT.getColumnNumber() != 0) 1789 O << ':' << DLT.getColumnNumber(); 1790 Newline = true; 1791 } 1792 1793 // Check for spills and reloads 1794 int FI; 1795 1796 const MachineFrameInfo *FrameInfo = 1797 MI.getParent()->getParent()->getFrameInfo(); 1798 1799 // We assume a single instruction only has a spill or reload, not 1800 // both. 1801 const MachineMemOperand *MMO; 1802 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 1803 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 1804 MMO = *MI.memoperands_begin(); 1805 if (Newline) O << '\n'; 1806 O.PadToColumn(MAI->getCommentColumn()); 1807 O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Reload"; 1808 Newline = true; 1809 } 1810 } 1811 else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 1812 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 1813 if (Newline) O << '\n'; 1814 O.PadToColumn(MAI->getCommentColumn()); 1815 O << MAI->getCommentString() << ' ' 1816 << MMO->getSize() << "-byte Folded Reload"; 1817 Newline = true; 1818 } 1819 } 1820 else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 1821 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 1822 MMO = *MI.memoperands_begin(); 1823 if (Newline) O << '\n'; 1824 O.PadToColumn(MAI->getCommentColumn()); 1825 O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Spill"; 1826 Newline = true; 1827 } 1828 } 1829 else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 1830 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 1831 if (Newline) O << '\n'; 1832 O.PadToColumn(MAI->getCommentColumn()); 1833 O << MAI->getCommentString() << ' ' 1834 << MMO->getSize() << "-byte Folded Spill"; 1835 Newline = true; 1836 } 1837 } 1838 1839 // Check for spill-induced copies 1840 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1841 if (TM.getInstrInfo()->isMoveInstr(MI, SrcReg, DstReg, 1842 SrcSubIdx, DstSubIdx)) { 1843 if (MI.getAsmPrinterFlag(ReloadReuse)) { 1844 if (Newline) O << '\n'; 1845 O.PadToColumn(MAI->getCommentColumn()); 1846 O << MAI->getCommentString() << " Reload Reuse"; 1847 } 1848 } 1849} 1850 1851/// PrintChildLoopComment - Print comments about child loops within 1852/// the loop for this basic block, with nesting. 1853/// 1854static void PrintChildLoopComment(formatted_raw_ostream &O, 1855 const MachineLoop *loop, 1856 const MCAsmInfo *MAI, 1857 int FunctionNumber) { 1858 // Add child loop information 1859 for(MachineLoop::iterator cl = loop->begin(), 1860 clend = loop->end(); 1861 cl != clend; 1862 ++cl) { 1863 MachineBasicBlock *Header = (*cl)->getHeader(); 1864 assert(Header && "No header for loop"); 1865 1866 O << '\n'; 1867 O.PadToColumn(MAI->getCommentColumn()); 1868 1869 O << MAI->getCommentString(); 1870 O.indent(((*cl)->getLoopDepth()-1)*2) 1871 << " Child Loop BB" << FunctionNumber << "_" 1872 << Header->getNumber() << " Depth " << (*cl)->getLoopDepth(); 1873 1874 PrintChildLoopComment(O, *cl, MAI, FunctionNumber); 1875 } 1876} 1877 1878/// EmitComments - Pretty-print comments for basic blocks 1879void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const { 1880 if (VerboseAsm) { 1881 // Add loop depth information 1882 const MachineLoop *loop = LI->getLoopFor(&MBB); 1883 1884 if (loop) { 1885 // Print a newline after bb# annotation. 1886 O << "\n"; 1887 O.PadToColumn(MAI->getCommentColumn()); 1888 O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth() 1889 << '\n'; 1890 1891 O.PadToColumn(MAI->getCommentColumn()); 1892 1893 MachineBasicBlock *Header = loop->getHeader(); 1894 assert(Header && "No header for loop"); 1895 1896 if (Header == &MBB) { 1897 O << MAI->getCommentString() << " Loop Header"; 1898 PrintChildLoopComment(O, loop, MAI, getFunctionNumber()); 1899 } 1900 else { 1901 O << MAI->getCommentString() << " Loop Header is BB" 1902 << getFunctionNumber() << "_" << loop->getHeader()->getNumber(); 1903 } 1904 1905 if (loop->empty()) { 1906 O << '\n'; 1907 O.PadToColumn(MAI->getCommentColumn()); 1908 O << MAI->getCommentString() << " Inner Loop"; 1909 } 1910 1911 // Add parent loop information 1912 for (const MachineLoop *CurLoop = loop->getParentLoop(); 1913 CurLoop; 1914 CurLoop = CurLoop->getParentLoop()) { 1915 MachineBasicBlock *Header = CurLoop->getHeader(); 1916 assert(Header && "No header for loop"); 1917 1918 O << '\n'; 1919 O.PadToColumn(MAI->getCommentColumn()); 1920 O << MAI->getCommentString(); 1921 O.indent((CurLoop->getLoopDepth()-1)*2) 1922 << " Inside Loop BB" << getFunctionNumber() << "_" 1923 << Header->getNumber() << " Depth " << CurLoop->getLoopDepth(); 1924 } 1925 } 1926 } 1927} 1928