AsmPrinter.cpp revision c10337d20080fca89c19acd69ae11f4a28e61cc8
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/CodeGen/MachineLoopInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/DwarfWriter.h"
27#include "llvm/Analysis/DebugInfo.h"
28#include "llvm/MC/MCContext.h"
29#include "llvm/MC/MCInst.h"
30#include "llvm/MC/MCSection.h"
31#include "llvm/MC/MCStreamer.h"
32#include "llvm/MC/MCSymbol.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/FormattedStream.h"
36#include "llvm/Support/Mangler.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetLoweringObjectFile.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Target/TargetRegisterInfo.h"
44#include "llvm/ADT/SmallPtrSet.h"
45#include "llvm/ADT/SmallString.h"
46#include "llvm/ADT/StringExtras.h"
47#include <cerrno>
48using namespace llvm;
49
50static cl::opt<cl::boolOrDefault>
51AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
52           cl::init(cl::BOU_UNSET));
53
54char AsmPrinter::ID = 0;
55AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
56                       const MCAsmInfo *T, bool VDef)
57  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
58    TM(tm), MAI(T), TRI(tm.getRegisterInfo()),
59
60    OutContext(*new MCContext()),
61    // FIXME: Pass instprinter to streamer.
62    OutStreamer(*createAsmStreamer(OutContext, O, *T, 0)),
63
64    LastMI(0), LastFn(0), Counter(~0U),
65    PrevDLT(0, 0, ~0U, ~0U) {
66  DW = 0; MMI = 0;
67  switch (AsmVerbose) {
68  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
69  case cl::BOU_TRUE:  VerboseAsm = true;  break;
70  case cl::BOU_FALSE: VerboseAsm = false; break;
71  }
72}
73
74AsmPrinter::~AsmPrinter() {
75  for (gcp_iterator I = GCMetadataPrinters.begin(),
76                    E = GCMetadataPrinters.end(); I != E; ++I)
77    delete I->second;
78
79  delete &OutStreamer;
80  delete &OutContext;
81}
82
83TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
84  return TM.getTargetLowering()->getObjFileLowering();
85}
86
87/// getCurrentSection() - Return the current section we are emitting to.
88const MCSection *AsmPrinter::getCurrentSection() const {
89  return OutStreamer.getCurrentSection();
90}
91
92
93void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
94  AU.setPreservesAll();
95  MachineFunctionPass::getAnalysisUsage(AU);
96  AU.addRequired<GCModuleInfo>();
97  if (VerboseAsm)
98    AU.addRequired<MachineLoopInfo>();
99}
100
101bool AsmPrinter::doInitialization(Module &M) {
102  // Initialize TargetLoweringObjectFile.
103  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
104    .Initialize(OutContext, TM);
105
106  Mang = new Mangler(M, MAI->getGlobalPrefix(), MAI->getPrivateGlobalPrefix(),
107                     MAI->getLinkerPrivateGlobalPrefix());
108
109  if (MAI->doesAllowQuotesInName())
110    Mang->setUseQuotes(true);
111
112  if (MAI->doesAllowNameToStartWithDigit())
113    Mang->setSymbolsCanStartWithDigit(true);
114
115  // Allow the target to emit any magic that it wants at the start of the file.
116  EmitStartOfAsmFile(M);
117
118  if (MAI->hasSingleParameterDotFile()) {
119    /* Very minimal debug info. It is ignored if we emit actual
120       debug info. If we don't, this at least helps the user find where
121       a function came from. */
122    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
123  }
124
125  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
126  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
127  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
128    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
129      MP->beginAssembly(O, *this, *MAI);
130
131  if (!M.getModuleInlineAsm().empty())
132    O << MAI->getCommentString() << " Start of file scope inline assembly\n"
133      << M.getModuleInlineAsm()
134      << '\n' << MAI->getCommentString()
135      << " End of file scope inline assembly\n";
136
137  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
138  if (MMI)
139    MMI->AnalyzeModule(M);
140  DW = getAnalysisIfAvailable<DwarfWriter>();
141  if (DW)
142    DW->BeginModule(&M, MMI, O, this, MAI);
143
144  return false;
145}
146
147bool AsmPrinter::doFinalization(Module &M) {
148  // Emit global variables.
149  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
150       I != E; ++I)
151    PrintGlobalVariable(I);
152
153  // Emit final debug information.
154  if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling())
155    DW->EndModule();
156
157  // If the target wants to know about weak references, print them all.
158  if (MAI->getWeakRefDirective()) {
159    // FIXME: This is not lazy, it would be nice to only print weak references
160    // to stuff that is actually used.  Note that doing so would require targets
161    // to notice uses in operands (due to constant exprs etc).  This should
162    // happen with the MC stuff eventually.
163
164    // Print out module-level global variables here.
165    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
166         I != E; ++I) {
167      if (I->hasExternalWeakLinkage())
168        O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
169    }
170
171    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
172      if (I->hasExternalWeakLinkage())
173        O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
174    }
175  }
176
177  if (MAI->getSetDirective()) {
178    O << '\n';
179    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
180         I != E; ++I) {
181      std::string Name = Mang->getMangledName(I);
182
183      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
184      std::string Target = Mang->getMangledName(GV);
185
186      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
187        O << "\t.globl\t" << Name << '\n';
188      else if (I->hasWeakLinkage())
189        O << MAI->getWeakRefDirective() << Name << '\n';
190      else if (!I->hasLocalLinkage())
191        llvm_unreachable("Invalid alias linkage");
192
193      printVisibility(Name, I->getVisibility());
194
195      O << MAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
196    }
197  }
198
199  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
200  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
201  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
202    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
203      MP->finishAssembly(O, *this, *MAI);
204
205  // If we don't have any trampolines, then we don't require stack memory
206  // to be executable. Some targets have a directive to declare this.
207  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
208  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
209    if (MAI->getNonexecutableStackDirective())
210      O << MAI->getNonexecutableStackDirective() << '\n';
211
212
213  // Allow the target to emit any magic that it wants at the end of the file,
214  // after everything else has gone out.
215  EmitEndOfAsmFile(M);
216
217  delete Mang; Mang = 0;
218  DW = 0; MMI = 0;
219
220  OutStreamer.Finish();
221  return false;
222}
223
224void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
225  // What's my mangled name?
226  CurrentFnName = Mang->getMangledName(MF.getFunction());
227  IncrementFunctionNumber();
228
229  if (VerboseAsm)
230    LI = &getAnalysis<MachineLoopInfo>();
231}
232
233namespace {
234  // SectionCPs - Keep track the alignment, constpool entries per Section.
235  struct SectionCPs {
236    const MCSection *S;
237    unsigned Alignment;
238    SmallVector<unsigned, 4> CPEs;
239    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {};
240  };
241}
242
243/// EmitConstantPool - Print to the current output stream assembly
244/// representations of the constants in the constant pool MCP. This is
245/// used to print out constants which have been "spilled to memory" by
246/// the code generator.
247///
248void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
249  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
250  if (CP.empty()) return;
251
252  // Calculate sections for constant pool entries. We collect entries to go into
253  // the same section together to reduce amount of section switch statements.
254  SmallVector<SectionCPs, 4> CPSections;
255  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
256    const MachineConstantPoolEntry &CPE = CP[i];
257    unsigned Align = CPE.getAlignment();
258
259    SectionKind Kind;
260    switch (CPE.getRelocationInfo()) {
261    default: llvm_unreachable("Unknown section kind");
262    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
263    case 1:
264      Kind = SectionKind::getReadOnlyWithRelLocal();
265      break;
266    case 0:
267    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
268    case 4:  Kind = SectionKind::getMergeableConst4(); break;
269    case 8:  Kind = SectionKind::getMergeableConst8(); break;
270    case 16: Kind = SectionKind::getMergeableConst16();break;
271    default: Kind = SectionKind::getMergeableConst(); break;
272    }
273    }
274
275    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
276
277    // The number of sections are small, just do a linear search from the
278    // last section to the first.
