AsmPrinter.cpp revision c92710a33f2478df2572b966e0cc128c2290be1e
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineLoopInfo.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/CodeGen/DwarfWriter.h"
25#include "llvm/Analysis/DebugInfo.h"
26#include "llvm/MC/MCContext.h"
27#include "llvm/MC/MCInst.h"
28#include "llvm/MC/MCSection.h"
29#include "llvm/MC/MCStreamer.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/FormattedStream.h"
33#include "llvm/Support/IOManip.h"
34#include "llvm/Support/Mangler.h"
35#include "llvm/Target/TargetAsmInfo.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetLoweringObjectFile.h"
39#include "llvm/Target/TargetOptions.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/StringExtras.h"
44#include <cerrno>
45using namespace llvm;
46
47static cl::opt<cl::boolOrDefault>
48AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
49           cl::init(cl::BOU_UNSET));
50
51static cl::opt<cl::boolOrDefault>
52AsmExuberant("asm-exuberant", cl::desc("Add many comments."),
53           cl::init(cl::BOU_FALSE));
54
55char AsmPrinter::ID = 0;
56AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
57                       const TargetAsmInfo *T, bool VDef)
58  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
59    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
60
61    OutContext(*new MCContext()),
62    OutStreamer(*createAsmStreamer(OutContext, O)),
63
64    LastMI(0), LastFn(0), Counter(~0U),
65    PrevDLT(0, ~0U, ~0U) {
66  CurrentSection = 0;
67  DW = 0; MMI = 0;
68  switch (AsmVerbose) {
69  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
70  case cl::BOU_TRUE:  VerboseAsm = true;  break;
71  case cl::BOU_FALSE: VerboseAsm = false; break;
72  }
73  switch (AsmExuberant) {
74  case cl::BOU_UNSET: ExuberantAsm = false;  break;
75  case cl::BOU_TRUE:  ExuberantAsm = true;  break;
76  case cl::BOU_FALSE: ExuberantAsm = false; break;
77  }
78}
79
80AsmPrinter::~AsmPrinter() {
81  for (gcp_iterator I = GCMetadataPrinters.begin(),
82                    E = GCMetadataPrinters.end(); I != E; ++I)
83    delete I->second;
84
85  delete &OutStreamer;
86  delete &OutContext;
87}
88
89TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
90  return TM.getTargetLowering()->getObjFileLowering();
91}
92
93/// SwitchToSection - Switch to the specified section of the executable if we
94/// are not already in it!  If "NS" is null, then this causes us to exit the
95/// current section and not reenter another one.  This is generally used for
96/// asmprinter hacks.
97///
98/// FIXME: Remove support for null sections.
99///
100void AsmPrinter::SwitchToSection(const MCSection *NS) {
101  // If we're already in this section, we're done.
102  if (CurrentSection == NS) return;
103
104  CurrentSection = NS;
105
106  if (NS == 0) return;
107
108  NS->PrintSwitchToSection(*TAI, O);
109}
110
111void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
112  AU.setPreservesAll();
113  MachineFunctionPass::getAnalysisUsage(AU);
114  AU.addRequired<GCModuleInfo>();
115  if (ExuberantAsm) {
116    AU.addRequired<MachineLoopInfo>();
117  }
118}
119
120bool AsmPrinter::doInitialization(Module &M) {
121  // Initialize TargetLoweringObjectFile.
122  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
123    .Initialize(OutContext, TM);
124
125  Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix(),
126                     TAI->getLinkerPrivateGlobalPrefix());
127
128  if (TAI->doesAllowQuotesInName())
129    Mang->setUseQuotes(true);
130
131  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
132  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
133
134  if (TAI->hasSingleParameterDotFile()) {
135    /* Very minimal debug info. It is ignored if we emit actual
136       debug info. If we don't, this at helps the user find where
137       a function came from. */
138    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
139  }
140
141  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
142    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
143      MP->beginAssembly(O, *this, *TAI);
144
145  if (!M.getModuleInlineAsm().empty())
146    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
147      << M.getModuleInlineAsm()
148      << '\n' << TAI->getCommentString()
149      << " End of file scope inline assembly\n";
150
151  SwitchToSection(0);   // Reset back to no section to close off sections.
152
153  if (TAI->doesSupportDebugInformation() ||
154      TAI->doesSupportExceptionHandling()) {
155    MMI = getAnalysisIfAvailable<MachineModuleInfo>();
156    if (MMI)
157      MMI->AnalyzeModule(M);
158    DW = getAnalysisIfAvailable<DwarfWriter>();
159    if (DW)
160      DW->BeginModule(&M, MMI, O, this, TAI);
161  }
162
163  return false;
164}
165
166bool AsmPrinter::doFinalization(Module &M) {
167  // Emit global variables.
168  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
169       I != E; ++I)
170    PrintGlobalVariable(I);
171
172  // Emit final debug information.
173  if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling())
174    DW->EndModule();
175
176  // If the target wants to know about weak references, print them all.
177  if (TAI->getWeakRefDirective()) {
178    // FIXME: This is not lazy, it would be nice to only print weak references
179    // to stuff that is actually used.  Note that doing so would require targets
180    // to notice uses in operands (due to constant exprs etc).  This should
181    // happen with the MC stuff eventually.
182    SwitchToSection(0);
183
184    // Print out module-level global variables here.
185    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
186         I != E; ++I) {
187      if (I->hasExternalWeakLinkage())
188        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
189    }
190
191    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
192      if (I->hasExternalWeakLinkage())
193        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
194    }
195  }
196
197  if (TAI->getSetDirective()) {
198    O << '\n';
199    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
200         I != E; ++I) {
201      std::string Name = Mang->getMangledName(I);
202
203      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
204      std::string Target = Mang->getMangledName(GV);
205
206      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
207        O << "\t.globl\t" << Name << '\n';
208      else if (I->hasWeakLinkage())
209        O << TAI->getWeakRefDirective() << Name << '\n';
210      else if (!I->hasLocalLinkage())
211        llvm_unreachable("Invalid alias linkage");
212
213      printVisibility(Name, I->getVisibility());
214
215      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
216    }
217  }
218
219  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
220  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
221  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
222    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
223      MP->finishAssembly(O, *this, *TAI);
224
225  // If we don't have any trampolines, then we don't require stack memory
226  // to be executable. Some targets have a directive to declare this.
227  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
228  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
229    if (TAI->getNonexecutableStackDirective())
230      O << TAI->getNonexecutableStackDirective() << '\n';
231
232  delete Mang; Mang = 0;
233  DW = 0; MMI = 0;
234
235  OutStreamer.Finish();
236  return false;
237}
238
239std::string
240AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const {
241  assert(MF && "No machine function?");
242  return Mang->getMangledName(MF->getFunction(), ".eh",
243                              TAI->is_EHSymbolPrivate());
244}
245
246void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
247  // What's my mangled name?
248  CurrentFnName = Mang->getMangledName(MF.getFunction());
249  IncrementFunctionNumber();
250
251  if (ExuberantAsm) {
252    LI = &getAnalysis<MachineLoopInfo>();
253  }
254}
255
256namespace {
257  // SectionCPs - Keep track the alignment, constpool entries per Section.
258  struct SectionCPs {
259    const MCSection *S;
260    unsigned Alignment;
261    SmallVector<unsigned, 4> CPEs;
262    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {};
263  };
264}
265
266/// EmitConstantPool - Print to the current output stream assembly
267/// representations of the constants in the constant pool MCP. This is
268/// used to print out constants which have been "spilled to memory" by
269/// the code generator.
