AsmPrinter.cpp revision c82bd82aed933fa52a52b3b5d440fdf49fc85d88
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineJumpTableInfo.h" 22#include "llvm/CodeGen/MachineModuleInfo.h" 23#include "llvm/CodeGen/DwarfWriter.h" 24#include "llvm/Analysis/DebugInfo.h" 25#include "llvm/Support/CommandLine.h" 26#include "llvm/Support/Mangler.h" 27#include "llvm/Support/raw_ostream.h" 28#include "llvm/Target/TargetAsmInfo.h" 29#include "llvm/Target/TargetData.h" 30#include "llvm/Target/TargetLowering.h" 31#include "llvm/Target/TargetOptions.h" 32#include "llvm/Target/TargetRegisterInfo.h" 33#include "llvm/ADT/SmallPtrSet.h" 34#include "llvm/ADT/SmallString.h" 35#include "llvm/ADT/StringExtras.h" 36#include <cerrno> 37using namespace llvm; 38 39static cl::opt<cl::boolOrDefault> 40AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 41 cl::init(cl::BOU_UNSET)); 42 43char AsmPrinter::ID = 0; 44AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm, 45 const TargetAsmInfo *T, CodeGenOpt::Level OL, bool VDef) 46 : MachineFunctionPass(&ID), FunctionNumber(0), OptLevel(OL), O(o), 47 TM(tm), TAI(T), TRI(tm.getRegisterInfo()), 48 IsInTextSection(false), LastMI(0), LastFn(0), Counter(~0U), 49 PrevDLT(0, ~0U, ~0U) { 50 DW = 0; MMI = 0; 51 switch (AsmVerbose) { 52 case cl::BOU_UNSET: VerboseAsm = VDef; break; 53 case cl::BOU_TRUE: VerboseAsm = true; break; 54 case cl::BOU_FALSE: VerboseAsm = false; break; 55 } 56} 57 58AsmPrinter::~AsmPrinter() { 59 for (gcp_iterator I = GCMetadataPrinters.begin(), 60 E = GCMetadataPrinters.end(); I != E; ++I) 61 delete I->second; 62} 63 64/// SwitchToTextSection - Switch to the specified text section of the executable 65/// if we are not already in it! 66/// 67void AsmPrinter::SwitchToTextSection(const char *NewSection, 68 const GlobalValue *GV) { 69 std::string NS; 70 if (GV && GV->hasSection()) 71 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 72 else 73 NS = NewSection; 74 75 // If we're already in this section, we're done. 76 if (CurrentSection == NS) return; 77 78 // Close the current section, if applicable. 79 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 80 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 81 82 CurrentSection = NS; 83 84 if (!CurrentSection.empty()) 85 O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n'; 86 87 IsInTextSection = true; 88} 89 90/// SwitchToDataSection - Switch to the specified data section of the executable 91/// if we are not already in it! 92/// 93void AsmPrinter::SwitchToDataSection(const char *NewSection, 94 const GlobalValue *GV) { 95 std::string NS; 96 if (GV && GV->hasSection()) 97 NS = TAI->getSwitchToSectionDirective() + GV->getSection(); 98 else 99 NS = NewSection; 100 101 // If we're already in this section, we're done. 102 if (CurrentSection == NS) return; 103 104 // Close the current section, if applicable. 105 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 106 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 107 108 CurrentSection = NS; 109 110 if (!CurrentSection.empty()) 111 O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n'; 112 113 IsInTextSection = false; 114} 115 116/// SwitchToSection - Switch to the specified section of the executable if we 117/// are not already in it! 118void AsmPrinter::SwitchToSection(const Section* NS) { 119 const std::string& NewSection = NS->getName(); 120 121 // If we're already in this section, we're done. 122 if (CurrentSection == NewSection) return; 123 124 // Close the current section, if applicable. 125 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) 126 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; 127 128 // FIXME: Make CurrentSection a Section* in the future 129 CurrentSection = NewSection; 130 CurrentSection_ = NS; 131 132 if (!CurrentSection.empty()) { 133 // If section is named we need to switch into it via special '.section' 134 // directive and also append funky flags. Otherwise - section name is just 135 // some magic assembler directive. 136 if (NS->isNamed()) 137 O << TAI->getSwitchToSectionDirective() 138 << CurrentSection 139 << TAI->getSectionFlags(NS->getFlags()); 140 else 141 O << CurrentSection; 142 O << TAI->getDataSectionStartSuffix() << '\n'; 143 } 144 145 IsInTextSection = (NS->getFlags() & SectionFlags::Code); 146} 147 148void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 149 MachineFunctionPass::getAnalysisUsage(AU); 150 AU.addRequired<GCModuleInfo>(); 151} 152 153bool AsmPrinter::doInitialization(Module &M) { 154 Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix()); 155 156 if (TAI->doesAllowQuotesInName()) 157 Mang->setUseQuotes(true); 158 159 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 160 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 161 162 if (TAI->hasSingleParameterDotFile()) { 163 /* Very minimal debug info. It is ignored if we emit actual 164 debug info. If we don't, this at helps the user find where 165 a function came from. */ 166 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 167 } 168 169 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 170 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 171 MP->beginAssembly(O, *this, *TAI); 172 173 if (!M.getModuleInlineAsm().empty()) 174 O << TAI->getCommentString() << " Start of file scope inline assembly\n" 175 << M.getModuleInlineAsm() 176 << '\n' << TAI->getCommentString() 177 << " End of file scope inline assembly\n"; 178 179 SwitchToDataSection(""); // Reset back to no section. 180 181 if (TAI->doesSupportDebugInformation() || 182 TAI->doesSupportExceptionHandling()) { 183 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 184 if (MMI) 185 MMI->AnalyzeModule(M); 186 DW = getAnalysisIfAvailable<DwarfWriter>(); 187 if (DW) 188 DW->BeginModule(&M, MMI, O, this, TAI); 189 } 190 191 return false; 192} 193 194bool AsmPrinter::doFinalization(Module &M) { 195 // Emit final debug information. 196 if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling()) 197 DW->EndModule(); 198 199 // If the target wants to know about weak references, print them all. 200 if (TAI->getWeakRefDirective()) { 201 // FIXME: This is not lazy, it would be nice to only print weak references 202 // to stuff that is actually used. Note that doing so would require targets 203 // to notice uses in operands (due to constant exprs etc). This should 204 // happen with the MC stuff eventually. 