279    bool Found = false;
280    unsigned SecIdx = CPSections.size();
281    while (SecIdx != 0) {
282      if (CPSections[--SecIdx].S == S) {
283        Found = true;
284        break;
285      }
286    }
287    if (!Found) {
288      SecIdx = CPSections.size();
289      CPSections.push_back(SectionCPs(S, Align));
290    }
291
292    if (Align > CPSections[SecIdx].Alignment)
293      CPSections[SecIdx].Alignment = Align;
294    CPSections[SecIdx].CPEs.push_back(i);
295  }
296
297  // Now print stuff into the calculated sections.
298  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
299    OutStreamer.SwitchSection(CPSections[i].S);
300    EmitAlignment(Log2_32(CPSections[i].Alignment));
301
302    unsigned Offset = 0;
303    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
304      unsigned CPI = CPSections[i].CPEs[j];
305      MachineConstantPoolEntry CPE = CP[CPI];
306
307      // Emit inter-object padding for alignment.
308      unsigned AlignMask = CPE.getAlignment() - 1;
309      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
310      EmitZeros(NewOffset - Offset);
311
312      const Type *Ty = CPE.getType();
313      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
314
315      O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
316        << CPI << ':';
317      if (VerboseAsm) {
318        O.PadToColumn(MAI->getCommentColumn());
319        O << MAI->getCommentString() << " constant ";
320        WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent());
321      }
322      O << '\n';
323      if (CPE.isMachineConstantPoolEntry())
324        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
325      else
326        EmitGlobalConstant(CPE.Val.ConstVal);
327    }
328  }
329}
330
331/// EmitJumpTableInfo - Print assembly representations of the jump tables used
332/// by the current function to the current output stream.
333///
334void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
335                                   MachineFunction &MF) {
336  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
337  if (JT.empty()) return;
338
339  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
340
341  // Pick the directive to use to print the jump table entries, and switch to
342  // the appropriate section.
343  TargetLowering *LoweringInfo = TM.getTargetLowering();
344
345  const Function *F = MF.getFunction();
346  bool JTInDiffSection = false;
347  if (F->isWeakForLinker() ||
348      (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
349    // In PIC mode, we need to emit the jump table to the same section as the
350    // function body itself, otherwise the label differences won't make sense.
351    // We should also do if the section name is NULL or function is declared in
352    // discardable section.
353    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang,
354                                                                    TM));
355  } else {
356    // Otherwise, drop it in the readonly section.
357    const MCSection *ReadOnlySection =
358      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
359    OutStreamer.SwitchSection(ReadOnlySection);
360    JTInDiffSection = true;
361  }
362
363  EmitAlignment(Log2_32(MJTI->getAlignment()));
364
365  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
366    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
367
368    // If this jump table was deleted, ignore it.
369    if (JTBBs.empty()) continue;
370
371    // For PIC codegen, if possible we want to use the SetDirective to reduce
372    // the number of relocations the assembler will generate for the jump table.
373    // Set directives are all printed before the jump table itself.
374    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
375    if (MAI->getSetDirective() && IsPic)
376      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
377        if (EmittedSets.insert(JTBBs[ii]))
378          printPICJumpTableSetLabel(i, JTBBs[ii]);
379
380    // On some targets (e.g. Darwin) we want to emit two consequtive labels
381    // before each jump table.  The first label is never referenced, but tells
382    // the assembler and linker the extents of the jump table object.  The
383    // second label is actually referenced by the code.
384    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) {
385      O << MAI->getLinkerPrivateGlobalPrefix()
386        << "JTI" << getFunctionNumber() << '_' << i << ":\n";
387    }
388
389    O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
390      << '_' << i << ":\n";
391
392    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
393      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
394      O << '\n';
395    }
396  }
397}
398
399void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
400                                        const MachineBasicBlock *MBB,
401                                        unsigned uid)  const {
402  bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
403
404  // Use JumpTableDirective otherwise honor the entry size from the jump table
405  // info.
406  const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC);
407  bool HadJTEntryDirective = JTEntryDirective != NULL;
408  if (!HadJTEntryDirective) {
409    JTEntryDirective = MJTI->getEntrySize() == 4 ?
410      MAI->getData32bitsDirective() : MAI->getData64bitsDirective();
411  }
412
413  O << JTEntryDirective << ' ';
414
415  // If we have emitted set directives for the jump table entries, print
416  // them rather than the entries themselves.  If we're emitting PIC, then
417  // emit the table entries as differences between two text section labels.
418  // If we're emitting non-PIC code, then emit the entries as direct
419  // references to the target basic blocks.
420  if (!isPIC) {
421    GetMBBSymbol(MBB->getNumber())->print(O, MAI);
422  } else if (MAI->getSetDirective()) {
423    O << MAI->getPrivateGlobalPrefix() << getFunctionNumber()
424      << '_' << uid << "_set_" << MBB->getNumber();
425  } else {
426    GetMBBSymbol(MBB->getNumber())->print(O, MAI);
427    // If the arch uses custom Jump Table directives, don't calc relative to
428    // JT
429    if (!HadJTEntryDirective)
430      O << '-' << MAI->getPrivateGlobalPrefix() << "JTI"
431        << getFunctionNumber() << '_' << uid;
432  }
433}
434
435
436/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
437/// special global used by LLVM.  If so, emit it and return true, otherwise
438/// do nothing and return false.
439bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
440  if (GV->getName() == "llvm.used") {
441    if (MAI->getUsedDirective() != 0)    // No need to emit this at all.
442      EmitLLVMUsedList(GV->getInitializer());
443    return true;
444  }
445
446  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
447  if (GV->getSection() == "llvm.metadata" ||
448      GV->hasAvailableExternallyLinkage())
449    return true;
450
451  if (!GV->hasAppendingLinkage()) return false;
452
453  assert(GV->hasInitializer() && "Not a special LLVM global!");
454
455  const TargetData *TD = TM.getTargetData();
456  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
457  if (GV->getName() == "llvm.global_ctors") {
458    OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection());
459    EmitAlignment(Align, 0);
460    EmitXXStructorList(GV->getInitializer());
461    return true;
462  }
463
464  if (GV->getName() == "llvm.global_dtors") {
465    OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection());
466    EmitAlignment(Align, 0);
467    EmitXXStructorList(GV->getInitializer());
468    return true;
469  }
470
471  return false;
472}
473
474/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
475/// global in the specified llvm.used list for which emitUsedDirectiveFor
476/// is true, as being used with this directive.
477void AsmPrinter::EmitLLVMUsedList(Constant *List) {
478  const char *Directive = MAI->getUsedDirective();
479
480  // Should be an array of 'i8*'.
481  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
482  if (InitList == 0) return;
483
484  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
485    const GlobalValue *GV =
486      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
487    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
488      O << Directive;
489      EmitConstantValueOnly(InitList->getOperand(i));
490      O << '\n';
491    }
492  }
493}
494
495/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
496/// function pointers, ignoring the init priority.
497void AsmPrinter::EmitXXStructorList(Constant *List) {
498  // Should be an array of '{ int, void ()* }' structs.  The first value is the
499  // init priority, which we ignore.
500  if (!isa<ConstantArray>(List)) return;
501  ConstantArray *InitList = cast<ConstantArray>(List);
502  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
503    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
504      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
505
506      if (CS->getOperand(1)->isNullValue())
507        return;  // Found a null terminator, exit printing.
508      // Emit the function pointer.
509      EmitGlobalConstant(CS->getOperand(1));
510    }
511}
512
513
514//===----------------------------------------------------------------------===//
515/// LEB 128 number encoding.
516
517/// PrintULEB128 - Print a series of hexadecimal values (separated by commas)
518/// representing an unsigned leb128 value.
519void AsmPrinter::PrintULEB128(unsigned Value) const {
520  char Buffer[20];
521  do {
522    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
523    Value >>= 7;
524    if (Value) Byte |= 0x80;
525    O << "0x" << utohex_buffer(Byte, Buffer+20);
526    if (Value) O << ", ";
527  } while (Value);
528}
529
530/// PrintSLEB128 - Print a series of hexadecimal values (separated by commas)
531/// representing a signed leb128 value.