270///
271void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
272  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
273  if (CP.empty()) return;
274
275  // Calculate sections for constant pool entries. We collect entries to go into
276  // the same section together to reduce amount of section switch statements.
277  SmallVector<SectionCPs, 4> CPSections;
278  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
279    const MachineConstantPoolEntry &CPE = CP[i];
280    unsigned Align = CPE.getAlignment();
281
282    SectionKind Kind;
283    switch (CPE.getRelocationInfo()) {
284    default: llvm_unreachable("Unknown section kind");
285    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
286    case 1:
287      Kind = SectionKind::getReadOnlyWithRelLocal();
288      break;
289    case 0:
290    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
291    case 4:  Kind = SectionKind::getMergeableConst4(); break;
292    case 8:  Kind = SectionKind::getMergeableConst8(); break;
293    case 16: Kind = SectionKind::getMergeableConst16();break;
294    default: Kind = SectionKind::getMergeableConst(); break;
295    }
296    }
297
298    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
299
300    // The number of sections are small, just do a linear search from the
301    // last section to the first.
302    bool Found = false;
303    unsigned SecIdx = CPSections.size();
304    while (SecIdx != 0) {
305      if (CPSections[--SecIdx].S == S) {
306        Found = true;
307        break;
308      }
309    }
310    if (!Found) {
311      SecIdx = CPSections.size();
312      CPSections.push_back(SectionCPs(S, Align));
313    }
314
315    if (Align > CPSections[SecIdx].Alignment)
316      CPSections[SecIdx].Alignment = Align;
317    CPSections[SecIdx].CPEs.push_back(i);
318  }
319
320  // Now print stuff into the calculated sections.
321  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
322    SwitchToSection(CPSections[i].S);
323    EmitAlignment(Log2_32(CPSections[i].Alignment));
324
325    unsigned Offset = 0;
326    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
327      unsigned CPI = CPSections[i].CPEs[j];
328      MachineConstantPoolEntry CPE = CP[CPI];
329
330      // Emit inter-object padding for alignment.
331      unsigned AlignMask = CPE.getAlignment() - 1;
332      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
333      EmitZeros(NewOffset - Offset);
334
335      const Type *Ty = CPE.getType();
336      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
337
338      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
339        << CPI << ':';
340      if (VerboseAsm) {
341        O.PadToColumn(TAI->getCommentColumn(), 1);
342        O << TAI->getCommentString() << " constant ";
343        WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent());
344      }
345      O << '\n';
346      if (CPE.isMachineConstantPoolEntry())
347        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
348      else
349        EmitGlobalConstant(CPE.Val.ConstVal);
350    }
351  }
352}
353
354/// EmitJumpTableInfo - Print assembly representations of the jump tables used
355/// by the current function to the current output stream.
356///
357void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
358                                   MachineFunction &MF) {
359  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
360  if (JT.empty()) return;
361
362  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
363
364  // Pick the directive to use to print the jump table entries, and switch to
365  // the appropriate section.
366  TargetLowering *LoweringInfo = TM.getTargetLowering();
367
368  const Function *F = MF.getFunction();
369  bool JTInDiffSection = false;
370  if (F->isWeakForLinker() ||
371      (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
372    // In PIC mode, we need to emit the jump table to the same section as the
373    // function body itself, otherwise the label differences won't make sense.
374    // We should also do if the section name is NULL or function is declared in
375    // discardable section.
376    SwitchToSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
377  } else {
378    // Otherwise, drop it in the readonly section.
379    const MCSection *ReadOnlySection =
380      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
381    SwitchToSection(ReadOnlySection);
382    JTInDiffSection = true;
383  }
384
385  EmitAlignment(Log2_32(MJTI->getAlignment()));
386
387  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
388    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
389
390    // If this jump table was deleted, ignore it.
391    if (JTBBs.empty()) continue;
392
393    // For PIC codegen, if possible we want to use the SetDirective to reduce
394    // the number of relocations the assembler will generate for the jump table.
395    // Set directives are all printed before the jump table itself.
396    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
397    if (TAI->getSetDirective() && IsPic)
398      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
399        if (EmittedSets.insert(JTBBs[ii]))
400          printPICJumpTableSetLabel(i, JTBBs[ii]);
401
402    // On some targets (e.g. darwin) we want to emit two consequtive labels
403    // before each jump table.  The first label is never referenced, but tells
404    // the assembler and linker the extents of the jump table object.  The
405    // second label is actually referenced by the code.
406    if (JTInDiffSection) {
407      if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
408        O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
409    }
410
411    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
412      << '_' << i << ":\n";
413
414    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
415      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
416      O << '\n';
417    }
418  }
419}
420
421void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
422                                        const MachineBasicBlock *MBB,
423                                        unsigned uid)  const {
424  bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
425
426  // Use JumpTableDirective otherwise honor the entry size from the jump table
427  // info.
428  const char *JTEntryDirective = TAI->getJumpTableDirective(isPIC);
429  bool HadJTEntryDirective = JTEntryDirective != NULL;
430  if (!HadJTEntryDirective) {
431    JTEntryDirective = MJTI->getEntrySize() == 4 ?
432      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
433  }
434
435  O << JTEntryDirective << ' ';
436
437  // If we have emitted set directives for the jump table entries, print
438  // them rather than the entries themselves.  If we're emitting PIC, then
439  // emit the table entries as differences between two text section labels.
440  // If we're emitting non-PIC code, then emit the entries as direct
441  // references to the target basic blocks.
442  if (!isPIC) {
443    printBasicBlockLabel(MBB, false, false, false);
444  } else if (TAI->getSetDirective()) {
445    O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
446      << '_' << uid << "_set_" << MBB->getNumber();
447  } else {
448    printBasicBlockLabel(MBB, false, false, false);
449    // If the arch uses custom Jump Table directives, don't calc relative to
450    // JT
451    if (!HadJTEntryDirective)
452      O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
453        << getFunctionNumber() << '_' << uid;
454  }
455}
456
457
458/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
459/// special global used by LLVM.  If so, emit it and return true, otherwise
460/// do nothing and return false.
461bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
462  if (GV->getName() == "llvm.used") {
463    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
464      EmitLLVMUsedList(GV->getInitializer());
465    return true;
466  }
467
468  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
469  if (GV->getSection() == "llvm.metadata" ||
470      GV->hasAvailableExternallyLinkage())
471    return true;
472
473  if (!GV->hasAppendingLinkage()) return false;
474
475  assert(GV->hasInitializer() && "Not a special LLVM global!");
476
477  const TargetData *TD = TM.getTargetData();
478  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
479  if (GV->getName() == "llvm.global_ctors") {
480    SwitchToSection(getObjFileLowering().getStaticCtorSection());
481    EmitAlignment(Align, 0);
482    EmitXXStructorList(GV->getInitializer());
483    return true;
484  }
485
486  if (GV->getName() == "llvm.global_dtors") {
487    SwitchToSection(getObjFileLowering().getStaticDtorSection());
488    EmitAlignment(Align, 0);
489    EmitXXStructorList(GV->getInitializer());
490    return true;
491  }
492
493  return false;
494}
495
496/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
497/// global in the specified llvm.used list for which emitUsedDirectiveFor
498/// is true, as being used with this directive.
499void AsmPrinter::EmitLLVMUsedList(Constant *List) {
500  const char *Directive = TAI->getUsedDirective();
501
502  // Should be an array of 'i8*'.
503  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
504  if (InitList == 0) return;
505
506  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
507    const GlobalValue *GV =
508      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
509    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
510      O << Directive;
511      EmitConstantValueOnly(InitList->getOperand(i));
512      O << '\n';
513    }
514  }
515}
516
517/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
518/// function pointers, ignoring the init priority.