205 SwitchToDataSection(""); 206 207 // Print out module-level global variables here. 208 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 209 I != E; ++I) { 210 if (I->hasExternalWeakLinkage()) 211 O << TAI->getWeakRefDirective() << Mang->getValueName(I) << '\n'; 212 } 213 214 for (Module::const_iterator I = M.begin(), E = M.end(); 215 I != E; ++I) { 216 if (I->hasExternalWeakLinkage()) 217 O << TAI->getWeakRefDirective() << Mang->getValueName(I) << '\n'; 218 } 219 } 220 221 if (TAI->getSetDirective()) { 222 if (!M.alias_empty()) 223 SwitchToSection(TAI->getTextSection()); 224 225 O << '\n'; 226 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 227 I != E; ++I) { 228 std::string Name = Mang->getValueName(I); 229 std::string Target; 230 231 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 232 Target = Mang->getValueName(GV); 233 234 if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) 235 O << "\t.globl\t" << Name << '\n'; 236 else if (I->hasWeakLinkage()) 237 O << TAI->getWeakRefDirective() << Name << '\n'; 238 else if (!I->hasLocalLinkage()) 239 assert(0 && "Invalid alias linkage"); 240 241 printVisibility(Name, I->getVisibility()); 242 243 O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 244 } 245 } 246 247 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 248 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 249 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 250 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 251 MP->finishAssembly(O, *this, *TAI); 252 253 // If we don't have any trampolines, then we don't require stack memory 254 // to be executable. Some targets have a directive to declare this. 255 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 256 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 257 if (TAI->getNonexecutableStackDirective()) 258 O << TAI->getNonexecutableStackDirective() << '\n'; 259 260 delete Mang; Mang = 0; 261 DW = 0; MMI = 0; 262 return false; 263} 264 265const std::string & 266AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF, 267 std::string &Name) const { 268 assert(MF && "No machine function?"); 269 Name = MF->getFunction()->getName(); 270 if (Name.empty()) 271 Name = Mang->getValueName(MF->getFunction()); 272 Name = Mang->makeNameProper(TAI->getEHGlobalPrefix() + 273 Name + ".eh", TAI->getGlobalPrefix()); 274 return Name; 275} 276 277void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 278 // What's my mangled name? 279 CurrentFnName = Mang->getValueName(MF.getFunction()); 280 IncrementFunctionNumber(); 281} 282 283namespace { 284 // SectionCPs - Keep track the alignment, constpool entries per Section. 285 struct SectionCPs { 286 const Section *S; 287 unsigned Alignment; 288 SmallVector<unsigned, 4> CPEs; 289 SectionCPs(const Section *s, unsigned a) : S(s), Alignment(a) {}; 290 }; 291} 292 293/// EmitConstantPool - Print to the current output stream assembly 294/// representations of the constants in the constant pool MCP. This is 295/// used to print out constants which have been "spilled to memory" by 296/// the code generator. 297/// 298void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 299 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 300 if (CP.empty()) return; 301 302 // Calculate sections for constant pool entries. We collect entries to go into 303 // the same section together to reduce amount of section switch statements. 304 SmallVector<SectionCPs, 4> CPSections; 305 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 306 MachineConstantPoolEntry CPE = CP[i]; 307 unsigned Align = CPE.getAlignment(); 308 const Section* S = TAI->SelectSectionForMachineConst(CPE.getType()); 309 // The number of sections are small, just do a linear search from the 310 // last section to the first. 311 bool Found = false; 312 unsigned SecIdx = CPSections.size(); 313 while (SecIdx != 0) { 314 if (CPSections[--SecIdx].S == S) { 315 Found = true; 316 break; 317 } 318 } 319 if (!Found) { 320 SecIdx = CPSections.size(); 321 CPSections.push_back(SectionCPs(S, Align)); 322 } 323 324 if (Align > CPSections[SecIdx].Alignment) 325 CPSections[SecIdx].Alignment = Align; 326 CPSections[SecIdx].CPEs.push_back(i); 327 } 328 329 // Now print stuff into the calculated sections. 330 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 331 SwitchToSection(CPSections[i].S); 332 EmitAlignment(Log2_32(CPSections[i].Alignment)); 333 334 unsigned Offset = 0; 335 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 336 unsigned CPI = CPSections[i].CPEs[j]; 337 MachineConstantPoolEntry CPE = CP[CPI]; 338 339 // Emit inter-object padding for alignment. 340 unsigned AlignMask = CPE.getAlignment() - 1; 341 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 342 EmitZeros(NewOffset - Offset); 343 344 const Type *Ty = CPE.getType(); 345 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 346 347 O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 348 << CPI << ":\t\t\t\t\t"; 349 if (VerboseAsm) { 350 O << TAI->getCommentString() << ' '; 351 WriteTypeSymbolic(O, CPE.getType(), 0); 352 } 353 O << '\n'; 354 if (CPE.isMachineConstantPoolEntry()) 355 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 356 else 357 EmitGlobalConstant(CPE.Val.ConstVal); 358 } 359 } 360} 361 362/// EmitJumpTableInfo - Print assembly representations of the jump tables used 363/// by the current function to the current output stream. 364/// 365void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 366 MachineFunction &MF) { 367 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 368 if (JT.empty()) return; 369 370 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 371 372 // Pick the directive to use to print the jump table entries, and switch to 373 // the appropriate section. 374 TargetLowering *LoweringInfo = TM.getTargetLowering(); 375 376 const char* JumpTableDataSection = TAI->getJumpTableDataSection(); 377 const Function *F = MF.getFunction(); 378 unsigned SectionFlags = TAI->SectionFlagsForGlobal(F); 379 bool JTInDiffSection = false; 380 if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) || 381 !JumpTableDataSection || 382 SectionFlags & SectionFlags::Linkonce) { 383 // In PIC mode, we need to emit the jump table to the same section as the 384 // function body itself, otherwise the label differences won't make sense. 385 // We should also do if the section name is NULL or function is declared in 386 // discardable section. 387 SwitchToSection(TAI->SectionForGlobal(F)); 388 } else { 389 SwitchToDataSection(JumpTableDataSection); 390 JTInDiffSection = true; 391 } 392 393 EmitAlignment(Log2_32(MJTI->getAlignment())); 394 395 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 396 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 397 398 // If this jump table was deleted, ignore it. 399 if (JTBBs.empty()) continue; 400 401 // For PIC codegen, if possible we want to use the SetDirective to reduce 402 // the number of relocations the assembler will generate for the jump table. 403 // Set directives are all printed before the jump table itself. 404 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 405 if (TAI->getSetDirective() && IsPic) 406 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 407 if (EmittedSets.insert(JTBBs[ii])) 408 printPICJumpTableSetLabel(i, JTBBs[ii]); 409 410 // On some targets (e.g. darwin) we want to emit two consequtive labels 411 // before each jump table. The first label is never referenced, but tells 412 // the assembler and linker the extents of the jump table object. The 413 // second label is actually referenced by the code. 414 if (JTInDiffSection) { 415 if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) 416 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 417 } 418 419 O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 420 << '_' << i << ":\n"; 421 422 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 423 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 424 O << '\n'; 425 } 426 } 427} 428 429void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 430 const MachineBasicBlock *MBB, 431 unsigned uid) const { 432 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 433 434 // Use JumpTableDirective otherwise honor the entry size from the jump table 435 // info. 436 const char *JTEntryDirective = TAI->getJumpTableDirective(); 437 bool HadJTEntryDirective = JTEntryDirective != NULL; 438 if (!HadJTEntryDirective) { 439 JTEntryDirective = MJTI->getEntrySize() == 4 ? 