532void AsmPrinter::PrintSLEB128(int Value) const {
533  int Sign = Value >> (8 * sizeof(Value) - 1);
534  bool IsMore;
535  char Buffer[20];
536
537  do {
538    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
539    Value >>= 7;
540    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
541    if (IsMore) Byte |= 0x80;
542    O << "0x" << utohex_buffer(Byte, Buffer+20);
543    if (IsMore) O << ", ";
544  } while (IsMore);
545}
546
547//===--------------------------------------------------------------------===//
548// Emission and print routines
549//
550
551/// PrintHex - Print a value as a hexadecimal value.
552///
553void AsmPrinter::PrintHex(int Value) const {
554  char Buffer[20];
555  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
556}
557
558/// EOL - Print a newline character to asm stream.  If a comment is present
559/// then it will be printed first.  Comments should not contain '\n'.
560void AsmPrinter::EOL() const {
561  O << '\n';
562}
563
564void AsmPrinter::EOL(const std::string &Comment) const {
565  if (VerboseAsm && !Comment.empty()) {
566    O.PadToColumn(MAI->getCommentColumn());
567    O << MAI->getCommentString()
568      << ' '
569      << Comment;
570  }
571  O << '\n';
572}
573
574void AsmPrinter::EOL(const char* Comment) const {
575  if (VerboseAsm && *Comment) {
576    O.PadToColumn(MAI->getCommentColumn());
577    O << MAI->getCommentString()
578      << ' '
579      << Comment;
580  }
581  O << '\n';
582}
583
584static const char *DecodeDWARFEncoding(unsigned Encoding) {
585  switch (Encoding) {
586  case dwarf::DW_EH_PE_absptr:
587    return "absptr";
588  case dwarf::DW_EH_PE_omit:
589    return "omit";
590  case dwarf::DW_EH_PE_pcrel:
591    return "pcrel";
592  case dwarf::DW_EH_PE_udata4:
593    return "udata4";
594  case dwarf::DW_EH_PE_udata8:
595    return "udata8";
596  case dwarf::DW_EH_PE_sdata4:
597    return "sdata4";
598  case dwarf::DW_EH_PE_sdata8:
599    return "sdata8";
600  case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4:
601    return "pcrel udata4";
602  case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4:
603    return "pcrel sdata4";
604  case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8:
605    return "pcrel udata8";
606  case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8:
607    return "pcrel sdata8";
608  case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4:
609    return "indirect pcrel udata4";
610  case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4:
611    return "indirect pcrel sdata4";
612  case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8:
613    return "indirect pcrel udata8";
614  case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8:
615    return "indirect pcrel sdata8";
616  }
617
618  return 0;
619}
620
621void AsmPrinter::EOL(const char *Comment, unsigned Encoding) const {
622  if (VerboseAsm && *Comment) {
623    O.PadToColumn(MAI->getCommentColumn());
624    O << MAI->getCommentString()
625      << ' '
626      << Comment;
627
628    if (const char *EncStr = DecodeDWARFEncoding(Encoding))
629      O << " (" << EncStr << ')';
630  }
631  O << '\n';
632}
633
634/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
635/// unsigned leb128 value.
636void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
637  if (MAI->hasLEB128()) {
638    O << "\t.uleb128\t"
639      << Value;
640  } else {
641    O << MAI->getData8bitsDirective();
642    PrintULEB128(Value);
643  }
644}
645
646/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
647/// signed leb128 value.
648void AsmPrinter::EmitSLEB128Bytes(int Value) const {
649  if (MAI->hasLEB128()) {
650    O << "\t.sleb128\t"
651      << Value;
652  } else {
653    O << MAI->getData8bitsDirective();
654    PrintSLEB128(Value);
655  }
656}
657
658/// EmitInt8 - Emit a byte directive and value.
659///
660void AsmPrinter::EmitInt8(int Value) const {
661  O << MAI->getData8bitsDirective();
662  PrintHex(Value & 0xFF);
663}
664
665/// EmitInt16 - Emit a short directive and value.
666///
667void AsmPrinter::EmitInt16(int Value) const {
668  O << MAI->getData16bitsDirective();
669  PrintHex(Value & 0xFFFF);
670}
671
672/// EmitInt32 - Emit a long directive and value.
673///
674void AsmPrinter::EmitInt32(int Value) const {
675  O << MAI->getData32bitsDirective();
676  PrintHex(Value);
677}
678
679/// EmitInt64 - Emit a long long directive and value.
680///
681void AsmPrinter::EmitInt64(uint64_t Value) const {
682  if (MAI->getData64bitsDirective()) {
683    O << MAI->getData64bitsDirective();
684    PrintHex(Value);
685  } else {
686    if (TM.getTargetData()->isBigEndian()) {
687      EmitInt32(unsigned(Value >> 32)); O << '\n';
688      EmitInt32(unsigned(Value));
689    } else {
690      EmitInt32(unsigned(Value)); O << '\n';
691      EmitInt32(unsigned(Value >> 32));
692    }
693  }
694}
695
696/// toOctal - Convert the low order bits of X into an octal digit.
697///
698static inline char toOctal(int X) {
699  return (X&7)+'0';
700}
701
702/// printStringChar - Print a char, escaped if necessary.
703///
704static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
705  if (C == '"') {
706    O << "\\\"";
707  } else if (C == '\\') {
708    O << "\\\\";
709  } else if (isprint((unsigned char)C)) {
710    O << C;
711  } else {
712    switch(C) {
713    case '\b': O << "\\b"; break;
714    case '\f': O << "\\f"; break;
715    case '\n': O << "\\n"; break;
716    case '\r': O << "\\r"; break;
717    case '\t': O << "\\t"; break;
718    default:
719      O << '\\';
720      O << toOctal(C >> 6);
721      O << toOctal(C >> 3);
722      O << toOctal(C >> 0);
723      break;
724    }
725  }
726}
727
728/// EmitString - Emit a string with quotes and a null terminator.
729/// Special characters are emitted properly.
730/// \literal (Eg. '\t') \endliteral
731void AsmPrinter::EmitString(const StringRef String) const {
732  EmitString(String.data(), String.size());
733}
734
735void AsmPrinter::EmitString(const char *String, unsigned Size) const {
736  const char* AscizDirective = MAI->getAscizDirective();
737  if (AscizDirective)
738    O << AscizDirective;
739  else
740    O << MAI->getAsciiDirective();
741  O << '\"';
742  for (unsigned i = 0; i < Size; ++i)
743    printStringChar(O, String[i]);
744  if (AscizDirective)
745    O << '\"';
746  else
747    O << "\\0\"";
748}
749
750
751/// EmitFile - Emit a .file directive.
752void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
753  O << "\t.file\t" << Number << " \"";
754  for (unsigned i = 0, N = Name.size(); i < N; ++i)
755    printStringChar(O, Name[i]);
756  O << '\"';
757}
758
759
760//===----------------------------------------------------------------------===//
761
762// EmitAlignment - Emit an alignment directive to the specified power of
763// two boundary.  For example, if you pass in 3 here, you will get an 8
764// byte alignment.  If a global value is specified, and if that global has
765// an explicit alignment requested, it will unconditionally override the
766// alignment request.  However, if ForcedAlignBits is specified, this value
767// has final say: the ultimate alignment will be the max of ForcedAlignBits
768// and the alignment computed with NumBits and the global.
769//
770// The algorithm is:
771//     Align = NumBits;
772//     if (GV && GV->hasalignment) Align = GV->getalignment();
773//     Align = std::max(Align, ForcedAlignBits);
774//
775void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
776                               unsigned ForcedAlignBits,
777                               bool UseFillExpr) const {
778  if (GV && GV->getAlignment())
779    NumBits = Log2_32(GV->getAlignment());
780  NumBits = std::max(NumBits, ForcedAlignBits);
781
782  if (NumBits == 0) return;   // No need to emit alignment.