519void AsmPrinter::EmitXXStructorList(Constant *List) {
520  // Should be an array of '{ int, void ()* }' structs.  The first value is the
521  // init priority, which we ignore.
522  if (!isa<ConstantArray>(List)) return;
523  ConstantArray *InitList = cast<ConstantArray>(List);
524  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
525    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
526      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
527
528      if (CS->getOperand(1)->isNullValue())
529        return;  // Found a null terminator, exit printing.
530      // Emit the function pointer.
531      EmitGlobalConstant(CS->getOperand(1));
532    }
533}
534
535/// getGlobalLinkName - Returns the asm/link name of of the specified
536/// global variable.  Should be overridden by each target asm printer to
537/// generate the appropriate value.
538const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
539                                                 std::string &LinkName) const {
540  if (isa<Function>(GV)) {
541    LinkName += TAI->getFunctionAddrPrefix();
542    LinkName += Mang->getMangledName(GV);
543    LinkName += TAI->getFunctionAddrSuffix();
544  } else {
545    LinkName += TAI->getGlobalVarAddrPrefix();
546    LinkName += Mang->getMangledName(GV);
547    LinkName += TAI->getGlobalVarAddrSuffix();
548  }
549
550  return LinkName;
551}
552
553/// EmitExternalGlobal - Emit the external reference to a global variable.
554/// Should be overridden if an indirect reference should be used.
555void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
556  std::string GLN;
557  O << getGlobalLinkName(GV, GLN);
558}
559
560
561
562//===----------------------------------------------------------------------===//
563/// LEB 128 number encoding.
564
565/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
566/// representing an unsigned leb128 value.
567void AsmPrinter::PrintULEB128(unsigned Value) const {
568  char Buffer[20];
569  do {
570    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
571    Value >>= 7;
572    if (Value) Byte |= 0x80;
573    O << "0x" << utohex_buffer(Byte, Buffer+20);
574    if (Value) O << ", ";
575  } while (Value);
576}
577
578/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
579/// representing a signed leb128 value.
580void AsmPrinter::PrintSLEB128(int Value) const {
581  int Sign = Value >> (8 * sizeof(Value) - 1);
582  bool IsMore;
583  char Buffer[20];
584
585  do {
586    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
587    Value >>= 7;
588    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
589    if (IsMore) Byte |= 0x80;
590    O << "0x" << utohex_buffer(Byte, Buffer+20);
591    if (IsMore) O << ", ";
592  } while (IsMore);
593}
594
595//===--------------------------------------------------------------------===//
596// Emission and print routines
597//
598
599/// PrintHex - Print a value as a hexidecimal value.
600///
601void AsmPrinter::PrintHex(int Value) const {
602  char Buffer[20];
603  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
604}
605
606/// EOL - Print a newline character to asm stream.  If a comment is present
607/// then it will be printed first.  Comments should not contain '\n'.
608void AsmPrinter::EOL() const {
609  O << '\n';
610}
611
612void AsmPrinter::EOL(const std::string &Comment) const {
613  if (VerboseAsm && !Comment.empty()) {
614    O.PadToColumn(TAI->getCommentColumn(), 1);
615    O << TAI->getCommentString()
616      << ' '
617      << Comment;
618  }
619  O << '\n';
620}
621
622void AsmPrinter::EOL(const char* Comment) const {
623  if (VerboseAsm && *Comment) {
624    O.PadToColumn(TAI->getCommentColumn(), 1);
625    O << TAI->getCommentString()
626      << ' '
627      << Comment;
628  }
629  O << '\n';
630}
631
632/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
633/// unsigned leb128 value.
634void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
635  if (TAI->hasLEB128()) {
636    O << "\t.uleb128\t"
637      << Value;
638  } else {
639    O << TAI->getData8bitsDirective();
640    PrintULEB128(Value);
641  }
642}
643
644/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
645/// signed leb128 value.
646void AsmPrinter::EmitSLEB128Bytes(int Value) const {
647  if (TAI->hasLEB128()) {
648    O << "\t.sleb128\t"
649      << Value;
650  } else {
651    O << TAI->getData8bitsDirective();
652    PrintSLEB128(Value);
653  }
654}
655
656/// EmitInt8 - Emit a byte directive and value.
657///
658void AsmPrinter::EmitInt8(int Value) const {
659  O << TAI->getData8bitsDirective();
660  PrintHex(Value & 0xFF);
661}
662
663/// EmitInt16 - Emit a short directive and value.
664///
665void AsmPrinter::EmitInt16(int Value) const {
666  O << TAI->getData16bitsDirective();
667  PrintHex(Value & 0xFFFF);
668}
669
670/// EmitInt32 - Emit a long directive and value.
671///
672void AsmPrinter::EmitInt32(int Value) const {
673  O << TAI->getData32bitsDirective();
674  PrintHex(Value);
675}
676
677/// EmitInt64 - Emit a long long directive and value.
678///
679void AsmPrinter::EmitInt64(uint64_t Value) const {
680  if (TAI->getData64bitsDirective()) {
681    O << TAI->getData64bitsDirective();
682    PrintHex(Value);
683  } else {
684    if (TM.getTargetData()->isBigEndian()) {
685      EmitInt32(unsigned(Value >> 32)); O << '\n';
686      EmitInt32(unsigned(Value));
687    } else {
688      EmitInt32(unsigned(Value)); O << '\n';
689      EmitInt32(unsigned(Value >> 32));
690    }
691  }
692}
693
694/// toOctal - Convert the low order bits of X into an octal digit.
695///
696static inline char toOctal(int X) {
697  return (X&7)+'0';
698}
699
700/// printStringChar - Print a char, escaped if necessary.
701///
702static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
703  if (C == '"') {
704    O << "\\\"";
705  } else if (C == '\\') {
706    O << "\\\\";
707  } else if (isprint((unsigned char)C)) {
708    O << C;
709  } else {
710    switch(C) {
711    case '\b': O << "\\b"; break;
712    case '\f': O << "\\f"; break;
713    case '\n': O << "\\n"; break;
714    case '\r': O << "\\r"; break;
715    case '\t': O << "\\t"; break;
716    default:
717      O << '\\';
718      O << toOctal(C >> 6);
719      O << toOctal(C >> 3);
720      O << toOctal(C >> 0);
721      break;
722    }
723  }
724}
725
726/// EmitString - Emit a string with quotes and a null terminator.
727/// Special characters are emitted properly.
728/// \literal (Eg. '\t') \endliteral
729void AsmPrinter::EmitString(const std::string &String) const {
730  EmitString(String.c_str(), String.size());
731}
732
733void AsmPrinter::EmitString(const char *String, unsigned Size) const {
734  const char* AscizDirective = TAI->getAscizDirective();
735  if (AscizDirective)
736    O << AscizDirective;
737  else
738    O << TAI->getAsciiDirective();
739  O << '\"';
740  for (unsigned i = 0; i < Size; ++i)
741    printStringChar(O, String[i]);
742  if (AscizDirective)
743    O << '\"';
744  else
745    O << "\\0\"";
746}
747
748
749/// EmitFile - Emit a .file directive.
750void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
751  O << "\t.file\t" << Number << " \"";
752  for (unsigned i = 0, N = Name.size(); i < N; ++i)
753    printStringChar(O, Name[i]);
754  O << '\"';
755}
756
757
758//===----------------------------------------------------------------------===//
759
760// EmitAlignment - Emit an alignment directive to the specified power of
761// two boundary.  For example, if you pass in 3 here, you will get an 8
762// byte alignment.  If a global value is specified, and if that global has
763// an explicit alignment requested, it will unconditionally override the
764// alignment request.  However, if ForcedAlignBits is specified, this value
765// has final say: the ultimate alignment will be the max of ForcedAlignBits
766// and the alignment computed with NumBits and the global.
