AsmPrinter.cpp revision d1947ed2f824d2e9f4923fb6efc2aec4a6e3e96d
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineFrameInfo.h" 22#include "llvm/CodeGen/MachineFunction.h" 23#include "llvm/CodeGen/MachineJumpTableInfo.h" 24#include "llvm/CodeGen/MachineLoopInfo.h" 25#include "llvm/CodeGen/MachineModuleInfo.h" 26#include "llvm/CodeGen/DwarfWriter.h" 27#include "llvm/Analysis/DebugInfo.h" 28#include "llvm/MC/MCContext.h" 29#include "llvm/MC/MCInst.h" 30#include "llvm/MC/MCSection.h" 31#include "llvm/MC/MCStreamer.h" 32#include "llvm/MC/MCSymbol.h" 33#include "llvm/Support/CommandLine.h" 34#include "llvm/Support/ErrorHandling.h" 35#include "llvm/Support/FormattedStream.h" 36#include "llvm/Support/Mangler.h" 37#include "llvm/MC/MCAsmInfo.h" 38#include "llvm/Target/TargetData.h" 39#include "llvm/Target/TargetInstrInfo.h" 40#include "llvm/Target/TargetLowering.h" 41#include "llvm/Target/TargetLoweringObjectFile.h" 42#include "llvm/Target/TargetOptions.h" 43#include "llvm/Target/TargetRegisterInfo.h" 44#include "llvm/ADT/SmallPtrSet.h" 45#include "llvm/ADT/SmallString.h" 46#include "llvm/ADT/StringExtras.h" 47#include <cerrno> 48using namespace llvm; 49 50static cl::opt<cl::boolOrDefault> 51AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 52 cl::init(cl::BOU_UNSET)); 53 54char AsmPrinter::ID = 0; 55AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm, 56 const MCAsmInfo *T, bool VDef) 57 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 58 TM(tm), MAI(T), TRI(tm.getRegisterInfo()), 59 60 OutContext(*new MCContext()), 61 // FIXME: Pass instprinter to streamer. 62 OutStreamer(*createAsmStreamer(OutContext, O, *T, 0)), 63 64 LastMI(0), LastFn(0), Counter(~0U), 65 PrevDLT(0, 0, ~0U, ~0U) { 66 DW = 0; MMI = 0; 67 switch (AsmVerbose) { 68 case cl::BOU_UNSET: VerboseAsm = VDef; break; 69 case cl::BOU_TRUE: VerboseAsm = true; break; 70 case cl::BOU_FALSE: VerboseAsm = false; break; 71 } 72} 73 74AsmPrinter::~AsmPrinter() { 75 for (gcp_iterator I = GCMetadataPrinters.begin(), 76 E = GCMetadataPrinters.end(); I != E; ++I) 77 delete I->second; 78 79 delete &OutStreamer; 80 delete &OutContext; 81} 82 83TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 84 return TM.getTargetLowering()->getObjFileLowering(); 85} 86 87/// getCurrentSection() - Return the current section we are emitting to. 88const MCSection *AsmPrinter::getCurrentSection() const { 89 return OutStreamer.getCurrentSection(); 90} 91 92 93void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 94 AU.setPreservesAll(); 95 MachineFunctionPass::getAnalysisUsage(AU); 96 AU.addRequired<GCModuleInfo>(); 97 if (VerboseAsm) 98 AU.addRequired<MachineLoopInfo>(); 99} 100 101bool AsmPrinter::doInitialization(Module &M) { 102 // Initialize TargetLoweringObjectFile. 103 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 104 .Initialize(OutContext, TM); 105 106 Mang = new Mangler(M, MAI->getGlobalPrefix(), MAI->getPrivateGlobalPrefix(), 107 MAI->getLinkerPrivateGlobalPrefix()); 108 109 if (MAI->doesAllowQuotesInName()) 110 Mang->setUseQuotes(true); 111 112 if (MAI->doesAllowNameToStartWithDigit()) 113 Mang->setSymbolsCanStartWithDigit(true); 114 115 // Allow the target to emit any magic that it wants at the start of the file. 116 EmitStartOfAsmFile(M); 117 118 if (MAI->hasSingleParameterDotFile()) { 119 /* Very minimal debug info. It is ignored if we emit actual 120 debug info. If we don't, this at least helps the user find where 121 a function came from. */ 122 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 123 } 124 125 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 126 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 127 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 128 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 129 MP->beginAssembly(O, *this, *MAI); 130 131 if (!M.getModuleInlineAsm().empty()) 132 O << MAI->getCommentString() << " Start of file scope inline assembly\n" 133 << M.getModuleInlineAsm() 134 << '\n' << MAI->getCommentString() 135 << " End of file scope inline assembly\n"; 136 137 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 138 if (MMI) 139 MMI->AnalyzeModule(M); 140 DW = getAnalysisIfAvailable<DwarfWriter>(); 141 if (DW) 142 DW->BeginModule(&M, MMI, O, this, MAI); 143 144 return false; 145} 146 147bool AsmPrinter::doFinalization(Module &M) { 148 // Emit global variables. 149 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 150 I != E; ++I) 151 PrintGlobalVariable(I); 152 153 // Emit final debug information. 154 if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling()) 155 DW->EndModule(); 156 157 // If the target wants to know about weak references, print them all. 158 if (MAI->getWeakRefDirective()) { 159 // FIXME: This is not lazy, it would be nice to only print weak references 160 // to stuff that is actually used. Note that doing so would require targets 161 // to notice uses in operands (due to constant exprs etc). This should 162 // happen with the MC stuff eventually. 163 164 // Print out module-level global variables here. 165 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 166 I != E; ++I) { 167 if (I->hasExternalWeakLinkage()) 168 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 169 } 170 171 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 172 if (I->hasExternalWeakLinkage()) 173 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 174 } 175 } 176 177 if (MAI->getSetDirective()) { 178 O << '\n'; 179 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 180 I != E; ++I) { 181 std::string Name = Mang->getMangledName(I); 182 183 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 184 std::string Target = Mang->getMangledName(GV); 185 186 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 187 O << "\t.globl\t" << Name << '\n'; 188 else if (I->hasWeakLinkage()) 189 O << MAI->getWeakRefDirective() << Name << '\n'; 190 else if (!I->hasLocalLinkage()) 191 llvm_unreachable("Invalid alias linkage"); 192 193 printVisibility(Name, I->getVisibility()); 194 195 O << MAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 196 } 197 } 198 199 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 200 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 201 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 202 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 203 MP->finishAssembly(O, *this, *MAI); 204 205 // If we don't have any trampolines, then we don't require stack memory 206 // to be executable. Some targets have a directive to declare this. 207 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 208 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 209 if (MAI->getNonexecutableStackDirective()) 210 O << MAI->getNonexecutableStackDirective() << '\n'; 211 212 213 // Allow the target to emit any magic that it wants at the end of the file, 214 // after everything else has gone out. 215 EmitEndOfAsmFile(M); 216 217 delete Mang; Mang = 0; 218 DW = 0; MMI = 0; 219 220 OutStreamer.Finish(); 221 return false; 222} 223 224void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 225 // What's my mangled name? 226 CurrentFnName = Mang->getMangledName(MF.getFunction()); 227 CurrentFnSym = GetGlobalValueSymbol(MF.getFunction()); 228 IncrementFunctionNumber(); 229 230 if (VerboseAsm) 231 LI = &getAnalysis<MachineLoopInfo>(); 232} 233 234namespace { 235 // SectionCPs - Keep track the alignment, constpool entries per Section. 236 struct SectionCPs { 237 const MCSection *S; 238 unsigned Alignment; 239 SmallVector<unsigned, 4> CPEs; 240 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 241 }; 242} 243 244/// EmitConstantPool - Print to the current output stream assembly 245/// representations of the constants in the constant pool MCP. This is 246/// used to print out constants which have been "spilled to memory" by 247/// the code generator. 