AsmPrinter.cpp revision c889b3b87756ad1f7f077024f0bafc56bc2d883a
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/CodeGen/DwarfWriter.h"
24#include "llvm/Analysis/DebugInfo.h"
25#include "llvm/MC/MCInst.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/FormattedStream.h"
29#include "llvm/Support/Mangler.h"
30#include "llvm/Support/FormattedStream.h"
31#include "llvm/Target/TargetAsmInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Target/TargetRegisterInfo.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/ADT/StringExtras.h"
39#include <cerrno>
40using namespace llvm;
41
42static cl::opt<cl::boolOrDefault>
43AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
44           cl::init(cl::BOU_UNSET));
45
46char AsmPrinter::ID = 0;
47AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
48                       const TargetAsmInfo *T, bool VDef)
49  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
50    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
51    IsInTextSection(false), LastMI(0), LastFn(0), Counter(~0U),
52    PrevDLT(0, ~0U, ~0U) {
53  DW = 0; MMI = 0;
54  switch (AsmVerbose) {
55  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
56  case cl::BOU_TRUE:  VerboseAsm = true;  break;
57  case cl::BOU_FALSE: VerboseAsm = false; break;
58  }
59}
60
61AsmPrinter::~AsmPrinter() {
62  for (gcp_iterator I = GCMetadataPrinters.begin(),
63                    E = GCMetadataPrinters.end(); I != E; ++I)
64    delete I->second;
65}
66
67/// SwitchToTextSection - Switch to the specified text section of the executable
68/// if we are not already in it!
69///
70void AsmPrinter::SwitchToTextSection(const char *NewSection,
71                                     const GlobalValue *GV) {
72  std::string NS;
73  if (GV && GV->hasSection())
74    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
75  else
76    NS = NewSection;
77
78  // If we're already in this section, we're done.
79  if (CurrentSection == NS) return;
80
81  // Close the current section, if applicable.
82  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
83    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
84
85  CurrentSection = NS;
86
87  if (!CurrentSection.empty())
88    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
89
90  IsInTextSection = true;
91}
92
93/// SwitchToDataSection - Switch to the specified data section of the executable
94/// if we are not already in it!
95///
96void AsmPrinter::SwitchToDataSection(const char *NewSection,
97                                     const GlobalValue *GV) {
98  std::string NS;
99  if (GV && GV->hasSection())
100    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
101  else
102    NS = NewSection;
103
104  // If we're already in this section, we're done.
105  if (CurrentSection == NS) return;
106
107  // Close the current section, if applicable.
108  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
109    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
110
111  CurrentSection = NS;
112
113  if (!CurrentSection.empty())
114    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
115
116  IsInTextSection = false;
117}
118
119/// SwitchToSection - Switch to the specified section of the executable if we
120/// are not already in it!
121void AsmPrinter::SwitchToSection(const Section* NS) {
122  const std::string& NewSection = NS->getName();
123
124  // If we're already in this section, we're done.
125  if (CurrentSection == NewSection) return;
126
127  // Close the current section, if applicable.
128  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
129    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
130
131  // FIXME: Make CurrentSection a Section* in the future
132  CurrentSection = NewSection;
133  CurrentSection_ = NS;
134
135  if (!CurrentSection.empty()) {
136    // If section is named we need to switch into it via special '.section'
137    // directive and also append funky flags. Otherwise - section name is just
138    // some magic assembler directive.
139    if (NS->isNamed())
140      O << TAI->getSwitchToSectionDirective()
141        << CurrentSection
142        << TAI->getSectionFlags(NS->getFlags());
143    else
144      O << CurrentSection;
145    O << TAI->getDataSectionStartSuffix() << '\n';
146  }
147
148  IsInTextSection = (NS->getFlags() & SectionFlags::Code);
149}
150
151void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
152  MachineFunctionPass::getAnalysisUsage(AU);
153  AU.addRequired<GCModuleInfo>();
154}
155
156bool AsmPrinter::doInitialization(Module &M) {
157  Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix(),
158                     TAI->getLinkerPrivateGlobalPrefix());
159
160  if (TAI->doesAllowQuotesInName())
161    Mang->setUseQuotes(true);
162
163  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
164  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
165
166  if (TAI->hasSingleParameterDotFile()) {
167    /* Very minimal debug info. It is ignored if we emit actual
168       debug info. If we don't, this at helps the user find where
169       a function came from. */
170    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
171  }
172
173  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
174    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
175      MP->beginAssembly(O, *this, *TAI);
176
177  if (!M.getModuleInlineAsm().empty())
178    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
179      << M.getModuleInlineAsm()
180      << '\n' << TAI->getCommentString()
181      << " End of file scope inline assembly\n";
182
183  SwitchToDataSection("");   // Reset back to no section.
184
185  if (TAI->doesSupportDebugInformation() ||
186      TAI->doesSupportExceptionHandling()) {
187    MMI = getAnalysisIfAvailable<MachineModuleInfo>();
188    if (MMI)
189      MMI->AnalyzeModule(M);
190    DW = getAnalysisIfAvailable<DwarfWriter>();
191    if (DW)
192      DW->BeginModule(&M, MMI, O, this, TAI);
193  }
194
195  return false;
196}
197
198bool AsmPrinter::doFinalization(Module &M) {
199  // Emit final debug information.
200  if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling())
201    DW->EndModule();
202
203  // If the target wants to know about weak references, print them all.
204  if (TAI->getWeakRefDirective()) {
205    // FIXME: This is not lazy, it would be nice to only print weak references
206    // to stuff that is actually used.  Note that doing so would require targets
207    // to notice uses in operands (due to constant exprs etc).  This should
208    // happen with the MC stuff eventually.
209    SwitchToDataSection("");
210
211    // Print out module-level global variables here.
212    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
213         I != E; ++I) {
214      if (I->hasExternalWeakLinkage())
215        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
216    }
217
218    for (Module::const_iterator I = M.begin(), E = M.end();
219         I != E; ++I) {
220      if (I->hasExternalWeakLinkage())
221        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
222    }
223  }
224
225  if (TAI->getSetDirective()) {
226    if (!M.alias_empty())
227      SwitchToSection(TAI->getTextSection());
228
229    O << '\n';
230    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
231         I != E; ++I) {
232      std::string Name = Mang->getMangledName(I);
233
234      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
235      std::string Target = Mang->getMangledName(GV);
236
237      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
238        O << "\t.globl\t" << Name << '\n';
239      else if (I->hasWeakLinkage())
240        O << TAI->getWeakRefDirective() << Name << '\n';
241      else if (!I->hasLocalLinkage())
242        llvm_unreachable("Invalid alias linkage");
243
244      printVisibility(Name, I->getVisibility());
245
246      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
247    }
248  }
249
250  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
251  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
252  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
253    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
254      MP->finishAssembly(O, *this, *TAI);
255
256  // If we don't have any trampolines, then we don't require stack memory
257  // to be executable. Some targets have a directive to declare this.