440 TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); 441 } 442 443 O << JTEntryDirective << ' '; 444 445 // If we have emitted set directives for the jump table entries, print 446 // them rather than the entries themselves. If we're emitting PIC, then 447 // emit the table entries as differences between two text section labels. 448 // If we're emitting non-PIC code, then emit the entries as direct 449 // references to the target basic blocks. 450 if (IsPic) { 451 if (TAI->getSetDirective()) { 452 O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() 453 << '_' << uid << "_set_" << MBB->getNumber(); 454 } else { 455 printBasicBlockLabel(MBB, false, false, false); 456 // If the arch uses custom Jump Table directives, don't calc relative to 457 // JT 458 if (!HadJTEntryDirective) 459 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" 460 << getFunctionNumber() << '_' << uid; 461 } 462 } else { 463 printBasicBlockLabel(MBB, false, false, false); 464 } 465} 466 467 468/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 469/// special global used by LLVM. If so, emit it and return true, otherwise 470/// do nothing and return false. 471bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 472 if (GV->getName() == "llvm.used") { 473 if (TAI->getUsedDirective() != 0) // No need to emit this at all. 474 EmitLLVMUsedList(GV->getInitializer()); 475 return true; 476 } 477 478 // Ignore debug and non-emitted data. 479 if (GV->getSection() == "llvm.metadata" || 480 GV->hasAvailableExternallyLinkage()) 481 return true; 482 483 if (!GV->hasAppendingLinkage()) return false; 484 485 assert(GV->hasInitializer() && "Not a special LLVM global!"); 486 487 const TargetData *TD = TM.getTargetData(); 488 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 489 if (GV->getName() == "llvm.global_ctors") { 490 SwitchToDataSection(TAI->getStaticCtorsSection()); 491 EmitAlignment(Align, 0); 492 EmitXXStructorList(GV->getInitializer()); 493 return true; 494 } 495 496 if (GV->getName() == "llvm.global_dtors") { 497 SwitchToDataSection(TAI->getStaticDtorsSection()); 498 EmitAlignment(Align, 0); 499 EmitXXStructorList(GV->getInitializer()); 500 return true; 501 } 502 503 return false; 504} 505 506/// findGlobalValue - if CV is an expression equivalent to a single 507/// global value, return that value. 508const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) { 509 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 510 return GV; 511 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 512 const TargetData *TD = TM.getTargetData(); 513 unsigned Opcode = CE->getOpcode(); 514 switch (Opcode) { 515 case Instruction::GetElementPtr: { 516 const Constant *ptrVal = CE->getOperand(0); 517 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 518 if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size())) 519 return 0; 520 return findGlobalValue(ptrVal); 521 } 522 case Instruction::BitCast: 523 return findGlobalValue(CE->getOperand(0)); 524 default: 525 return 0; 526 } 527 } 528 return 0; 529} 530 531/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each 532/// global in the specified llvm.used list for which emitUsedDirectiveFor 533/// is true, as being used with this directive. 534 535void AsmPrinter::EmitLLVMUsedList(Constant *List) { 536 const char *Directive = TAI->getUsedDirective(); 537 538 // Should be an array of 'i8*'. 539 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 540 if (InitList == 0) return; 541 542 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 543 const GlobalValue *GV = findGlobalValue(InitList->getOperand(i)); 544 if (TAI->emitUsedDirectiveFor(GV, Mang)) { 545 O << Directive; 546 EmitConstantValueOnly(InitList->getOperand(i)); 547 O << '\n'; 548 } 549 } 550} 551 552/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 553/// function pointers, ignoring the init priority. 554void AsmPrinter::EmitXXStructorList(Constant *List) { 555 // Should be an array of '{ int, void ()* }' structs. The first value is the 556 // init priority, which we ignore. 557 if (!isa<ConstantArray>(List)) return; 558 ConstantArray *InitList = cast<ConstantArray>(List); 559 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 560 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 561 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 562 563 if (CS->getOperand(1)->isNullValue()) 564 return; // Found a null terminator, exit printing. 565 // Emit the function pointer. 566 EmitGlobalConstant(CS->getOperand(1)); 567 } 568} 569 570/// getGlobalLinkName - Returns the asm/link name of of the specified 571/// global variable. Should be overridden by each target asm printer to 572/// generate the appropriate value. 573const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV, 574 std::string &LinkName) const { 575 if (isa<Function>(GV)) { 576 LinkName += TAI->getFunctionAddrPrefix(); 577 LinkName += Mang->getValueName(GV); 578 LinkName += TAI->getFunctionAddrSuffix(); 579 } else { 580 LinkName += TAI->getGlobalVarAddrPrefix(); 581 LinkName += Mang->getValueName(GV); 582 LinkName += TAI->getGlobalVarAddrSuffix(); 583 } 584 585 return LinkName; 586} 587 588/// EmitExternalGlobal - Emit the external reference to a global variable. 589/// Should be overridden if an indirect reference should be used. 590void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { 591 std::string GLN; 592 O << getGlobalLinkName(GV, GLN); 593} 594 595 596 597//===----------------------------------------------------------------------===// 598/// LEB 128 number encoding. 599 600/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) 601/// representing an unsigned leb128 value. 602void AsmPrinter::PrintULEB128(unsigned Value) const { 603 char Buffer[20]; 604 do { 605 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 606 Value >>= 7; 607 if (Value) Byte |= 0x80; 608 O << "0x" << utohex_buffer(Byte, Buffer+20); 609 if (Value) O << ", "; 610 } while (Value); 611} 612 613/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) 614/// representing a signed leb128 value. 615void AsmPrinter::PrintSLEB128(int Value) const { 616 int Sign = Value >> (8 * sizeof(Value) - 1); 617 bool IsMore; 618 char Buffer[20]; 619 620 do { 621 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 622 Value >>= 7; 623 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 624 if (IsMore) Byte |= 0x80; 625 O << "0x" << utohex_buffer(Byte, Buffer+20); 626 if (IsMore) O << ", "; 627 } while (IsMore); 628} 629 630//===--------------------------------------------------------------------===// 631// Emission and print routines 632// 633 634/// PrintHex - Print a value as a hexidecimal value. 635/// 636void AsmPrinter::PrintHex(int Value) const { 637 char Buffer[20]; 638 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); 639} 640 641/// EOL - Print a newline character to asm stream. If a comment is present 642/// then it will be printed first. Comments should not contain '\n'. 