248/// 249void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 250 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 251 if (CP.empty()) return; 252 253 // Calculate sections for constant pool entries. We collect entries to go into 254 // the same section together to reduce amount of section switch statements. 255 SmallVector<SectionCPs, 4> CPSections; 256 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 257 const MachineConstantPoolEntry &CPE = CP[i]; 258 unsigned Align = CPE.getAlignment(); 259 260 SectionKind Kind; 261 switch (CPE.getRelocationInfo()) { 262 default: llvm_unreachable("Unknown section kind"); 263 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 264 case 1: 265 Kind = SectionKind::getReadOnlyWithRelLocal(); 266 break; 267 case 0: 268 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 269 case 4: Kind = SectionKind::getMergeableConst4(); break; 270 case 8: Kind = SectionKind::getMergeableConst8(); break; 271 case 16: Kind = SectionKind::getMergeableConst16();break; 272 default: Kind = SectionKind::getMergeableConst(); break; 273 } 274 } 275 276 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 277 278 // The number of sections are small, just do a linear search from the 279 // last section to the first. 280 bool Found = false; 281 unsigned SecIdx = CPSections.size(); 282 while (SecIdx != 0) { 283 if (CPSections[--SecIdx].S == S) { 284 Found = true; 285 break; 286 } 287 } 288 if (!Found) { 289 SecIdx = CPSections.size(); 290 CPSections.push_back(SectionCPs(S, Align)); 291 } 292 293 if (Align > CPSections[SecIdx].Alignment) 294 CPSections[SecIdx].Alignment = Align; 295 CPSections[SecIdx].CPEs.push_back(i); 296 } 297 298 // Now print stuff into the calculated sections. 299 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 300 OutStreamer.SwitchSection(CPSections[i].S); 301 EmitAlignment(Log2_32(CPSections[i].Alignment)); 302 303 unsigned Offset = 0; 304 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 305 unsigned CPI = CPSections[i].CPEs[j]; 306 MachineConstantPoolEntry CPE = CP[CPI]; 307 308 // Emit inter-object padding for alignment. 309 unsigned AlignMask = CPE.getAlignment() - 1; 310 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 311 EmitZeros(NewOffset - Offset); 312 313 const Type *Ty = CPE.getType(); 314 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 315 316 O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 317 << CPI << ':'; 318 if (VerboseAsm) { 319 O.PadToColumn(MAI->getCommentColumn()); 320 O << MAI->getCommentString() << " constant "; 321 WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent()); 322 } 323 O << '\n'; 324 if (CPE.isMachineConstantPoolEntry()) 325 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 326 else 327 EmitGlobalConstant(CPE.Val.ConstVal); 328 } 329 } 330} 331 332/// EmitJumpTableInfo - Print assembly representations of the jump tables used 333/// by the current function to the current output stream. 334/// 335void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 336 MachineFunction &MF) { 337 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 338 if (JT.empty()) return; 339 340 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 341 342 // Pick the directive to use to print the jump table entries, and switch to 343 // the appropriate section. 344 TargetLowering *LoweringInfo = TM.getTargetLowering(); 345 346 const Function *F = MF.getFunction(); 347 bool JTInDiffSection = false; 348 if (F->isWeakForLinker() || 349 (IsPic && !LoweringInfo->usesGlobalOffsetTable())) { 350 // In PIC mode, we need to emit the jump table to the same section as the 351 // function body itself, otherwise the label differences won't make sense. 352 // We should also do if the section name is NULL or function is declared in 353 // discardable section. 354 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, 355 TM)); 356 } else { 357 // Otherwise, drop it in the readonly section. 358 const MCSection *ReadOnlySection = 359 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 360 OutStreamer.SwitchSection(ReadOnlySection); 361 JTInDiffSection = true; 362 } 363 364 EmitAlignment(Log2_32(MJTI->getAlignment())); 365 366 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 367 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 368 369 // If this jump table was deleted, ignore it. 370 if (JTBBs.empty()) continue; 371 372 // For PIC codegen, if possible we want to use the SetDirective to reduce 373 // the number of relocations the assembler will generate for the jump table. 374 // Set directives are all printed before the jump table itself. 375 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 376 if (MAI->getSetDirective() && IsPic) 377 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 378 if (EmittedSets.insert(JTBBs[ii])) 379 printPICJumpTableSetLabel(i, JTBBs[ii]); 380 381 // On some targets (e.g. Darwin) we want to emit two consequtive labels 382 // before each jump table. The first label is never referenced, but tells 383 // the assembler and linker the extents of the jump table object. The 384 // second label is actually referenced by the code. 385 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) { 386 O << MAI->getLinkerPrivateGlobalPrefix() 387 << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 388 } 389 390 O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 391 << '_' << i << ":\n"; 392 393 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 394 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 395 O << '\n'; 396 } 397 } 398} 399 400void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 401 const MachineBasicBlock *MBB, 402 unsigned uid) const { 403 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 404 405 // Use JumpTableDirective otherwise honor the entry size from the jump table 406 // info. 407 const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC); 408 bool HadJTEntryDirective = JTEntryDirective != NULL; 409 if (!HadJTEntryDirective) { 410 JTEntryDirective = MJTI->getEntrySize() == 4 ? 411 MAI->getData32bitsDirective() : MAI->getData64bitsDirective(); 412 } 413 414 O << JTEntryDirective << ' '; 415 416 // If we have emitted set directives for the jump table entries, print 417 // them rather than the entries themselves. If we're emitting PIC, then 418 // emit the table entries as differences between two text section labels. 419 // If we're emitting non-PIC code, then emit the entries as direct 420 // references to the target basic blocks. 421 if (!isPIC) { 422 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 423 } else if (MAI->getSetDirective()) { 424 O << MAI->getPrivateGlobalPrefix() << getFunctionNumber() 425 << '_' << uid << "_set_" << MBB->getNumber(); 426 } else { 427 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 428 // If the arch uses custom Jump Table directives, don't calc relative to 429 // JT 430 if (!HadJTEntryDirective) 431 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" 432 << getFunctionNumber() << '_' << uid; 433 } 434} 435 436 437/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 438/// special global used by LLVM. If so, emit it and return true, otherwise 439/// do nothing and return false. 440bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 441 if (GV->getName() == "llvm.used") { 442 if (MAI->getUsedDirective() != 0) // No need to emit this at all. 443 EmitLLVMUsedList(GV->getInitializer()); 444 return true; 445 } 446 447 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 448 if (GV->getSection() == "llvm.metadata" || 449 GV->hasAvailableExternallyLinkage()) 450 return true; 451 452 if (!GV->hasAppendingLinkage()) return false; 453 454 assert(GV->hasInitializer() && "Not a special LLVM global!"); 455 456 const TargetData *TD = TM.getTargetData(); 457 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 458 if (GV->getName() == "llvm.global_ctors") { 459 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection()); 460 EmitAlignment(Align, 0); 461 EmitXXStructorList(GV->getInitializer()); 462 return true; 463 } 464 465 if (GV->getName() == "llvm.global_dtors") { 466 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection()); 467 EmitAlignment(Align, 0); 468 EmitXXStructorList(GV->getInitializer()); 469 return true; 470 } 471 472 return false; 473} 474 475/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 476/// global in the specified llvm.used list for which emitUsedDirectiveFor 477/// is true, as being used with this directive. 