767//
768// The algorithm is:
769//     Align = NumBits;
770//     if (GV && GV->hasalignment) Align = GV->getalignment();
771//     Align = std::max(Align, ForcedAlignBits);
772//
773void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
774                               unsigned ForcedAlignBits,
775                               bool UseFillExpr) const {
776  if (GV && GV->getAlignment())
777    NumBits = Log2_32(GV->getAlignment());
778  NumBits = std::max(NumBits, ForcedAlignBits);
779
780  if (NumBits == 0) return;   // No need to emit alignment.
781  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
782  O << TAI->getAlignDirective() << NumBits;
783
784  if (CurrentSection && CurrentSection->getKind().isText())
785    if (unsigned FillValue = TAI->getTextAlignFillValue()) {
786      O << ',';
787      PrintHex(FillValue);
788    }
789  O << '\n';
790}
791
792/// EmitZeros - Emit a block of zeros.
793///
794void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
795  if (NumZeros) {
796    if (TAI->getZeroDirective()) {
797      O << TAI->getZeroDirective() << NumZeros;
798      if (TAI->getZeroDirectiveSuffix())
799        O << TAI->getZeroDirectiveSuffix();
800      O << '\n';
801    } else {
802      for (; NumZeros; --NumZeros)
803        O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
804    }
805  }
806}
807
808// Print out the specified constant, without a storage class.  Only the
809// constants valid in constant expressions can occur here.
810void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
811  if (CV->isNullValue() || isa<UndefValue>(CV))
812    O << '0';
813  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
814    O << CI->getZExtValue();
815  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
816    // This is a constant address for a global variable or function. Use the
817    // name of the variable or function as the address value, possibly
818    // decorating it with GlobalVarAddrPrefix/Suffix or
819    // FunctionAddrPrefix/Suffix (these all default to "" )
820    if (isa<Function>(GV)) {
821      O << TAI->getFunctionAddrPrefix()
822        << Mang->getMangledName(GV)
823        << TAI->getFunctionAddrSuffix();
824    } else {
825      O << TAI->getGlobalVarAddrPrefix()
826        << Mang->getMangledName(GV)
827        << TAI->getGlobalVarAddrSuffix();
828    }
829  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
830    const TargetData *TD = TM.getTargetData();
831    unsigned Opcode = CE->getOpcode();
832    switch (Opcode) {
833    case Instruction::Trunc:
834    case Instruction::ZExt:
835    case Instruction::SExt:
836    case Instruction::FPTrunc:
837    case Instruction::FPExt:
838    case Instruction::UIToFP:
839    case Instruction::SIToFP:
840    case Instruction::FPToUI:
841    case Instruction::FPToSI:
842      llvm_unreachable("FIXME: Don't support this constant cast expr");
843    case Instruction::GetElementPtr: {
844      // generate a symbolic expression for the byte address
845      const Constant *ptrVal = CE->getOperand(0);
846      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
847      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
848                                                idxVec.size())) {
849        // Truncate/sext the offset to the pointer size.
850        if (TD->getPointerSizeInBits() != 64) {
851          int SExtAmount = 64-TD->getPointerSizeInBits();
852          Offset = (Offset << SExtAmount) >> SExtAmount;
853        }
854
855        if (Offset)
856          O << '(';
857        EmitConstantValueOnly(ptrVal);
858        if (Offset > 0)
859          O << ") + " << Offset;
860        else if (Offset < 0)
861          O << ") - " << -Offset;
862      } else {
863        EmitConstantValueOnly(ptrVal);
864      }
865      break;
866    }
867    case Instruction::BitCast:
868      return EmitConstantValueOnly(CE->getOperand(0));
869
870    case Instruction::IntToPtr: {
871      // Handle casts to pointers by changing them into casts to the appropriate
872      // integer type.  This promotes constant folding and simplifies this code.
873      Constant *Op = CE->getOperand(0);
874      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
875                                        false/*ZExt*/);
876      return EmitConstantValueOnly(Op);
877    }
878
879
880    case Instruction::PtrToInt: {
881      // Support only foldable casts to/from pointers that can be eliminated by
882      // changing the pointer to the appropriately sized integer type.
883      Constant *Op = CE->getOperand(0);
884      const Type *Ty = CE->getType();
885
886      // We can emit the pointer value into this slot if the slot is an
887      // integer slot greater or equal to the size of the pointer.
888      if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
889        return EmitConstantValueOnly(Op);
890
891      O << "((";
892      EmitConstantValueOnly(Op);
893      APInt ptrMask =
894        APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
895
896      SmallString<40> S;
897      ptrMask.toStringUnsigned(S);
898      O << ") & " << S.c_str() << ')';
899      break;
900    }
901    case Instruction::Add:
902    case Instruction::Sub:
903    case Instruction::And:
904    case Instruction::Or:
905    case Instruction::Xor:
906      O << '(';
907      EmitConstantValueOnly(CE->getOperand(0));
908      O << ')';
909      switch (Opcode) {
910      case Instruction::Add:
911       O << " + ";
912       break;
913      case Instruction::Sub:
914       O << " - ";
915       break;
916      case Instruction::And:
917       O << " & ";
918       break;
919      case Instruction::Or:
920       O << " | ";
921       break;
922      case Instruction::Xor:
923       O << " ^ ";
924       break;
925      default:
926       break;
927      }
928      O << '(';
929      EmitConstantValueOnly(CE->getOperand(1));
930      O << ')';
931      break;
932    default:
933      llvm_unreachable("Unsupported operator!");
934    }
935  } else {
936    llvm_unreachable("Unknown constant value!");
937  }
938}
939
940/// printAsCString - Print the specified array as a C compatible string, only if
941/// the predicate isString is true.
942///
943static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
944                           unsigned LastElt) {
945  assert(CVA->isString() && "Array is not string compatible!");
946
947  O << '\"';
948  for (unsigned i = 0; i != LastElt; ++i) {
949    unsigned char C =
950        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
951    printStringChar(O, C);
952  }
953  O << '\"';
954}
955
956/// EmitString - Emit a zero-byte-terminated string constant.
957///
958void AsmPrinter::EmitString(const ConstantArray *CVA) const {
959  unsigned NumElts = CVA->getNumOperands();
960  if (TAI->getAscizDirective() && NumElts &&
961      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
962    O << TAI->getAscizDirective();
963    printAsCString(O, CVA, NumElts-1);
964  } else {
965    O << TAI->getAsciiDirective();
966    printAsCString(O, CVA, NumElts);
967  }
968  O << '\n';
969}
970
971void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
972                                         unsigned AddrSpace) {
973  if (CVA->isString()) {
974    EmitString(CVA);
975  } else { // Not a string.  Print the values in successive locations
976    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
977      EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
978  }
979}
980
981void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
982  const VectorType *PTy = CP->getType();
983
984  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
985    EmitGlobalConstant(CP->getOperand(I));
986}
987
988void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
989                                          unsigned AddrSpace) {
990  // Print the fields in successive locations. Pad to align if needed!
991  const TargetData *TD = TM.getTargetData();
992  unsigned Size = TD->getTypeAllocSize(CVS->getType());
993  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
994  uint64_t sizeSoFar = 0;
995  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
996    const Constant* field = CVS->getOperand(i);
997
998    // Check if padding is needed and insert one or more 0s.