643void AsmPrinter::EOL() const { 644 O << '\n'; 645} 646 647void AsmPrinter::EOL(const std::string &Comment) const { 648 if (VerboseAsm && !Comment.empty()) { 649 O << '\t' 650 << TAI->getCommentString() 651 << ' ' 652 << Comment; 653 } 654 O << '\n'; 655} 656 657void AsmPrinter::EOL(const char* Comment) const { 658 if (VerboseAsm && *Comment) { 659 O << '\t' 660 << TAI->getCommentString() 661 << ' ' 662 << Comment; 663 } 664 O << '\n'; 665} 666 667/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 668/// unsigned leb128 value. 669void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 670 if (TAI->hasLEB128()) { 671 O << "\t.uleb128\t" 672 << Value; 673 } else { 674 O << TAI->getData8bitsDirective(); 675 PrintULEB128(Value); 676 } 677} 678 679/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 680/// signed leb128 value. 681void AsmPrinter::EmitSLEB128Bytes(int Value) const { 682 if (TAI->hasLEB128()) { 683 O << "\t.sleb128\t" 684 << Value; 685 } else { 686 O << TAI->getData8bitsDirective(); 687 PrintSLEB128(Value); 688 } 689} 690 691/// EmitInt8 - Emit a byte directive and value. 692/// 693void AsmPrinter::EmitInt8(int Value) const { 694 O << TAI->getData8bitsDirective(); 695 PrintHex(Value & 0xFF); 696} 697 698/// EmitInt16 - Emit a short directive and value. 699/// 700void AsmPrinter::EmitInt16(int Value) const { 701 O << TAI->getData16bitsDirective(); 702 PrintHex(Value & 0xFFFF); 703} 704 705/// EmitInt32 - Emit a long directive and value. 706/// 707void AsmPrinter::EmitInt32(int Value) const { 708 O << TAI->getData32bitsDirective(); 709 PrintHex(Value); 710} 711 712/// EmitInt64 - Emit a long long directive and value. 713/// 714void AsmPrinter::EmitInt64(uint64_t Value) const { 715 if (TAI->getData64bitsDirective()) { 716 O << TAI->getData64bitsDirective(); 717 PrintHex(Value); 718 } else { 719 if (TM.getTargetData()->isBigEndian()) { 720 EmitInt32(unsigned(Value >> 32)); O << '\n'; 721 EmitInt32(unsigned(Value)); 722 } else { 723 EmitInt32(unsigned(Value)); O << '\n'; 724 EmitInt32(unsigned(Value >> 32)); 725 } 726 } 727} 728 729/// toOctal - Convert the low order bits of X into an octal digit. 730/// 731static inline char toOctal(int X) { 732 return (X&7)+'0'; 733} 734 735/// printStringChar - Print a char, escaped if necessary. 736/// 737static void printStringChar(raw_ostream &O, unsigned char C) { 738 if (C == '"') { 739 O << "\\\""; 740 } else if (C == '\\') { 741 O << "\\\\"; 742 } else if (isprint((unsigned char)C)) { 743 O << C; 744 } else { 745 switch(C) { 746 case '\b': O << "\\b"; break; 747 case '\f': O << "\\f"; break; 748 case '\n': O << "\\n"; break; 749 case '\r': O << "\\r"; break; 750 case '\t': O << "\\t"; break; 751 default: 752 O << '\\'; 753 O << toOctal(C >> 6); 754 O << toOctal(C >> 3); 755 O << toOctal(C >> 0); 756 break; 757 } 758 } 759} 760 761/// EmitString - Emit a string with quotes and a null terminator. 762/// Special characters are emitted properly. 763/// \literal (Eg. '\t') \endliteral 764void AsmPrinter::EmitString(const std::string &String) const { 765 EmitString(String.c_str(), String.size()); 766} 767 768void AsmPrinter::EmitString(const char *String, unsigned Size) const { 769 const char* AscizDirective = TAI->getAscizDirective(); 770 if (AscizDirective) 771 O << AscizDirective; 772 else 773 O << TAI->getAsciiDirective(); 774 O << '\"'; 775 for (unsigned i = 0; i < Size; ++i) 776 printStringChar(O, String[i]); 777 if (AscizDirective) 778 O << '\"'; 779 else 780 O << "\\0\""; 781} 782 783 784/// EmitFile - Emit a .file directive. 785void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 786 O << "\t.file\t" << Number << " \""; 787 for (unsigned i = 0, N = Name.size(); i < N; ++i) 788 printStringChar(O, Name[i]); 789 O << '\"'; 790} 791 792 793//===----------------------------------------------------------------------===// 794 795// EmitAlignment - Emit an alignment directive to the specified power of 796// two boundary. For example, if you pass in 3 here, you will get an 8 797// byte alignment. If a global value is specified, and if that global has 798// an explicit alignment requested, it will unconditionally override the 799// alignment request. However, if ForcedAlignBits is specified, this value 800// has final say: the ultimate alignment will be the max of ForcedAlignBits 801// and the alignment computed with NumBits and the global. 802// 803// The algorithm is: 804// Align = NumBits; 805// if (GV && GV->hasalignment) Align = GV->getalignment(); 806// Align = std::max(Align, ForcedAlignBits); 807// 808void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 809 unsigned ForcedAlignBits, 810 bool UseFillExpr) const { 811 if (GV && GV->getAlignment()) 812 NumBits = Log2_32(GV->getAlignment()); 813 NumBits = std::max(NumBits, ForcedAlignBits); 814 815 if (NumBits == 0) return; // No need to emit alignment. 816 if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; 817 O << TAI->getAlignDirective() << NumBits; 818 819 unsigned FillValue = TAI->getTextAlignFillValue(); 820 UseFillExpr &= IsInTextSection && FillValue; 821 if (UseFillExpr) { 822 O << ','; 823 PrintHex(FillValue); 824 } 825 O << '\n'; 826} 827 828 829/// EmitZeros - Emit a block of zeros. 830/// 831void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const { 832 if (NumZeros) { 833 if (TAI->getZeroDirective()) { 834 O << TAI->getZeroDirective() << NumZeros; 835 if (TAI->getZeroDirectiveSuffix()) 836 O << TAI->getZeroDirectiveSuffix(); 837 O << '\n'; 838 } else { 839 for (; NumZeros; --NumZeros) 840 O << TAI->getData8bitsDirective(AddrSpace) << "0\n"; 841 } 842 } 843} 844 845// Print out the specified constant, without a storage class. Only the 846// constants valid in constant expressions can occur here. 847void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 848 if (CV->isNullValue() || isa<UndefValue>(CV)) 849 O << '0'; 850 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 851 O << CI->getZExtValue(); 852 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 853 // This is a constant address for a global variable or function. Use the 854 // name of the variable or function as the address value, possibly 855 // decorating it with GlobalVarAddrPrefix/Suffix or 856 // FunctionAddrPrefix/Suffix (these all default to "" ) 857 if (isa<Function>(GV)) { 858 O << TAI->getFunctionAddrPrefix() 859 << Mang->getValueName(GV) 860 << TAI->getFunctionAddrSuffix(); 861 } else { 862 O << TAI->getGlobalVarAddrPrefix() 863 << Mang->getValueName(GV) 864 << TAI->getGlobalVarAddrSuffix(); 865 } 866 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 867 const TargetData *TD = TM.getTargetData(); 868 unsigned Opcode = CE->getOpcode(); 869 switch (Opcode) { 870 case Instruction::GetElementPtr: { 871 // generate a symbolic expression for the byte address 872 const Constant *ptrVal = CE->getOperand(0); 873 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 874 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 875 idxVec.size())) { 876 // Truncate/sext the offset to the pointer size. 877 if (TD->getPointerSizeInBits() != 64) { 878 int SExtAmount = 64-TD->getPointerSizeInBits(); 879 Offset = (Offset << SExtAmount) >> SExtAmount; 880 } 881 882 if (Offset) 883 O << '('; 884 EmitConstantValueOnly(ptrVal); 885 if (Offset > 0) 886 O << ") + " << Offset; 887 else if (Offset < 0) 888 O << ") - " << -Offset; 889 } else { 890 EmitConstantValueOnly(ptrVal); 891 } 892 break; 893 } 894 case Instruction::Trunc: 895 case Instruction::ZExt: 896 case Instruction::SExt: 897 case Instruction::FPTrunc: 898 case Instruction::FPExt: 899 case Instruction::UIToFP: 900 case Instruction::SIToFP: 901 case Instruction::FPToUI: 902 case Instruction::FPToSI: 903 assert(0 && "FIXME: Don't yet support this kind of constant cast expr"); 904 break; 905 case Instruction::BitCast: 906 return EmitConstantValueOnly(CE->getOperand(0)); 907 908 case Instruction::IntToPtr: { 909 // Handle casts to pointers by changing them into casts to the appropriate 910 // integer type. This promotes constant folding and simplifies this code. 911 Constant *Op = CE->getOperand(0); 912 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/); 913 return EmitConstantValueOnly(Op); 914 } 915 916 917 case Instruction::PtrToInt: { 918 // Support only foldable casts to/from pointers that can be eliminated by 919 // changing the pointer to the appropriately sized integer type. 920 Constant *Op = CE->getOperand(0); 921 const Type *Ty = CE->getType(); 922 923 // We can emit the pointer value into this slot if the slot is an 924 // integer slot greater or equal to the size of the pointer. 925 if (TD->getTypeAllocSize(Ty) >= TD->getTypeAllocSize(Op->getType())) 926 return EmitConstantValueOnly(Op); 927 928 O << "(("; 929 EmitConstantValueOnly(Op); 930 APInt ptrMask = APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Ty)); 931 932 SmallString<40> S; 933 ptrMask.toStringUnsigned(S); 934 O << ") & " << S.c_str() << ')'; 935 break; 936 } 937 case Instruction::Add: 938 case Instruction::Sub: 939 case Instruction::And: 940 case Instruction::Or: 941 case Instruction::Xor: 942 O << '('; 943 EmitConstantValueOnly(CE->getOperand(0)); 944 O << ')'; 945 switch (Opcode) { 946 case Instruction::Add: 947 O << " + "; 948 break; 949 case Instruction::Sub: 950 O << " - "; 951 break; 952 case Instruction::And: 953 O << " & "; 954 break; 955 case Instruction::Or: 956 O << " | "; 957 break; 958 case Instruction::Xor: 959 O << " ^ "; 960 break; 961 default: 962 break; 963 } 964 O << '('; 965 EmitConstantValueOnly(CE->getOperand(1)); 966 O << ')'; 967 break; 968 default: 969 assert(0 && "Unsupported operator!"); 970 } 971 } else { 972 assert(0 && "Unknown constant value!"); 973 } 974} 975 976/// printAsCString - Print the specified array as a C compatible string, only if 977/// the predicate isString is true. 978/// 979static void printAsCString(raw_ostream &O, const ConstantArray *CVA, 980 unsigned LastElt) { 981 assert(CVA->isString() && "Array is not string compatible!"); 982 983 O << '\"'; 984 for (unsigned i = 0; i != LastElt; ++i) { 985 unsigned char C = 986 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 987 printStringChar(O, C); 988 } 989 O << '\"'; 990} 991 992/// EmitString - Emit a zero-byte-terminated string constant. 993/// 994void AsmPrinter::EmitString(const ConstantArray *CVA) const { 995 unsigned NumElts = CVA->getNumOperands(); 996 if (TAI->getAscizDirective() && NumElts && 997 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 998 O << TAI->getAscizDirective(); 999 printAsCString(O, CVA, NumElts-1); 1000 } else { 1001 O << TAI->getAsciiDirective(); 1002 printAsCString(O, CVA, NumElts); 1003 } 1004 O << '\n'; 1005} 1006 1007void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA, 1008 unsigned AddrSpace) { 1009 if (CVA->isString()) { 1010 EmitString(CVA); 1011 } else { // Not a string. Print the values in successive locations 1012 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 1013 EmitGlobalConstant(CVA->getOperand(i), AddrSpace); 1014 } 1015} 1016 1017void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) { 1018 const VectorType *PTy = CP->getType(); 1019 1020 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 1021 EmitGlobalConstant(CP->getOperand(I)); 1022} 1023 1024void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS, 1025 unsigned AddrSpace) { 1026 // Print the fields in successive locations. Pad to align if needed! 1027 const TargetData *TD = TM.getTargetData(); 1028 unsigned Size = TD->getTypeAllocSize(CVS->getType()); 1029 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 1030 uint64_t sizeSoFar = 0; 1031 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 1032 const Constant* field = CVS->getOperand(i); 1033 1034 // Check if padding is needed and insert one or more 0s. 1035 uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); 1036 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 1037 - cvsLayout->getElementOffset(i)) - fieldSize; 1038 sizeSoFar += fieldSize + padSize; 1039 1040 // Now print the actual field value. 1041 EmitGlobalConstant(field, AddrSpace); 1042 1043 // Insert padding - this may include padding to increase the size of the 1044 // current field up to the ABI size (if the struct is not packed) as well 1045 // as padding to ensure that the next field starts at the right offset. 1046 EmitZeros(padSize, AddrSpace); 1047 } 1048 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 1049 "Layout of constant struct may be incorrect!"); 1050} 1051 1052void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP, 1053 unsigned AddrSpace) { 1054 // FP Constants are printed as integer constants to avoid losing 1055 // precision... 1056 const TargetData *TD = TM.getTargetData(); 1057 if (CFP->getType() == Type::DoubleTy) { 1058 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 1059 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1060 if (TAI->getData64bitsDirective(AddrSpace)) { 1061 O << TAI->getData64bitsDirective(AddrSpace) << i; 1062 if (VerboseAsm) 1063 O << '\t' << TAI->getCommentString() << " double value: " << Val; 1064 O << '\n'; 1065 } else if (TD->isBigEndian()) { 1066 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1067 if (VerboseAsm) 1068 O << '\t' << TAI->getCommentString() 1069 << " double most significant word " << Val; 1070 O << '\n'; 1071 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1072 if (VerboseAsm) 1073 O << '\t' << TAI->getCommentString() 1074 << " double least significant word " << Val; 1075 O << '\n'; 1076 } else { 1077 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1078 if (VerboseAsm) 1079 O << '\t' << TAI->getCommentString() 1080 << " double least significant word " << Val; 1081 O << '\n'; 1082 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1083 if (VerboseAsm) 1084 O << '\t' << TAI->getCommentString() 1085 << " double most significant word " << Val; 1086 O << '\n'; 1087 } 1088 return; 1089 } else if (CFP->getType() == Type::FloatTy) { 1090 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1091 O << TAI->getData32bitsDirective(AddrSpace) 1092 << CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1093 if (VerboseAsm) 1094 O << '\t' << TAI->getCommentString() << " float " << Val; 1095 O << '\n'; 1096 return; 1097 } else if (CFP->getType() == Type::X86_FP80Ty) { 1098 // all long double variants are printed as hex 1099 // api needed to prevent premature destruction 1100 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1101 const uint64_t *p = api.getRawData(); 1102 // Convert to double so we can print the approximate val as a comment. 