478void AsmPrinter::EmitLLVMUsedList(Constant *List) { 479 const char *Directive = MAI->getUsedDirective(); 480 481 // Should be an array of 'i8*'. 482 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 483 if (InitList == 0) return; 484 485 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 486 const GlobalValue *GV = 487 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 488 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) { 489 O << Directive; 490 EmitConstantValueOnly(InitList->getOperand(i)); 491 O << '\n'; 492 } 493 } 494} 495 496/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 497/// function pointers, ignoring the init priority. 498void AsmPrinter::EmitXXStructorList(Constant *List) { 499 // Should be an array of '{ int, void ()* }' structs. The first value is the 500 // init priority, which we ignore. 501 if (!isa<ConstantArray>(List)) return; 502 ConstantArray *InitList = cast<ConstantArray>(List); 503 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 504 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 505 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 506 507 if (CS->getOperand(1)->isNullValue()) 508 return; // Found a null terminator, exit printing. 509 // Emit the function pointer. 510 EmitGlobalConstant(CS->getOperand(1)); 511 } 512} 513 514 515//===----------------------------------------------------------------------===// 516/// LEB 128 number encoding. 517 518/// PrintULEB128 - Print a series of hexadecimal values (separated by commas) 519/// representing an unsigned leb128 value. 520void AsmPrinter::PrintULEB128(unsigned Value) const { 521 char Buffer[20]; 522 do { 523 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 524 Value >>= 7; 525 if (Value) Byte |= 0x80; 526 O << "0x" << utohex_buffer(Byte, Buffer+20); 527 if (Value) O << ", "; 528 } while (Value); 529} 530 531/// PrintSLEB128 - Print a series of hexadecimal values (separated by commas) 532/// representing a signed leb128 value. 533void AsmPrinter::PrintSLEB128(int Value) const { 534 int Sign = Value >> (8 * sizeof(Value) - 1); 535 bool IsMore; 536 char Buffer[20]; 537 538 do { 539 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 540 Value >>= 7; 541 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 542 if (IsMore) Byte |= 0x80; 543 O << "0x" << utohex_buffer(Byte, Buffer+20); 544 if (IsMore) O << ", "; 545 } while (IsMore); 546} 547 548//===--------------------------------------------------------------------===// 549// Emission and print routines 550// 551 552/// PrintHex - Print a value as a hexadecimal value. 553/// 554void AsmPrinter::PrintHex(int Value) const { 555 char Buffer[20]; 556 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); 557} 558 559/// EOL - Print a newline character to asm stream. If a comment is present 560/// then it will be printed first. Comments should not contain '\n'. 561void AsmPrinter::EOL() const { 562 O << '\n'; 563} 564 565void AsmPrinter::EOL(const std::string &Comment) const { 566 if (VerboseAsm && !Comment.empty()) { 567 O.PadToColumn(MAI->getCommentColumn()); 568 O << MAI->getCommentString() 569 << ' ' 570 << Comment; 571 } 572 O << '\n'; 573} 574 575void AsmPrinter::EOL(const char* Comment) const { 576 if (VerboseAsm && *Comment) { 577 O.PadToColumn(MAI->getCommentColumn()); 578 O << MAI->getCommentString() 579 << ' ' 580 << Comment; 581 } 582 O << '\n'; 583} 584 585static const char *DecodeDWARFEncoding(unsigned Encoding) { 586 switch (Encoding) { 587 case dwarf::DW_EH_PE_absptr: 588 return "absptr"; 589 case dwarf::DW_EH_PE_omit: 590 return "omit"; 591 case dwarf::DW_EH_PE_pcrel: 592 return "pcrel"; 593 case dwarf::DW_EH_PE_udata4: 594 return "udata4"; 595 case dwarf::DW_EH_PE_udata8: 596 return "udata8"; 597 case dwarf::DW_EH_PE_sdata4: 598 return "sdata4"; 599 case dwarf::DW_EH_PE_sdata8: 600 return "sdata8"; 601 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4: 602 return "pcrel udata4"; 603 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4: 604 return "pcrel sdata4"; 605 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8: 606 return "pcrel udata8"; 607 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8: 608 return "pcrel sdata8"; 609 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4: 610 return "indirect pcrel udata4"; 611 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4: 612 return "indirect pcrel sdata4"; 613 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8: 614 return "indirect pcrel udata8"; 615 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8: 616 return "indirect pcrel sdata8"; 617 } 618 619 return 0; 620} 621 622void AsmPrinter::EOL(const char *Comment, unsigned Encoding) const { 623 if (VerboseAsm && *Comment) { 624 O.PadToColumn(MAI->getCommentColumn()); 625 O << MAI->getCommentString() 626 << ' ' 627 << Comment; 628 629 if (const char *EncStr = DecodeDWARFEncoding(Encoding)) 630 O << " (" << EncStr << ')'; 631 } 632 O << '\n'; 633} 634 635/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 636/// unsigned leb128 value. 637void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 638 if (MAI->hasLEB128()) { 639 O << "\t.uleb128\t" 640 << Value; 641 } else { 642 O << MAI->getData8bitsDirective(); 643 PrintULEB128(Value); 644 } 645} 646 647/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 648/// signed leb128 value. 649void AsmPrinter::EmitSLEB128Bytes(int Value) const { 650 if (MAI->hasLEB128()) { 651 O << "\t.sleb128\t" 652 << Value; 653 } else { 654 O << MAI->getData8bitsDirective(); 655 PrintSLEB128(Value); 656 } 657} 658 659/// EmitInt8 - Emit a byte directive and value. 660/// 661void AsmPrinter::EmitInt8(int Value) const { 662 O << MAI->getData8bitsDirective(); 663 PrintHex(Value & 0xFF); 664} 665 666/// EmitInt16 - Emit a short directive and value. 667/// 668void AsmPrinter::EmitInt16(int Value) const { 669 O << MAI->getData16bitsDirective(); 670 PrintHex(Value & 0xFFFF); 671} 672 673/// EmitInt32 - Emit a long directive and value. 674/// 675void AsmPrinter::EmitInt32(int Value) const { 676 O << MAI->getData32bitsDirective(); 677 PrintHex(Value); 678} 679 680/// EmitInt64 - Emit a long long directive and value. 681/// 682void AsmPrinter::EmitInt64(uint64_t Value) const { 683 if (MAI->getData64bitsDirective()) { 684 O << MAI->getData64bitsDirective(); 685 PrintHex(Value); 686 } else { 687 if (TM.getTargetData()->isBigEndian()) { 688 EmitInt32(unsigned(Value >> 32)); O << '\n'; 689 EmitInt32(unsigned(Value)); 690 } else { 691 EmitInt32(unsigned(Value)); O << '\n'; 692 EmitInt32(unsigned(Value >> 32)); 693 } 694 } 695} 696 697/// toOctal - Convert the low order bits of X into an octal digit. 698/// 699static inline char toOctal(int X) { 700 return (X&7)+'0'; 701} 702 703/// printStringChar - Print a char, escaped if necessary. 704/// 705static void printStringChar(formatted_raw_ostream &O, unsigned char C) { 706 if (C == '"') { 707 O << "\\\""; 708 } else if (C == '\\') { 709 O << "\\\\"; 710 } else if (isprint((unsigned char)C)) { 711 O << C; 712 } else { 713 switch(C) { 714 case '\b': O << "\\b"; break; 715 case '\f': O << "\\f"; break; 716 case '\n': O << "\\n"; break; 717 case '\r': O << "\\r"; break; 718 case '\t': O << "\\t"; break; 719 default: 720 O << '\\'; 721 O << toOctal(C >> 6); 722 O << toOctal(C >> 3); 723 O << toOctal(C >> 0); 724 break; 725 } 726 } 727} 728 729/// EmitString - Emit a string with quotes and a null terminator. 730/// Special characters are emitted properly. 