AsmPrinter.cpp revision c92710a33f2478df2572b966e0cc128c2290be1e
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineJumpTableInfo.h" 22#include "llvm/CodeGen/MachineLoopInfo.h" 23#include "llvm/CodeGen/MachineModuleInfo.h" 24#include "llvm/CodeGen/DwarfWriter.h" 25#include "llvm/Analysis/DebugInfo.h" 26#include "llvm/MC/MCContext.h" 27#include "llvm/MC/MCInst.h" 28#include "llvm/MC/MCSection.h" 29#include "llvm/MC/MCStreamer.h" 30#include "llvm/Support/CommandLine.h" 31#include "llvm/Support/ErrorHandling.h" 32#include "llvm/Support/FormattedStream.h" 33#include "llvm/Support/IOManip.h" 34#include "llvm/Support/Mangler.h" 35#include "llvm/Target/TargetAsmInfo.h" 36#include "llvm/Target/TargetData.h" 37#include "llvm/Target/TargetLowering.h" 38#include "llvm/Target/TargetLoweringObjectFile.h" 39#include "llvm/Target/TargetOptions.h" 40#include "llvm/Target/TargetRegisterInfo.h" 41#include "llvm/ADT/SmallPtrSet.h" 42#include "llvm/ADT/SmallString.h" 43#include "llvm/ADT/StringExtras.h" 44#include <cerrno> 45using namespace llvm; 46 47static cl::opt<cl::boolOrDefault> 48AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 49 cl::init(cl::BOU_UNSET)); 50 51static cl::opt<cl::boolOrDefault> 52AsmExuberant("asm-exuberant", cl::desc("Add many comments."), 53 cl::init(cl::BOU_FALSE)); 54 55char AsmPrinter::ID = 0; 56AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm, 57 const TargetAsmInfo *T, bool VDef) 58 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 59 TM(tm), TAI(T), TRI(tm.getRegisterInfo()), 60 61 OutContext(*new MCContext()), 62 OutStreamer(*createAsmStreamer(OutContext, O)), 63 64 LastMI(0), LastFn(0), Counter(~0U), 65 PrevDLT(0, ~0U, ~0U) { 66 CurrentSection = 0; 67 DW = 0; MMI = 0; 68 switch (AsmVerbose) { 69 case cl::BOU_UNSET: VerboseAsm = VDef; break; 70 case cl::BOU_TRUE: VerboseAsm = true; break; 71 case cl::BOU_FALSE: VerboseAsm = false; break; 72 } 73 switch (AsmExuberant) { 74 case cl::BOU_UNSET: ExuberantAsm = false; break; 75 case cl::BOU_TRUE: ExuberantAsm = true; break; 76 case cl::BOU_FALSE: ExuberantAsm = false; break; 77 } 78} 79 80AsmPrinter::~AsmPrinter() { 81 for (gcp_iterator I = GCMetadataPrinters.begin(), 82 E = GCMetadataPrinters.end(); I != E; ++I) 83 delete I->second; 84 85 delete &OutStreamer; 86 delete &OutContext; 87} 88 89TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 90 return TM.getTargetLowering()->getObjFileLowering(); 91} 92 93/// SwitchToSection - Switch to the specified section of the executable if we 94/// are not already in it! If "NS" is null, then this causes us to exit the 95/// current section and not reenter another one. This is generally used for 96/// asmprinter hacks. 97/// 98/// FIXME: Remove support for null sections. 99/// 100void AsmPrinter::SwitchToSection(const MCSection *NS) { 101 // If we're already in this section, we're done. 102 if (CurrentSection == NS) return; 103 104 CurrentSection = NS; 105 106 if (NS == 0) return; 107 108 NS->PrintSwitchToSection(*TAI, O); 109} 110 111void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 112 AU.setPreservesAll(); 113 MachineFunctionPass::getAnalysisUsage(AU); 114 AU.addRequired<GCModuleInfo>(); 115 if (ExuberantAsm) { 116 AU.addRequired<MachineLoopInfo>(); 117 } 118} 119 120bool AsmPrinter::doInitialization(Module &M) { 121 // Initialize TargetLoweringObjectFile. 122 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 123 .Initialize(OutContext, TM); 124 125 Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix(), 126 TAI->getLinkerPrivateGlobalPrefix()); 127 128 if (TAI->doesAllowQuotesInName()) 129 Mang->setUseQuotes(true); 130 131 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 132 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 133 134 if (TAI->hasSingleParameterDotFile()) { 135 /* Very minimal debug info. It is ignored if we emit actual 136 debug info. If we don't, this at helps the user find where 137 a function came from. */ 138 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 139 } 140 141 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 142 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 143 MP->beginAssembly(O, *this, *TAI); 144 145 if (!M.getModuleInlineAsm().empty()) 146 O << TAI->getCommentString() << " Start of file scope inline assembly\n" 147 << M.getModuleInlineAsm() 148 << '\n' << TAI->getCommentString() 149 << " End of file scope inline assembly\n"; 150 151 SwitchToSection(0); // Reset back to no section to close off sections. 152 153 if (TAI->doesSupportDebugInformation() || 154 TAI->doesSupportExceptionHandling()) { 155 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 156 if (MMI) 157 MMI->AnalyzeModule(M); 158 DW = getAnalysisIfAvailable<DwarfWriter>(); 159 if (DW) 160 DW->BeginModule(&M, MMI, O, this, TAI); 161 } 162 163 return false; 164} 165 166bool AsmPrinter::doFinalization(Module &M) { 167 // Emit global variables. 168 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 169 I != E; ++I) 170 PrintGlobalVariable(I); 171 172 // Emit final debug information. 173 if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling()) 174 DW->EndModule(); 175 176 // If the target wants to know about weak references, print them all. 177 if (TAI->getWeakRefDirective()) { 178 // FIXME: This is not lazy, it would be nice to only print weak references 179 // to stuff that is actually used. Note that doing so would require targets 180 // to notice uses in operands (due to constant exprs etc). This should 181 // happen with the MC stuff eventually. 182 SwitchToSection(0); 183 184 // Print out module-level global variables here. 185 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 186 I != E; ++I) { 187 if (I->hasExternalWeakLinkage()) 188 O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 189 } 190 191 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 192 if (I->hasExternalWeakLinkage()) 193 O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 194 } 195 } 196 197 if (TAI->getSetDirective()) { 198 O << '\n'; 199 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 200 I != E; ++I) { 201 std::string Name = Mang->getMangledName(I); 202 203 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 204 std::string Target = Mang->getMangledName(GV); 205 206 if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) 207 O << "\t.globl\t" << Name << '\n'; 208 else if (I->hasWeakLinkage()) 209 O << TAI->getWeakRefDirective() << Name << '\n'; 210 else if (!I->hasLocalLinkage()) 211 llvm_unreachable("Invalid alias linkage"); 212 213 printVisibility(Name, I->getVisibility()); 214 215 O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 216 } 217 } 218 219 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 220 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 221 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 222 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 223 MP->finishAssembly(O, *this, *TAI); 224 225 // If we don't have any trampolines, then we don't require stack memory 226 // to be executable. Some targets have a directive to declare this. 227 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 228 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 229 if (TAI->getNonexecutableStackDirective()) 230 O << TAI->getNonexecutableStackDirective() << '\n'; 231 232 delete Mang; Mang = 0; 233 DW = 0; MMI = 0; 234 235 OutStreamer.Finish(); 236 return false; 237} 238 239std::string 240AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const { 241 assert(MF && "No machine function?"); 242 return Mang->getMangledName(MF->getFunction(), ".eh", 243 TAI->is_EHSymbolPrivate()); 244} 245 246void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 247 // What's my mangled name? 248 CurrentFnName = Mang->getMangledName(MF.getFunction()); 249 IncrementFunctionNumber(); 250 251 if (ExuberantAsm) { 252 LI = &getAnalysis<MachineLoopInfo>(); 253 } 254} 255 256namespace { 257 // SectionCPs - Keep track the alignment, constpool entries per Section. 