258  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
259  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
260    if (TAI->getNonexecutableStackDirective())
261      O << TAI->getNonexecutableStackDirective() << '\n';
262
263  delete Mang; Mang = 0;
264  DW = 0; MMI = 0;
265  return false;
266}
267
268std::string
269AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const {
270  assert(MF && "No machine function?");
271  return Mang->getMangledName(MF->getFunction(), ".eh",
272                              TAI->is_EHSymbolPrivate());
273}
274
275void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
276  // What's my mangled name?
277  CurrentFnName = Mang->getMangledName(MF.getFunction());
278  IncrementFunctionNumber();
279}
280
281namespace {
282  // SectionCPs - Keep track the alignment, constpool entries per Section.
283  struct SectionCPs {
284    const Section *S;
285    unsigned Alignment;
286    SmallVector<unsigned, 4> CPEs;
287    SectionCPs(const Section *s, unsigned a) : S(s), Alignment(a) {};
288  };
289}
290
291/// EmitConstantPool - Print to the current output stream assembly
292/// representations of the constants in the constant pool MCP. This is
293/// used to print out constants which have been "spilled to memory" by
294/// the code generator.
295///
296void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
297  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
298  if (CP.empty()) return;
299
300  // Calculate sections for constant pool entries. We collect entries to go into
301  // the same section together to reduce amount of section switch statements.
302  SmallVector<SectionCPs, 4> CPSections;
303  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
304    MachineConstantPoolEntry CPE = CP[i];
305    unsigned Align = CPE.getAlignment();
306    const Section* S = TAI->SelectSectionForMachineConst(CPE.getType());
307    // The number of sections are small, just do a linear search from the
308    // last section to the first.
309    bool Found = false;
310    unsigned SecIdx = CPSections.size();
311    while (SecIdx != 0) {
312      if (CPSections[--SecIdx].S == S) {
313        Found = true;
314        break;
315      }
316    }
317    if (!Found) {
318      SecIdx = CPSections.size();
319      CPSections.push_back(SectionCPs(S, Align));
320    }
321
322    if (Align > CPSections[SecIdx].Alignment)
323      CPSections[SecIdx].Alignment = Align;
324    CPSections[SecIdx].CPEs.push_back(i);
325  }
326
327  // Now print stuff into the calculated sections.
328  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
329    SwitchToSection(CPSections[i].S);
330    EmitAlignment(Log2_32(CPSections[i].Alignment));
331
332    unsigned Offset = 0;
333    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
334      unsigned CPI = CPSections[i].CPEs[j];
335      MachineConstantPoolEntry CPE = CP[CPI];
336
337      // Emit inter-object padding for alignment.
338      unsigned AlignMask = CPE.getAlignment() - 1;
339      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
340      EmitZeros(NewOffset - Offset);
341
342      const Type *Ty = CPE.getType();
343      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
344
345      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
346        << CPI << ":\t\t\t\t\t";
347      if (VerboseAsm) {
348        O << TAI->getCommentString() << ' ';
349        WriteTypeSymbolic(O, CPE.getType(), 0);
350      }
351      O << '\n';
352      if (CPE.isMachineConstantPoolEntry())
353        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
354      else
355        EmitGlobalConstant(CPE.Val.ConstVal);
356    }
357  }
358}
359
360/// EmitJumpTableInfo - Print assembly representations of the jump tables used
361/// by the current function to the current output stream.
362///
363void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
364                                   MachineFunction &MF) {
365  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
366  if (JT.empty()) return;
367
368  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
369
370  // Pick the directive to use to print the jump table entries, and switch to
371  // the appropriate section.
372  TargetLowering *LoweringInfo = TM.getTargetLowering();
373
374  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
375  const Function *F = MF.getFunction();
376  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
377  bool JTInDiffSection = false;
378  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
379      !JumpTableDataSection ||
380      SectionFlags & SectionFlags::Linkonce) {
381    // In PIC mode, we need to emit the jump table to the same section as the
382    // function body itself, otherwise the label differences won't make sense.
383    // We should also do if the section name is NULL or function is declared in
384    // discardable section.
385    SwitchToSection(TAI->SectionForGlobal(F));
386  } else {
387    SwitchToDataSection(JumpTableDataSection);
388    JTInDiffSection = true;
389  }
390
391  EmitAlignment(Log2_32(MJTI->getAlignment()));
392
393  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
394    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
395
396    // If this jump table was deleted, ignore it.
397    if (JTBBs.empty()) continue;
398
399    // For PIC codegen, if possible we want to use the SetDirective to reduce
400    // the number of relocations the assembler will generate for the jump table.
401    // Set directives are all printed before the jump table itself.
402    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
403    if (TAI->getSetDirective() && IsPic)
404      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
405        if (EmittedSets.insert(JTBBs[ii]))
406          printPICJumpTableSetLabel(i, JTBBs[ii]);
407
408    // On some targets (e.g. darwin) we want to emit two consequtive labels
409    // before each jump table.  The first label is never referenced, but tells
410    // the assembler and linker the extents of the jump table object.  The
411    // second label is actually referenced by the code.
412    if (JTInDiffSection) {
413      if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
414        O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
415    }
416
417    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
418      << '_' << i << ":\n";
419
420    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
421      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
422      O << '\n';
423    }
424  }
425}
426
427void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
428                                        const MachineBasicBlock *MBB,
429                                        unsigned uid)  const {
430  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
431
432  // Use JumpTableDirective otherwise honor the entry size from the jump table
433  // info.
434  const char *JTEntryDirective = TAI->getJumpTableDirective();
435  bool HadJTEntryDirective = JTEntryDirective != NULL;
436  if (!HadJTEntryDirective) {
437    JTEntryDirective = MJTI->getEntrySize() == 4 ?
438      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
439  }
440
441  O << JTEntryDirective << ' ';
442
443  // If we have emitted set directives for the jump table entries, print
444  // them rather than the entries themselves.  If we're emitting PIC, then
445  // emit the table entries as differences between two text section labels.
446  // If we're emitting non-PIC code, then emit the entries as direct
447  // references to the target basic blocks.
448  if (IsPic) {
449    if (TAI->getSetDirective()) {
450      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
451        << '_' << uid << "_set_" << MBB->getNumber();
452    } else {
453      printBasicBlockLabel(MBB, false, false, false);
454      // If the arch uses custom Jump Table directives, don't calc relative to
455      // JT
456      if (!HadJTEntryDirective)
457        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
458          << getFunctionNumber() << '_' << uid;
459    }
460  } else {
461    printBasicBlockLabel(MBB, false, false, false);
462  }
463}
464
465
466/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
467/// special global used by LLVM.  If so, emit it and return true, otherwise
468/// do nothing and return false.
469bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
470  if (GV->isName("llvm.used")) {
471    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
472      EmitLLVMUsedList(GV->getInitializer());
473    return true;
474  }
475
476  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
477  if (GV->getSection() == "llvm.metadata" ||
478      GV->hasAvailableExternallyLinkage())
479    return true;
480
481  if (!GV->hasAppendingLinkage()) return false;
482
483  assert(GV->hasInitializer() && "Not a special LLVM global!");
484
485  const TargetData *TD = TM.getTargetData();
486  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
487  if (GV->getName() == "llvm.global_ctors") {
488    SwitchToDataSection(TAI->getStaticCtorsSection());
489    EmitAlignment(Align, 0);
490    EmitXXStructorList(GV->getInitializer());
491    return true;
492  }
493
494  if (GV->getName() == "llvm.global_dtors") {
495    SwitchToDataSection(TAI->getStaticDtorsSection());
496    EmitAlignment(Align, 0);
497    EmitXXStructorList(GV->getInitializer());
498    return true;
499  }
500
501  return false;
502}
503
504/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
505/// global in the specified llvm.used list for which emitUsedDirectiveFor
506/// is true, as being used with this directive.
507void AsmPrinter::EmitLLVMUsedList(Constant *List) {
508  const char *Directive = TAI->getUsedDirective();
509
510  // Should be an array of 'i8*'.
511  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
512  if (InitList == 0) return;
513
514  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
515    const GlobalValue *GV =
516      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
517    if (GV && TAI->emitUsedDirectiveFor(GV, Mang)) {
518      O << Directive;
519      EmitConstantValueOnly(InitList->getOperand(i));
520      O << '\n';
521    }
522  }
523}
524
525/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
526/// function pointers, ignoring the init priority.
527void AsmPrinter::EmitXXStructorList(Constant *List) {
528  // Should be an array of '{ int, void ()* }' structs.  The first value is the
529  // init priority, which we ignore.
530  if (!isa<ConstantArray>(List)) return;
531  ConstantArray *InitList = cast<ConstantArray>(List);
532  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
533    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
534      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
535
536      if (CS->getOperand(1)->isNullValue())
537        return;  // Found a null terminator, exit printing.
538      // Emit the function pointer.
539      EmitGlobalConstant(CS->getOperand(1));
540    }
541}
542
543/// getGlobalLinkName - Returns the asm/link name of of the specified
544/// global variable.  Should be overridden by each target asm printer to
545/// generate the appropriate value.
546const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
547                                                 std::string &LinkName) const {
548  if (isa<Function>(GV)) {
549    LinkName += TAI->getFunctionAddrPrefix();
550    LinkName += Mang->getMangledName(GV);
551    LinkName += TAI->getFunctionAddrSuffix();
552  } else {
553    LinkName += TAI->getGlobalVarAddrPrefix();
554    LinkName += Mang->getMangledName(GV);
555    LinkName += TAI->getGlobalVarAddrSuffix();
556  }
557
558  return LinkName;
559}
560
561/// EmitExternalGlobal - Emit the external reference to a global variable.
562/// Should be overridden if an indirect reference should be used.
563void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
564  std::string GLN;
565  O << getGlobalLinkName(GV, GLN);
566}
567
568
569
570//===----------------------------------------------------------------------===//
571/// LEB 128 number encoding.
572
573/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
574/// representing an unsigned leb128 value.
575void AsmPrinter::PrintULEB128(unsigned Value) const {
576  char Buffer[20];
577  do {
578    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
579    Value >>= 7;
580    if (Value) Byte |= 0x80;
581    O << "0x" << utohex_buffer(Byte, Buffer+20);
582    if (Value) O << ", ";
583  } while (Value);
584}
585
586/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
587/// representing a signed leb128 value.
588void AsmPrinter::PrintSLEB128(int Value) const {
589  int Sign = Value >> (8 * sizeof(Value) - 1);
590  bool IsMore;
591  char Buffer[20];
592
593  do {
594    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
595    Value >>= 7;
596    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
597    if (IsMore) Byte |= 0x80;
598    O << "0x" << utohex_buffer(Byte, Buffer+20);
599    if (IsMore) O << ", ";
600  } while (IsMore);
601}
602
603//===--------------------------------------------------------------------===//
604// Emission and print routines
605//
606
607/// PrintHex - Print a value as a hexidecimal value.
608///
609void AsmPrinter::PrintHex(int Value) const {
610  char Buffer[20];
611  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
612}
613
614/// EOL - Print a newline character to asm stream.  If a comment is present
615/// then it will be printed first.  Comments should not contain '\n'.
616void AsmPrinter::EOL() const {
617  O << '\n';
618}
619
620void AsmPrinter::EOL(const std::string &Comment) const {
621  if (VerboseAsm && !Comment.empty()) {
622    O << '\t'
623      << TAI->getCommentString()
624      << ' '
625      << Comment;
626  }
627  O << '\n';
628}
629
630void AsmPrinter::EOL(const char* Comment) const {
631  if (VerboseAsm && *Comment) {
632    O << '\t'
633      << TAI->getCommentString()
634      << ' '
635      << Comment;
636  }
637  O << '\n';
638}
639
640/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
641/// unsigned leb128 value.
642void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
643  if (TAI->hasLEB128()) {
644    O << "\t.uleb128\t"
645      << Value;
646  } else {
647    O << TAI->getData8bitsDirective();
648    PrintULEB128(Value);
649  }
650}
651
652/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
653/// signed leb128 value.
654void AsmPrinter::EmitSLEB128Bytes(int Value) const {
655  if (TAI->hasLEB128()) {
656    O << "\t.sleb128\t"
657      << Value;
658  } else {
659    O << TAI->getData8bitsDirective();
660    PrintSLEB128(Value);
661  }
662}
663
664/// EmitInt8 - Emit a byte directive and value.
665///
666void AsmPrinter::EmitInt8(int Value) const {
667  O << TAI->getData8bitsDirective();
668  PrintHex(Value & 0xFF);
669}
670
671/// EmitInt16 - Emit a short directive and value.
672///
673void AsmPrinter::EmitInt16(int Value) const {
674  O << TAI->getData16bitsDirective();
675  PrintHex(Value & 0xFFFF);
676}
677
678/// EmitInt32 - Emit a long directive and value.
679///
680void AsmPrinter::EmitInt32(int Value) const {
681  O << TAI->getData32bitsDirective();
682  PrintHex(Value);
683}
684
685/// EmitInt64 - Emit a long long directive and value.