731/// \literal (Eg. '\t') \endliteral 732void AsmPrinter::EmitString(const StringRef String) const { 733 EmitString(String.data(), String.size()); 734} 735 736void AsmPrinter::EmitString(const char *String, unsigned Size) const { 737 const char* AscizDirective = MAI->getAscizDirective(); 738 if (AscizDirective) 739 O << AscizDirective; 740 else 741 O << MAI->getAsciiDirective(); 742 O << '\"'; 743 for (unsigned i = 0; i < Size; ++i) 744 printStringChar(O, String[i]); 745 if (AscizDirective) 746 O << '\"'; 747 else 748 O << "\\0\""; 749} 750 751 752/// EmitFile - Emit a .file directive. 753void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 754 O << "\t.file\t" << Number << " \""; 755 for (unsigned i = 0, N = Name.size(); i < N; ++i) 756 printStringChar(O, Name[i]); 757 O << '\"'; 758} 759 760 761//===----------------------------------------------------------------------===// 762 763// EmitAlignment - Emit an alignment directive to the specified power of 764// two boundary. For example, if you pass in 3 here, you will get an 8 765// byte alignment. If a global value is specified, and if that global has 766// an explicit alignment requested, it will unconditionally override the 767// alignment request. However, if ForcedAlignBits is specified, this value 768// has final say: the ultimate alignment will be the max of ForcedAlignBits 769// and the alignment computed with NumBits and the global. 770// 771// The algorithm is: 772// Align = NumBits; 773// if (GV && GV->hasalignment) Align = GV->getalignment(); 774// Align = std::max(Align, ForcedAlignBits); 775// 776void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 777 unsigned ForcedAlignBits, 778 bool UseFillExpr) const { 779 if (GV && GV->getAlignment()) 780 NumBits = Log2_32(GV->getAlignment()); 781 NumBits = std::max(NumBits, ForcedAlignBits); 782 783 if (NumBits == 0) return; // No need to emit alignment. 784 785 unsigned FillValue = 0; 786 if (getCurrentSection()->getKind().isText()) 787 FillValue = MAI->getTextAlignFillValue(); 788 789 OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0); 790} 791 792/// EmitZeros - Emit a block of zeros. 793/// 794void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const { 795 if (NumZeros) { 796 if (MAI->getZeroDirective()) { 797 O << MAI->getZeroDirective() << NumZeros; 798 if (MAI->getZeroDirectiveSuffix()) 799 O << MAI->getZeroDirectiveSuffix(); 800 O << '\n'; 801 } else { 802 for (; NumZeros; --NumZeros) 803 O << MAI->getData8bitsDirective(AddrSpace) << "0\n"; 804 } 805 } 806} 807 808// Print out the specified constant, without a storage class. Only the 809// constants valid in constant expressions can occur here. 810void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 811 if (CV->isNullValue() || isa<UndefValue>(CV)) { 812 O << '0'; 813 return; 814 } 815 816 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 817 O << CI->getZExtValue(); 818 return; 819 } 820 821 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 822 // This is a constant address for a global variable or function. Use the 823 // name of the variable or function as the address value. 824 O << Mang->getMangledName(GV); 825 return; 826 } 827 828 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 829 GetBlockAddressSymbol(BA)->print(O, MAI); 830 return; 831 } 832 833 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 834 if (CE == 0) { 835 llvm_unreachable("Unknown constant value!"); 836 O << '0'; 837 return; 838 } 839 840 switch (CE->getOpcode()) { 841 case Instruction::ZExt: 842 case Instruction::SExt: 843 case Instruction::FPTrunc: 844 case Instruction::FPExt: 845 case Instruction::UIToFP: 846 case Instruction::SIToFP: 847 case Instruction::FPToUI: 848 case Instruction::FPToSI: 849 default: 850 llvm_unreachable("FIXME: Don't support this constant cast expr"); 851 case Instruction::GetElementPtr: { 852 // generate a symbolic expression for the byte address 853 const TargetData *TD = TM.getTargetData(); 854 const Constant *ptrVal = CE->getOperand(0); 855 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 856 int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 857 idxVec.size()); 858 if (Offset == 0) 859 return EmitConstantValueOnly(ptrVal); 860 861 // Truncate/sext the offset to the pointer size. 862 if (TD->getPointerSizeInBits() != 64) { 863 int SExtAmount = 64-TD->getPointerSizeInBits(); 864 Offset = (Offset << SExtAmount) >> SExtAmount; 865 } 866 867 if (Offset) 868 O << '('; 869 EmitConstantValueOnly(ptrVal); 870 if (Offset > 0) 871 O << ") + " << Offset; 872 else 873 O << ") - " << -Offset; 874 return; 875 } 876 case Instruction::BitCast: 877 return EmitConstantValueOnly(CE->getOperand(0)); 878 879 case Instruction::IntToPtr: { 880 // Handle casts to pointers by changing them into casts to the appropriate 881 // integer type. This promotes constant folding and simplifies this code. 882 const TargetData *TD = TM.getTargetData(); 883 Constant *Op = CE->getOperand(0); 884 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()), 885 false/*ZExt*/); 886 return EmitConstantValueOnly(Op); 887 } 888 889 case Instruction::PtrToInt: { 890 // Support only foldable casts to/from pointers that can be eliminated by 891 // changing the pointer to the appropriately sized integer type. 892 Constant *Op = CE->getOperand(0); 893 const Type *Ty = CE->getType(); 894 const TargetData *TD = TM.getTargetData(); 895 896 // We can emit the pointer value into this slot if the slot is an 897 // integer slot greater or equal to the size of the pointer. 898 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType())) 899 return EmitConstantValueOnly(Op); 900 901 O << "(("; 902 EmitConstantValueOnly(Op); 903 APInt ptrMask = 904 APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType())); 905 906 SmallString<40> S; 907 ptrMask.toStringUnsigned(S); 908 O << ") & " << S.str() << ')'; 909 return; 910 } 911 912 case Instruction::Trunc: 913 // We emit the value and depend on the assembler to truncate the generated 914 // expression properly. This is important for differences between 915 // blockaddress labels. Since the two labels are in the same function, it 916 // is reasonable to treat their delta as a 32-bit value. 917 return EmitConstantValueOnly(CE->getOperand(0)); 918 919 case Instruction::Add: 920 case Instruction::Sub: 921 case Instruction::And: 922 case Instruction::Or: 923 case Instruction::Xor: 924 O << '('; 925 EmitConstantValueOnly(CE->getOperand(0)); 926 O << ')'; 927 switch (CE->getOpcode()) { 928 case Instruction::Add: 929 O << " + "; 930 break; 931 case Instruction::Sub: 932 O << " - "; 933 break; 934 case Instruction::And: 935 O << " & "; 936 break; 937 case Instruction::Or: 938 O << " | "; 939 break; 940 case Instruction::Xor: 941 O << " ^ "; 942 break; 943 default: 944 break; 945 } 946 O << '('; 947 EmitConstantValueOnly(CE->getOperand(1)); 948 O << ')'; 949 break; 950 } 951} 952 953/// printAsCString - Print the specified array as a C compatible string, only if 954/// the predicate isString is true. 955/// 956static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA, 957 unsigned LastElt) { 958 assert(CVA->isString() && "Array is not string compatible!"); 959 960 O << '\"'; 961 for (unsigned i = 0; i != LastElt; ++i) { 962 unsigned char C = 963 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 964 printStringChar(O, C); 965 } 966 O << '\"'; 967} 968 969/// EmitString - Emit a zero-byte-terminated string constant. 970/// 971void AsmPrinter::EmitString(const ConstantArray *CVA) const { 972 unsigned NumElts = CVA->getNumOperands(); 973 if (MAI->getAscizDirective() && NumElts && 974 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 975 O << MAI->getAscizDirective(); 976 printAsCString(O, CVA, NumElts-1); 977 } else { 978 O << MAI->getAsciiDirective(); 979 printAsCString(O, CVA, NumElts); 980 } 981 O << '\n'; 982} 983 984void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA, 985 unsigned AddrSpace) { 986 if (CVA->isString()) { 987 EmitString(CVA); 988 } else { // Not a string. Print the values in successive locations 989 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 990 EmitGlobalConstant(CVA->getOperand(i), AddrSpace); 991 } 992} 993 994void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) { 995 const VectorType *PTy = CP->getType(); 996 997 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 998 EmitGlobalConstant(CP->getOperand(I)); 999} 1000 1001void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS, 1002 unsigned AddrSpace) { 1003 // Print the fields in successive locations. Pad to align if needed! 