258 struct SectionCPs { 259 const MCSection *S; 260 unsigned Alignment; 261 SmallVector<unsigned, 4> CPEs; 262 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}; 263 }; 264} 265 266/// EmitConstantPool - Print to the current output stream assembly 267/// representations of the constants in the constant pool MCP. This is 268/// used to print out constants which have been "spilled to memory" by 269/// the code generator. 270/// 271void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 272 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 273 if (CP.empty()) return; 274 275 // Calculate sections for constant pool entries. We collect entries to go into 276 // the same section together to reduce amount of section switch statements. 277 SmallVector<SectionCPs, 4> CPSections; 278 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 279 const MachineConstantPoolEntry &CPE = CP[i]; 280 unsigned Align = CPE.getAlignment(); 281 282 SectionKind Kind; 283 switch (CPE.getRelocationInfo()) { 284 default: llvm_unreachable("Unknown section kind"); 285 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 286 case 1: 287 Kind = SectionKind::getReadOnlyWithRelLocal(); 288 break; 289 case 0: 290 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 291 case 4: Kind = SectionKind::getMergeableConst4(); break; 292 case 8: Kind = SectionKind::getMergeableConst8(); break; 293 case 16: Kind = SectionKind::getMergeableConst16();break; 294 default: Kind = SectionKind::getMergeableConst(); break; 295 } 296 } 297 298 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 299 300 // The number of sections are small, just do a linear search from the 301 // last section to the first. 302 bool Found = false; 303 unsigned SecIdx = CPSections.size(); 304 while (SecIdx != 0) { 305 if (CPSections[--SecIdx].S == S) { 306 Found = true; 307 break; 308 } 309 } 310 if (!Found) { 311 SecIdx = CPSections.size(); 312 CPSections.push_back(SectionCPs(S, Align)); 313 } 314 315 if (Align > CPSections[SecIdx].Alignment) 316 CPSections[SecIdx].Alignment = Align; 317 CPSections[SecIdx].CPEs.push_back(i); 318 } 319 320 // Now print stuff into the calculated sections. 321 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 322 SwitchToSection(CPSections[i].S); 323 EmitAlignment(Log2_32(CPSections[i].Alignment)); 324 325 unsigned Offset = 0; 326 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 327 unsigned CPI = CPSections[i].CPEs[j]; 328 MachineConstantPoolEntry CPE = CP[CPI]; 329 330 // Emit inter-object padding for alignment. 331 unsigned AlignMask = CPE.getAlignment() - 1; 332 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 333 EmitZeros(NewOffset - Offset); 334 335 const Type *Ty = CPE.getType(); 336 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 337 338 O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 339 << CPI << ':'; 340 if (VerboseAsm) { 341 O.PadToColumn(TAI->getCommentColumn(), 1); 342 O << TAI->getCommentString() << " constant "; 343 WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent()); 344 } 345 O << '\n'; 346 if (CPE.isMachineConstantPoolEntry()) 347 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 348 else 349 EmitGlobalConstant(CPE.Val.ConstVal); 350 } 351 } 352} 353 354/// EmitJumpTableInfo - Print assembly representations of the jump tables used 355/// by the current function to the current output stream. 356/// 357void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 358 MachineFunction &MF) { 359 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 360 if (JT.empty()) return; 361 362 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 363 364 // Pick the directive to use to print the jump table entries, and switch to 365 // the appropriate section. 366 TargetLowering *LoweringInfo = TM.getTargetLowering(); 367 368 const Function *F = MF.getFunction(); 369 bool JTInDiffSection = false; 370 if (F->isWeakForLinker() || 371 (IsPic && !LoweringInfo->usesGlobalOffsetTable())) { 372 // In PIC mode, we need to emit the jump table to the same section as the 373 // function body itself, otherwise the label differences won't make sense. 374 // We should also do if the section name is NULL or function is declared in 375 // discardable section. 376 SwitchToSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); 377 } else { 378 // Otherwise, drop it in the readonly section. 379 const MCSection *ReadOnlySection = 380 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 381 SwitchToSection(ReadOnlySection); 382 JTInDiffSection = true; 383 } 384 385 EmitAlignment(Log2_32(MJTI->getAlignment())); 386 387 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 388 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 389 390 // If this jump table was deleted, ignore it. 391 if (JTBBs.empty()) continue; 392 393 // For PIC codegen, if possible we want to use the SetDirective to reduce 394 // the number of relocations the assembler will generate for the jump table. 395 // Set directives are all printed before the jump table itself. 396 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 397 if (TAI->getSetDirective() && IsPic) 398 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 399 if (EmittedSets.insert(JTBBs[ii])) 400 printPICJumpTableSetLabel(i, JTBBs[ii]); 401 402 // On some targets (e.g. darwin) we want to emit two consequtive labels 403 // before each jump table. The first label is never referenced, but tells 404 // the assembler and linker the extents of the jump table object. The 405 // second label is actually referenced by the code. 406 if (JTInDiffSection) { 407 if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) 408 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 409 } 410 411 O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 412 << '_' << i << ":\n"; 413 414 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 415 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 416 O << '\n'; 417 } 418 } 419} 420 421void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 422 const MachineBasicBlock *MBB, 423 unsigned uid) const { 424 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 425 426 // Use JumpTableDirective otherwise honor the entry size from the jump table 427 // info. 428 const char *JTEntryDirective = TAI->getJumpTableDirective(isPIC); 429 bool HadJTEntryDirective = JTEntryDirective != NULL; 430 if (!HadJTEntryDirective) { 431 JTEntryDirective = MJTI->getEntrySize() == 4 ? 432 TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); 433 } 434 435 O << JTEntryDirective << ' '; 436 437 // If we have emitted set directives for the jump table entries, print 438 // them rather than the entries themselves. If we're emitting PIC, then 439 // emit the table entries as differences between two text section labels. 440 // If we're emitting non-PIC code, then emit the entries as direct 441 // references to the target basic blocks. 442 if (!isPIC) { 443 printBasicBlockLabel(MBB, false, false, false); 444 } else if (TAI->getSetDirective()) { 445 O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() 446 << '_' << uid << "_set_" << MBB->getNumber(); 447 } else { 448 printBasicBlockLabel(MBB, false, false, false); 449 // If the arch uses custom Jump Table directives, don't calc relative to 450 // JT 451 if (!HadJTEntryDirective) 452 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" 453 << getFunctionNumber() << '_' << uid; 454 } 455} 456 457 458/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 459/// special global used by LLVM. If so, emit it and return true, otherwise 460/// do nothing and return false. 461bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 462 if (GV->getName() == "llvm.used") { 463 if (TAI->getUsedDirective() != 0) // No need to emit this at all. 464 EmitLLVMUsedList(GV->getInitializer()); 465 return true; 466 } 467 468 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 469 if (GV->getSection() == "llvm.metadata" || 470 GV->hasAvailableExternallyLinkage()) 471 return true; 472 473 if (!GV->hasAppendingLinkage()) return false; 474 475 assert(GV->hasInitializer() && "Not a special LLVM global!"); 476 477 const TargetData *TD = TM.getTargetData(); 478 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 479 if (GV->getName() == "llvm.global_ctors") { 480 SwitchToSection(getObjFileLowering().getStaticCtorSection()); 481 EmitAlignment(Align, 0); 482 EmitXXStructorList(GV->getInitializer()); 483 return true; 484 } 485 486 if (GV->getName() == "llvm.global_dtors") { 487 SwitchToSection(getObjFileLowering().getStaticDtorSection()); 488 EmitAlignment(Align, 0); 489 EmitXXStructorList(GV->getInitializer()); 490 return true; 491 } 492 493 return false; 494} 495 496/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each 497/// global in the specified llvm.used list for which emitUsedDirectiveFor 498/// is true, as being used with this directive. 499void AsmPrinter::EmitLLVMUsedList(Constant *List) { 500 const char *Directive = TAI->getUsedDirective(); 501 502 // Should be an array of 'i8*'. 503 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 504 if (InitList == 0) return; 505 506 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 507 const GlobalValue *GV = 508 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 509 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) { 510 O << Directive; 511 EmitConstantValueOnly(InitList->getOperand(i)); 512 O << '\n'; 513 } 514 } 515} 516 517/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 518/// function pointers, ignoring the init priority. 519void AsmPrinter::EmitXXStructorList(Constant *List) { 520 // Should be an array of '{ int, void ()* }' structs. The first value is the 521 // init priority, which we ignore. 522 if (!isa<ConstantArray>(List)) return; 523 ConstantArray *InitList = cast<ConstantArray>(List); 524 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 525 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 526 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 527 528 if (CS->getOperand(1)->isNullValue()) 529 return; // Found a null terminator, exit printing. 530 // Emit the function pointer. 531 EmitGlobalConstant(CS->getOperand(1)); 532 } 533} 534 535/// getGlobalLinkName - Returns the asm/link name of of the specified 536/// global variable. Should be overridden by each target asm printer to 537/// generate the appropriate value. 538const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV, 539 std::string &LinkName) const { 540 if (isa<Function>(GV)) { 541 LinkName += TAI->getFunctionAddrPrefix(); 542 LinkName += Mang->getMangledName(GV); 543 LinkName += TAI->getFunctionAddrSuffix(); 544 } else { 545 LinkName += TAI->getGlobalVarAddrPrefix(); 546 LinkName += Mang->getMangledName(GV); 547 LinkName += TAI->getGlobalVarAddrSuffix(); 548 } 549 550 return LinkName; 551} 552 553/// EmitExternalGlobal - Emit the external reference to a global variable. 554/// Should be overridden if an indirect reference should be used. 555void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { 556 std::string GLN; 557 O << getGlobalLinkName(GV, GLN); 558} 559 560 561 562//===----------------------------------------------------------------------===// 563/// LEB 128 number encoding. 564 565/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) 566/// representing an unsigned leb128 value. 567void AsmPrinter::PrintULEB128(unsigned Value) const { 568 char Buffer[20]; 569 do { 570 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 571 Value >>= 7; 572 if (Value) Byte |= 0x80; 573 O << "0x" << utohex_buffer(Byte, Buffer+20); 574 if (Value) O << ", "; 575 } while (Value); 576} 577 578/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) 579/// representing a signed leb128 value. 580void AsmPrinter::PrintSLEB128(int Value) const { 581 int Sign = Value >> (8 * sizeof(Value) - 1); 582 bool IsMore; 583 char Buffer[20]; 584 585 do { 586 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 587 Value >>= 7; 588 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 589 if (IsMore) Byte |= 0x80; 590 O << "0x" << utohex_buffer(Byte, Buffer+20); 591 if (IsMore) O << ", "; 592 } while (IsMore); 593} 594 595//===--------------------------------------------------------------------===// 596// Emission and print routines 597// 598 599/// PrintHex - Print a value as a hexidecimal value. 600/// 601void AsmPrinter::PrintHex(int Value) const { 602 char Buffer[20]; 603 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); 604} 605 606/// EOL - Print a newline character to asm stream. If a comment is present 607/// then it will be printed first. Comments should not contain '\n'. 608void AsmPrinter::EOL() const { 609 O << '\n'; 610} 611 612void AsmPrinter::EOL(const std::string &Comment) const { 613 if (VerboseAsm && !Comment.empty()) { 614 O.PadToColumn(TAI->getCommentColumn(), 1); 615 O << TAI->getCommentString() 616 << ' ' 617 << Comment; 618 } 619 O << '\n'; 620} 621 622void AsmPrinter::EOL(const char* Comment) const { 623 if (VerboseAsm && *Comment) { 624 O.PadToColumn(TAI->getCommentColumn(), 1); 625 O << TAI->getCommentString() 626 << ' ' 627 << Comment; 628 } 629 O << '\n'; 630} 631 632/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 633/// unsigned leb128 value. 634void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 635 if (TAI->hasLEB128()) { 636 O << "\t.uleb128\t" 637 << Value; 638 } else { 639 O << TAI->getData8bitsDirective(); 640 PrintULEB128(Value); 641 } 642} 643 644/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 645/// signed leb128 value. 646void AsmPrinter::EmitSLEB128Bytes(int Value) const { 647 if (TAI->hasLEB128()) { 648 O << "\t.sleb128\t" 649 << Value; 650 } else { 651 O << TAI->getData8bitsDirective(); 652 PrintSLEB128(Value); 653 } 654} 655 656/// EmitInt8 - Emit a byte directive and value. 657/// 658void AsmPrinter::EmitInt8(int Value) const { 659 O << TAI->getData8bitsDirective(); 660 PrintHex(Value & 0xFF); 661} 662 663/// EmitInt16 - Emit a short directive and value. 664/// 665void AsmPrinter::EmitInt16(int Value) const { 666 O << TAI->getData16bitsDirective(); 667 PrintHex(Value & 0xFFFF); 668} 669 670/// EmitInt32 - Emit a long directive and value. 671/// 672void AsmPrinter::EmitInt32(int Value) const { 673 O << TAI->getData32bitsDirective(); 674 PrintHex(Value); 675} 676 677/// EmitInt64 - Emit a long long directive and value. 678/// 679void AsmPrinter::EmitInt64(uint64_t Value) const { 680 if (TAI->getData64bitsDirective()) { 681 O << TAI->getData64bitsDirective(); 682 PrintHex(Value); 683 } else { 684 if (TM.getTargetData()->isBigEndian()) { 685 EmitInt32(unsigned(Value >> 32)); O << '\n'; 686 EmitInt32(unsigned(Value)); 687 } else { 688 EmitInt32(unsigned(Value)); O << '\n'; 689 EmitInt32(unsigned(Value >> 32)); 690 } 691 } 692} 693 694/// toOctal - Convert the low order bits of X into an octal digit. 695/// 696static inline char toOctal(int X) { 697 return (X&7)+'0'; 698} 699 700/// printStringChar - Print a char, escaped if necessary. 701/// 702static void printStringChar(formatted_raw_ostream &O, unsigned char C) { 703 if (C == '"') { 704 O << "\\\""; 705 } else if (C == '\\') { 706 O << "\\\\"; 707 } else if (isprint((unsigned char)C)) { 708 O << C; 709 } else { 710 switch(C) { 711 case '\b': O << "\\b"; break; 712 case '\f': O << "\\f"; break; 713 case '\n': O << "\\n"; break; 714 case '\r': O << "\\r"; break; 715 case '\t': O << "\\t"; break; 716 default: 717 O << '\\'; 718 O << toOctal(C >> 6); 719 O << toOctal(C >> 3); 720 O << toOctal(C >> 0); 721 break; 722 } 723 } 724} 725 726/// EmitString - Emit a string with quotes and a null terminator. 