783
784  unsigned FillValue = 0;
785  if (getCurrentSection()->getKind().isText())
786    FillValue = MAI->getTextAlignFillValue();
787
788  OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0);
789}
790
791/// EmitZeros - Emit a block of zeros.
792///
793void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
794  if (NumZeros) {
795    if (MAI->getZeroDirective()) {
796      O << MAI->getZeroDirective() << NumZeros;
797      if (MAI->getZeroDirectiveSuffix())
798        O << MAI->getZeroDirectiveSuffix();
799      O << '\n';
800    } else {
801      for (; NumZeros; --NumZeros)
802        O << MAI->getData8bitsDirective(AddrSpace) << "0\n";
803    }
804  }
805}
806
807// Print out the specified constant, without a storage class.  Only the
808// constants valid in constant expressions can occur here.
809void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
810  if (CV->isNullValue() || isa<UndefValue>(CV))
811    O << '0';
812  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
813    O << CI->getZExtValue();
814  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
815    // This is a constant address for a global variable or function. Use the
816    // name of the variable or function as the address value.
817    O << Mang->getMangledName(GV);
818  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
819    const TargetData *TD = TM.getTargetData();
820    unsigned Opcode = CE->getOpcode();
821    switch (Opcode) {
822    case Instruction::Trunc:
823    case Instruction::ZExt:
824    case Instruction::SExt:
825    case Instruction::FPTrunc:
826    case Instruction::FPExt:
827    case Instruction::UIToFP:
828    case Instruction::SIToFP:
829    case Instruction::FPToUI:
830    case Instruction::FPToSI:
831      llvm_unreachable("FIXME: Don't support this constant cast expr");
832    case Instruction::GetElementPtr: {
833      // generate a symbolic expression for the byte address
834      const Constant *ptrVal = CE->getOperand(0);
835      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
836      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
837                                                idxVec.size())) {
838        // Truncate/sext the offset to the pointer size.
839        if (TD->getPointerSizeInBits() != 64) {
840          int SExtAmount = 64-TD->getPointerSizeInBits();
841          Offset = (Offset << SExtAmount) >> SExtAmount;
842        }
843
844        if (Offset)
845          O << '(';
846        EmitConstantValueOnly(ptrVal);
847        if (Offset > 0)
848          O << ") + " << Offset;
849        else if (Offset < 0)
850          O << ") - " << -Offset;
851      } else {
852        EmitConstantValueOnly(ptrVal);
853      }
854      break;
855    }
856    case Instruction::BitCast:
857      return EmitConstantValueOnly(CE->getOperand(0));
858
859    case Instruction::IntToPtr: {
860      // Handle casts to pointers by changing them into casts to the appropriate
861      // integer type.  This promotes constant folding and simplifies this code.
862      Constant *Op = CE->getOperand(0);
863      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
864                                        false/*ZExt*/);
865      return EmitConstantValueOnly(Op);
866    }
867
868
869    case Instruction::PtrToInt: {
870      // Support only foldable casts to/from pointers that can be eliminated by
871      // changing the pointer to the appropriately sized integer type.
872      Constant *Op = CE->getOperand(0);
873      const Type *Ty = CE->getType();
874
875      // We can emit the pointer value into this slot if the slot is an
876      // integer slot greater or equal to the size of the pointer.
877      if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
878        return EmitConstantValueOnly(Op);
879
880      O << "((";
881      EmitConstantValueOnly(Op);
882      APInt ptrMask =
883        APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
884
885      SmallString<40> S;
886      ptrMask.toStringUnsigned(S);
887      O << ") & " << S.str() << ')';
888      break;
889    }
890    case Instruction::Add:
891    case Instruction::Sub:
892    case Instruction::And:
893    case Instruction::Or:
894    case Instruction::Xor:
895      O << '(';
896      EmitConstantValueOnly(CE->getOperand(0));
897      O << ')';
898      switch (Opcode) {
899      case Instruction::Add:
900       O << " + ";
901       break;
902      case Instruction::Sub:
903       O << " - ";
904       break;
905      case Instruction::And:
906       O << " & ";
907       break;
908      case Instruction::Or:
909       O << " | ";
910       break;
911      case Instruction::Xor:
912       O << " ^ ";
913       break;
914      default:
915       break;
916      }
917      O << '(';
918      EmitConstantValueOnly(CE->getOperand(1));
919      O << ')';
920      break;
921    default:
922      llvm_unreachable("Unsupported operator!");
923    }
924  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
925    GetBlockAddressSymbol(BA)->print(O, MAI);
926  } else {
927    llvm_unreachable("Unknown constant value!");
928  }
929}
930
931/// printAsCString - Print the specified array as a C compatible string, only if
932/// the predicate isString is true.
933///
934static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
935                           unsigned LastElt) {
936  assert(CVA->isString() && "Array is not string compatible!");
937
938  O << '\"';
939  for (unsigned i = 0; i != LastElt; ++i) {
940    unsigned char C =
941        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
942    printStringChar(O, C);
943  }
944  O << '\"';
945}
946
947/// EmitString - Emit a zero-byte-terminated string constant.
948///
949void AsmPrinter::EmitString(const ConstantArray *CVA) const {
950  unsigned NumElts = CVA->getNumOperands();
951  if (MAI->getAscizDirective() && NumElts &&
952      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
953    O << MAI->getAscizDirective();
954    printAsCString(O, CVA, NumElts-1);
955  } else {
956    O << MAI->getAsciiDirective();
957    printAsCString(O, CVA, NumElts);
958  }
959  O << '\n';
960}
961
962void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
963                                         unsigned AddrSpace) {
964  if (CVA->isString()) {
965    EmitString(CVA);
966  } else { // Not a string.  Print the values in successive locations
967    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
968      EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
969  }
970}
971
972void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
973  const VectorType *PTy = CP->getType();
974
975  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
976    EmitGlobalConstant(CP->getOperand(I));
977}
978
979void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
980                                          unsigned AddrSpace) {
981  // Print the fields in successive locations. Pad to align if needed!
982  const TargetData *TD = TM.getTargetData();
983  unsigned Size = TD->getTypeAllocSize(CVS->getType());
984  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
985  uint64_t sizeSoFar = 0;
986  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
987    const Constant* field = CVS->getOperand(i);
988
989    // Check if padding is needed and insert one or more 0s.
990    uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
991    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
992                        - cvsLayout->getElementOffset(i)) - fieldSize;
993    sizeSoFar += fieldSize + padSize;
994
995    // Now print the actual field value.
996    EmitGlobalConstant(field, AddrSpace);
997
998    // Insert padding - this may include padding to increase the size of the
999    // current field up to the ABI size (if the struct is not packed) as well
1000    // as padding to ensure that the next field starts at the right offset.
1001    EmitZeros(padSize, AddrSpace);
1002  }
1003  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1004         "Layout of constant struct may be incorrect!");
1005}
1006
1007void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1008                                      unsigned AddrSpace) {
1009  // FP Constants are printed as integer constants to avoid losing
1010  // precision...