1004 const TargetData *TD = TM.getTargetData(); 1005 unsigned Size = TD->getTypeAllocSize(CVS->getType()); 1006 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 1007 uint64_t sizeSoFar = 0; 1008 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 1009 const Constant* field = CVS->getOperand(i); 1010 1011 // Check if padding is needed and insert one or more 0s. 1012 uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); 1013 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 1014 - cvsLayout->getElementOffset(i)) - fieldSize; 1015 sizeSoFar += fieldSize + padSize; 1016 1017 // Now print the actual field value. 1018 EmitGlobalConstant(field, AddrSpace); 1019 1020 // Insert padding - this may include padding to increase the size of the 1021 // current field up to the ABI size (if the struct is not packed) as well 1022 // as padding to ensure that the next field starts at the right offset. 1023 EmitZeros(padSize, AddrSpace); 1024 } 1025 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 1026 "Layout of constant struct may be incorrect!"); 1027} 1028 1029void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP, 1030 unsigned AddrSpace) { 1031 // FP Constants are printed as integer constants to avoid losing 1032 // precision... 1033 LLVMContext &Context = CFP->getContext(); 1034 const TargetData *TD = TM.getTargetData(); 1035 if (CFP->getType()->isDoubleTy()) { 1036 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 1037 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1038 if (MAI->getData64bitsDirective(AddrSpace)) { 1039 O << MAI->getData64bitsDirective(AddrSpace) << i; 1040 if (VerboseAsm) { 1041 O.PadToColumn(MAI->getCommentColumn()); 1042 O << MAI->getCommentString() << " double " << Val; 1043 } 1044 O << '\n'; 1045 } else if (TD->isBigEndian()) { 1046 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1047 if (VerboseAsm) { 1048 O.PadToColumn(MAI->getCommentColumn()); 1049 O << MAI->getCommentString() 1050 << " most significant word of double " << Val; 1051 } 1052 O << '\n'; 1053 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1054 if (VerboseAsm) { 1055 O.PadToColumn(MAI->getCommentColumn()); 1056 O << MAI->getCommentString() 1057 << " least significant word of double " << Val; 1058 } 1059 O << '\n'; 1060 } else { 1061 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1062 if (VerboseAsm) { 1063 O.PadToColumn(MAI->getCommentColumn()); 1064 O << MAI->getCommentString() 1065 << " least significant word of double " << Val; 1066 } 1067 O << '\n'; 1068 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1069 if (VerboseAsm) { 1070 O.PadToColumn(MAI->getCommentColumn()); 1071 O << MAI->getCommentString() 1072 << " most significant word of double " << Val; 1073 } 1074 O << '\n'; 1075 } 1076 return; 1077 } 1078 1079 if (CFP->getType()->isFloatTy()) { 1080 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1081 O << MAI->getData32bitsDirective(AddrSpace) 1082 << CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1083 if (VerboseAsm) { 1084 O.PadToColumn(MAI->getCommentColumn()); 1085 O << MAI->getCommentString() << " float " << Val; 1086 } 1087 O << '\n'; 1088 return; 1089 } 1090 1091 if (CFP->getType()->isX86_FP80Ty()) { 1092 // all long double variants are printed as hex 1093 // api needed to prevent premature destruction 1094 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1095 const uint64_t *p = api.getRawData(); 1096 // Convert to double so we can print the approximate val as a comment. 1097 APFloat DoubleVal = CFP->getValueAPF(); 1098 bool ignored; 1099 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1100 &ignored); 1101 if (TD->isBigEndian()) { 1102 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1103 if (VerboseAsm) { 1104 O.PadToColumn(MAI->getCommentColumn()); 1105 O << MAI->getCommentString() 1106 << " most significant halfword of x86_fp80 ~" 1107 << DoubleVal.convertToDouble(); 1108 } 1109 O << '\n'; 1110 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1111 if (VerboseAsm) { 1112 O.PadToColumn(MAI->getCommentColumn()); 1113 O << MAI->getCommentString() << " next halfword"; 1114 } 1115 O << '\n'; 1116 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1117 if (VerboseAsm) { 1118 O.PadToColumn(MAI->getCommentColumn()); 1119 O << MAI->getCommentString() << " next halfword"; 1120 } 1121 O << '\n'; 1122 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1123 if (VerboseAsm) { 1124 O.PadToColumn(MAI->getCommentColumn()); 1125 O << MAI->getCommentString() << " next halfword"; 1126 } 1127 O << '\n'; 1128 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1129 if (VerboseAsm) { 1130 O.PadToColumn(MAI->getCommentColumn()); 1131 O << MAI->getCommentString() 1132 << " least significant halfword"; 1133 } 1134 O << '\n'; 1135 } else { 1136 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1137 if (VerboseAsm) { 1138 O.PadToColumn(MAI->getCommentColumn()); 1139 O << MAI->getCommentString() 1140 << " least significant halfword of x86_fp80 ~" 1141 << DoubleVal.convertToDouble(); 1142 } 1143 O << '\n'; 1144 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1145 if (VerboseAsm) { 1146 O.PadToColumn(MAI->getCommentColumn()); 1147 O << MAI->getCommentString() 1148 << " next halfword"; 1149 } 1150 O << '\n'; 1151 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1152 if (VerboseAsm) { 1153 O.PadToColumn(MAI->getCommentColumn()); 1154 O << MAI->getCommentString() 1155 << " next halfword"; 1156 } 1157 O << '\n'; 1158 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1159 if (VerboseAsm) { 1160 O.PadToColumn(MAI->getCommentColumn()); 1161 O << MAI->getCommentString() 1162 << " next halfword"; 1163 } 1164 O << '\n'; 1165 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1166 if (VerboseAsm) { 1167 O.PadToColumn(MAI->getCommentColumn()); 1168 O << MAI->getCommentString() 1169 << " most significant halfword"; 1170 } 1171 O << '\n'; 1172 } 1173 EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) - 1174 TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace); 1175 return; 1176 } 1177 1178 if (CFP->getType()->isPPC_FP128Ty()) { 1179 // all long double variants are printed as hex 1180 // api needed to prevent premature destruction 1181 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1182 const uint64_t *p = api.getRawData(); 1183 if (TD->isBigEndian()) { 1184 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1185 if (VerboseAsm) { 1186 O.PadToColumn(MAI->getCommentColumn()); 1187 O << MAI->getCommentString() 1188 << " most significant word of ppc_fp128"; 1189 } 1190 O << '\n'; 1191 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1192 if (VerboseAsm) { 1193 O.PadToColumn(MAI->getCommentColumn()); 1194 O << MAI->getCommentString() 1195 << " next word"; 1196 } 1197 O << '\n'; 1198 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1199 if (VerboseAsm) { 1200 O.PadToColumn(MAI->getCommentColumn()); 1201 O << MAI->getCommentString() 1202 << " next word"; 1203 } 1204 O << '\n'; 1205 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1206 if (VerboseAsm) { 1207 O.PadToColumn(MAI->getCommentColumn()); 1208 O << MAI->getCommentString() 1209 << " least significant word"; 1210 } 1211 O << '\n'; 1212 } else { 1213 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1214 if (VerboseAsm) { 1215 O.PadToColumn(MAI->getCommentColumn()); 1216 O << MAI->getCommentString() 1217 << " least significant word of ppc_fp128"; 1218 } 1219 O << '\n'; 1220 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1221 if (VerboseAsm) { 1222 