686///
687void AsmPrinter::EmitInt64(uint64_t Value) const {
688  if (TAI->getData64bitsDirective()) {
689    O << TAI->getData64bitsDirective();
690    PrintHex(Value);
691  } else {
692    if (TM.getTargetData()->isBigEndian()) {
693      EmitInt32(unsigned(Value >> 32)); O << '\n';
694      EmitInt32(unsigned(Value));
695    } else {
696      EmitInt32(unsigned(Value)); O << '\n';
697      EmitInt32(unsigned(Value >> 32));
698    }
699  }
700}
701
702/// toOctal - Convert the low order bits of X into an octal digit.
703///
704static inline char toOctal(int X) {
705  return (X&7)+'0';
706}
707
708/// printStringChar - Print a char, escaped if necessary.
709///
710static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
711  if (C == '"') {
712    O << "\\\"";
713  } else if (C == '\\') {
714    O << "\\\\";
715  } else if (isprint((unsigned char)C)) {
716    O << C;
717  } else {
718    switch(C) {
719    case '\b': O << "\\b"; break;
720    case '\f': O << "\\f"; break;
721    case '\n': O << "\\n"; break;
722    case '\r': O << "\\r"; break;
723    case '\t': O << "\\t"; break;
724    default:
725      O << '\\';
726      O << toOctal(C >> 6);
727      O << toOctal(C >> 3);
728      O << toOctal(C >> 0);
729      break;
730    }
731  }
732}
733
734/// EmitString - Emit a string with quotes and a null terminator.
735/// Special characters are emitted properly.
736/// \literal (Eg. '\t') \endliteral
737void AsmPrinter::EmitString(const std::string &String) const {
738  EmitString(String.c_str(), String.size());
739}
740
741void AsmPrinter::EmitString(const char *String, unsigned Size) const {
742  const char* AscizDirective = TAI->getAscizDirective();
743  if (AscizDirective)
744    O << AscizDirective;
745  else
746    O << TAI->getAsciiDirective();
747  O << '\"';
748  for (unsigned i = 0; i < Size; ++i)
749    printStringChar(O, String[i]);
750  if (AscizDirective)
751    O << '\"';
752  else
753    O << "\\0\"";
754}
755
756
757/// EmitFile - Emit a .file directive.
758void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
759  O << "\t.file\t" << Number << " \"";
760  for (unsigned i = 0, N = Name.size(); i < N; ++i)
761    printStringChar(O, Name[i]);
762  O << '\"';
763}
764
765
766//===----------------------------------------------------------------------===//
767
768// EmitAlignment - Emit an alignment directive to the specified power of
769// two boundary.  For example, if you pass in 3 here, you will get an 8
770// byte alignment.  If a global value is specified, and if that global has
771// an explicit alignment requested, it will unconditionally override the
772// alignment request.  However, if ForcedAlignBits is specified, this value
773// has final say: the ultimate alignment will be the max of ForcedAlignBits
774// and the alignment computed with NumBits and the global.
775//
776// The algorithm is:
777//     Align = NumBits;
778//     if (GV && GV->hasalignment) Align = GV->getalignment();
779//     Align = std::max(Align, ForcedAlignBits);
780//
781void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
782                               unsigned ForcedAlignBits,
783                               bool UseFillExpr) const {
784  if (GV && GV->getAlignment())
785    NumBits = Log2_32(GV->getAlignment());
786  NumBits = std::max(NumBits, ForcedAlignBits);
787
788  if (NumBits == 0) return;   // No need to emit alignment.
789  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
790  O << TAI->getAlignDirective() << NumBits;
791
792  unsigned FillValue = TAI->getTextAlignFillValue();
793  UseFillExpr &= IsInTextSection && FillValue;
794  if (UseFillExpr) {
795    O << ',';
796    PrintHex(FillValue);
797  }
798  O << '\n';
799}
800
801
802/// EmitZeros - Emit a block of zeros.
803///
804void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
805  if (NumZeros) {
806    if (TAI->getZeroDirective()) {
807      O << TAI->getZeroDirective() << NumZeros;
808      if (TAI->getZeroDirectiveSuffix())
809        O << TAI->getZeroDirectiveSuffix();
810      O << '\n';
811    } else {
812      for (; NumZeros; --NumZeros)
813        O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
814    }
815  }
816}
817
818// Print out the specified constant, without a storage class.  Only the
819// constants valid in constant expressions can occur here.
820void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
821  if (CV->isNullValue() || isa<UndefValue>(CV))
822    O << '0';
823  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
824    O << CI->getZExtValue();
825  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
826    // This is a constant address for a global variable or function. Use the
827    // name of the variable or function as the address value, possibly
828    // decorating it with GlobalVarAddrPrefix/Suffix or
829    // FunctionAddrPrefix/Suffix (these all default to "" )
830    if (isa<Function>(GV)) {
831      O << TAI->getFunctionAddrPrefix()
832        << Mang->getMangledName(GV)
833        << TAI->getFunctionAddrSuffix();
834    } else {
835      O << TAI->getGlobalVarAddrPrefix()
836        << Mang->getMangledName(GV)
837        << TAI->getGlobalVarAddrSuffix();
838    }
839  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
840    const TargetData *TD = TM.getTargetData();
841    unsigned Opcode = CE->getOpcode();
842    switch (Opcode) {
843    case Instruction::GetElementPtr: {
844      // generate a symbolic expression for the byte address
845      const Constant *ptrVal = CE->getOperand(0);
846      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
847      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
848                                                idxVec.size())) {
849        // Truncate/sext the offset to the pointer size.
850        if (TD->getPointerSizeInBits() != 64) {
851          int SExtAmount = 64-TD->getPointerSizeInBits();
852          Offset = (Offset << SExtAmount) >> SExtAmount;
853        }
854
855        if (Offset)
856          O << '(';
857        EmitConstantValueOnly(ptrVal);
858        if (Offset > 0)
859          O << ") + " << Offset;
860        else if (Offset < 0)
861          O << ") - " << -Offset;
862      } else {
863        EmitConstantValueOnly(ptrVal);
864      }
865      break;
866    }
867    case Instruction::Trunc:
868    case Instruction::ZExt:
869    case Instruction::SExt:
870    case Instruction::FPTrunc:
871    case Instruction::FPExt:
872    case Instruction::UIToFP:
873    case Instruction::SIToFP:
874    case Instruction::FPToUI:
875    case Instruction::FPToSI:
876      llvm_unreachable("FIXME: Don't yet support this kind of constant cast expr");
877      break;
878    case Instruction::BitCast:
879      return EmitConstantValueOnly(CE->getOperand(0));
880
881    case Instruction::IntToPtr: {
882      // Handle casts to pointers by changing them into casts to the appropriate
883      // integer type.  This promotes constant folding and simplifies this code.
884      Constant *Op = CE->getOperand(0);
885      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
886      return EmitConstantValueOnly(Op);
887    }
888
889
890    case Instruction::PtrToInt: {
891      // Support only foldable casts to/from pointers that can be eliminated by
892      // changing the pointer to the appropriately sized integer type.