727/// Special characters are emitted properly. 728/// \literal (Eg. '\t') \endliteral 729void AsmPrinter::EmitString(const std::string &String) const { 730 EmitString(String.c_str(), String.size()); 731} 732 733void AsmPrinter::EmitString(const char *String, unsigned Size) const { 734 const char* AscizDirective = TAI->getAscizDirective(); 735 if (AscizDirective) 736 O << AscizDirective; 737 else 738 O << TAI->getAsciiDirective(); 739 O << '\"'; 740 for (unsigned i = 0; i < Size; ++i) 741 printStringChar(O, String[i]); 742 if (AscizDirective) 743 O << '\"'; 744 else 745 O << "\\0\""; 746} 747 748 749/// EmitFile - Emit a .file directive. 750void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 751 O << "\t.file\t" << Number << " \""; 752 for (unsigned i = 0, N = Name.size(); i < N; ++i) 753 printStringChar(O, Name[i]); 754 O << '\"'; 755} 756 757 758//===----------------------------------------------------------------------===// 759 760// EmitAlignment - Emit an alignment directive to the specified power of 761// two boundary. For example, if you pass in 3 here, you will get an 8 762// byte alignment. If a global value is specified, and if that global has 763// an explicit alignment requested, it will unconditionally override the 764// alignment request. However, if ForcedAlignBits is specified, this value 765// has final say: the ultimate alignment will be the max of ForcedAlignBits 766// and the alignment computed with NumBits and the global. 767// 768// The algorithm is: 769// Align = NumBits; 770// if (GV && GV->hasalignment) Align = GV->getalignment(); 771// Align = std::max(Align, ForcedAlignBits); 772// 773void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 774 unsigned ForcedAlignBits, 775 bool UseFillExpr) const { 776 if (GV && GV->getAlignment()) 777 NumBits = Log2_32(GV->getAlignment()); 778 NumBits = std::max(NumBits, ForcedAlignBits); 779 780 if (NumBits == 0) return; // No need to emit alignment. 781 if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; 782 O << TAI->getAlignDirective() << NumBits; 783 784 if (CurrentSection && CurrentSection->getKind().isText()) 785 if (unsigned FillValue = TAI->getTextAlignFillValue()) { 786 O << ','; 787 PrintHex(FillValue); 788 } 789 O << '\n'; 790} 791 792/// EmitZeros - Emit a block of zeros. 793/// 794void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const { 795 if (NumZeros) { 796 if (TAI->getZeroDirective()) { 797 O << TAI->getZeroDirective() << NumZeros; 798 if (TAI->getZeroDirectiveSuffix()) 799 O << TAI->getZeroDirectiveSuffix(); 800 O << '\n'; 801 } else { 802 for (; NumZeros; --NumZeros) 803 O << TAI->getData8bitsDirective(AddrSpace) << "0\n"; 804 } 805 } 806} 807 808// Print out the specified constant, without a storage class. Only the 809// constants valid in constant expressions can occur here. 810void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 811 if (CV->isNullValue() || isa<UndefValue>(CV)) 812 O << '0'; 813 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 814 O << CI->getZExtValue(); 815 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 816 // This is a constant address for a global variable or function. Use the 817 // name of the variable or function as the address value, possibly 818 // decorating it with GlobalVarAddrPrefix/Suffix or 819 // FunctionAddrPrefix/Suffix (these all default to "" ) 820 if (isa<Function>(GV)) { 821 O << TAI->getFunctionAddrPrefix() 822 << Mang->getMangledName(GV) 823 << TAI->getFunctionAddrSuffix(); 824 } else { 825 O << TAI->getGlobalVarAddrPrefix() 826 << Mang->getMangledName(GV) 827 << TAI->getGlobalVarAddrSuffix(); 828 } 829 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 830 const TargetData *TD = TM.getTargetData(); 831 unsigned Opcode = CE->getOpcode(); 832 switch (Opcode) { 833 case Instruction::Trunc: 834 case Instruction::ZExt: 835 case Instruction::SExt: 836 case Instruction::FPTrunc: 837 case Instruction::FPExt: 838 case Instruction::UIToFP: 839 case Instruction::SIToFP: 840 case Instruction::FPToUI: 841 case Instruction::FPToSI: 842 llvm_unreachable("FIXME: Don't support this constant cast expr"); 843 case Instruction::GetElementPtr: { 844 // generate a symbolic expression for the byte address 845 const Constant *ptrVal = CE->getOperand(0); 846 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 847 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 848 idxVec.size())) { 849 // Truncate/sext the offset to the pointer size. 850 if (TD->getPointerSizeInBits() != 64) { 851 int SExtAmount = 64-TD->getPointerSizeInBits(); 852 Offset = (Offset << SExtAmount) >> SExtAmount; 853 } 854 855 if (Offset) 856 O << '('; 857 EmitConstantValueOnly(ptrVal); 858 if (Offset > 0) 859 O << ") + " << Offset; 860 else if (Offset < 0) 861 O << ") - " << -Offset; 862 } else { 863 EmitConstantValueOnly(ptrVal); 864 } 865 break; 866 } 867 case Instruction::BitCast: 868 return EmitConstantValueOnly(CE->getOperand(0)); 869 870 case Instruction::IntToPtr: { 871 // Handle casts to pointers by changing them into casts to the appropriate 872 // integer type. This promotes constant folding and simplifies this code. 873 Constant *Op = CE->getOperand(0); 874 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()), 875 false/*ZExt*/); 876 return EmitConstantValueOnly(Op); 877 } 878 879 880 case Instruction::PtrToInt: { 881 // Support only foldable casts to/from pointers that can be eliminated by 882 // changing the pointer to the appropriately sized integer type. 883 Constant *Op = CE->getOperand(0); 884 const Type *Ty = CE->getType(); 885 886 // We can emit the pointer value into this slot if the slot is an 887 // integer slot greater or equal to the size of the pointer. 888 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType())) 889 return EmitConstantValueOnly(Op); 890 891 O << "(("; 892 EmitConstantValueOnly(Op); 893 APInt ptrMask = 894 APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType())); 895 896 SmallString<40> S; 897 ptrMask.toStringUnsigned(S); 898 O << ") & " << S.c_str() << ')'; 899 break; 900 } 901 case Instruction::Add: 902 case Instruction::Sub: 903 case Instruction::And: 904 case Instruction::Or: 905 case Instruction::Xor: 906 O << '('; 907 EmitConstantValueOnly(CE->getOperand(0)); 908 O << ')'; 909 switch (Opcode) { 910 case Instruction::Add: 911 O << " + "; 912 break; 913 case Instruction::Sub: 914 O << " - "; 915 break; 916 case Instruction::And: 917 O << " & "; 918 break; 919 case Instruction::Or: 920 O << " | "; 921 break; 922 case Instruction::Xor: 923 O << " ^ "; 924 break; 925 default: 926 break; 927 } 928 O << '('; 929 EmitConstantValueOnly(CE->getOperand(1)); 930 O << ')'; 931 break; 932 default: 933 llvm_unreachable("Unsupported operator!"); 934 } 935 } else { 936 llvm_unreachable("Unknown constant value!"); 937 } 938} 939 940/// printAsCString - Print the specified array as a C compatible string, only if 941/// the predicate isString is true. 942/// 943static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA, 944 unsigned LastElt) { 945 assert(CVA->isString() && "Array is not string compatible!"); 946 947 O << '\"'; 948 for (unsigned i = 0; i != LastElt; ++i) { 949 unsigned char C = 950 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 951 printStringChar(O, C); 952 } 953 O << '\"'; 954} 955 956/// EmitString - Emit a zero-byte-terminated string constant. 