1103 APFloat DoubleVal = CFP->getValueAPF(); 1104 bool ignored; 1105 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1106 &ignored); 1107 if (TD->isBigEndian()) { 1108 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1109 if (VerboseAsm) 1110 O << '\t' << TAI->getCommentString() 1111 << " long double most significant halfword of ~" 1112 << DoubleVal.convertToDouble(); 1113 O << '\n'; 1114 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1115 if (VerboseAsm) 1116 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1117 O << '\n'; 1118 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1119 if (VerboseAsm) 1120 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1121 O << '\n'; 1122 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1123 if (VerboseAsm) 1124 O << '\t' << TAI->getCommentString() << " long double next halfword"; 1125 O << '\n'; 1126 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1127 if (VerboseAsm) 1128 O << '\t' << TAI->getCommentString() 1129 << " long double least significant halfword"; 1130 O << '\n'; 1131 } else { 1132 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1133 if (VerboseAsm) 1134 O << '\t' << TAI->getCommentString() 1135 << " long double least significant halfword of ~" 1136 << DoubleVal.convertToDouble(); 1137 O << '\n'; 1138 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1139 if (VerboseAsm) 1140 O << '\t' << TAI->getCommentString() 1141 << " long double next halfword"; 1142 O << '\n'; 1143 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1144 if (VerboseAsm) 1145 O << '\t' << TAI->getCommentString() 1146 << " long double next halfword"; 1147 O << '\n'; 1148 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1149 if (VerboseAsm) 1150 O << '\t' << TAI->getCommentString() 1151 << " long double next halfword"; 1152 O << '\n'; 1153 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1154 if (VerboseAsm) 1155 O << '\t' << TAI->getCommentString() 1156 << " long double most significant halfword"; 1157 O << '\n'; 1158 } 1159 EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) - 1160 TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace); 1161 return; 1162 } else if (CFP->getType() == Type::PPC_FP128Ty) { 1163 // all long double variants are printed as hex 1164 // api needed to prevent premature destruction 1165 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1166 const uint64_t *p = api.getRawData(); 1167 if (TD->isBigEndian()) { 1168 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1169 if (VerboseAsm) 1170 O << '\t' << TAI->getCommentString() 1171 << " long double most significant word"; 1172 O << '\n'; 1173 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1174 if (VerboseAsm) 1175 O << '\t' << TAI->getCommentString() 1176 << " long double next word"; 1177 O << '\n'; 1178 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1179 if (VerboseAsm) 1180 O << '\t' << TAI->getCommentString() 1181 << " long double next word"; 1182 O << '\n'; 1183 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1184 if (VerboseAsm) 1185 O << '\t' << TAI->getCommentString() 1186 << " long double least significant word"; 1187 O << '\n'; 1188 } else { 1189 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1190 if (VerboseAsm) 1191 O << '\t' << TAI->getCommentString() 1192 << " long double least significant word"; 1193 O << '\n'; 1194 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1195 if (VerboseAsm) 1196 O << '\t' << TAI->getCommentString() 1197 << " long double next word"; 1198 O << '\n'; 1199 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1200 if (VerboseAsm) 1201 O << '\t' << TAI->getCommentString() 1202 << " long double next word"; 1203 O << '\n'; 1204 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1205 if (VerboseAsm) 1206 O << '\t' << TAI->getCommentString() 1207 << " long double most significant word"; 1208 O << '\n'; 1209 } 1210 return; 1211 } else assert(0 && "Floating point constant type not handled"); 1212} 1213 1214void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 1215 unsigned AddrSpace) { 1216 const TargetData *TD = TM.getTargetData(); 1217 unsigned BitWidth = CI->getBitWidth(); 1218 assert(isPowerOf2_32(BitWidth) && 1219 "Non-power-of-2-sized integers not handled!"); 1220 1221 // We don't expect assemblers to support integer data directives 1222 // for more than 64 bits, so we emit the data in at most 64-bit 1223 // quantities at a time. 1224 const uint64_t *RawData = CI->getValue().getRawData(); 1225 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1226 uint64_t Val; 1227 if (TD->isBigEndian()) 1228 Val = RawData[e - i - 1]; 1229 else 1230 Val = RawData[i]; 1231 1232 if (TAI->getData64bitsDirective(AddrSpace)) 1233 O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n'; 1234 else if (TD->isBigEndian()) { 1235 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1236 if (VerboseAsm) 1237 O << '\t' << TAI->getCommentString() 1238 << " Double-word most significant word " << Val; 1239 O << '\n'; 1240 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1241 if (VerboseAsm) 1242 O << '\t' << TAI->getCommentString() 1243 << " Double-word least significant word " << Val; 1244 O << '\n'; 1245 } else { 1246 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1247 if (VerboseAsm) 1248 O << '\t' << TAI->getCommentString() 1249 << " Double-word least significant word " << Val; 1250 O << '\n'; 1251 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1252 if (VerboseAsm) 1253 O << '\t' << TAI->getCommentString() 1254 << " Double-word most significant word " << Val; 1255 O << '\n'; 1256 } 1257 } 1258} 1259 1260/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1261void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1262 const TargetData *TD = TM.getTargetData(); 1263 const Type *type = CV->getType(); 1264 unsigned Size = TD->getTypeAllocSize(type); 1265 1266 if (CV->isNullValue() || isa<UndefValue>(CV)) { 1267 EmitZeros(Size, AddrSpace); 1268 return; 1269 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 1270 EmitGlobalConstantArray(CVA , AddrSpace); 1271 return; 1272 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 1273 EmitGlobalConstantStruct(CVS, AddrSpace); 1274 return; 1275 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1276 EmitGlobalConstantFP(CFP, AddrSpace); 1277 return; 1278 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1279 // Small integers are handled below; large integers are handled here. 1280 if (Size > 4) { 1281 EmitGlobalConstantLargeInt(CI, AddrSpace); 1282 return; 1283 } 1284 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1285 EmitGlobalConstantVector(CP); 1286 return; 1287 } 1288 1289 printDataDirective(type, AddrSpace); 1290 EmitConstantValueOnly(CV); 1291 if (VerboseAsm) { 1292 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1293 SmallString<40> S; 1294 CI->getValue().toStringUnsigned(S, 16); 1295 O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str(); 1296 } 1297 } 1298 O << '\n'; 1299} 1300 1301void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1302 // Target doesn't support this yet! 1303 abort(); 1304} 1305 1306/// PrintSpecial - Print information related to the specified machine instr 1307/// that is independent of the operand, and may be independent of the instr 1308/// itself. This can be useful for portably encoding the comment character 1309/// or other bits of target-specific knowledge into the asmstrings. The 1310/// syntax used is ${:comment}. Targets can override this to add support 1311/// for their own strange codes. 