O.PadToColumn(MAI->getCommentColumn()); 1223 O << MAI->getCommentString() 1224 << " next word"; 1225 } 1226 O << '\n'; 1227 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1228 if (VerboseAsm) { 1229 O.PadToColumn(MAI->getCommentColumn()); 1230 O << MAI->getCommentString() 1231 << " next word"; 1232 } 1233 O << '\n'; 1234 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1235 if (VerboseAsm) { 1236 O.PadToColumn(MAI->getCommentColumn()); 1237 O << MAI->getCommentString() 1238 << " most significant word"; 1239 } 1240 O << '\n'; 1241 } 1242 return; 1243 } else llvm_unreachable("Floating point constant type not handled"); 1244} 1245 1246void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 1247 unsigned AddrSpace) { 1248 const TargetData *TD = TM.getTargetData(); 1249 unsigned BitWidth = CI->getBitWidth(); 1250 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); 1251 1252 // We don't expect assemblers to support integer data directives 1253 // for more than 64 bits, so we emit the data in at most 64-bit 1254 // quantities at a time. 1255 const uint64_t *RawData = CI->getValue().getRawData(); 1256 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1257 uint64_t Val; 1258 if (TD->isBigEndian()) 1259 Val = RawData[e - i - 1]; 1260 else 1261 Val = RawData[i]; 1262 1263 if (MAI->getData64bitsDirective(AddrSpace)) { 1264 O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n'; 1265 continue; 1266 } 1267 1268 // Emit two 32-bit chunks, order depends on endianness. 1269 unsigned FirstChunk = unsigned(Val), SecondChunk = unsigned(Val >> 32); 1270 const char *FirstName = " least", *SecondName = " most"; 1271 if (TD->isBigEndian()) { 1272 std::swap(FirstChunk, SecondChunk); 1273 std::swap(FirstName, SecondName); 1274 } 1275 1276 O << MAI->getData32bitsDirective(AddrSpace) << FirstChunk; 1277 if (VerboseAsm) { 1278 O.PadToColumn(MAI->getCommentColumn()); 1279 O << MAI->getCommentString() 1280 << FirstName << " significant half of i64 " << Val; 1281 } 1282 O << '\n'; 1283 1284 O << MAI->getData32bitsDirective(AddrSpace) << SecondChunk; 1285 if (VerboseAsm) { 1286 O.PadToColumn(MAI->getCommentColumn()); 1287 O << MAI->getCommentString() 1288 << SecondName << " significant half of i64 " << Val; 1289 } 1290 O << '\n'; 1291 } 1292} 1293 1294/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1295void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1296 const TargetData *TD = TM.getTargetData(); 1297 const Type *type = CV->getType(); 1298 unsigned Size = TD->getTypeAllocSize(type); 1299 1300 if (CV->isNullValue() || isa<UndefValue>(CV)) { 1301 EmitZeros(Size, AddrSpace); 1302 return; 1303 } 1304 1305 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 1306 EmitGlobalConstantArray(CVA , AddrSpace); 1307 return; 1308 } 1309 1310 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 1311 EmitGlobalConstantStruct(CVS, AddrSpace); 1312 return; 1313 } 1314 1315 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1316 EmitGlobalConstantFP(CFP, AddrSpace); 1317 return; 1318 } 1319 1320 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1321 // If we can directly emit an 8-byte constant, do it. 1322 if (Size == 8) 1323 if (const char *Data64Dir = MAI->getData64bitsDirective(AddrSpace)) { 1324 O << Data64Dir << CI->getZExtValue() << '\n'; 1325 return; 1326 } 1327 1328 // Small integers are handled below; large integers are handled here. 1329 if (Size > 4) { 1330 EmitGlobalConstantLargeInt(CI, AddrSpace); 1331 return; 1332 } 1333 } 1334 1335 if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1336 EmitGlobalConstantVector(CP); 1337 return; 1338 } 1339 1340 printDataDirective(type, AddrSpace); 1341 EmitConstantValueOnly(CV); 1342 if (VerboseAsm) { 1343 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1344 SmallString<40> S; 1345 CI->getValue().toStringUnsigned(S, 16); 1346 O.PadToColumn(MAI->getCommentColumn()); 1347 O << MAI->getCommentString() << " 0x" << S.str(); 1348 } 1349 } 1350 O << '\n'; 1351} 1352 1353void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1354 // Target doesn't support this yet! 1355 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1356} 1357 1358/// PrintSpecial - Print information related to the specified machine instr 1359/// that is independent of the operand, and may be independent of the instr 1360/// itself. This can be useful for portably encoding the comment character 1361/// or other bits of target-specific knowledge into the asmstrings. The 1362/// syntax used is ${:comment}. Targets can override this to add support 1363/// for their own strange codes. 1364void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1365 if (!strcmp(Code, "private")) { 1366 O << MAI->getPrivateGlobalPrefix(); 1367 } else if (!strcmp(Code, "comment")) { 1368 if (VerboseAsm) 1369 O << MAI->getCommentString(); 1370 } else if (!strcmp(Code, "uid")) { 1371 // Comparing the address of MI isn't sufficient, because machineinstrs may 1372 // be allocated to the same address across functions. 1373 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1374 1375 // If this is a new LastFn instruction, bump the counter. 1376 if (LastMI != MI || LastFn != ThisF) { 1377 ++Counter; 1378 LastMI = MI; 1379 LastFn = ThisF; 1380 } 1381 O << Counter; 1382 } else { 1383 std::string msg; 1384 raw_string_ostream Msg(msg); 1385 Msg << "Unknown special formatter '" << Code 1386 << "' for machine instr: " << *MI; 1387 llvm_report_error(Msg.str()); 1388 } 1389} 1390 1391/// processDebugLoc - Processes the debug information of each machine 1392/// instruction's DebugLoc. 1393void AsmPrinter::processDebugLoc(const MachineInstr *MI, 1394 bool BeforePrintingInsn) { 1395 if (!MAI || !DW || !MAI->doesSupportDebugInformation() 1396 || !DW->ShouldEmitDwarfDebug()) 1397 return; 1398 DebugLoc DL = MI->getDebugLoc(); 1399 if (DL.isUnknown()) 1400 return; 1401 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL); 1402 if (CurDLT.Scope == 0) 1403 return; 1404 1405 if (BeforePrintingInsn) { 1406 if (CurDLT != PrevDLT) { 1407 unsigned L = DW->RecordSourceLine(CurDLT.Line, CurDLT.Col, 1408 CurDLT.Scope); 1409 printLabel(L); 1410 O << '\n'; 1411 DW->BeginScope(MI, L); 1412 PrevDLT = CurDLT; 1413 } 1414 } else { 1415 // After printing instruction 1416 DW->EndScope(MI); 1417 } 1418} 1419 1420 1421/// printInlineAsm - This method formats and prints the specified machine 1422/// instruction that is an inline asm. 1423void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1424 unsigned NumOperands = MI->getNumOperands(); 1425 1426 // Count the number of register definitions. 1427 unsigned NumDefs = 0; 1428 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1429 ++NumDefs) 1430 assert(NumDefs != NumOperands-1 && "No asm string?"); 1431 1432 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1433 1434 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1435 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1436 1437 O << '\t'; 1438 1439 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1440 // These are useful to see where empty asm's wound up. 1441 if (AsmStr[0] == 0) { 1442 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1443 O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n'; 1444 return; 1445 } 1446 1447 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1448 1449 // The variant of the current asmprinter. 1450 int AsmPrinterVariant = MAI->getAssemblerDialect(); 1451 1452 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1453 const char *LastEmitted = AsmStr; // One past the last character emitted. 1454 1455 while (*LastEmitted) { 1456 switch (*LastEmitted) { 1457 default: { 1458 // Not a special case, emit the string section literally. 1459 const char *LiteralEnd = LastEmitted+1; 1460 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1461 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1462 ++LiteralEnd; 1463 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1464 O.write(LastEmitted, LiteralEnd-LastEmitted); 1465 LastEmitted = LiteralEnd; 1466 break; 1467 } 1468 case '\n': 1469 ++LastEmitted; // Consume newline character. 