957/// 958void AsmPrinter::EmitString(const ConstantArray *CVA) const { 959 unsigned NumElts = CVA->getNumOperands(); 960 if (TAI->getAscizDirective() && NumElts && 961 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 962 O << TAI->getAscizDirective(); 963 printAsCString(O, CVA, NumElts-1); 964 } else { 965 O << TAI->getAsciiDirective(); 966 printAsCString(O, CVA, NumElts); 967 } 968 O << '\n'; 969} 970 971void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA, 972 unsigned AddrSpace) { 973 if (CVA->isString()) { 974 EmitString(CVA); 975 } else { // Not a string. Print the values in successive locations 976 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 977 EmitGlobalConstant(CVA->getOperand(i), AddrSpace); 978 } 979} 980 981void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) { 982 const VectorType *PTy = CP->getType(); 983 984 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 985 EmitGlobalConstant(CP->getOperand(I)); 986} 987 988void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS, 989 unsigned AddrSpace) { 990 // Print the fields in successive locations. Pad to align if needed! 991 const TargetData *TD = TM.getTargetData(); 992 unsigned Size = TD->getTypeAllocSize(CVS->getType()); 993 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 994 uint64_t sizeSoFar = 0; 995 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 996 const Constant* field = CVS->getOperand(i); 997 998 // Check if padding is needed and insert one or more 0s. 999 uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); 1000 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 1001 - cvsLayout->getElementOffset(i)) - fieldSize; 1002 sizeSoFar += fieldSize + padSize; 1003 1004 // Now print the actual field value. 1005 EmitGlobalConstant(field, AddrSpace); 1006 1007 // Insert padding - this may include padding to increase the size of the 1008 // current field up to the ABI size (if the struct is not packed) as well 1009 // as padding to ensure that the next field starts at the right offset. 1010 EmitZeros(padSize, AddrSpace); 1011 } 1012 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 1013 "Layout of constant struct may be incorrect!"); 1014} 1015 1016void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP, 1017 unsigned AddrSpace) { 1018 // FP Constants are printed as integer constants to avoid losing 1019 // precision... 1020 LLVMContext &Context = CFP->getContext(); 1021 const TargetData *TD = TM.getTargetData(); 1022 if (CFP->getType() == Type::getDoubleTy(Context)) { 1023 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 1024 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1025 if (TAI->getData64bitsDirective(AddrSpace)) { 1026 O << TAI->getData64bitsDirective(AddrSpace) << i; 1027 if (VerboseAsm) { 1028 O.PadToColumn(TAI->getCommentColumn(), 1); 1029 O << TAI->getCommentString() << " double " << Val; 1030 } 1031 O << '\n'; 1032 } else if (TD->isBigEndian()) { 1033 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1034 if (VerboseAsm) { 1035 O.PadToColumn(TAI->getCommentColumn(), 1); 1036 O << TAI->getCommentString() 1037 << " most significant word of double " << Val; 1038 } 1039 O << '\n'; 1040 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1041 if (VerboseAsm) { 1042 O.PadToColumn(TAI->getCommentColumn(), 1); 1043 O << TAI->getCommentString() 1044 << " least significant word of double " << Val; 1045 } 1046 O << '\n'; 1047 } else { 1048 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1049 if (VerboseAsm) { 1050 O.PadToColumn(TAI->getCommentColumn(), 1); 1051 O << TAI->getCommentString() 1052 << " least significant word of double " << Val; 1053 } 1054 O << '\n'; 1055 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1056 if (VerboseAsm) { 1057 O.PadToColumn(TAI->getCommentColumn(), 1); 1058 O << TAI->getCommentString() 1059 << " most significant word of double " << Val; 1060 } 1061 O << '\n'; 1062 } 1063 return; 1064 } else if (CFP->getType() == Type::getFloatTy(Context)) { 1065 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1066 O << TAI->getData32bitsDirective(AddrSpace) 1067 << CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1068 if (VerboseAsm) { 1069 O.PadToColumn(TAI->getCommentColumn(), 1); 1070 O << TAI->getCommentString() << " float " << Val; 1071 } 1072 O << '\n'; 1073 return; 1074 } else if (CFP->getType() == Type::getX86_FP80Ty(Context)) { 1075 // all long double variants are printed as hex 1076 // api needed to prevent premature destruction 1077 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1078 const uint64_t *p = api.getRawData(); 1079 // Convert to double so we can print the approximate val as a comment. 1080 APFloat DoubleVal = CFP->getValueAPF(); 1081 bool ignored; 1082 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1083 &ignored); 1084 if (TD->isBigEndian()) { 1085 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1086 if (VerboseAsm) { 1087 O.PadToColumn(TAI->getCommentColumn(), 1); 1088 O << TAI->getCommentString() 1089 << " most significant halfword of x86_fp80 ~" 1090 << DoubleVal.convertToDouble(); 1091 } 1092 O << '\n'; 1093 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1094 if (VerboseAsm) { 1095 O.PadToColumn(TAI->getCommentColumn(), 1); 1096 O << TAI->getCommentString() << " next halfword"; 1097 } 1098 O << '\n'; 1099 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1100 if (VerboseAsm) { 1101 O.PadToColumn(TAI->getCommentColumn(), 1); 1102 O << TAI->getCommentString() << " next halfword"; 1103 } 1104 O << '\n'; 1105 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1106 if (VerboseAsm) { 1107 O.PadToColumn(TAI->getCommentColumn(), 1); 1108 O << TAI->getCommentString() << " next halfword"; 1109 } 1110 O << '\n'; 1111 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1112 if (VerboseAsm) { 1113 O.PadToColumn(TAI->getCommentColumn(), 1); 1114 O << TAI->getCommentString() 1115 << " least significant halfword"; 1116 } 1117 O << '\n'; 1118 } else { 1119 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1120 if (VerboseAsm) { 1121 O.PadToColumn(TAI->getCommentColumn(), 1); 1122 O << TAI->getCommentString() 1123 << " least significant halfword of x86_fp80 ~" 1124 << DoubleVal.convertToDouble(); 1125 } 1126 O << '\n'; 1127 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1128 if (VerboseAsm) { 1129 O.PadToColumn(TAI->getCommentColumn(), 1); 1130 O << TAI->getCommentString() 1131 << " next halfword"; 1132 } 1133 O << '\n'; 1134 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1135 if (VerboseAsm) { 1136 O.PadToColumn(TAI->getCommentColumn(), 1); 1137 O << TAI->getCommentString() 1138 << " next halfword"; 1139 } 1140 O << '\n'; 1141 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1142 if (VerboseAsm) { 1143 O.PadToColumn(TAI->getCommentColumn(), 1); 1144 O << TAI->getCommentString() 1145 << " next halfword"; 1146 } 1147 O << '\n'; 1148 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1149 if (VerboseAsm) { 1150 O.PadToColumn(TAI->getCommentColumn(), 1); 1151 O << TAI->getCommentString() 1152 << " most significant halfword"; 1153 } 1154 O << '\n'; 1155 } 1156 EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) - 1157 TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace); 1158 return; 1159 } else if (CFP->getType() == Type::getPPC_FP128Ty(Context)) { 1160 // all long double variants are printed as hex 1161 // api needed to prevent premature destruction 1162 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1163 const uint64_t *p = api.getRawData(); 1164 if (TD->isBigEndian()) { 1165 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1166 if (VerboseAsm) { 1167 O.PadToColumn(TAI->getCommentColumn(), 1); 1168 O << TAI->getCommentString() 1169 << " most significant word of ppc_fp128"; 1170 } 1171 O << '\n'; 1172 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1173 if (VerboseAsm) { 1174 O.PadToColumn(TAI->getCommentColumn(), 1); 1175 O << TAI->getCommentString() 1176 << " next word"; 1177 } 1178 O << '\n'; 1179 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1180 if (VerboseAsm) { 1181 O.PadToColumn(TAI->getCommentColumn(), 