893      Constant *Op = CE->getOperand(0);
894      const Type *Ty = CE->getType();
895
896      // We can emit the pointer value into this slot if the slot is an
897      // integer slot greater or equal to the size of the pointer.
898      if (TD->getTypeAllocSize(Ty) >= TD->getTypeAllocSize(Op->getType()))
899        return EmitConstantValueOnly(Op);
900
901      O << "((";
902      EmitConstantValueOnly(Op);
903      APInt ptrMask = APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Ty));
904
905      SmallString<40> S;
906      ptrMask.toStringUnsigned(S);
907      O << ") & " << S.c_str() << ')';
908      break;
909    }
910    case Instruction::Add:
911    case Instruction::Sub:
912    case Instruction::And:
913    case Instruction::Or:
914    case Instruction::Xor:
915      O << '(';
916      EmitConstantValueOnly(CE->getOperand(0));
917      O << ')';
918      switch (Opcode) {
919      case Instruction::Add:
920       O << " + ";
921       break;
922      case Instruction::Sub:
923       O << " - ";
924       break;
925      case Instruction::And:
926       O << " & ";
927       break;
928      case Instruction::Or:
929       O << " | ";
930       break;
931      case Instruction::Xor:
932       O << " ^ ";
933       break;
934      default:
935       break;
936      }
937      O << '(';
938      EmitConstantValueOnly(CE->getOperand(1));
939      O << ')';
940      break;
941    default:
942      llvm_unreachable("Unsupported operator!");
943    }
944  } else {
945    llvm_unreachable("Unknown constant value!");
946  }
947}
948
949/// printAsCString - Print the specified array as a C compatible string, only if
950/// the predicate isString is true.
951///
952static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
953                           unsigned LastElt) {
954  assert(CVA->isString() && "Array is not string compatible!");
955
956  O << '\"';
957  for (unsigned i = 0; i != LastElt; ++i) {
958    unsigned char C =
959        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
960    printStringChar(O, C);
961  }
962  O << '\"';
963}
964
965/// EmitString - Emit a zero-byte-terminated string constant.
966///
967void AsmPrinter::EmitString(const ConstantArray *CVA) const {
968  unsigned NumElts = CVA->getNumOperands();
969  if (TAI->getAscizDirective() && NumElts &&
970      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
971    O << TAI->getAscizDirective();
972    printAsCString(O, CVA, NumElts-1);
973  } else {
974    O << TAI->getAsciiDirective();
975    printAsCString(O, CVA, NumElts);
976  }
977  O << '\n';
978}
979
980void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
981                                         unsigned AddrSpace) {
982  if (CVA->isString()) {
983    EmitString(CVA);
984  } else { // Not a string.  Print the values in successive locations
985    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
986      EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
987  }
988}
989
990void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
991  const VectorType *PTy = CP->getType();
992
993  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
994    EmitGlobalConstant(CP->getOperand(I));
995}
996
997void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
998                                          unsigned AddrSpace) {
999  // Print the fields in successive locations. Pad to align if needed!
1000  const TargetData *TD = TM.getTargetData();
1001  unsigned Size = TD->getTypeAllocSize(CVS->getType());
1002  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
1003  uint64_t sizeSoFar = 0;
1004  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
1005    const Constant* field = CVS->getOperand(i);
1006
1007    // Check if padding is needed and insert one or more 0s.
1008    uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
1009    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1010                        - cvsLayout->getElementOffset(i)) - fieldSize;
1011    sizeSoFar += fieldSize + padSize;
1012
1013    // Now print the actual field value.
1014    EmitGlobalConstant(field, AddrSpace);
1015
1016    // Insert padding - this may include padding to increase the size of the
1017    // current field up to the ABI size (if the struct is not packed) as well
1018    // as padding to ensure that the next field starts at the right offset.
1019    EmitZeros(padSize, AddrSpace);
1020  }
1021  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1022         "Layout of constant struct may be incorrect!");
1023}
1024
1025void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1026                                      unsigned AddrSpace) {
1027  // FP Constants are printed as integer constants to avoid losing
1028  // precision...
1029  const TargetData *TD = TM.getTargetData();
1030  if (CFP->getType() == Type::DoubleTy) {
1031    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1032    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1033    if (TAI->getData64bitsDirective(AddrSpace)) {
1034      O << TAI->getData64bitsDirective(AddrSpace) << i;
1035      if (VerboseAsm)
1036        O << '\t' << TAI->getCommentString() << " double value: " << Val;
1037      O << '\n';
1038    } else if (TD->isBigEndian()) {
1039      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1040      if (VerboseAsm)
1041        O << '\t' << TAI->getCommentString()
1042          << " double most significant word " << Val;
1043      O << '\n';
1044      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1045      if (VerboseAsm)
1046        O << '\t' << TAI->getCommentString()
1047          << " double least significant word " << Val;
1048      O << '\n';
1049    } else {
1050      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1051      if (VerboseAsm)
1052        O << '\t' << TAI->getCommentString()
1053          << " double least significant word " << Val;
1054      O << '\n';
1055      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1056      if (VerboseAsm)
1057        O << '\t' << TAI->getCommentString()
1058          << " double most significant word " << Val;
1059      O << '\n';
1060    }
1061    return;
1062  } else if (CFP->getType() == Type::FloatTy) {
1063    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1064    O << TAI->getData32bitsDirective(AddrSpace)
1065      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1066    if (VerboseAsm)
1067      O << '\t' << TAI->getCommentString() << " float " << Val;
1068    O << '\n';
1069    return;
1070  } else if (CFP->getType() == Type::X86_FP80Ty) {
1071    // all long double variants are printed as hex
1072    // api needed to prevent premature destruction
1073    APInt api = CFP->getValueAPF().bitcastToAPInt();
1074    const uint64_t *p = api.getRawData();
1075    // Convert to double so we can print the approximate val as a comment.