1470 O << '\n'; // Indent code with newline. 1471 break; 1472 case '$': { 1473 ++LastEmitted; // Consume '$' character. 1474 bool Done = true; 1475 1476 // Handle escapes. 1477 switch (*LastEmitted) { 1478 default: Done = false; break; 1479 case '$': // $$ -> $ 1480 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1481 O << '$'; 1482 ++LastEmitted; // Consume second '$' character. 1483 break; 1484 case '(': // $( -> same as GCC's { character. 1485 ++LastEmitted; // Consume '(' character. 1486 if (CurVariant != -1) { 1487 llvm_report_error("Nested variants found in inline asm string: '" 1488 + std::string(AsmStr) + "'"); 1489 } 1490 CurVariant = 0; // We're in the first variant now. 1491 break; 1492 case '|': 1493 ++LastEmitted; // consume '|' character. 1494 if (CurVariant == -1) 1495 O << '|'; // this is gcc's behavior for | outside a variant 1496 else 1497 ++CurVariant; // We're in the next variant. 1498 break; 1499 case ')': // $) -> same as GCC's } char. 1500 ++LastEmitted; // consume ')' character. 1501 if (CurVariant == -1) 1502 O << '}'; // this is gcc's behavior for } outside a variant 1503 else 1504 CurVariant = -1; 1505 break; 1506 } 1507 if (Done) break; 1508 1509 bool HasCurlyBraces = false; 1510 if (*LastEmitted == '{') { // ${variable} 1511 ++LastEmitted; // Consume '{' character. 1512 HasCurlyBraces = true; 1513 } 1514 1515 // If we have ${:foo}, then this is not a real operand reference, it is a 1516 // "magic" string reference, just like in .td files. Arrange to call 1517 // PrintSpecial. 1518 if (HasCurlyBraces && *LastEmitted == ':') { 1519 ++LastEmitted; 1520 const char *StrStart = LastEmitted; 1521 const char *StrEnd = strchr(StrStart, '}'); 1522 if (StrEnd == 0) { 1523 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '" 1524 + std::string(AsmStr) + "'"); 1525 } 1526 1527 std::string Val(StrStart, StrEnd); 1528 PrintSpecial(MI, Val.c_str()); 1529 LastEmitted = StrEnd+1; 1530 break; 1531 } 1532 1533 const char *IDStart = LastEmitted; 1534 char *IDEnd; 1535 errno = 0; 1536 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1537 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1538 llvm_report_error("Bad $ operand number in inline asm string: '" 1539 + std::string(AsmStr) + "'"); 1540 } 1541 LastEmitted = IDEnd; 1542 1543 char Modifier[2] = { 0, 0 }; 1544 1545 if (HasCurlyBraces) { 1546 // If we have curly braces, check for a modifier character. This 1547 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1548 if (*LastEmitted == ':') { 1549 ++LastEmitted; // Consume ':' character. 1550 if (*LastEmitted == 0) { 1551 llvm_report_error("Bad ${:} expression in inline asm string: '" 1552 + std::string(AsmStr) + "'"); 1553 } 1554 1555 Modifier[0] = *LastEmitted; 1556 ++LastEmitted; // Consume modifier character. 1557 } 1558 1559 if (*LastEmitted != '}') { 1560 llvm_report_error("Bad ${} expression in inline asm string: '" 1561 + std::string(AsmStr) + "'"); 1562 } 1563 ++LastEmitted; // Consume '}' character. 1564 } 1565 1566 if ((unsigned)Val >= NumOperands-1) { 1567 llvm_report_error("Invalid $ operand number in inline asm string: '" 1568 + std::string(AsmStr) + "'"); 1569 } 1570 1571 // Okay, we finally have a value number. Ask the target to print this 1572 // operand! 1573 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1574 unsigned OpNo = 1; 1575 1576 bool Error = false; 1577 1578 // Scan to find the machine operand number for the operand. 1579 for (; Val; --Val) { 1580 if (OpNo >= MI->getNumOperands()) break; 1581 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1582 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1583 } 1584 1585 if (OpNo >= MI->getNumOperands()) { 1586 Error = true; 1587 } else { 1588 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1589 ++OpNo; // Skip over the ID number. 1590 1591 if (Modifier[0]=='l') // labels are target independent 1592 GetMBBSymbol(MI->getOperand(OpNo).getMBB() 1593 ->getNumber())->print(O, MAI); 1594 else { 1595 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1596 if ((OpFlags & 7) == 4) { 1597 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1598 Modifier[0] ? Modifier : 0); 1599 } else { 1600 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1601 Modifier[0] ? Modifier : 0); 1602 } 1603 } 1604 } 1605 if (Error) { 1606 std::string msg; 1607 raw_string_ostream Msg(msg); 1608 Msg << "Invalid operand found in inline asm: '" 1609 << AsmStr << "'\n"; 1610 MI->print(Msg); 1611 llvm_report_error(Msg.str()); 1612 } 1613 } 1614 break; 1615 } 1616 } 1617 } 1618 O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd(); 1619} 1620 1621/// printImplicitDef - This method prints the specified machine instruction 1622/// that is an implicit def. 1623void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1624 if (!VerboseAsm) return; 1625 O.PadToColumn(MAI->getCommentColumn()); 1626 O << MAI->getCommentString() << " implicit-def: " 1627 << TRI->getName(MI->getOperand(0).getReg()); 1628} 1629 1630void AsmPrinter::printKill(const MachineInstr *MI) const { 1631 if (!VerboseAsm) return; 1632 O.PadToColumn(MAI->getCommentColumn()); 1633 O << MAI->getCommentString() << " kill:"; 1634 for (unsigned n = 0, e = MI->getNumOperands(); n != e; ++n) { 1635 const MachineOperand &op = MI->getOperand(n); 1636 assert(op.isReg() && "KILL instruction must have only register operands"); 1637 O << ' ' << TRI->getName(op.getReg()) << (op.isDef() ? "<def>" : "<kill>"); 1638 } 1639} 1640 1641/// printLabel - This method prints a local label used by debug and 1642/// exception handling tables. 1643void AsmPrinter::printLabel(const MachineInstr *MI) const { 1644 printLabel(MI->getOperand(0).getImm()); 1645} 1646 1647void AsmPrinter::printLabel(unsigned Id) const { 1648 O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':'; 1649} 1650 1651/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1652/// instruction, using the specified assembler variant. Targets should 1653/// override this to format as appropriate. 1654bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1655 unsigned AsmVariant, const char *ExtraCode) { 1656 // Target doesn't support this yet! 1657 return true; 1658} 1659 1660bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1661 unsigned AsmVariant, 1662 const char *ExtraCode) { 1663 // Target doesn't support this yet! 1664 return true; 1665} 1666 1667MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA, 1668 const char *Suffix) const { 1669 return GetBlockAddressSymbol(BA->getFunction(), BA->getBasicBlock(), Suffix); 1670} 1671 1672MCSymbol *AsmPrinter::GetBlockAddressSymbol(const Function *F, 1673 const BasicBlock *BB, 1674 const char *Suffix) const { 1675 assert(BB->hasName() && 1676 "Address of anonymous basic block not supported yet!"); 1677 1678 // This code must use the function name itself, and not the function number, 1679 // since it must be possible to generate the label name from within other 1680 // functions. 1681 SmallString<60> FnName; 1682 Mang->getNameWithPrefix(FnName, F, false); 1683 1684 // FIXME: THIS IS BROKEN IF THE LLVM BASIC BLOCK DOESN'T HAVE A NAME! 1685 SmallString<60> NameResult; 1686 Mang->getNameWithPrefix(NameResult, 1687 StringRef("BA") + Twine((unsigned)FnName.size()) + 1688 "_" + FnName.str() + "_" + BB->getName() + Suffix, 1689 Mangler::Private); 1690 1691 return OutContext.GetOrCreateSymbol(NameResult.str()); 1692} 1693 1694MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const { 1695 SmallString<60> Name; 1696 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB" 1697 << getFunctionNumber() << '_' << MBBID; 1698 1699 return OutContext.GetOrCreateSymbol(Name.str()); 1700} 1701 1702/// GetGlobalValueSymbol - Return the MCSymbol for the specified global 1703/// value. 