1011  LLVMContext &Context = CFP->getContext();
1012  const TargetData *TD = TM.getTargetData();
1013  if (CFP->getType()->isDoubleTy()) {
1014    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1015    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1016    if (MAI->getData64bitsDirective(AddrSpace)) {
1017      O << MAI->getData64bitsDirective(AddrSpace) << i;
1018      if (VerboseAsm) {
1019        O.PadToColumn(MAI->getCommentColumn());
1020        O << MAI->getCommentString() << " double " << Val;
1021      }
1022      O << '\n';
1023    } else if (TD->isBigEndian()) {
1024      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1025      if (VerboseAsm) {
1026        O.PadToColumn(MAI->getCommentColumn());
1027        O << MAI->getCommentString()
1028          << " most significant word of double " << Val;
1029      }
1030      O << '\n';
1031      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1032      if (VerboseAsm) {
1033        O.PadToColumn(MAI->getCommentColumn());
1034        O << MAI->getCommentString()
1035          << " least significant word of double " << Val;
1036      }
1037      O << '\n';
1038    } else {
1039      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1040      if (VerboseAsm) {
1041        O.PadToColumn(MAI->getCommentColumn());
1042        O << MAI->getCommentString()
1043          << " least significant word of double " << Val;
1044      }
1045      O << '\n';
1046      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1047      if (VerboseAsm) {
1048        O.PadToColumn(MAI->getCommentColumn());
1049        O << MAI->getCommentString()
1050          << " most significant word of double " << Val;
1051      }
1052      O << '\n';
1053    }
1054    return;
1055  }
1056
1057  if (CFP->getType()->isFloatTy()) {
1058    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1059    O << MAI->getData32bitsDirective(AddrSpace)
1060      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1061    if (VerboseAsm) {
1062      O.PadToColumn(MAI->getCommentColumn());
1063      O << MAI->getCommentString() << " float " << Val;
1064    }
1065    O << '\n';
1066    return;
1067  }
1068
1069  if (CFP->getType()->isX86_FP80Ty()) {
1070    // all long double variants are printed as hex
1071    // api needed to prevent premature destruction
1072    APInt api = CFP->getValueAPF().bitcastToAPInt();
1073    const uint64_t *p = api.getRawData();
1074    // Convert to double so we can print the approximate val as a comment.
1075    APFloat DoubleVal = CFP->getValueAPF();
1076    bool ignored;
1077    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1078                      &ignored);
1079    if (TD->isBigEndian()) {
1080      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1081      if (VerboseAsm) {
1082        O.PadToColumn(MAI->getCommentColumn());
1083        O << MAI->getCommentString()
1084          << " most significant halfword of x86_fp80 ~"
1085          << DoubleVal.convertToDouble();
1086      }
1087      O << '\n';
1088      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1089      if (VerboseAsm) {
1090        O.PadToColumn(MAI->getCommentColumn());
1091        O << MAI->getCommentString() << " next halfword";
1092      }
1093      O << '\n';
1094      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1095      if (VerboseAsm) {
1096        O.PadToColumn(MAI->getCommentColumn());
1097        O << MAI->getCommentString() << " next halfword";
1098      }
1099      O << '\n';
1100      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1101      if (VerboseAsm) {
1102        O.PadToColumn(MAI->getCommentColumn());
1103        O << MAI->getCommentString() << " next halfword";
1104      }
1105      O << '\n';
1106      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1107      if (VerboseAsm) {
1108        O.PadToColumn(MAI->getCommentColumn());
1109        O << MAI->getCommentString()
1110          << " least significant halfword";
1111      }
1112      O << '\n';
1113     } else {
1114      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1115      if (VerboseAsm) {
1116        O.PadToColumn(MAI->getCommentColumn());
1117        O << MAI->getCommentString()
1118          << " least significant halfword of x86_fp80 ~"
1119          << DoubleVal.convertToDouble();
1120      }
1121      O << '\n';
1122      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1123      if (VerboseAsm) {
1124        O.PadToColumn(MAI->getCommentColumn());
1125        O << MAI->getCommentString()
1126          << " next halfword";
1127      }
1128      O << '\n';
1129      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1130      if (VerboseAsm) {
1131        O.PadToColumn(MAI->getCommentColumn());
1132        O << MAI->getCommentString()
1133          << " next halfword";
1134      }
1135      O << '\n';
1136      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1137      if (VerboseAsm) {
1138        O.PadToColumn(MAI->getCommentColumn());
1139        O << MAI->getCommentString()
1140          << " next halfword";
1141      }
1142      O << '\n';
1143      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1144      if (VerboseAsm) {
1145        O.PadToColumn(MAI->getCommentColumn());
1146        O << MAI->getCommentString()
1147          << " most significant halfword";
1148      }
1149      O << '\n';
1150    }
1151    EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) -
1152              TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace);
1153    return;
1154  }
1155
1156  if (CFP->getType()->isPPC_FP128Ty()) {
1157    // all long double variants are printed as hex
1158    // api needed to prevent premature destruction
1159    APInt api = CFP->getValueAPF().bitcastToAPInt();
1160    const uint64_t *p = api.getRawData();
1161    if (TD->isBigEndian()) {
1162      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1163      if (VerboseAsm) {
1164        O.PadToColumn(MAI->getCommentColumn());
1165        O << MAI->getCommentString()
1166          << " most significant word of ppc_fp128";
1167      }
1168      O << '\n';
1169      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1170      if (VerboseAsm) {
1171        O.PadToColumn(MAI->getCommentColumn());
1172        O << MAI->getCommentString()
1173        << " next word";
1174      }
1175      O << '\n';
1176      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1177      if (VerboseAsm) {
1178        O.PadToColumn(MAI->getCommentColumn());
1179        O << MAI->getCommentString()
1180          << " next word";
1181      }
1182      O << '\n';
1183      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1184      if (VerboseAsm) {
1185        O.PadToColumn(MAI->getCommentColumn());
1186        O << MAI->getCommentString()
1187          << " least significant word";
1188      }
1189      O << '\n';
1190     } else {
1191      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1192      if (VerboseAsm) {
1193        O.PadToColumn(MAI->getCommentColumn());
1194        O << MAI->getCommentString()
1195          << " least significant word of ppc_fp128";
1196      }
1197      O << '\n';
1198      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1199      if (VerboseAsm) {
1200        O.PadToColumn(MAI->getCommentColumn());
1201        O << MAI->getCommentString()
1202          << " next word";
1203      }
1204      O << '\n';
1205      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1206      if (VerboseAsm) {
1207        O.PadToColumn(MAI->getCommentColumn());
1208        O << MAI->getCommentString()
1209          << " next word";
1210      }
1211      O << '\n';
1212      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1213      if (VerboseAsm) {
1214        O.PadToColumn(MAI->getCommentColumn());
1215        O << MAI->getCommentString()
1216          << " most significant word";
1217      }
1218      O << '\n';
1219    }
1220    return;
1221  } else llvm_unreachable("Floating point constant type not handled");
1222}
1223
1224void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1225                                            unsigned AddrSpace) {
1226  const TargetData *TD = TM.getTargetData();
1227  unsigned BitWidth = CI->getBitWidth();
1228  assert(isPowerOf2_32(BitWidth) &&
1229         "Non-power-of-2-sized integers not handled!");
1230
1231  // We don't expect assemblers to support integer data directives
1232  // for more than 64 bits, so we emit the data in at most 64-bit
1233  // quantities at a time.
1234  const uint64_t *RawData = CI->getValue().getRawData();
1235  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1236    uint64_t Val;
1237    if (TD->isBigEndian())
1238      Val = RawData[e - i - 1];
1239    else
1240      Val = RawData[i];
1241
1242    if (MAI->getData64bitsDirective(AddrSpace))
1243      O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1244    else if (TD->isBigEndian()) {
1245      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1246      if (VerboseAsm) {
1247        O.PadToColumn(MAI->getCommentColumn());
1248        O << MAI->getCommentString()
1249          << " most significant half of i64 " << Val;
1250      }
1251      O << '\n';
1252      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1253      if (VerboseAsm) {
1254        O.PadToColumn(MAI->getCommentColumn());
1255        O << MAI->getCommentString()
1256          << " least significant half of i64 " << Val;
1257      }
1258      O << '\n';
1259    } else {
1260      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1261      if (VerboseAsm) {
1262        O.PadToColumn(MAI->getCommentColumn());
1263        O << MAI->getCommentString()
1264          << " least significant half of i64 " << Val;
1265      }
1266      O << '\n';
1267      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1268      if (VerboseAsm) {
1269        O.PadToColumn(MAI->getCommentColumn());
1270        O << MAI->getCommentString()
1271          << " most significant half of i64 " << Val;
1272      }
1273      O << '\n';
1274    }
1275  }
1276}
1277
1278/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1279void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1280  const TargetData *TD = TM.getTargetData();
1281  const Type *type = CV->getType();
1282  unsigned Size = TD->getTypeAllocSize(type);
1283
1284  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1285    EmitZeros(Size, AddrSpace);
1286    return;
1287  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1288    EmitGlobalConstantArray(CVA , AddrSpace);
1289    return;
1290  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1291    EmitGlobalConstantStruct(CVS, AddrSpace);
1292    return;
1293  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1294    EmitGlobalConstantFP(CFP, AddrSpace);
1295    return;
1296  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1297    // Small integers are handled below; large integers are handled here.