1076    APFloat DoubleVal = CFP->getValueAPF();
1077    bool ignored;
1078    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1079                      &ignored);
1080    if (TD->isBigEndian()) {
1081      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1082      if (VerboseAsm)
1083        O << '\t' << TAI->getCommentString()
1084          << " long double most significant halfword of ~"
1085          << DoubleVal.convertToDouble();
1086      O << '\n';
1087      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1088      if (VerboseAsm)
1089        O << '\t' << TAI->getCommentString() << " long double next halfword";
1090      O << '\n';
1091      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1092      if (VerboseAsm)
1093        O << '\t' << TAI->getCommentString() << " long double next halfword";
1094      O << '\n';
1095      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1096      if (VerboseAsm)
1097        O << '\t' << TAI->getCommentString() << " long double next halfword";
1098      O << '\n';
1099      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1100      if (VerboseAsm)
1101        O << '\t' << TAI->getCommentString()
1102          << " long double least significant halfword";
1103      O << '\n';
1104     } else {
1105      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1106      if (VerboseAsm)
1107        O << '\t' << TAI->getCommentString()
1108          << " long double least significant halfword of ~"
1109          << DoubleVal.convertToDouble();
1110      O << '\n';
1111      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1112      if (VerboseAsm)
1113        O << '\t' << TAI->getCommentString()
1114          << " long double next halfword";
1115      O << '\n';
1116      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1117      if (VerboseAsm)
1118        O << '\t' << TAI->getCommentString()
1119          << " long double next halfword";
1120      O << '\n';
1121      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1122      if (VerboseAsm)
1123        O << '\t' << TAI->getCommentString()
1124          << " long double next halfword";
1125      O << '\n';
1126      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1127      if (VerboseAsm)
1128        O << '\t' << TAI->getCommentString()
1129          << " long double most significant halfword";
1130      O << '\n';
1131    }
1132    EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) -
1133              TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
1134    return;
1135  } else if (CFP->getType() == Type::PPC_FP128Ty) {
1136    // all long double variants are printed as hex
1137    // api needed to prevent premature destruction
1138    APInt api = CFP->getValueAPF().bitcastToAPInt();
1139    const uint64_t *p = api.getRawData();
1140    if (TD->isBigEndian()) {
1141      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1142      if (VerboseAsm)
1143        O << '\t' << TAI->getCommentString()
1144          << " long double most significant word";
1145      O << '\n';
1146      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1147      if (VerboseAsm)
1148        O << '\t' << TAI->getCommentString()
1149        << " long double next word";
1150      O << '\n';
1151      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1152      if (VerboseAsm)
1153        O << '\t' << TAI->getCommentString()
1154          << " long double next word";
1155      O << '\n';
1156      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1157      if (VerboseAsm)
1158        O << '\t' << TAI->getCommentString()
1159          << " long double least significant word";
1160      O << '\n';
1161     } else {
1162      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1163      if (VerboseAsm)
1164        O << '\t' << TAI->getCommentString()
1165          << " long double least significant word";
1166      O << '\n';
1167      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1168      if (VerboseAsm)
1169        O << '\t' << TAI->getCommentString()
1170          << " long double next word";
1171      O << '\n';
1172      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1173      if (VerboseAsm)
1174        O << '\t' << TAI->getCommentString()
1175          << " long double next word";
1176      O << '\n';
1177      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1178      if (VerboseAsm)
1179        O << '\t' << TAI->getCommentString()
1180          << " long double most significant word";
1181      O << '\n';
1182    }
1183    return;
1184  } else llvm_unreachable("Floating point constant type not handled");
1185}
1186
1187void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1188                                            unsigned AddrSpace) {
1189  const TargetData *TD = TM.getTargetData();
1190  unsigned BitWidth = CI->getBitWidth();
1191  assert(isPowerOf2_32(BitWidth) &&
1192         "Non-power-of-2-sized integers not handled!");
1193
1194  // We don't expect assemblers to support integer data directives
1195  // for more than 64 bits, so we emit the data in at most 64-bit
1196  // quantities at a time.
1197  const uint64_t *RawData = CI->getValue().getRawData();
1198  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1199    uint64_t Val;
1200    if (TD->isBigEndian())
1201      Val = RawData[e - i - 1];
1202    else
1203      Val = RawData[i];
1204
1205    if (TAI->getData64bitsDirective(AddrSpace))
1206      O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1207    else if (TD->isBigEndian()) {
1208      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1209      if (VerboseAsm)
1210        O << '\t' << TAI->getCommentString()
1211          << " Double-word most significant word " << Val;
1212      O << '\n';
1213      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1214      if (VerboseAsm)
1215        O << '\t' << TAI->getCommentString()
1216          << " Double-word least significant word " << Val;
1217      O << '\n';
1218    } else {
1219      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1220      if (VerboseAsm)
1221        O << '\t' << TAI->getCommentString()
1222          << " Double-word least significant word " << Val;
1223      O << '\n';
1224      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1225      if (VerboseAsm)
1226        O << '\t' << TAI->getCommentString()
1227          << " Double-word most significant word " << Val;
1228      O << '\n';
1229    }
1230  }
1231}
1232
1233/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1234void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1235  const TargetData *TD = TM.getTargetData();
1236  const Type *type = CV->getType();
1237  unsigned Size = TD->getTypeAllocSize(type);
1238
1239  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1240    EmitZeros(Size, AddrSpace);
1241    return;
1242  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1243    EmitGlobalConstantArray(CVA , AddrSpace);
1244    return;
1245  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1246    EmitGlobalConstantStruct(CVS, AddrSpace);
1247    return;
1248  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1249    EmitGlobalConstantFP(CFP, AddrSpace);
1250    return;
1251  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1252    // Small integers are handled below; large integers are handled here.
1253    if (Size > 4) {
1254      EmitGlobalConstantLargeInt(CI, AddrSpace);
1255      return;
1256    }
1257  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1258    EmitGlobalConstantVector(CP);
1259    return;
1260  }
1261
1262  printDataDirective(type, AddrSpace);
1263  EmitConstantValueOnly(CV);
1264  if (VerboseAsm) {
1265    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1266      SmallString<40> S;
1267      CI->getValue().toStringUnsigned(S, 16);
1268      O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1269    }
1270  }
1271  O << '\n';
1272}
1273
1274void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1275  // Target doesn't support this yet!
1276  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1277}
1278
1279/// PrintSpecial - Print information related to the specified machine instr
1280/// that is independent of the operand, and may be independent of the instr
1281/// itself.  This can be useful for portably encoding the comment character
1282/// or other bits of target-specific knowledge into the asmstrings.  The
1283/// syntax used is ${:comment}.  Targets can override this to add support
1284/// for their own strange codes.
1285void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1286  if (!strcmp(Code, "private")) {
1287    O << TAI->getPrivateGlobalPrefix();
1288  } else if (!strcmp(Code, "comment")) {
1289    if (VerboseAsm)
1290      O << TAI->getCommentString();
1291  } else if (!strcmp(Code, "uid")) {
1292    // Comparing the address of MI isn't sufficient, because machineinstrs may
1293    // be allocated to the same address across functions.
1294    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1295
1296    // If this is a new LastFn instruction, bump the counter.
1297    if (LastMI != MI || LastFn != ThisF) {
1298      ++Counter;
1299      LastMI = MI;
1300      LastFn = ThisF;
1301    }
1302    O << Counter;
1303  } else {
1304    std::string msg;
1305    raw_string_ostream Msg(msg);
1306    Msg << "Unknown special formatter '" << Code
1307         << "' for machine instr: " << *MI;
1308    llvm_report_error(Msg.str());
1309  }
1310}
1311
1312/// processDebugLoc - Processes the debug information of each machine
1313/// instruction's DebugLoc.