1); 1182 O << TAI->getCommentString() 1183 << " next word"; 1184 } 1185 O << '\n'; 1186 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1187 if (VerboseAsm) { 1188 O.PadToColumn(TAI->getCommentColumn(), 1); 1189 O << TAI->getCommentString() 1190 << " least significant word"; 1191 } 1192 O << '\n'; 1193 } else { 1194 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1195 if (VerboseAsm) { 1196 O.PadToColumn(TAI->getCommentColumn(), 1); 1197 O << TAI->getCommentString() 1198 << " least significant word of ppc_fp128"; 1199 } 1200 O << '\n'; 1201 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1202 if (VerboseAsm) { 1203 O.PadToColumn(TAI->getCommentColumn(), 1); 1204 O << TAI->getCommentString() 1205 << " next word"; 1206 } 1207 O << '\n'; 1208 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1209 if (VerboseAsm) { 1210 O.PadToColumn(TAI->getCommentColumn(), 1); 1211 O << TAI->getCommentString() 1212 << " next word"; 1213 } 1214 O << '\n'; 1215 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1216 if (VerboseAsm) { 1217 O.PadToColumn(TAI->getCommentColumn(), 1); 1218 O << TAI->getCommentString() 1219 << " most significant word"; 1220 } 1221 O << '\n'; 1222 } 1223 return; 1224 } else llvm_unreachable("Floating point constant type not handled"); 1225} 1226 1227void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 1228 unsigned AddrSpace) { 1229 const TargetData *TD = TM.getTargetData(); 1230 unsigned BitWidth = CI->getBitWidth(); 1231 assert(isPowerOf2_32(BitWidth) && 1232 "Non-power-of-2-sized integers not handled!"); 1233 1234 // We don't expect assemblers to support integer data directives 1235 // for more than 64 bits, so we emit the data in at most 64-bit 1236 // quantities at a time. 1237 const uint64_t *RawData = CI->getValue().getRawData(); 1238 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1239 uint64_t Val; 1240 if (TD->isBigEndian()) 1241 Val = RawData[e - i - 1]; 1242 else 1243 Val = RawData[i]; 1244 1245 if (TAI->getData64bitsDirective(AddrSpace)) 1246 O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n'; 1247 else if (TD->isBigEndian()) { 1248 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1249 if (VerboseAsm) { 1250 O.PadToColumn(TAI->getCommentColumn(), 1); 1251 O << TAI->getCommentString() 1252 << " most significant half of i64 " << Val; 1253 } 1254 O << '\n'; 1255 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1256 if (VerboseAsm) { 1257 O.PadToColumn(TAI->getCommentColumn(), 1); 1258 O << TAI->getCommentString() 1259 << " least significant half of i64 " << Val; 1260 } 1261 O << '\n'; 1262 } else { 1263 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); 1264 if (VerboseAsm) { 1265 O.PadToColumn(TAI->getCommentColumn(), 1); 1266 O << TAI->getCommentString() 1267 << " least significant half of i64 " << Val; 1268 } 1269 O << '\n'; 1270 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); 1271 if (VerboseAsm) { 1272 O.PadToColumn(TAI->getCommentColumn(), 1); 1273 O << TAI->getCommentString() 1274 << " most significant half of i64 " << Val; 1275 } 1276 O << '\n'; 1277 } 1278 } 1279} 1280 1281/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1282void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1283 const TargetData *TD = TM.getTargetData(); 1284 const Type *type = CV->getType(); 1285 unsigned Size = TD->getTypeAllocSize(type); 1286 1287 if (CV->isNullValue() || isa<UndefValue>(CV)) { 1288 EmitZeros(Size, AddrSpace); 1289 return; 1290 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 1291 EmitGlobalConstantArray(CVA , AddrSpace); 1292 return; 1293 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 1294 EmitGlobalConstantStruct(CVS, AddrSpace); 1295 return; 1296 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1297 EmitGlobalConstantFP(CFP, AddrSpace); 1298 return; 1299 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1300 // Small integers are handled below; large integers are handled here. 1301 if (Size > 4) { 1302 EmitGlobalConstantLargeInt(CI, AddrSpace); 1303 return; 1304 } 1305 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1306 EmitGlobalConstantVector(CP); 1307 return; 1308 } 1309 1310 printDataDirective(type, AddrSpace); 1311 EmitConstantValueOnly(CV); 1312 if (VerboseAsm) { 1313 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1314 SmallString<40> S; 1315 CI->getValue().toStringUnsigned(S, 16); 1316 O.PadToColumn(TAI->getCommentColumn(), 1); 1317 O << TAI->getCommentString() << " 0x" << S.c_str(); 1318 } 1319 } 1320 O << '\n'; 1321} 1322 1323void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1324 // Target doesn't support this yet! 1325 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1326} 1327 1328/// PrintSpecial - Print information related to the specified machine instr 1329/// that is independent of the operand, and may be independent of the instr 1330/// itself. This can be useful for portably encoding the comment character 1331/// or other bits of target-specific knowledge into the asmstrings. The 1332/// syntax used is ${:comment}. Targets can override this to add support 1333/// for their own strange codes. 1334void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1335 if (!strcmp(Code, "private")) { 1336 O << TAI->getPrivateGlobalPrefix(); 1337 } else if (!strcmp(Code, "comment")) { 1338 if (VerboseAsm) 1339 O << TAI->getCommentString(); 1340 } else if (!strcmp(Code, "uid")) { 1341 // Comparing the address of MI isn't sufficient, because machineinstrs may 1342 // be allocated to the same address across functions. 1343 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1344 1345 // If this is a new LastFn instruction, bump the counter. 1346 if (LastMI != MI || LastFn != ThisF) { 1347 ++Counter; 1348 LastMI = MI; 1349 LastFn = ThisF; 1350 } 1351 O << Counter; 1352 } else { 1353 std::string msg; 1354 raw_string_ostream Msg(msg); 1355 Msg << "Unknown special formatter '" << Code 1356 << "' for machine instr: " << *MI; 1357 llvm_report_error(Msg.str()); 1358 } 1359} 1360 1361/// processDebugLoc - Processes the debug information of each machine 1362/// instruction's DebugLoc. 1363void AsmPrinter::processDebugLoc(DebugLoc DL) { 1364 if (!TAI || !DW) 1365 return; 1366 1367 if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) { 1368 if (!DL.isUnknown()) { 1369 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL); 1370 1371 if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT) 1372 printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col, 1373 DICompileUnit(CurDLT.CompileUnit))); 1374 1375 PrevDLT = CurDLT; 1376 } 1377 } 1378} 1379 1380/// printInlineAsm - This method formats and prints the specified machine 1381/// instruction that is an inline asm. 1382void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1383 unsigned NumOperands = MI->getNumOperands(); 1384 1385 // Count the number of register definitions. 1386 unsigned NumDefs = 0; 1387 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1388 ++NumDefs) 1389 assert(NumDefs != NumOperands-1 && "No asm string?"); 1390 1391 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1392 1393 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1394 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1395 1396 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1397 // These are useful to see where empty asm's wound up. 1398 if (AsmStr[0] == 0) { 1399 O << TAI->getCommentString() << TAI->getInlineAsmStart() << "\n\t"; 1400 O << TAI->getCommentString() << TAI->getInlineAsmEnd() << '\n'; 1401 return; 1402 } 1403 1404 O << TAI->getCommentString() << TAI->getInlineAsmStart() << "\n\t"; 1405 1406 // The variant of the current asmprinter. 1407 int AsmPrinterVariant = TAI->getAssemblerDialect(); 1408 1409 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1410 const char *LastEmitted = AsmStr; // One past the last character emitted. 