1298    if (Size > 4) {
1299      EmitGlobalConstantLargeInt(CI, AddrSpace);
1300      return;
1301    }
1302  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1303    EmitGlobalConstantVector(CP);
1304    return;
1305  }
1306
1307  printDataDirective(type, AddrSpace);
1308  EmitConstantValueOnly(CV);
1309  if (VerboseAsm) {
1310    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1311      SmallString<40> S;
1312      CI->getValue().toStringUnsigned(S, 16);
1313      O.PadToColumn(MAI->getCommentColumn());
1314      O << MAI->getCommentString() << " 0x" << S.str();
1315    }
1316  }
1317  O << '\n';
1318}
1319
1320void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1321  // Target doesn't support this yet!
1322  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1323}
1324
1325/// PrintSpecial - Print information related to the specified machine instr
1326/// that is independent of the operand, and may be independent of the instr
1327/// itself.  This can be useful for portably encoding the comment character
1328/// or other bits of target-specific knowledge into the asmstrings.  The
1329/// syntax used is ${:comment}.  Targets can override this to add support
1330/// for their own strange codes.
1331void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1332  if (!strcmp(Code, "private")) {
1333    O << MAI->getPrivateGlobalPrefix();
1334  } else if (!strcmp(Code, "comment")) {
1335    if (VerboseAsm)
1336      O << MAI->getCommentString();
1337  } else if (!strcmp(Code, "uid")) {
1338    // Comparing the address of MI isn't sufficient, because machineinstrs may
1339    // be allocated to the same address across functions.
1340    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1341
1342    // If this is a new LastFn instruction, bump the counter.
1343    if (LastMI != MI || LastFn != ThisF) {
1344      ++Counter;
1345      LastMI = MI;
1346      LastFn = ThisF;
1347    }
1348    O << Counter;
1349  } else {
1350    std::string msg;
1351    raw_string_ostream Msg(msg);
1352    Msg << "Unknown special formatter '" << Code
1353         << "' for machine instr: " << *MI;
1354    llvm_report_error(Msg.str());
1355  }
1356}
1357
1358/// processDebugLoc - Processes the debug information of each machine
1359/// instruction's DebugLoc.
1360void AsmPrinter::processDebugLoc(const MachineInstr *MI,
1361                                 bool BeforePrintingInsn) {
1362  if (!MAI || !DW || !MAI->doesSupportDebugInformation()
1363      || !DW->ShouldEmitDwarfDebug())
1364    return;
1365  DebugLoc DL = MI->getDebugLoc();
1366  if (DL.isUnknown())
1367    return;
1368  DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1369  if (CurDLT.Scope == 0)
1370    return;
1371
1372  if (BeforePrintingInsn) {
1373    if (CurDLT != PrevDLT) {
1374      unsigned L = DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1375                                        CurDLT.Scope);
1376      printLabel(L);
1377      DW->BeginScope(MI, L);
1378      PrevDLT = CurDLT;
1379    }
1380  } else {
1381    // After printing instruction
1382    DW->EndScope(MI);
1383  }
1384}
1385
1386
1387/// printInlineAsm - This method formats and prints the specified machine
1388/// instruction that is an inline asm.
1389void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1390  unsigned NumOperands = MI->getNumOperands();
1391
1392  // Count the number of register definitions.
1393  unsigned NumDefs = 0;
1394  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1395       ++NumDefs)
1396    assert(NumDefs != NumOperands-1 && "No asm string?");
1397
1398  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1399
1400  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1401  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1402
1403  O << '\t';
1404
1405  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1406  // These are useful to see where empty asm's wound up.
1407  if (AsmStr[0] == 0) {
1408    O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
1409    O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n';
1410    return;
1411  }
1412
1413  O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
1414
1415  // The variant of the current asmprinter.
1416  int AsmPrinterVariant = MAI->getAssemblerDialect();
1417
1418  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1419  const char *LastEmitted = AsmStr; // One past the last character emitted.
1420
1421  while (*LastEmitted) {
1422    switch (*LastEmitted) {
1423    default: {
1424      // Not a special case, emit the string section literally.
1425      const char *LiteralEnd = LastEmitted+1;
1426      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1427             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1428        ++LiteralEnd;
1429      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1430        O.write(LastEmitted, LiteralEnd-LastEmitted);
1431      LastEmitted = LiteralEnd;
1432      break;
1433    }
1434    case '\n':
1435      ++LastEmitted;   // Consume newline character.
1436      O << '\n';       // Indent code with newline.
1437      break;
1438    case '$': {
1439      ++LastEmitted;   // Consume '$' character.
1440      bool Done = true;
1441
1442      // Handle escapes.
1443      switch (*LastEmitted) {
1444      default: Done = false; break;
1445      case '$':     // $$ -> $
1446        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1447          O << '$';
1448        ++LastEmitted;  // Consume second '$' character.
1449        break;
1450      case '(':             // $( -> same as GCC's { character.
1451        ++LastEmitted;      // Consume '(' character.
1452        if (CurVariant != -1) {
1453          llvm_report_error("Nested variants found in inline asm string: '"
1454                            + std::string(AsmStr) + "'");
1455        }
1456        CurVariant = 0;     // We're in the first variant now.
1457        break;
1458      case '|':
1459        ++LastEmitted;  // consume '|' character.
1460        if (CurVariant == -1)
1461          O << '|';       // this is gcc's behavior for | outside a variant
1462        else
1463          ++CurVariant;   // We're in the next variant.
1464        break;
1465      case ')':         // $) -> same as GCC's } char.
1466        ++LastEmitted;  // consume ')' character.
1467        if (CurVariant == -1)
1468          O << '}';     // this is gcc's behavior for } outside a variant
1469        else
1470          CurVariant = -1;
1471        break;
1472      }
1473      if (Done) break;
1474
1475      bool HasCurlyBraces = false;
1476      if (*LastEmitted == '{') {     // ${variable}
1477        ++LastEmitted;               // Consume '{' character.
1478        HasCurlyBraces = true;
1479      }
1480
1481      // If we have ${:foo}, then this is not a real operand reference, it is a
1482      // "magic" string reference, just like in .td files.  Arrange to call
1483      // PrintSpecial.
1484      if (HasCurlyBraces && *LastEmitted == ':') {
1485        ++LastEmitted;
1486        const char *StrStart = LastEmitted;
1487        const char *StrEnd = strchr(StrStart, '}');
1488        if (StrEnd == 0) {
1489          llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1490                            + std::string(AsmStr) + "'");
1491        }
1492
1493        std::string Val(StrStart, StrEnd);
1494        PrintSpecial(MI, Val.c_str());
1495        LastEmitted = StrEnd+1;
1496        break;
1497      }
1498
1499      const char *IDStart = LastEmitted;
1500      char *IDEnd;
1501      errno = 0;
1502      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1503      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1504        llvm_report_error("Bad $ operand number in inline asm string: '"
1505                          + std::string(AsmStr) + "'");
1506      }
1507      LastEmitted = IDEnd;
1508
1509      char Modifier[2] = { 0, 0 };
1510
1511      if (HasCurlyBraces) {
1512        // If we have curly braces, check for a modifier character.  This
1513        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1514        if (*LastEmitted == ':') {
1515          ++LastEmitted;    // Consume ':' character.
1516          if (*LastEmitted == 0) {
1517            llvm_report_error("Bad ${:} expression in inline asm string: '"
1518                              + std::string(AsmStr) + "'");
1519          }
1520
1521          Modifier[0] = *LastEmitted;
1522          ++LastEmitted;    // Consume modifier character.
1523        }
1524
1525        if (*LastEmitted != '}') {
1526          llvm_report_error("Bad ${} expression in inline asm string: '"
1527                            + std::string(AsmStr) + "'");
1528        }
1529        ++LastEmitted;    // Consume '}' character.