1312void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1313 if (!strcmp(Code, "private")) { 1314 O << TAI->getPrivateGlobalPrefix(); 1315 } else if (!strcmp(Code, "comment")) { 1316 if (VerboseAsm) 1317 O << TAI->getCommentString(); 1318 } else if (!strcmp(Code, "uid")) { 1319 // Comparing the address of MI isn't sufficient, because machineinstrs may 1320 // be allocated to the same address across functions. 1321 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1322 1323 // If this is a new LastFn instruction, bump the counter. 1324 if (LastMI != MI || LastFn != ThisF) { 1325 ++Counter; 1326 LastMI = MI; 1327 LastFn = ThisF; 1328 } 1329 O << Counter; 1330 } else { 1331 cerr << "Unknown special formatter '" << Code 1332 << "' for machine instr: " << *MI; 1333 exit(1); 1334 } 1335} 1336 1337/// processDebugLoc - Processes the debug information of each machine 1338/// instruction's DebugLoc. 1339void AsmPrinter::processDebugLoc(DebugLoc DL) { 1340 if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) { 1341 if (!DL.isUnknown()) { 1342 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL); 1343 1344 if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT) 1345 printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col, 1346 DICompileUnit(CurDLT.CompileUnit))); 1347 1348 PrevDLT = CurDLT; 1349 } 1350 } 1351} 1352 1353/// printInlineAsm - This method formats and prints the specified machine 1354/// instruction that is an inline asm. 1355void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1356 unsigned NumOperands = MI->getNumOperands(); 1357 1358 // Count the number of register definitions. 1359 unsigned NumDefs = 0; 1360 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1361 ++NumDefs) 1362 assert(NumDefs != NumOperands-1 && "No asm string?"); 1363 1364 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1365 1366 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1367 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1368 1369 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1370 // These are useful to see where empty asm's wound up. 1371 if (AsmStr[0] == 0) { 1372 O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1373 return; 1374 } 1375 1376 O << TAI->getInlineAsmStart() << "\n\t"; 1377 1378 // The variant of the current asmprinter. 1379 int AsmPrinterVariant = TAI->getAssemblerDialect(); 1380 1381 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1382 const char *LastEmitted = AsmStr; // One past the last character emitted. 1383 1384 while (*LastEmitted) { 1385 switch (*LastEmitted) { 1386 default: { 1387 // Not a special case, emit the string section literally. 1388 const char *LiteralEnd = LastEmitted+1; 1389 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1390 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1391 ++LiteralEnd; 1392 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1393 O.write(LastEmitted, LiteralEnd-LastEmitted); 1394 LastEmitted = LiteralEnd; 1395 break; 1396 } 1397 case '\n': 1398 ++LastEmitted; // Consume newline character. 1399 O << '\n'; // Indent code with newline. 1400 break; 1401 case '$': { 1402 ++LastEmitted; // Consume '$' character. 1403 bool Done = true; 1404 1405 // Handle escapes. 1406 switch (*LastEmitted) { 1407 default: Done = false; break; 1408 case '$': // $$ -> $ 1409 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1410 O << '$'; 1411 ++LastEmitted; // Consume second '$' character. 1412 break; 1413 case '(': // $( -> same as GCC's { character. 1414 ++LastEmitted; // Consume '(' character. 1415 if (CurVariant != -1) { 1416 cerr << "Nested variants found in inline asm string: '" 1417 << AsmStr << "'\n"; 1418 exit(1); 1419 } 1420 CurVariant = 0; // We're in the first variant now. 1421 break; 1422 case '|': 1423 ++LastEmitted; // consume '|' character. 1424 if (CurVariant == -1) 1425 O << '|'; // this is gcc's behavior for | outside a variant 1426 else 1427 ++CurVariant; // We're in the next variant. 1428 break; 1429 case ')': // $) -> same as GCC's } char. 1430 ++LastEmitted; // consume ')' character. 1431 if (CurVariant == -1) 1432 O << '}'; // this is gcc's behavior for } outside a variant 1433 else 1434 CurVariant = -1; 1435 break; 1436 } 1437 if (Done) break; 1438 1439 bool HasCurlyBraces = false; 1440 if (*LastEmitted == '{') { // ${variable} 1441 ++LastEmitted; // Consume '{' character. 1442 HasCurlyBraces = true; 1443 } 1444 1445 // If we have ${:foo}, then this is not a real operand reference, it is a 1446 // "magic" string reference, just like in .td files. Arrange to call 1447 // PrintSpecial. 1448 if (HasCurlyBraces && *LastEmitted == ':') { 1449 ++LastEmitted; 1450 const char *StrStart = LastEmitted; 1451 const char *StrEnd = strchr(StrStart, '}'); 1452 if (StrEnd == 0) { 1453 cerr << "Unterminated ${:foo} operand in inline asm string: '" 1454 << AsmStr << "'\n"; 1455 exit(1); 1456 } 1457 1458 std::string Val(StrStart, StrEnd); 1459 PrintSpecial(MI, Val.c_str()); 1460 LastEmitted = StrEnd+1; 1461 break; 1462 } 1463 1464 const char *IDStart = LastEmitted; 1465 char *IDEnd; 1466 errno = 0; 1467 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1468 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1469 cerr << "Bad $ operand number in inline asm string: '" 1470 << AsmStr << "'\n"; 1471 exit(1); 1472 } 1473 LastEmitted = IDEnd; 1474 1475 char Modifier[2] = { 0, 0 }; 1476 1477 if (HasCurlyBraces) { 1478 // If we have curly braces, check for a modifier character. This 1479 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1480 if (*LastEmitted == ':') { 1481 ++LastEmitted; // Consume ':' character. 1482 if (*LastEmitted == 0) { 1483 cerr << "Bad ${:} expression in inline asm string: '" 1484 << AsmStr << "'\n"; 1485 exit(1); 1486 } 1487 1488 Modifier[0] = *LastEmitted; 1489 ++LastEmitted; // Consume modifier character. 1490 } 1491 1492 if (*LastEmitted != '}') { 1493 cerr << "Bad ${} expression in inline asm string: '" 1494 << AsmStr << "'\n"; 1495 exit(1); 1496 } 1497 ++LastEmitted; // Consume '}' character. 1498 } 1499 1500 if ((unsigned)Val >= NumOperands-1) { 1501 cerr << "Invalid $ operand number in inline asm string: '" 1502 << AsmStr << "'\n"; 1503 exit(1); 1504 } 1505 1506 // Okay, we finally have a value number. Ask the target to print this 1507 // operand! 1508 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1509 unsigned OpNo = 1; 1510 1511 bool Error = false; 1512 1513 // Scan to find the machine operand number for the operand. 1514 for (; Val; --Val) { 1515 if (OpNo >= MI->getNumOperands()) break; 1516 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1517 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1518 } 1519 1520 if (OpNo >= MI->getNumOperands()) { 1521 Error = true; 1522 } else { 1523 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1524 ++OpNo; // Skip over the ID number. 