1314void AsmPrinter::processDebugLoc(DebugLoc DL) {
1315  if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
1316    if (!DL.isUnknown()) {
1317      DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1318
1319      if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT)
1320        printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1321                                        DICompileUnit(CurDLT.CompileUnit)));
1322
1323      PrevDLT = CurDLT;
1324    }
1325  }
1326}
1327
1328/// printInlineAsm - This method formats and prints the specified machine
1329/// instruction that is an inline asm.
1330void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1331  unsigned NumOperands = MI->getNumOperands();
1332
1333  // Count the number of register definitions.
1334  unsigned NumDefs = 0;
1335  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1336       ++NumDefs)
1337    assert(NumDefs != NumOperands-1 && "No asm string?");
1338
1339  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1340
1341  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1342  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1343
1344  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1345  // These are useful to see where empty asm's wound up.
1346  if (AsmStr[0] == 0) {
1347    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1348    return;
1349  }
1350
1351  O << TAI->getInlineAsmStart() << "\n\t";
1352
1353  // The variant of the current asmprinter.
1354  int AsmPrinterVariant = TAI->getAssemblerDialect();
1355
1356  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1357  const char *LastEmitted = AsmStr; // One past the last character emitted.
1358
1359  while (*LastEmitted) {
1360    switch (*LastEmitted) {
1361    default: {
1362      // Not a special case, emit the string section literally.
1363      const char *LiteralEnd = LastEmitted+1;
1364      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1365             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1366        ++LiteralEnd;
1367      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1368        O.write(LastEmitted, LiteralEnd-LastEmitted);
1369      LastEmitted = LiteralEnd;
1370      break;
1371    }
1372    case '\n':
1373      ++LastEmitted;   // Consume newline character.
1374      O << '\n';       // Indent code with newline.
1375      break;
1376    case '$': {
1377      ++LastEmitted;   // Consume '$' character.
1378      bool Done = true;
1379
1380      // Handle escapes.
1381      switch (*LastEmitted) {
1382      default: Done = false; break;
1383      case '$':     // $$ -> $
1384        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1385          O << '$';
1386        ++LastEmitted;  // Consume second '$' character.
1387        break;
1388      case '(':             // $( -> same as GCC's { character.
1389        ++LastEmitted;      // Consume '(' character.
1390        if (CurVariant != -1) {
1391          llvm_report_error("Nested variants found in inline asm string: '"
1392                            + std::string(AsmStr) + "'");
1393        }
1394        CurVariant = 0;     // We're in the first variant now.
1395        break;
1396      case '|':
1397        ++LastEmitted;  // consume '|' character.
1398        if (CurVariant == -1)
1399          O << '|';       // this is gcc's behavior for | outside a variant
1400        else
1401          ++CurVariant;   // We're in the next variant.
1402        break;
1403      case ')':         // $) -> same as GCC's } char.
1404        ++LastEmitted;  // consume ')' character.
1405        if (CurVariant == -1)
1406          O << '}';     // this is gcc's behavior for } outside a variant
1407        else
1408          CurVariant = -1;
1409        break;
1410      }
1411      if (Done) break;
1412
1413      bool HasCurlyBraces = false;
1414      if (*LastEmitted == '{') {     // ${variable}
1415        ++LastEmitted;               // Consume '{' character.
1416        HasCurlyBraces = true;
1417      }
1418
1419      // If we have ${:foo}, then this is not a real operand reference, it is a
1420      // "magic" string reference, just like in .td files.  Arrange to call
1421      // PrintSpecial.
1422      if (HasCurlyBraces && *LastEmitted == ':') {
1423        ++LastEmitted;
1424        const char *StrStart = LastEmitted;
1425        const char *StrEnd = strchr(StrStart, '}');
1426        if (StrEnd == 0) {
1427          llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1428                            + std::string(AsmStr) + "'");
1429        }
1430
1431        std::string Val(StrStart, StrEnd);
1432        PrintSpecial(MI, Val.c_str());
1433        LastEmitted = StrEnd+1;
1434        break;
1435      }
1436
1437      const char *IDStart = LastEmitted;
1438      char *IDEnd;
1439      errno = 0;
1440      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1441      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1442        llvm_report_error("Bad $ operand number in inline asm string: '"
1443                          + std::string(AsmStr) + "'");
1444      }
1445      LastEmitted = IDEnd;
1446
1447      char Modifier[2] = { 0, 0 };
1448
1449      if (HasCurlyBraces) {
1450        // If we have curly braces, check for a modifier character.  This
1451        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1452        if (*LastEmitted == ':') {
1453          ++LastEmitted;    // Consume ':' character.
1454          if (*LastEmitted == 0) {
1455            llvm_report_error("Bad ${:} expression in inline asm string: '"
1456                              + std::string(AsmStr) + "'");
1457          }
1458
1459          Modifier[0] = *LastEmitted;
1460          ++LastEmitted;    // Consume modifier character.
1461        }
1462
1463        if (*LastEmitted != '}') {
1464          llvm_report_error("Bad ${} expression in inline asm string: '"
1465                            + std::string(AsmStr) + "'");
1466        }
1467        ++LastEmitted;    // Consume '}' character.
1468      }
1469
1470      if ((unsigned)Val >= NumOperands-1) {
1471        llvm_report_error("Invalid $ operand number in inline asm string: '"
1472                          + std::string(AsmStr) + "'");
1473      }
1474
1475      // Okay, we finally have a value number.  Ask the target to print this
1476      // operand!
1477      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1478        unsigned OpNo = 1;
1479
1480        bool Error = false;
1481
1482        // Scan to find the machine operand number for the operand.
1483        for (; Val; --Val) {
1484          if (OpNo >= MI->getNumOperands()) break;
1485          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1486          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1487        }
1488
1489        if (OpNo >= MI->getNumOperands()) {
1490          Error = true;
1491        } else {
1492          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1493          ++OpNo;  // Skip over the ID number.
1494
1495          if (Modifier[0]=='l')  // labels are target independent
1496            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1497                                 false, false, false);
1498          else {
1499            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1500            if ((OpFlags & 7) == 4) {
1501              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1502                                                Modifier[0] ? Modifier : 0);
1503            } else {
1504              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1505                                          Modifier[0] ? Modifier : 0);
1506            }
1507          }
1508        }
1509        if (Error) {
1510          std::string msg;
1511          raw_string_ostream Msg(msg);
1512          Msg << "Invalid operand found in inline asm: '"
1513               << AsmStr << "'\n";
1514          MI->print(Msg);
1515          llvm_report_error(Msg.str());
1516        }
1517      }
1518      break;
1519    }
1520    }
1521  }
1522  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1523}
1524
1525/// printImplicitDef - This method prints the specified machine instruction
1526/// that is an implicit def.