999    uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
1000    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1001                        - cvsLayout->getElementOffset(i)) - fieldSize;
1002    sizeSoFar += fieldSize + padSize;
1003
1004    // Now print the actual field value.
1005    EmitGlobalConstant(field, AddrSpace);
1006
1007    // Insert padding - this may include padding to increase the size of the
1008    // current field up to the ABI size (if the struct is not packed) as well
1009    // as padding to ensure that the next field starts at the right offset.
1010    EmitZeros(padSize, AddrSpace);
1011  }
1012  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1013         "Layout of constant struct may be incorrect!");
1014}
1015
1016void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1017                                      unsigned AddrSpace) {
1018  // FP Constants are printed as integer constants to avoid losing
1019  // precision...
1020  LLVMContext &Context = CFP->getContext();
1021  const TargetData *TD = TM.getTargetData();
1022  if (CFP->getType() == Type::getDoubleTy(Context)) {
1023    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1024    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1025    if (TAI->getData64bitsDirective(AddrSpace)) {
1026      O << TAI->getData64bitsDirective(AddrSpace) << i;
1027      if (VerboseAsm) {
1028        O.PadToColumn(TAI->getCommentColumn(), 1);
1029        O << TAI->getCommentString() << " double " << Val;
1030      }
1031      O << '\n';
1032    } else if (TD->isBigEndian()) {
1033      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1034      if (VerboseAsm) {
1035        O.PadToColumn(TAI->getCommentColumn(), 1);
1036        O << TAI->getCommentString()
1037          << " most significant word of double " << Val;
1038      }
1039      O << '\n';
1040      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1041      if (VerboseAsm) {
1042        O.PadToColumn(TAI->getCommentColumn(), 1);
1043        O << TAI->getCommentString()
1044          << " least significant word of double " << Val;
1045      }
1046      O << '\n';
1047    } else {
1048      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1049      if (VerboseAsm) {
1050        O.PadToColumn(TAI->getCommentColumn(), 1);
1051        O << TAI->getCommentString()
1052          << " least significant word of double " << Val;
1053      }
1054      O << '\n';
1055      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1056      if (VerboseAsm) {
1057        O.PadToColumn(TAI->getCommentColumn(), 1);
1058        O << TAI->getCommentString()
1059          << " most significant word of double " << Val;
1060      }
1061      O << '\n';
1062    }
1063    return;
1064  } else if (CFP->getType() == Type::getFloatTy(Context)) {
1065    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1066    O << TAI->getData32bitsDirective(AddrSpace)
1067      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1068    if (VerboseAsm) {
1069      O.PadToColumn(TAI->getCommentColumn(), 1);
1070      O << TAI->getCommentString() << " float " << Val;
1071    }
1072    O << '\n';
1073    return;
1074  } else if (CFP->getType() == Type::getX86_FP80Ty(Context)) {
1075    // all long double variants are printed as hex
1076    // api needed to prevent premature destruction
1077    APInt api = CFP->getValueAPF().bitcastToAPInt();
1078    const uint64_t *p = api.getRawData();
1079    // Convert to double so we can print the approximate val as a comment.
1080    APFloat DoubleVal = CFP->getValueAPF();
1081    bool ignored;
1082    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1083                      &ignored);
1084    if (TD->isBigEndian()) {
1085      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1086      if (VerboseAsm) {
1087        O.PadToColumn(TAI->getCommentColumn(), 1);
1088        O << TAI->getCommentString()
1089          << " most significant halfword of x86_fp80 ~"
1090          << DoubleVal.convertToDouble();
1091      }
1092      O << '\n';
1093      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1094      if (VerboseAsm) {
1095        O.PadToColumn(TAI->getCommentColumn(), 1);
1096        O << TAI->getCommentString() << " next halfword";
1097      }
1098      O << '\n';
1099      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1100      if (VerboseAsm) {
1101        O.PadToColumn(TAI->getCommentColumn(), 1);
1102        O << TAI->getCommentString() << " next halfword";
1103      }
1104      O << '\n';
1105      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1106      if (VerboseAsm) {
1107        O.PadToColumn(TAI->getCommentColumn(), 1);
1108        O << TAI->getCommentString() << " next halfword";
1109      }
1110      O << '\n';
1111      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1112      if (VerboseAsm) {
1113        O.PadToColumn(TAI->getCommentColumn(), 1);
1114        O << TAI->getCommentString()
1115          << " least significant halfword";
1116      }
1117      O << '\n';
1118     } else {
1119      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1120      if (VerboseAsm) {
1121        O.PadToColumn(TAI->getCommentColumn(), 1);
1122        O << TAI->getCommentString()
1123          << " least significant halfword of x86_fp80 ~"
1124          << DoubleVal.convertToDouble();
1125      }
1126      O << '\n';
1127      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1128      if (VerboseAsm) {
1129        O.PadToColumn(TAI->getCommentColumn(), 1);
1130        O << TAI->getCommentString()
1131          << " next halfword";
1132      }
1133      O << '\n';
1134      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1135      if (VerboseAsm) {
1136        O.PadToColumn(TAI->getCommentColumn(), 1);
1137        O << TAI->getCommentString()
1138          << " next halfword";
1139      }
1140      O << '\n';
1141      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1142      if (VerboseAsm) {
1143        O.PadToColumn(TAI->getCommentColumn(), 1);
1144        O << TAI->getCommentString()
1145          << " next halfword";
1146      }
1147      O << '\n';
1148      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1149      if (VerboseAsm) {
1150        O.PadToColumn(TAI->getCommentColumn(), 1);
1151        O << TAI->getCommentString()
1152          << " most significant halfword";
1153      }
1154      O << '\n';
1155    }
1156    EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) -
1157              TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace);
1158    return;
1159  } else if (CFP->getType() == Type::getPPC_FP128Ty(Context)) {
1160    // all long double variants are printed as hex
1161    // api needed to prevent premature destruction
1162    APInt api = CFP->getValueAPF().bitcastToAPInt();
1163    const uint64_t *p = api.getRawData();
1164    if (TD->isBigEndian()) {
1165      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1166      if (VerboseAsm) {
1167        O.PadToColumn(TAI->getCommentColumn(), 1);
1168        O << TAI->getCommentString()
1169          << " most significant word of ppc_fp128";
1170      }
1171      O << '\n';
1172      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1173      if (VerboseAsm) {
1174        O.PadToColumn(TAI->getCommentColumn(), 1);
1175        O << TAI->getCommentString()
1176        << " next word";
1177      }
1178      O << '\n';
1179      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1180      if (VerboseAsm) {
1181        O.PadToColumn(TAI->getCommentColumn(), 1);
1182        O << TAI->getCommentString()
1183          << " next word";
1184      }
1185      O << '\n';
1186      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1187      if (VerboseAsm) {
1188        O.PadToColumn(TAI->getCommentColumn(), 1);
1189        O << TAI->getCommentString()
1190          << " least significant word";
1191      }
1192      O << '\n';
1193     } else {
1194      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1195      if (VerboseAsm) {
1196        O.PadToColumn(TAI->getCommentColumn(), 1);
1197        O << TAI->getCommentString()
1198          << " least significant word of ppc_fp128";
1199      }
1200      O << '\n';
1201      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1202      if (VerboseAsm) {
1203        O.PadToColumn(TAI->getCommentColumn(), 1);
1204        O << TAI->getCommentString()
1205          << " next word";
1206      }
1207      O << '\n';
1208      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1209      if (VerboseAsm) {
1210        O.PadToColumn(TAI->getCommentColumn(), 1);
1211        O << TAI->getCommentString()
1212          << " next word";
1213      }
1214      O << '\n';
1215      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1216      if (VerboseAsm) {
1217        O.PadToColumn(TAI->getCommentColumn(), 1);
1218        O << TAI->getCommentString()
1219          << " most significant word";
1220      }
1221      O << '\n';
1222    }
1223    return;
1224  } else llvm_unreachable("Floating point constant type not handled");
1225}
1226
1227void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1228                                            unsigned AddrSpace) {
1229  const TargetData *TD = TM.getTargetData();
1230  unsigned BitWidth = CI->getBitWidth();
1231  assert(isPowerOf2_32(BitWidth) &&
1232         "Non-power-of-2-sized integers not handled!");
1233
1234  // We don't expect assemblers to support integer data directives
1235  // for more than 64 bits, so we emit the data in at most 64-bit
1236  // quantities at a time.