1530      }
1531
1532      if ((unsigned)Val >= NumOperands-1) {
1533        llvm_report_error("Invalid $ operand number in inline asm string: '"
1534                          + std::string(AsmStr) + "'");
1535      }
1536
1537      // Okay, we finally have a value number.  Ask the target to print this
1538      // operand!
1539      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1540        unsigned OpNo = 1;
1541
1542        bool Error = false;
1543
1544        // Scan to find the machine operand number for the operand.
1545        for (; Val; --Val) {
1546          if (OpNo >= MI->getNumOperands()) break;
1547          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1548          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1549        }
1550
1551        if (OpNo >= MI->getNumOperands()) {
1552          Error = true;
1553        } else {
1554          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1555          ++OpNo;  // Skip over the ID number.
1556
1557          if (Modifier[0]=='l')  // labels are target independent
1558            GetMBBSymbol(MI->getOperand(OpNo).getMBB()
1559                           ->getNumber())->print(O, MAI);
1560          else {
1561            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1562            if ((OpFlags & 7) == 4) {
1563              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1564                                                Modifier[0] ? Modifier : 0);
1565            } else {
1566              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1567                                          Modifier[0] ? Modifier : 0);
1568            }
1569          }
1570        }
1571        if (Error) {
1572          std::string msg;
1573          raw_string_ostream Msg(msg);
1574          Msg << "Invalid operand found in inline asm: '"
1575               << AsmStr << "'\n";
1576          MI->print(Msg);
1577          llvm_report_error(Msg.str());
1578        }
1579      }
1580      break;
1581    }
1582    }
1583  }
1584  O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd();
1585}
1586
1587/// printImplicitDef - This method prints the specified machine instruction
1588/// that is an implicit def.
1589void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1590  if (!VerboseAsm) return;
1591  O.PadToColumn(MAI->getCommentColumn());
1592  O << MAI->getCommentString() << " implicit-def: "
1593    << TRI->getName(MI->getOperand(0).getReg());
1594}
1595
1596void AsmPrinter::printKill(const MachineInstr *MI) const {
1597  if (!VerboseAsm) return;
1598  O.PadToColumn(MAI->getCommentColumn());
1599  O << MAI->getCommentString() << " kill:";
1600  for (unsigned n = 0, e = MI->getNumOperands(); n != e; ++n) {
1601    const MachineOperand &op = MI->getOperand(n);
1602    assert(op.isReg() && "KILL instruction must have only register operands");
1603    O << ' ' << TRI->getName(op.getReg()) << (op.isDef() ? "<def>" : "<kill>");
1604  }
1605}
1606
1607/// printLabel - This method prints a local label used by debug and
1608/// exception handling tables.
1609void AsmPrinter::printLabel(const MachineInstr *MI) const {
1610  printLabel(MI->getOperand(0).getImm());
1611}
1612
1613void AsmPrinter::printLabel(unsigned Id) const {
1614  O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':';
1615}
1616
1617/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1618/// instruction, using the specified assembler variant.  Targets should
1619/// overried this to format as appropriate.
1620bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1621                                 unsigned AsmVariant, const char *ExtraCode) {
1622  // Target doesn't support this yet!
1623  return true;
1624}
1625
1626bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1627                                       unsigned AsmVariant,
1628                                       const char *ExtraCode) {
1629  // Target doesn't support this yet!
1630  return true;
1631}
1632
1633MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA,
1634                                            const char *Suffix) const {
1635  return GetBlockAddressSymbol(BA->getFunction(), BA->getBasicBlock(), Suffix);
1636}
1637
1638MCSymbol *AsmPrinter::GetBlockAddressSymbol(const Function *F,
1639                                            const BasicBlock *BB,
1640                                            const char *Suffix) const {
1641  assert(BB->hasName() &&
1642         "Address of anonymous basic block not supported yet!");
1643
1644  // This code must use the function name itself, and not the function number,
1645  // since it must be possible to generate the label name from within other
1646  // functions.
1647  std::string FuncName = Mang->getMangledName(F);
1648
1649  SmallString<60> Name;
1650  raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BA"
1651    << FuncName.size() << '_' << FuncName << '_'
1652    << Mang->makeNameProper(BB->getName())
1653    << Suffix;
1654
1655  return OutContext.GetOrCreateSymbol(Name.str());
1656}
1657
1658MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const {
1659  SmallString<60> Name;
1660  raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB"
1661    << getFunctionNumber() << '_' << MBBID;
1662
1663  return OutContext.GetOrCreateSymbol(Name.str());
1664}
1665
1666
1667/// EmitBasicBlockStart - This method prints the label for the specified
1668/// MachineBasicBlock, an alignment (if present) and a comment describing
1669/// it if appropriate.
1670void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
1671  // Emit an alignment directive for this block, if needed.
1672  if (unsigned Align = MBB->getAlignment())
1673    EmitAlignment(Log2_32(Align));
1674
1675  // If the block has its address taken, emit a special label to satisfy
1676  // references to the block. This is done so that we don't need to
1677  // remember the number of this label, and so that we can make
1678  // forward references to labels without knowing what their numbers
1679  // will be.
1680  if (MBB->hasAddressTaken()) {
1681    GetBlockAddressSymbol(MBB->getBasicBlock()->getParent(),
1682                          MBB->getBasicBlock())->print(O, MAI);
1683    O << ':';
1684    if (VerboseAsm) {
1685      O.PadToColumn(MAI->getCommentColumn());
1686      O << MAI->getCommentString() << " Address Taken";
1687    }
1688    O << '\n';
1689  }
1690
1691  // Print the main label for the block.
1692  if (MBB->pred_empty() || MBB->isOnlyReachableByFallthrough()) {
1693    if (VerboseAsm)
1694      O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':';
1695  } else {
1696    GetMBBSymbol(MBB->getNumber())->print(O, MAI);
1697    O << ':';
1698    if (!VerboseAsm)
1699      O << '\n';
1700  }
1701
1702  // Print some comments to accompany the label.
1703  if (VerboseAsm) {
1704    if (const BasicBlock *BB = MBB->getBasicBlock())
1705      if (BB->hasName()) {
1706        O.PadToColumn(MAI->getCommentColumn());
1707        O << MAI->getCommentString() << ' ';
1708        WriteAsOperand(O, BB, /*PrintType=*/false);
1709      }
1710
1711    EmitComments(*MBB);
1712    O << '\n';
1713  }
1714}
1715
1716/// printPICJumpTableSetLabel - This method prints a set label for the
1717/// specified MachineBasicBlock for a jumptable entry.
1718void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1719                                           const MachineBasicBlock *MBB) const {
1720  if (!MAI->getSetDirective())
1721    return;
1722
1723  O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
1724    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1725  GetMBBSymbol(MBB->getNumber())->print(O, MAI);
1726  O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1727    << '_' << uid << '\n';
1728}
1729
1730void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1731                                           const MachineBasicBlock *MBB) const {
1732  if (!MAI->getSetDirective())
1733    return;
1734
1735  O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
1736    << getFunctionNumber() << '_' << uid << '_' << uid2
1737    << "_set_" << MBB->getNumber() << ',';
1738  GetMBBSymbol(MBB->getNumber())->print(O, MAI);
1739  O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1740    << '_' << uid << '_' << uid2 << '\n';
1741}
1742
1743/// printDataDirective - This method prints the asm directive for the
1744/// specified type.