1527void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1528  if (VerboseAsm)
1529    O << '\t' << TAI->getCommentString() << " implicit-def: "
1530      << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1531}
1532
1533/// printLabel - This method prints a local label used by debug and
1534/// exception handling tables.
1535void AsmPrinter::printLabel(const MachineInstr *MI) const {
1536  printLabel(MI->getOperand(0).getImm());
1537}
1538
1539void AsmPrinter::printLabel(unsigned Id) const {
1540  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1541}
1542
1543/// printDeclare - This method prints a local variable declaration used by
1544/// debug tables.
1545/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1546/// entry into dwarf table.
1547void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1548  unsigned FI = MI->getOperand(0).getIndex();
1549  GlobalValue *GV = MI->getOperand(1).getGlobal();
1550  DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI);
1551}
1552
1553/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1554/// instruction, using the specified assembler variant.  Targets should
1555/// overried this to format as appropriate.
1556bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1557                                 unsigned AsmVariant, const char *ExtraCode) {
1558  // Target doesn't support this yet!
1559  return true;
1560}
1561
1562bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1563                                       unsigned AsmVariant,
1564                                       const char *ExtraCode) {
1565  // Target doesn't support this yet!
1566  return true;
1567}
1568
1569/// printBasicBlockLabel - This method prints the label for the specified
1570/// MachineBasicBlock
1571void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1572                                      bool printAlign,
1573                                      bool printColon,
1574                                      bool printComment) const {
1575  if (printAlign) {
1576    unsigned Align = MBB->getAlignment();
1577    if (Align)
1578      EmitAlignment(Log2_32(Align));
1579  }
1580
1581  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1582    << MBB->getNumber();
1583  if (printColon)
1584    O << ':';
1585  if (printComment && MBB->getBasicBlock())
1586    O << '\t' << TAI->getCommentString() << ' '
1587      << MBB->getBasicBlock()->getNameStart();
1588}
1589
1590/// printPICJumpTableSetLabel - This method prints a set label for the
1591/// specified MachineBasicBlock for a jumptable entry.
1592void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1593                                           const MachineBasicBlock *MBB) const {
1594  if (!TAI->getSetDirective())
1595    return;
1596
1597  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1598    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1599  printBasicBlockLabel(MBB, false, false, false);
1600  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1601    << '_' << uid << '\n';
1602}
1603
1604void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1605                                           const MachineBasicBlock *MBB) const {
1606  if (!TAI->getSetDirective())
1607    return;
1608
1609  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1610    << getFunctionNumber() << '_' << uid << '_' << uid2
1611    << "_set_" << MBB->getNumber() << ',';
1612  printBasicBlockLabel(MBB, false, false, false);
1613  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1614    << '_' << uid << '_' << uid2 << '\n';
1615}
1616
1617/// printDataDirective - This method prints the asm directive for the
1618/// specified type.
1619void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1620  const TargetData *TD = TM.getTargetData();
1621  switch (type->getTypeID()) {
1622  case Type::FloatTyID: case Type::DoubleTyID:
1623  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1624    assert(0 && "Should have already output floating point constant.");
1625  default:
1626    assert(0 && "Can't handle printing this type of thing");
1627  case Type::IntegerTyID: {
1628    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1629    if (BitWidth <= 8)
1630      O << TAI->getData8bitsDirective(AddrSpace);
1631    else if (BitWidth <= 16)
1632      O << TAI->getData16bitsDirective(AddrSpace);
1633    else if (BitWidth <= 32)
1634      O << TAI->getData32bitsDirective(AddrSpace);
1635    else if (BitWidth <= 64) {
1636      assert(TAI->getData64bitsDirective(AddrSpace) &&
1637             "Target cannot handle 64-bit constant exprs!");
1638      O << TAI->getData64bitsDirective(AddrSpace);
1639    } else {
1640      llvm_unreachable("Target cannot handle given data directive width!");
1641    }
1642    break;
1643  }
1644  case Type::PointerTyID:
1645    if (TD->getPointerSize() == 8) {
1646      assert(TAI->getData64bitsDirective(AddrSpace) &&
1647             "Target cannot handle 64-bit pointer exprs!");
1648      O << TAI->getData64bitsDirective(AddrSpace);
1649    } else if (TD->getPointerSize() == 2) {
1650      O << TAI->getData16bitsDirective(AddrSpace);
1651    } else if (TD->getPointerSize() == 1) {
1652      O << TAI->getData8bitsDirective(AddrSpace);
1653    } else {
1654      O << TAI->getData32bitsDirective(AddrSpace);
1655    }
1656    break;
1657  }
1658}
1659
1660void AsmPrinter::printVisibility(const std::string& Name,
1661                                 unsigned Visibility) const {
1662  if (Visibility == GlobalValue::HiddenVisibility) {
1663    if (const char *Directive = TAI->getHiddenDirective())
1664      O << Directive << Name << '\n';
1665  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1666    if (const char *Directive = TAI->getProtectedDirective())
1667      O << Directive << Name << '\n';
1668  }
1669}
1670
1671void AsmPrinter::printOffset(int64_t Offset) const {
1672  if (Offset > 0)
1673    O << '+' << Offset;
1674  else if (Offset < 0)
1675    O << Offset;
1676}
1677
1678GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1679  if (!S->usesMetadata())
1680    return 0;
1681
1682  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1683  if (GCPI != GCMetadataPrinters.end())
1684    return GCPI->second;
1685
1686  const char *Name = S->getName().c_str();
1687
1688  for (GCMetadataPrinterRegistry::iterator
1689         I = GCMetadataPrinterRegistry::begin(),
1690         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1691    if (strcmp(Name, I->getName()) == 0) {
1692      GCMetadataPrinter *GMP = I->instantiate();
1693      GMP->S = S;
1694      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1695      return GMP;
1696    }
1697
1698  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1699  llvm_unreachable(0);
1700}
1701
1702/// EmitComments - Pretty-print comments for instructions
1703void AsmPrinter::EmitComments(const MachineInstr &MI) const
1704{
1705  if (!MI.getDebugLoc().isUnknown()) {
1706    DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1707
1708    // Print source line info
1709    O.PadToColumn(TAI->getCommentColumn(), 1);
1710    O << TAI->getCommentString() << " SrcLine " << DLT.Line << ":" << DLT.Col;
1711  }
1712}
1713
1714/// EmitComments - Pretty-print comments for instructions
1715void AsmPrinter::EmitComments(const MCInst &MI) const
1716{
1717  if (!MI.getDebugLoc().isUnknown()) {
1718    DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1719
1720    // Print source line info
1721    O.PadToColumn(TAI->getCommentColumn(), 1);
1722    O << TAI->getCommentString() << " SrcLine " << DLT.Line << ":" << DLT.Col;
1723  }
1724}
1725