1237  const uint64_t *RawData = CI->getValue().getRawData();
1238  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1239    uint64_t Val;
1240    if (TD->isBigEndian())
1241      Val = RawData[e - i - 1];
1242    else
1243      Val = RawData[i];
1244
1245    if (TAI->getData64bitsDirective(AddrSpace))
1246      O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1247    else if (TD->isBigEndian()) {
1248      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1249      if (VerboseAsm) {
1250        O.PadToColumn(TAI->getCommentColumn(), 1);
1251        O << TAI->getCommentString()
1252          << " most significant half of i64 " << Val;
1253      }
1254      O << '\n';
1255      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1256      if (VerboseAsm) {
1257        O.PadToColumn(TAI->getCommentColumn(), 1);
1258        O << TAI->getCommentString()
1259          << " least significant half of i64 " << Val;
1260      }
1261      O << '\n';
1262    } else {
1263      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1264      if (VerboseAsm) {
1265        O.PadToColumn(TAI->getCommentColumn(), 1);
1266        O << TAI->getCommentString()
1267          << " least significant half of i64 " << Val;
1268      }
1269      O << '\n';
1270      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1271      if (VerboseAsm) {
1272        O.PadToColumn(TAI->getCommentColumn(), 1);
1273        O << TAI->getCommentString()
1274          << " most significant half of i64 " << Val;
1275      }
1276      O << '\n';
1277    }
1278  }
1279}
1280
1281/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1282void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1283  const TargetData *TD = TM.getTargetData();
1284  const Type *type = CV->getType();
1285  unsigned Size = TD->getTypeAllocSize(type);
1286
1287  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1288    EmitZeros(Size, AddrSpace);
1289    return;
1290  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1291    EmitGlobalConstantArray(CVA , AddrSpace);
1292    return;
1293  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1294    EmitGlobalConstantStruct(CVS, AddrSpace);
1295    return;
1296  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1297    EmitGlobalConstantFP(CFP, AddrSpace);
1298    return;
1299  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1300    // Small integers are handled below; large integers are handled here.
1301    if (Size > 4) {
1302      EmitGlobalConstantLargeInt(CI, AddrSpace);
1303      return;
1304    }
1305  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1306    EmitGlobalConstantVector(CP);
1307    return;
1308  }
1309
1310  printDataDirective(type, AddrSpace);
1311  EmitConstantValueOnly(CV);
1312  if (VerboseAsm) {
1313    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1314      SmallString<40> S;
1315      CI->getValue().toStringUnsigned(S, 16);
1316      O.PadToColumn(TAI->getCommentColumn(), 1);
1317      O << TAI->getCommentString() << " 0x" << S.c_str();
1318    }
1319  }
1320  O << '\n';
1321}
1322
1323void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1324  // Target doesn't support this yet!
1325  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1326}
1327
1328/// PrintSpecial - Print information related to the specified machine instr
1329/// that is independent of the operand, and may be independent of the instr
1330/// itself.  This can be useful for portably encoding the comment character
1331/// or other bits of target-specific knowledge into the asmstrings.  The
1332/// syntax used is ${:comment}.  Targets can override this to add support
1333/// for their own strange codes.
1334void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1335  if (!strcmp(Code, "private")) {
1336    O << TAI->getPrivateGlobalPrefix();
1337  } else if (!strcmp(Code, "comment")) {
1338    if (VerboseAsm)
1339      O << TAI->getCommentString();
1340  } else if (!strcmp(Code, "uid")) {
1341    // Comparing the address of MI isn't sufficient, because machineinstrs may
1342    // be allocated to the same address across functions.
1343    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1344
1345    // If this is a new LastFn instruction, bump the counter.
1346    if (LastMI != MI || LastFn != ThisF) {
1347      ++Counter;
1348      LastMI = MI;
1349      LastFn = ThisF;
1350    }
1351    O << Counter;
1352  } else {
1353    std::string msg;
1354    raw_string_ostream Msg(msg);
1355    Msg << "Unknown special formatter '" << Code
1356         << "' for machine instr: " << *MI;
1357    llvm_report_error(Msg.str());
1358  }
1359}
1360
1361/// processDebugLoc - Processes the debug information of each machine
1362/// instruction's DebugLoc.
1363void AsmPrinter::processDebugLoc(DebugLoc DL) {
1364  if (!TAI || !DW)
1365    return;
1366
1367  if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
1368    if (!DL.isUnknown()) {
1369      DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1370
1371      if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT)
1372        printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1373                                        DICompileUnit(CurDLT.CompileUnit)));
1374
1375      PrevDLT = CurDLT;
1376    }
1377  }
1378}
1379
1380/// printInlineAsm - This method formats and prints the specified machine
1381/// instruction that is an inline asm.
1382void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1383  unsigned NumOperands = MI->getNumOperands();
1384
1385  // Count the number of register definitions.
1386  unsigned NumDefs = 0;
1387  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1388       ++NumDefs)
1389    assert(NumDefs != NumOperands-1 && "No asm string?");
1390
1391  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1392
1393  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1394  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1395
1396  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1397  // These are useful to see where empty asm's wound up.
1398  if (AsmStr[0] == 0) {
1399    O << TAI->getCommentString() << TAI->getInlineAsmStart() << "\n\t";
1400    O << TAI->getCommentString() << TAI->getInlineAsmEnd() << '\n';
1401    return;
1402  }
1403
1404  O << TAI->getCommentString() << TAI->getInlineAsmStart() << "\n\t";
1405
1406  // The variant of the current asmprinter.
1407  int AsmPrinterVariant = TAI->getAssemblerDialect();
1408
1409  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1410  const char *LastEmitted = AsmStr; // One past the last character emitted.
1411
1412  while (*LastEmitted) {
1413    switch (*LastEmitted) {
1414    default: {
1415      // Not a special case, emit the string section literally.
1416      const char *LiteralEnd = LastEmitted+1;
1417      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1418             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1419        ++LiteralEnd;
1420      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1421        O.write(LastEmitted, LiteralEnd-LastEmitted);
1422      LastEmitted = LiteralEnd;
1423      break;
1424    }
1425    case '\n':
1426      ++LastEmitted;   // Consume newline character.
1427      O << '\n';       // Indent code with newline.
1428      break;
1429    case '$': {
1430      ++LastEmitted;   // Consume '$' character.
1431      bool Done = true;
1432
1433      // Handle escapes.
1434      switch (*LastEmitted) {
1435      default: Done = false; break;
1436      case '$':     // $$ -> $
1437        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1438          O << '$';
1439        ++LastEmitted;  // Consume second '$' character.
1440        break;
1441      case '(':             // $( -> same as GCC's { character.
1442        ++LastEmitted;      // Consume '(' character.