1745void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1746  const TargetData *TD = TM.getTargetData();
1747  switch (type->getTypeID()) {
1748  case Type::FloatTyID: case Type::DoubleTyID:
1749  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1750    assert(0 && "Should have already output floating point constant.");
1751  default:
1752    assert(0 && "Can't handle printing this type of thing");
1753  case Type::IntegerTyID: {
1754    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1755    if (BitWidth <= 8)
1756      O << MAI->getData8bitsDirective(AddrSpace);
1757    else if (BitWidth <= 16)
1758      O << MAI->getData16bitsDirective(AddrSpace);
1759    else if (BitWidth <= 32)
1760      O << MAI->getData32bitsDirective(AddrSpace);
1761    else if (BitWidth <= 64) {
1762      assert(MAI->getData64bitsDirective(AddrSpace) &&
1763             "Target cannot handle 64-bit constant exprs!");
1764      O << MAI->getData64bitsDirective(AddrSpace);
1765    } else {
1766      llvm_unreachable("Target cannot handle given data directive width!");
1767    }
1768    break;
1769  }
1770  case Type::PointerTyID:
1771    if (TD->getPointerSize() == 8) {
1772      assert(MAI->getData64bitsDirective(AddrSpace) &&
1773             "Target cannot handle 64-bit pointer exprs!");
1774      O << MAI->getData64bitsDirective(AddrSpace);
1775    } else if (TD->getPointerSize() == 2) {
1776      O << MAI->getData16bitsDirective(AddrSpace);
1777    } else if (TD->getPointerSize() == 1) {
1778      O << MAI->getData8bitsDirective(AddrSpace);
1779    } else {
1780      O << MAI->getData32bitsDirective(AddrSpace);
1781    }
1782    break;
1783  }
1784}
1785
1786void AsmPrinter::printVisibility(const std::string& Name,
1787                                 unsigned Visibility) const {
1788  if (Visibility == GlobalValue::HiddenVisibility) {
1789    if (const char *Directive = MAI->getHiddenDirective())
1790      O << Directive << Name << '\n';
1791  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1792    if (const char *Directive = MAI->getProtectedDirective())
1793      O << Directive << Name << '\n';
1794  }
1795}
1796
1797void AsmPrinter::printOffset(int64_t Offset) const {
1798  if (Offset > 0)
1799    O << '+' << Offset;
1800  else if (Offset < 0)
1801    O << Offset;
1802}
1803
1804GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1805  if (!S->usesMetadata())
1806    return 0;
1807
1808  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1809  if (GCPI != GCMetadataPrinters.end())
1810    return GCPI->second;
1811
1812  const char *Name = S->getName().c_str();
1813
1814  for (GCMetadataPrinterRegistry::iterator
1815         I = GCMetadataPrinterRegistry::begin(),
1816         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1817    if (strcmp(Name, I->getName()) == 0) {
1818      GCMetadataPrinter *GMP = I->instantiate();
1819      GMP->S = S;
1820      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1821      return GMP;
1822    }
1823
1824  errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1825  llvm_unreachable(0);
1826}
1827
1828/// EmitComments - Pretty-print comments for instructions
1829void AsmPrinter::EmitComments(const MachineInstr &MI) const {
1830  if (!VerboseAsm)
1831    return;
1832
1833  bool Newline = false;
1834
1835  if (!MI.getDebugLoc().isUnknown()) {
1836    DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1837
1838    // Print source line info.
1839    O.PadToColumn(MAI->getCommentColumn());
1840    O << MAI->getCommentString() << " SrcLine ";
1841    if (DLT.Scope) {
1842      DICompileUnit CU(DLT.Scope);
1843      if (!CU.isNull())
1844        O << CU.getFilename() << " ";
1845    }
1846    O << DLT.Line;
1847    if (DLT.Col != 0)
1848      O << ":" << DLT.Col;
1849    Newline = true;
1850  }
1851
1852  // Check for spills and reloads
1853  int FI;
1854
1855  const MachineFrameInfo *FrameInfo =
1856    MI.getParent()->getParent()->getFrameInfo();
1857
1858  // We assume a single instruction only has a spill or reload, not
1859  // both.
1860  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
1861    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1862      if (Newline) O << '\n';
1863      O.PadToColumn(MAI->getCommentColumn());
1864      O << MAI->getCommentString() << " Reload";
1865      Newline = true;
1866    }
1867  }
1868  else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, FI)) {
1869    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1870      if (Newline) O << '\n';
1871      O.PadToColumn(MAI->getCommentColumn());
1872      O << MAI->getCommentString() << " Folded Reload";
1873      Newline = true;
1874    }
1875  }
1876  else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
1877    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1878      if (Newline) O << '\n';
1879      O.PadToColumn(MAI->getCommentColumn());
1880      O << MAI->getCommentString() << " Spill";
1881      Newline = true;
1882    }
1883  }
1884  else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, FI)) {
1885    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1886      if (Newline) O << '\n';
1887      O.PadToColumn(MAI->getCommentColumn());
1888      O << MAI->getCommentString() << " Folded Spill";
1889      Newline = true;
1890    }
1891  }
1892
1893  // Check for spill-induced copies
1894  unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1895  if (TM.getInstrInfo()->isMoveInstr(MI, SrcReg, DstReg,
1896                                      SrcSubIdx, DstSubIdx)) {
1897    if (MI.getAsmPrinterFlag(ReloadReuse)) {
1898      if (Newline) O << '\n';
1899      O.PadToColumn(MAI->getCommentColumn());
1900      O << MAI->getCommentString() << " Reload Reuse";
1901      Newline = true;
1902    }
1903  }
1904}
1905
1906/// PrintChildLoopComment - Print comments about child loops within
1907/// the loop for this basic block, with nesting.
1908///
1909static void PrintChildLoopComment(formatted_raw_ostream &O,
1910                                  const MachineLoop *loop,
1911                                  const MCAsmInfo *MAI,
1912                                  int FunctionNumber) {
1913  // Add child loop information
1914  for(MachineLoop::iterator cl = loop->begin(),
1915        clend = loop->end();
1916      cl != clend;
1917      ++cl) {
1918    MachineBasicBlock *Header = (*cl)->getHeader();
1919    assert(Header && "No header for loop");
1920
1921    O << '\n';
1922    O.PadToColumn(MAI->getCommentColumn());
1923
1924    O << MAI->getCommentString();
1925    O.indent(((*cl)->getLoopDepth()-1)*2)
1926      << " Child Loop BB" << FunctionNumber << "_"
1927      << Header->getNumber() << " Depth " << (*cl)->getLoopDepth();
1928
1929    PrintChildLoopComment(O, *cl, MAI, FunctionNumber);
1930  }
1931}
1932
1933/// EmitComments - Pretty-print comments for basic blocks
1934void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const {
1935  if (VerboseAsm) {
1936    // Add loop depth information
1937    const MachineLoop *loop = LI->getLoopFor(&MBB);
1938
1939    if (loop) {
1940      // Print a newline after bb# annotation.
1941      O << "\n";
1942      O.PadToColumn(MAI->getCommentColumn());
1943      O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth()
1944        << '\n';
1945
1946      O.PadToColumn(MAI->getCommentColumn());
1947
1948      MachineBasicBlock *Header = loop->getHeader();
1949      assert(Header && "No header for loop");
1950
1951      if (Header == &MBB) {
1952        O << MAI->getCommentString() << " Loop Header";
1953        PrintChildLoopComment(O, loop, MAI, getFunctionNumber());
1954      }
1955      else {
1956        O << MAI->getCommentString() << " Loop Header is BB"
1957          << getFunctionNumber() << "_" << loop->getHeader()->getNumber();
1958      }
1959
1960      if (loop->empty()) {
1961        O << '\n';
1962        O.PadToColumn(MAI->getCommentColumn());
1963        O << MAI->getCommentString() << " Inner Loop";
1964      }
1965
1966      // Add parent loop information
1967      for (const MachineLoop *CurLoop = loop->getParentLoop();
1968           CurLoop;
1969           CurLoop = CurLoop->getParentLoop()) {
1970        MachineBasicBlock *Header = CurLoop->getHeader();
1971        assert(Header && "No header for loop");
1972
1973        O << '\n';
1974        O.PadToColumn(MAI->getCommentColumn());
1975        O << MAI->getCommentString();
1976        O.indent((CurLoop->getLoopDepth()-1)*2)
1977          << " Inside Loop BB" << getFunctionNumber() << "_"
1978          << Header->getNumber() << " Depth " << CurLoop->getLoopDepth();
1979      }
1980    }
1981  }
1982}
1983