1411 1412 while (*LastEmitted) { 1413 switch (*LastEmitted) { 1414 default: { 1415 // Not a special case, emit the string section literally. 1416 const char *LiteralEnd = LastEmitted+1; 1417 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1418 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1419 ++LiteralEnd; 1420 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1421 O.write(LastEmitted, LiteralEnd-LastEmitted); 1422 LastEmitted = LiteralEnd; 1423 break; 1424 } 1425 case '\n': 1426 ++LastEmitted; // Consume newline character. 1427 O << '\n'; // Indent code with newline. 1428 break; 1429 case '$': { 1430 ++LastEmitted; // Consume '$' character. 1431 bool Done = true; 1432 1433 // Handle escapes. 1434 switch (*LastEmitted) { 1435 default: Done = false; break; 1436 case '$': // $$ -> $ 1437 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1438 O << '$'; 1439 ++LastEmitted; // Consume second '$' character. 1440 break; 1441 case '(': // $( -> same as GCC's { character. 1442 ++LastEmitted; // Consume '(' character. 1443 if (CurVariant != -1) { 1444 llvm_report_error("Nested variants found in inline asm string: '" 1445 + std::string(AsmStr) + "'"); 1446 } 1447 CurVariant = 0; // We're in the first variant now. 1448 break; 1449 case '|': 1450 ++LastEmitted; // consume '|' character. 1451 if (CurVariant == -1) 1452 O << '|'; // this is gcc's behavior for | outside a variant 1453 else 1454 ++CurVariant; // We're in the next variant. 1455 break; 1456 case ')': // $) -> same as GCC's } char. 1457 ++LastEmitted; // consume ')' character. 1458 if (CurVariant == -1) 1459 O << '}'; // this is gcc's behavior for } outside a variant 1460 else 1461 CurVariant = -1; 1462 break; 1463 } 1464 if (Done) break; 1465 1466 bool HasCurlyBraces = false; 1467 if (*LastEmitted == '{') { // ${variable} 1468 ++LastEmitted; // Consume '{' character. 1469 HasCurlyBraces = true; 1470 } 1471 1472 // If we have ${:foo}, then this is not a real operand reference, it is a 1473 // "magic" string reference, just like in .td files. Arrange to call 1474 // PrintSpecial. 1475 if (HasCurlyBraces && *LastEmitted == ':') { 1476 ++LastEmitted; 1477 const char *StrStart = LastEmitted; 1478 const char *StrEnd = strchr(StrStart, '}'); 1479 if (StrEnd == 0) { 1480 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '" 1481 + std::string(AsmStr) + "'"); 1482 } 1483 1484 std::string Val(StrStart, StrEnd); 1485 PrintSpecial(MI, Val.c_str()); 1486 LastEmitted = StrEnd+1; 1487 break; 1488 } 1489 1490 const char *IDStart = LastEmitted; 1491 char *IDEnd; 1492 errno = 0; 1493 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1494 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1495 llvm_report_error("Bad $ operand number in inline asm string: '" 1496 + std::string(AsmStr) + "'"); 1497 } 1498 LastEmitted = IDEnd; 1499 1500 char Modifier[2] = { 0, 0 }; 1501 1502 if (HasCurlyBraces) { 1503 // If we have curly braces, check for a modifier character. This 1504 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1505 if (*LastEmitted == ':') { 1506 ++LastEmitted; // Consume ':' character. 1507 if (*LastEmitted == 0) { 1508 llvm_report_error("Bad ${:} expression in inline asm string: '" 1509 + std::string(AsmStr) + "'"); 1510 } 1511 1512 Modifier[0] = *LastEmitted; 1513 ++LastEmitted; // Consume modifier character. 1514 } 1515 1516 if (*LastEmitted != '}') { 1517 llvm_report_error("Bad ${} expression in inline asm string: '" 1518 + std::string(AsmStr) + "'"); 1519 } 1520 ++LastEmitted; // Consume '}' character. 1521 } 1522 1523 if ((unsigned)Val >= NumOperands-1) { 1524 llvm_report_error("Invalid $ operand number in inline asm string: '" 1525 + std::string(AsmStr) + "'"); 1526 } 1527 1528 // Okay, we finally have a value number. Ask the target to print this 1529 // operand! 1530 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1531 unsigned OpNo = 1; 1532 1533 bool Error = false; 1534 1535 // Scan to find the machine operand number for the operand. 1536 for (; Val; --Val) { 1537 if (OpNo >= MI->getNumOperands()) break; 1538 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1539 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1540 } 1541 1542 if (OpNo >= MI->getNumOperands()) { 1543 Error = true; 1544 } else { 1545 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1546 ++OpNo; // Skip over the ID number. 1547 1548 if (Modifier[0]=='l') // labels are target independent 1549 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), 1550 false, false, false); 1551 else { 1552 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1553 if ((OpFlags & 7) == 4) { 1554 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1555 Modifier[0] ? Modifier : 0); 1556 } else { 1557 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1558 Modifier[0] ? Modifier : 0); 1559 } 1560 } 1561 } 1562 if (Error) { 1563 std::string msg; 1564 raw_string_ostream Msg(msg); 1565 Msg << "Invalid operand found in inline asm: '" 1566 << AsmStr << "'\n"; 1567 MI->print(Msg); 1568 llvm_report_error(Msg.str()); 1569 } 1570 } 1571 break; 1572 } 1573 } 1574 } 1575 O << "\n\t" << TAI->getCommentString() << TAI->getInlineAsmEnd() << '\n'; 1576} 1577 1578/// printImplicitDef - This method prints the specified machine instruction 1579/// that is an implicit def. 1580void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1581 if (VerboseAsm) { 1582 O.PadToColumn(TAI->getCommentColumn(), 1); 1583 O << TAI->getCommentString() << " implicit-def: " 1584 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; 1585 } 1586} 1587 1588/// printLabel - This method prints a local label used by debug and 1589/// exception handling tables. 1590void AsmPrinter::printLabel(const MachineInstr *MI) const { 1591 printLabel(MI->getOperand(0).getImm()); 1592} 1593 1594void AsmPrinter::printLabel(unsigned Id) const { 1595 O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; 1596} 1597 1598/// printDeclare - This method prints a local variable declaration used by 1599/// debug tables. 1600/// FIXME: It doesn't really print anything rather it inserts a DebugVariable 1601/// entry into dwarf table. 1602void AsmPrinter::printDeclare(const MachineInstr *MI) const { 1603 unsigned FI = MI->getOperand(0).getIndex(); 1604 GlobalValue *GV = MI->getOperand(1).getGlobal(); 1605 DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI); 1606} 1607 1608/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1609/// instruction, using the specified assembler variant. Targets should 1610/// overried this to format as appropriate. 1611bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1612 unsigned AsmVariant, const char *ExtraCode) { 1613 // Target doesn't support this yet! 1614 return true; 1615} 1616 1617bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1618 unsigned AsmVariant, 1619 const char *ExtraCode) { 1620 // Target doesn't support this yet! 1621 return true; 1622} 1623 1624/// printBasicBlockLabel - This method prints the label for the specified 1625/// MachineBasicBlock 1626void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, 1627 bool printAlign, 1628 bool printColon, 1629 bool printComment) const { 1630 if (printAlign) { 1631 unsigned Align = MBB->getAlignment(); 1632 if (Align) 1633 EmitAlignment(Log2_32(Align)); 1634 } 1635 1636 O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' 1637 << MBB->getNumber(); 1638 if (printColon) 1639 O << ':'; 1640 if (printComment) { 1641 if (const BasicBlock *BB = MBB->getBasicBlock()) 1642 if (BB->hasName()) { 1643 O.PadToColumn(TAI->getCommentColumn(), 1); 1644 O << TAI->getCommentString() << ' '; 1645 WriteAsOperand(O, BB, /*PrintType=*/false); 1646 } 1647 1648 if (printColon) 1649 EmitComments(*MBB); 1650 } 1651} 1652 1653/// printPICJumpTableSetLabel - This method prints a set label for the 1654/// specified MachineBasicBlock for a jumptable entry. 