1443        if (CurVariant != -1) {
1444          llvm_report_error("Nested variants found in inline asm string: '"
1445                            + std::string(AsmStr) + "'");
1446        }
1447        CurVariant = 0;     // We're in the first variant now.
1448        break;
1449      case '|':
1450        ++LastEmitted;  // consume '|' character.
1451        if (CurVariant == -1)
1452          O << '|';       // this is gcc's behavior for | outside a variant
1453        else
1454          ++CurVariant;   // We're in the next variant.
1455        break;
1456      case ')':         // $) -> same as GCC's } char.
1457        ++LastEmitted;  // consume ')' character.
1458        if (CurVariant == -1)
1459          O << '}';     // this is gcc's behavior for } outside a variant
1460        else
1461          CurVariant = -1;
1462        break;
1463      }
1464      if (Done) break;
1465
1466      bool HasCurlyBraces = false;
1467      if (*LastEmitted == '{') {     // ${variable}
1468        ++LastEmitted;               // Consume '{' character.
1469        HasCurlyBraces = true;
1470      }
1471
1472      // If we have ${:foo}, then this is not a real operand reference, it is a
1473      // "magic" string reference, just like in .td files.  Arrange to call
1474      // PrintSpecial.
1475      if (HasCurlyBraces && *LastEmitted == ':') {
1476        ++LastEmitted;
1477        const char *StrStart = LastEmitted;
1478        const char *StrEnd = strchr(StrStart, '}');
1479        if (StrEnd == 0) {
1480          llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1481                            + std::string(AsmStr) + "'");
1482        }
1483
1484        std::string Val(StrStart, StrEnd);
1485        PrintSpecial(MI, Val.c_str());
1486        LastEmitted = StrEnd+1;
1487        break;
1488      }
1489
1490      const char *IDStart = LastEmitted;
1491      char *IDEnd;
1492      errno = 0;
1493      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1494      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1495        llvm_report_error("Bad $ operand number in inline asm string: '"
1496                          + std::string(AsmStr) + "'");
1497      }
1498      LastEmitted = IDEnd;
1499
1500      char Modifier[2] = { 0, 0 };
1501
1502      if (HasCurlyBraces) {
1503        // If we have curly braces, check for a modifier character.  This
1504        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1505        if (*LastEmitted == ':') {
1506          ++LastEmitted;    // Consume ':' character.
1507          if (*LastEmitted == 0) {
1508            llvm_report_error("Bad ${:} expression in inline asm string: '"
1509                              + std::string(AsmStr) + "'");
1510          }
1511
1512          Modifier[0] = *LastEmitted;
1513          ++LastEmitted;    // Consume modifier character.
1514        }
1515
1516        if (*LastEmitted != '}') {
1517          llvm_report_error("Bad ${} expression in inline asm string: '"
1518                            + std::string(AsmStr) + "'");
1519        }
1520        ++LastEmitted;    // Consume '}' character.
1521      }
1522
1523      if ((unsigned)Val >= NumOperands-1) {
1524        llvm_report_error("Invalid $ operand number in inline asm string: '"
1525                          + std::string(AsmStr) + "'");
1526      }
1527
1528      // Okay, we finally have a value number.  Ask the target to print this
1529      // operand!
1530      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1531        unsigned OpNo = 1;
1532
1533        bool Error = false;
1534
1535        // Scan to find the machine operand number for the operand.
1536        for (; Val; --Val) {
1537          if (OpNo >= MI->getNumOperands()) break;
1538          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1539          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1540        }
1541
1542        if (OpNo >= MI->getNumOperands()) {
1543          Error = true;
1544        } else {
1545          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1546          ++OpNo;  // Skip over the ID number.
1547
1548          if (Modifier[0]=='l')  // labels are target independent
1549            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1550                                 false, false, false);
1551          else {
1552            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1553            if ((OpFlags & 7) == 4) {
1554              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1555                                                Modifier[0] ? Modifier : 0);
1556            } else {
1557              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1558                                          Modifier[0] ? Modifier : 0);
1559            }
1560          }
1561        }
1562        if (Error) {
1563          std::string msg;
1564          raw_string_ostream Msg(msg);
1565          Msg << "Invalid operand found in inline asm: '"
1566               << AsmStr << "'\n";
1567          MI->print(Msg);
1568          llvm_report_error(Msg.str());
1569        }
1570      }
1571      break;
1572    }
1573    }
1574  }
1575  O << "\n\t" << TAI->getCommentString() << TAI->getInlineAsmEnd() << '\n';
1576}
1577
1578/// printImplicitDef - This method prints the specified machine instruction
1579/// that is an implicit def.
1580void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1581  if (VerboseAsm) {
1582    O.PadToColumn(TAI->getCommentColumn(), 1);
1583    O << TAI->getCommentString() << " implicit-def: "
1584      << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1585  }
1586}
1587
1588/// printLabel - This method prints a local label used by debug and
1589/// exception handling tables.
1590void AsmPrinter::printLabel(const MachineInstr *MI) const {
1591  printLabel(MI->getOperand(0).getImm());
1592}
1593
1594void AsmPrinter::printLabel(unsigned Id) const {
1595  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1596}
1597
1598/// printDeclare - This method prints a local variable declaration used by
1599/// debug tables.
1600/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1601/// entry into dwarf table.
1602void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1603  unsigned FI = MI->getOperand(0).getIndex();
1604  GlobalValue *GV = MI->getOperand(1).getGlobal();
1605  DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI);
1606}
1607
1608/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1609/// instruction, using the specified assembler variant.  Targets should
1610/// overried this to format as appropriate.
1611bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1612                                 unsigned AsmVariant, const char *ExtraCode) {
1613  // Target doesn't support this yet!
1614  return true;
1615}
1616
1617bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1618                                       unsigned AsmVariant,
1619                                       const char *ExtraCode) {
1620  // Target doesn't support this yet!
1621  return true;
1622}
1623
1624/// printBasicBlockLabel - This method prints the label for the specified
1625/// MachineBasicBlock
1626void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1627                                      bool printAlign,
1628                                      bool printColon,
1629                                      bool printComment) const {
1630  if (printAlign) {
1631    unsigned Align = MBB->getAlignment();
1632    if (Align)
1633      EmitAlignment(Log2_32(Align));
1634  }
1635
1636  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1637    << MBB->getNumber();
1638  if (printColon)
1639    O << ':';
1640  if (printComment) {
1641    if (const BasicBlock *BB = MBB->getBasicBlock())
1642      if (BB->hasName()) {
1643        O.PadToColumn(TAI->getCommentColumn(), 1);
1644        O << TAI->getCommentString() << ' ';
1645        WriteAsOperand(O, BB, /*PrintType=*/false);
1646      }
1647
1648    if (printColon)
1649      EmitComments(*MBB);
1650  }
1651}
1652
1653/// printPICJumpTableSetLabel - This method prints a set label for the
1654/// specified MachineBasicBlock for a jumptable entry.
1655void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1656                                           const MachineBasicBlock *MBB) const {
1657  if (!TAI->getSetDirective())
1658    return;
1659
1660  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1661    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1662  printBasicBlockLabel(MBB, false, false, false);
1663  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1664    << '_' << uid << '\n';
1665}
1666
1667void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1668                                           const MachineBasicBlock *MBB) const {
1669  if (!TAI->getSetDirective())
1670    return;
1671
1672  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1673    << getFunctionNumber() << '_' << uid << '_' << uid2
1674    << "_set_" << MBB->getNumber() << ',';
1675  printBasicBlockLabel(MBB, false, false, false);
1676  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1677    << '_' << uid << '_' << uid2 << '\n';
1678}
1679
1680/// printDataDirective - This method prints the asm directive for the
1681/// specified type.