1525 1526 if (Modifier[0]=='l') // labels are target independent 1527 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), 1528 false, false, false); 1529 else { 1530 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1531 if ((OpFlags & 7) == 4) { 1532 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1533 Modifier[0] ? Modifier : 0); 1534 } else { 1535 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1536 Modifier[0] ? Modifier : 0); 1537 } 1538 } 1539 } 1540 if (Error) { 1541 cerr << "Invalid operand found in inline asm: '" 1542 << AsmStr << "'\n"; 1543 MI->dump(); 1544 exit(1); 1545 } 1546 } 1547 break; 1548 } 1549 } 1550 } 1551 O << "\n\t" << TAI->getInlineAsmEnd() << '\n'; 1552} 1553 1554/// printImplicitDef - This method prints the specified machine instruction 1555/// that is an implicit def. 1556void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1557 if (VerboseAsm) 1558 O << '\t' << TAI->getCommentString() << " implicit-def: " 1559 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; 1560} 1561 1562/// printLabel - This method prints a local label used by debug and 1563/// exception handling tables. 1564void AsmPrinter::printLabel(const MachineInstr *MI) const { 1565 printLabel(MI->getOperand(0).getImm()); 1566} 1567 1568void AsmPrinter::printLabel(unsigned Id) const { 1569 O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; 1570} 1571 1572/// printDeclare - This method prints a local variable declaration used by 1573/// debug tables. 1574/// FIXME: It doesn't really print anything rather it inserts a DebugVariable 1575/// entry into dwarf table. 1576void AsmPrinter::printDeclare(const MachineInstr *MI) const { 1577 unsigned FI = MI->getOperand(0).getIndex(); 1578 GlobalValue *GV = MI->getOperand(1).getGlobal(); 1579 DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI); 1580} 1581 1582/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1583/// instruction, using the specified assembler variant. Targets should 1584/// overried this to format as appropriate. 1585bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1586 unsigned AsmVariant, const char *ExtraCode) { 1587 // Target doesn't support this yet! 1588 return true; 1589} 1590 1591bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1592 unsigned AsmVariant, 1593 const char *ExtraCode) { 1594 // Target doesn't support this yet! 1595 return true; 1596} 1597 1598/// printBasicBlockLabel - This method prints the label for the specified 1599/// MachineBasicBlock 1600void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, 1601 bool printAlign, 1602 bool printColon, 1603 bool printComment) const { 1604 if (printAlign) { 1605 unsigned Align = MBB->getAlignment(); 1606 if (Align) 1607 EmitAlignment(Log2_32(Align)); 1608 } 1609 1610 O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' 1611 << MBB->getNumber(); 1612 if (printColon) 1613 O << ':'; 1614 if (printComment && MBB->getBasicBlock()) 1615 O << '\t' << TAI->getCommentString() << ' ' 1616 << MBB->getBasicBlock()->getNameStart(); 1617} 1618 1619/// printPICJumpTableSetLabel - This method prints a set label for the 1620/// specified MachineBasicBlock for a jumptable entry. 1621void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1622 const MachineBasicBlock *MBB) const { 1623 if (!TAI->getSetDirective()) 1624 return; 1625 1626 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1627 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1628 printBasicBlockLabel(MBB, false, false, false); 1629 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1630 << '_' << uid << '\n'; 1631} 1632 1633void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1634 const MachineBasicBlock *MBB) const { 1635 if (!TAI->getSetDirective()) 1636 return; 1637 1638 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1639 << getFunctionNumber() << '_' << uid << '_' << uid2 1640 << "_set_" << MBB->getNumber() << ','; 1641 printBasicBlockLabel(MBB, false, false, false); 1642 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1643 << '_' << uid << '_' << uid2 << '\n'; 1644} 1645 1646/// printDataDirective - This method prints the asm directive for the 1647/// specified type. 1648void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { 1649 const TargetData *TD = TM.getTargetData(); 1650 switch (type->getTypeID()) { 1651 case Type::IntegerTyID: { 1652 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1653 if (BitWidth <= 8) 1654 O << TAI->getData8bitsDirective(AddrSpace); 1655 else if (BitWidth <= 16) 1656 O << TAI->getData16bitsDirective(AddrSpace); 1657 else if (BitWidth <= 32) 1658 O << TAI->getData32bitsDirective(AddrSpace); 1659 else if (BitWidth <= 64) { 1660 assert(TAI->getData64bitsDirective(AddrSpace) && 1661 "Target cannot handle 64-bit constant exprs!"); 1662 O << TAI->getData64bitsDirective(AddrSpace); 1663 } else { 1664 assert(0 && "Target cannot handle given data directive width!"); 1665 } 1666 break; 1667 } 1668 case Type::PointerTyID: 1669 if (TD->getPointerSize() == 8) { 1670 assert(TAI->getData64bitsDirective(AddrSpace) && 1671 "Target cannot handle 64-bit pointer exprs!"); 1672 O << TAI->getData64bitsDirective(AddrSpace); 1673 } else if (TD->getPointerSize() == 2) { 1674 O << TAI->getData16bitsDirective(AddrSpace); 1675 } else if (TD->getPointerSize() == 1) { 1676 O << TAI->getData8bitsDirective(AddrSpace); 1677 } else { 1678 O << TAI->getData32bitsDirective(AddrSpace); 1679 } 1680 break; 1681 case Type::FloatTyID: case Type::DoubleTyID: 1682 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1683 assert (0 && "Should have already output floating point constant."); 1684 default: 1685 assert (0 && "Can't handle printing this type of thing"); 1686 break; 1687 } 1688} 1689 1690void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix, 1691 const char *Prefix) { 1692 if (Name[0]=='\"') 1693 O << '\"'; 1694 O << TAI->getPrivateGlobalPrefix(); 1695 if (Prefix) O << Prefix; 1696 if (Name[0]=='\"') 1697 O << '\"'; 1698 if (Name[0]=='\"') 1699 O << Name[1]; 1700 else 1701 O << Name; 1702 O << Suffix; 1703 if (Name[0]=='\"') 1704 O << '\"'; 1705} 1706 1707void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) { 1708 printSuffixedName(Name.c_str(), Suffix); 1709} 1710 1711void AsmPrinter::printVisibility(const std::string& Name, 1712 unsigned Visibility) const { 1713 if (Visibility == GlobalValue::HiddenVisibility) { 1714 if (const char *Directive = TAI->getHiddenDirective()) 1715 O << Directive << Name << '\n'; 1716 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1717 if (const char *Directive = TAI->getProtectedDirective()) 1718 O << Directive << Name << '\n'; 1719 } 1720} 1721 1722void AsmPrinter::printOffset(int64_t Offset) const { 1723 if (Offset > 0) 1724 O << '+' << Offset; 1725 else if (Offset < 0) 1726 O << Offset; 1727} 1728 1729GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1730 if (!S->usesMetadata()) 1731 return 0; 1732 1733 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1734 if (GCPI != GCMetadataPrinters.end()) 1735 return GCPI->second; 1736 1737 const char *Name = S->getName().c_str(); 1738 1739 for (GCMetadataPrinterRegistry::iterator 1740 I = GCMetadataPrinterRegistry::begin(), 1741 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1742 if (strcmp(Name, I->getName()) == 0) { 1743 GCMetadataPrinter *GMP = I->instantiate(); 1744 GMP->S = S; 1745 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1746 return GMP; 1747 } 1748 1749 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1750 abort(); 1751} 1752