1655void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1656 const MachineBasicBlock *MBB) const { 1657 if (!TAI->getSetDirective()) 1658 return; 1659 1660 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1661 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1662 printBasicBlockLabel(MBB, false, false, false); 1663 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1664 << '_' << uid << '\n'; 1665} 1666 1667void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1668 const MachineBasicBlock *MBB) const { 1669 if (!TAI->getSetDirective()) 1670 return; 1671 1672 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() 1673 << getFunctionNumber() << '_' << uid << '_' << uid2 1674 << "_set_" << MBB->getNumber() << ','; 1675 printBasicBlockLabel(MBB, false, false, false); 1676 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1677 << '_' << uid << '_' << uid2 << '\n'; 1678} 1679 1680/// printDataDirective - This method prints the asm directive for the 1681/// specified type. 1682void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { 1683 const TargetData *TD = TM.getTargetData(); 1684 switch (type->getTypeID()) { 1685 case Type::FloatTyID: case Type::DoubleTyID: 1686 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1687 assert(0 && "Should have already output floating point constant."); 1688 default: 1689 assert(0 && "Can't handle printing this type of thing"); 1690 case Type::IntegerTyID: { 1691 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1692 if (BitWidth <= 8) 1693 O << TAI->getData8bitsDirective(AddrSpace); 1694 else if (BitWidth <= 16) 1695 O << TAI->getData16bitsDirective(AddrSpace); 1696 else if (BitWidth <= 32) 1697 O << TAI->getData32bitsDirective(AddrSpace); 1698 else if (BitWidth <= 64) { 1699 assert(TAI->getData64bitsDirective(AddrSpace) && 1700 "Target cannot handle 64-bit constant exprs!"); 1701 O << TAI->getData64bitsDirective(AddrSpace); 1702 } else { 1703 llvm_unreachable("Target cannot handle given data directive width!"); 1704 } 1705 break; 1706 } 1707 case Type::PointerTyID: 1708 if (TD->getPointerSize() == 8) { 1709 assert(TAI->getData64bitsDirective(AddrSpace) && 1710 "Target cannot handle 64-bit pointer exprs!"); 1711 O << TAI->getData64bitsDirective(AddrSpace); 1712 } else if (TD->getPointerSize() == 2) { 1713 O << TAI->getData16bitsDirective(AddrSpace); 1714 } else if (TD->getPointerSize() == 1) { 1715 O << TAI->getData8bitsDirective(AddrSpace); 1716 } else { 1717 O << TAI->getData32bitsDirective(AddrSpace); 1718 } 1719 break; 1720 } 1721} 1722 1723void AsmPrinter::printVisibility(const std::string& Name, 1724 unsigned Visibility) const { 1725 if (Visibility == GlobalValue::HiddenVisibility) { 1726 if (const char *Directive = TAI->getHiddenDirective()) 1727 O << Directive << Name << '\n'; 1728 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1729 if (const char *Directive = TAI->getProtectedDirective()) 1730 O << Directive << Name << '\n'; 1731 } 1732} 1733 1734void AsmPrinter::printOffset(int64_t Offset) const { 1735 if (Offset > 0) 1736 O << '+' << Offset; 1737 else if (Offset < 0) 1738 O << Offset; 1739} 1740 1741void AsmPrinter::printMCInst(const MCInst *MI) { 1742 llvm_unreachable("MCInst printing unavailable on this target!"); 1743} 1744 1745GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1746 if (!S->usesMetadata()) 1747 return 0; 1748 1749 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1750 if (GCPI != GCMetadataPrinters.end()) 1751 return GCPI->second; 1752 1753 const char *Name = S->getName().c_str(); 1754 1755 for (GCMetadataPrinterRegistry::iterator 1756 I = GCMetadataPrinterRegistry::begin(), 1757 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1758 if (strcmp(Name, I->getName()) == 0) { 1759 GCMetadataPrinter *GMP = I->instantiate(); 1760 GMP->S = S; 1761 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1762 return GMP; 1763 } 1764 1765 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1766 llvm_unreachable(0); 1767} 1768 1769/// EmitComments - Pretty-print comments for instructions 1770void AsmPrinter::EmitComments(const MachineInstr &MI) const { 1771 if (!VerboseAsm || 1772 MI.getDebugLoc().isUnknown()) 1773 return; 1774 1775 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); 1776 1777 // Print source line info 1778 O.PadToColumn(TAI->getCommentColumn(), 1); 1779 O << TAI->getCommentString() << " SrcLine "; 1780 if (DLT.CompileUnit->hasInitializer()) { 1781 Constant *Name = DLT.CompileUnit->getInitializer(); 1782 if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name)) 1783 if (NameString->isString()) 1784 O << NameString->getAsString() << " "; 1785 } 1786 O << DLT.Line; 1787 if (DLT.Col != 0) 1788 O << ":" << DLT.Col; 1789} 1790 1791/// EmitComments - Pretty-print comments for instructions 1792void AsmPrinter::EmitComments(const MCInst &MI) const 1793{ 1794 if (VerboseAsm) { 1795 if (!MI.getDebugLoc().isUnknown()) { 1796 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); 1797 1798 // Print source line info 1799 O.PadToColumn(TAI->getCommentColumn(), 1); 1800 O << TAI->getCommentString() << " SrcLine "; 1801 if (DLT.CompileUnit->hasInitializer()) { 1802 Constant *Name = DLT.CompileUnit->getInitializer(); 1803 if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name)) 1804 if (NameString->isString()) { 1805 O << NameString->getAsString() << " "; 1806 } 1807 } 1808 O << DLT.Line; 1809 if (DLT.Col != 0) 1810 O << ":" << DLT.Col; 1811 } 1812 } 1813} 1814 1815/// EmitComments - Pretty-print comments for basic blocks 1816void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const 1817{ 1818 if (ExuberantAsm) { 1819 // Add loop depth information 1820 const MachineLoop *loop = LI->getLoopFor(&MBB); 1821 1822 if (loop) { 1823 // Print a newline after bb# annotation. 1824 O << "\n"; 1825 O.PadToColumn(TAI->getCommentColumn(), 1); 1826 O << TAI->getCommentString() << " Loop Depth " << loop->getLoopDepth() 1827 << '\n'; 1828 1829 O.PadToColumn(TAI->getCommentColumn(), 1); 1830 1831 MachineBasicBlock *Header = loop->getHeader(); 1832 assert(Header && "No header for loop"); 1833 1834 if (Header == &MBB) { 1835 O << TAI->getCommentString() << " Loop Header"; 1836 PrintChildLoopComment(loop); 1837 } 1838 else { 1839 O << TAI->getCommentString() << " Loop Header is BB" 1840 << getFunctionNumber() << "_" << loop->getHeader()->getNumber(); 1841 } 1842 1843 if (loop->empty()) { 1844 O << '\n'; 1845 O.PadToColumn(TAI->getCommentColumn(), 1); 1846 O << TAI->getCommentString() << " Inner Loop"; 1847 } 1848 1849 // Add parent loop information 1850 for (const MachineLoop *CurLoop = loop->getParentLoop(); 1851 CurLoop; 1852 CurLoop = CurLoop->getParentLoop()) { 1853 MachineBasicBlock *Header = CurLoop->getHeader(); 1854 assert(Header && "No header for loop"); 1855 1856 O << '\n'; 1857 O.PadToColumn(TAI->getCommentColumn(), 1); 1858 O << TAI->getCommentString() << Indent(CurLoop->getLoopDepth()-1) 1859 << " Inside Loop BB" << getFunctionNumber() << "_" 1860 << Header->getNumber() << " Depth " << CurLoop->getLoopDepth(); 1861 } 1862 } 1863 } 1864} 1865 1866void AsmPrinter::PrintChildLoopComment(const MachineLoop *loop) const { 1867 // Add child loop information 1868 for(MachineLoop::iterator cl = loop->begin(), 1869 clend = loop->end(); 1870 cl != clend; 1871 ++cl) { 1872 MachineBasicBlock *Header = (*cl)->getHeader(); 1873 assert(Header && "No header for loop"); 1874 1875 O << '\n'; 1876 O.PadToColumn(TAI->getCommentColumn(), 1); 1877 1878 O << TAI->getCommentString() << Indent((*cl)->getLoopDepth()-1) 1879 << " Child Loop BB" << getFunctionNumber() << "_" 1880 << Header->getNumber() << " Depth " << (*cl)->getLoopDepth(); 1881 1882 PrintChildLoopComment(*cl); 1883 } 1884} 1885