1682void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1683  const TargetData *TD = TM.getTargetData();
1684  switch (type->getTypeID()) {
1685  case Type::FloatTyID: case Type::DoubleTyID:
1686  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1687    assert(0 && "Should have already output floating point constant.");
1688  default:
1689    assert(0 && "Can't handle printing this type of thing");
1690  case Type::IntegerTyID: {
1691    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1692    if (BitWidth <= 8)
1693      O << TAI->getData8bitsDirective(AddrSpace);
1694    else if (BitWidth <= 16)
1695      O << TAI->getData16bitsDirective(AddrSpace);
1696    else if (BitWidth <= 32)
1697      O << TAI->getData32bitsDirective(AddrSpace);
1698    else if (BitWidth <= 64) {
1699      assert(TAI->getData64bitsDirective(AddrSpace) &&
1700             "Target cannot handle 64-bit constant exprs!");
1701      O << TAI->getData64bitsDirective(AddrSpace);
1702    } else {
1703      llvm_unreachable("Target cannot handle given data directive width!");
1704    }
1705    break;
1706  }
1707  case Type::PointerTyID:
1708    if (TD->getPointerSize() == 8) {
1709      assert(TAI->getData64bitsDirective(AddrSpace) &&
1710             "Target cannot handle 64-bit pointer exprs!");
1711      O << TAI->getData64bitsDirective(AddrSpace);
1712    } else if (TD->getPointerSize() == 2) {
1713      O << TAI->getData16bitsDirective(AddrSpace);
1714    } else if (TD->getPointerSize() == 1) {
1715      O << TAI->getData8bitsDirective(AddrSpace);
1716    } else {
1717      O << TAI->getData32bitsDirective(AddrSpace);
1718    }
1719    break;
1720  }
1721}
1722
1723void AsmPrinter::printVisibility(const std::string& Name,
1724                                 unsigned Visibility) const {
1725  if (Visibility == GlobalValue::HiddenVisibility) {
1726    if (const char *Directive = TAI->getHiddenDirective())
1727      O << Directive << Name << '\n';
1728  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1729    if (const char *Directive = TAI->getProtectedDirective())
1730      O << Directive << Name << '\n';
1731  }
1732}
1733
1734void AsmPrinter::printOffset(int64_t Offset) const {
1735  if (Offset > 0)
1736    O << '+' << Offset;
1737  else if (Offset < 0)
1738    O << Offset;
1739}
1740
1741void AsmPrinter::printMCInst(const MCInst *MI) {
1742  llvm_unreachable("MCInst printing unavailable on this target!");
1743}
1744
1745GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1746  if (!S->usesMetadata())
1747    return 0;
1748
1749  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1750  if (GCPI != GCMetadataPrinters.end())
1751    return GCPI->second;
1752
1753  const char *Name = S->getName().c_str();
1754
1755  for (GCMetadataPrinterRegistry::iterator
1756         I = GCMetadataPrinterRegistry::begin(),
1757         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1758    if (strcmp(Name, I->getName()) == 0) {
1759      GCMetadataPrinter *GMP = I->instantiate();
1760      GMP->S = S;
1761      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1762      return GMP;
1763    }
1764
1765  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1766  llvm_unreachable(0);
1767}
1768
1769/// EmitComments - Pretty-print comments for instructions
1770void AsmPrinter::EmitComments(const MachineInstr &MI) const {
1771  if (!VerboseAsm ||
1772      MI.getDebugLoc().isUnknown())
1773    return;
1774
1775  DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1776
1777  // Print source line info
1778  O.PadToColumn(TAI->getCommentColumn(), 1);
1779  O << TAI->getCommentString() << " SrcLine ";
1780  if (DLT.CompileUnit->hasInitializer()) {
1781    Constant *Name = DLT.CompileUnit->getInitializer();
1782    if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1783      if (NameString->isString())
1784        O << NameString->getAsString() << " ";
1785  }
1786  O << DLT.Line;
1787  if (DLT.Col != 0)
1788    O << ":" << DLT.Col;
1789}
1790
1791/// EmitComments - Pretty-print comments for instructions
1792void AsmPrinter::EmitComments(const MCInst &MI) const
1793{
1794  if (VerboseAsm) {
1795    if (!MI.getDebugLoc().isUnknown()) {
1796      DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1797
1798      // Print source line info
1799      O.PadToColumn(TAI->getCommentColumn(), 1);
1800      O << TAI->getCommentString() << " SrcLine ";
1801      if (DLT.CompileUnit->hasInitializer()) {
1802        Constant *Name = DLT.CompileUnit->getInitializer();
1803        if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1804          if (NameString->isString()) {
1805            O << NameString->getAsString() << " ";
1806          }
1807      }
1808      O << DLT.Line;
1809      if (DLT.Col != 0)
1810        O << ":" << DLT.Col;
1811    }
1812  }
1813}
1814
1815/// EmitComments - Pretty-print comments for basic blocks
1816void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const
1817{
1818  if (ExuberantAsm) {
1819    // Add loop depth information
1820    const MachineLoop *loop = LI->getLoopFor(&MBB);
1821
1822    if (loop) {
1823      // Print a newline after bb# annotation.
1824      O << "\n";
1825      O.PadToColumn(TAI->getCommentColumn(), 1);
1826      O << TAI->getCommentString() << " Loop Depth " << loop->getLoopDepth()
1827        << '\n';
1828
1829      O.PadToColumn(TAI->getCommentColumn(), 1);
1830
1831      MachineBasicBlock *Header = loop->getHeader();
1832      assert(Header && "No header for loop");
1833
1834      if (Header == &MBB) {
1835        O << TAI->getCommentString() << " Loop Header";
1836        PrintChildLoopComment(loop);
1837      }
1838      else {
1839        O << TAI->getCommentString() << " Loop Header is BB"
1840          << getFunctionNumber() << "_" << loop->getHeader()->getNumber();
1841      }
1842
1843      if (loop->empty()) {
1844        O << '\n';
1845        O.PadToColumn(TAI->getCommentColumn(), 1);
1846        O << TAI->getCommentString() << " Inner Loop";
1847      }
1848
1849      // Add parent loop information
1850      for (const MachineLoop *CurLoop = loop->getParentLoop();
1851           CurLoop;
1852           CurLoop = CurLoop->getParentLoop()) {
1853        MachineBasicBlock *Header = CurLoop->getHeader();
1854        assert(Header && "No header for loop");
1855
1856        O << '\n';
1857        O.PadToColumn(TAI->getCommentColumn(), 1);
1858        O << TAI->getCommentString() << Indent(CurLoop->getLoopDepth()-1)
1859          << " Inside Loop BB" << getFunctionNumber() << "_"
1860          << Header->getNumber() << " Depth " << CurLoop->getLoopDepth();
1861      }
1862    }
1863  }
1864}
1865
1866void AsmPrinter::PrintChildLoopComment(const MachineLoop *loop) const {
1867  // Add child loop information
1868  for(MachineLoop::iterator cl = loop->begin(),
1869        clend = loop->end();
1870      cl != clend;
1871      ++cl) {
1872    MachineBasicBlock *Header = (*cl)->getHeader();
1873    assert(Header && "No header for loop");
1874
1875    O << '\n';
1876    O.PadToColumn(TAI->getCommentColumn(), 1);
1877
1878    O << TAI->getCommentString() << Indent((*cl)->getLoopDepth()-1)
1879      << " Child Loop BB" << getFunctionNumber() << "_"
1880      << Header->getNumber() << " Depth " << (*cl)->getLoopDepth();
1881
1882    PrintChildLoopComment(*cl);
1883  }
1884}
1885