1704MCSymbol *AsmPrinter::GetGlobalValueSymbol(const GlobalValue *GV) const { 1705 SmallString<60> NameStr; 1706 Mang->getNameWithPrefix(NameStr, GV, false); 1707 return OutContext.GetOrCreateSymbol(NameStr.str()); 1708} 1709 1710/// GetPrivateGlobalValueSymbolStub - Return the MCSymbol for a symbol with 1711/// global value name as its base, with the specified suffix, and where the 1712/// symbol is forced to have private linkage. 1713MCSymbol *AsmPrinter::GetPrivateGlobalValueSymbolStub(const GlobalValue *GV, 1714 StringRef Suffix) const { 1715 SmallString<60> NameStr; 1716 Mang->getNameWithPrefix(NameStr, GV, true); 1717 NameStr.append(Suffix.begin(), Suffix.end()); 1718 return OutContext.GetOrCreateSymbol(NameStr.str()); 1719} 1720 1721/// GetExternalSymbolSymbol - Return the MCSymbol for the specified 1722/// ExternalSymbol. 1723MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 1724 SmallString<60> NameStr; 1725 Mang->getNameWithPrefix(NameStr, Sym); 1726 return OutContext.GetOrCreateSymbol(NameStr.str()); 1727} 1728 1729 1730/// EmitBasicBlockStart - This method prints the label for the specified 1731/// MachineBasicBlock, an alignment (if present) and a comment describing 1732/// it if appropriate. 1733void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 1734 // Emit an alignment directive for this block, if needed. 1735 if (unsigned Align = MBB->getAlignment()) 1736 EmitAlignment(Log2_32(Align)); 1737 1738 // If the block has its address taken, emit a special label to satisfy 1739 // references to the block. This is done so that we don't need to 1740 // remember the number of this label, and so that we can make 1741 // forward references to labels without knowing what their numbers 1742 // will be. 1743 if (MBB->hasAddressTaken()) { 1744 GetBlockAddressSymbol(MBB->getBasicBlock()->getParent(), 1745 MBB->getBasicBlock())->print(O, MAI); 1746 O << ':'; 1747 if (VerboseAsm) { 1748 O.PadToColumn(MAI->getCommentColumn()); 1749 O << MAI->getCommentString() << " Address Taken"; 1750 } 1751 O << '\n'; 1752 } 1753 1754 // Print the main label for the block. 1755 if (MBB->pred_empty() || MBB->isOnlyReachableByFallthrough()) { 1756 if (VerboseAsm) 1757 O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':'; 1758 } else { 1759 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 1760 O << ':'; 1761 if (!VerboseAsm) 1762 O << '\n'; 1763 } 1764 1765 // Print some comments to accompany the label. 1766 if (VerboseAsm) { 1767 if (const BasicBlock *BB = MBB->getBasicBlock()) 1768 if (BB->hasName()) { 1769 O.PadToColumn(MAI->getCommentColumn()); 1770 O << MAI->getCommentString() << ' '; 1771 WriteAsOperand(O, BB, /*PrintType=*/false); 1772 } 1773 1774 EmitComments(*MBB); 1775 O << '\n'; 1776 } 1777} 1778 1779/// printPICJumpTableSetLabel - This method prints a set label for the 1780/// specified MachineBasicBlock for a jumptable entry. 1781void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1782 const MachineBasicBlock *MBB) const { 1783 if (!MAI->getSetDirective()) 1784 return; 1785 1786 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1787 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1788 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 1789 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1790 << '_' << uid << '\n'; 1791} 1792 1793void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1794 const MachineBasicBlock *MBB) const { 1795 if (!MAI->getSetDirective()) 1796 return; 1797 1798 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1799 << getFunctionNumber() << '_' << uid << '_' << uid2 1800 << "_set_" << MBB->getNumber() << ','; 1801 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 1802 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1803 << '_' << uid << '_' << uid2 << '\n'; 1804} 1805 1806/// printDataDirective - This method prints the asm directive for the 1807/// specified type. 1808void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { 1809 const TargetData *TD = TM.getTargetData(); 1810 switch (type->getTypeID()) { 1811 case Type::FloatTyID: case Type::DoubleTyID: 1812 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1813 assert(0 && "Should have already output floating point constant."); 1814 default: 1815 assert(0 && "Can't handle printing this type of thing"); 1816 case Type::IntegerTyID: { 1817 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1818 if (BitWidth <= 8) 1819 O << MAI->getData8bitsDirective(AddrSpace); 1820 else if (BitWidth <= 16) 1821 O << MAI->getData16bitsDirective(AddrSpace); 1822 else if (BitWidth <= 32) 1823 O << MAI->getData32bitsDirective(AddrSpace); 1824 else if (BitWidth <= 64) { 1825 assert(MAI->getData64bitsDirective(AddrSpace) && 1826 "Target cannot handle 64-bit constant exprs!"); 1827 O << MAI->getData64bitsDirective(AddrSpace); 1828 } else { 1829 llvm_unreachable("Target cannot handle given data directive width!"); 1830 } 1831 break; 1832 } 1833 case Type::PointerTyID: 1834 if (TD->getPointerSize() == 8) { 1835 assert(MAI->getData64bitsDirective(AddrSpace) && 1836 "Target cannot handle 64-bit pointer exprs!"); 1837 O << MAI->getData64bitsDirective(AddrSpace); 1838 } else if (TD->getPointerSize() == 2) { 1839 O << MAI->getData16bitsDirective(AddrSpace); 1840 } else if (TD->getPointerSize() == 1) { 1841 O << MAI->getData8bitsDirective(AddrSpace); 1842 } else { 1843 O << MAI->getData32bitsDirective(AddrSpace); 1844 } 1845 break; 1846 } 1847} 1848 1849void AsmPrinter::printVisibility(const std::string& Name, 1850 unsigned Visibility) const { 1851 if (Visibility == GlobalValue::HiddenVisibility) { 1852 if (const char *Directive = MAI->getHiddenDirective()) 1853 O << Directive << Name << '\n'; 1854 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1855 if (const char *Directive = MAI->getProtectedDirective()) 1856 O << Directive << Name << '\n'; 1857 } 1858} 1859 1860void AsmPrinter::printVisibility(const MCSymbol *Sym, 1861 unsigned Visibility) const { 1862 if (Visibility == GlobalValue::HiddenVisibility) { 1863 if (const char *Directive = MAI->getHiddenDirective()) { 1864 O << Directive; 1865 Sym->print(O, MAI); 1866 O << '\n'; 1867 } 1868 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1869 if (const char *Directive = MAI->getProtectedDirective()) { 1870 O << Directive; 1871 Sym->print(O, MAI); 1872 O << '\n'; 1873 } 1874 } 1875} 1876 1877void AsmPrinter::printOffset(int64_t Offset) const { 1878 if (Offset > 0) 1879 O << '+' << Offset; 1880 else if (Offset < 0) 1881 O << Offset; 1882} 1883 1884GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1885 if (!S->usesMetadata()) 1886 return 0; 1887 1888 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1889 if (GCPI != GCMetadataPrinters.end()) 1890 return GCPI->second; 1891 1892 const char *Name = S->getName().c_str(); 1893 1894 for (GCMetadataPrinterRegistry::iterator 1895 I = GCMetadataPrinterRegistry::begin(), 1896 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1897 if (strcmp(Name, I->getName()) == 0) { 1898 GCMetadataPrinter *GMP = I->instantiate(); 1899 GMP->S = S; 1900 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1901 return GMP; 1902 } 1903 1904 errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1905 llvm_unreachable(0); 1906} 1907 1908/// EmitComments - Pretty-print comments for instructions 1909void AsmPrinter::EmitComments(const MachineInstr &MI) const { 1910 if (!VerboseAsm) 1911 return; 1912 1913 bool Newline = false; 1914 1915 if (!MI.getDebugLoc().isUnknown()) { 1916 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); 1917 1918 // Print source line info. 1919 O.PadToColumn(MAI->getCommentColumn()); 1920 O << MAI->getCommentString() << ' '; 1921 DIScope Scope(DLT.Scope); 1922 // Omit the directory, because it's likely to be long and uninteresting. 1923 if (!Scope.isNull()) 1924 O << Scope.getFilename(); 1925 else 1926 O << "<unknown>"; 1927 O << ':' << DLT.Line; 1928 if (DLT.Col != 0) 1929 O << ':' << DLT.Col; 1930 Newline = true; 1931 } 1932 1933 // Check for spills and reloads 1934 int FI; 1935 1936 const MachineFrameInfo *FrameInfo = 1937 MI.getParent()->getParent()->getFrameInfo(); 1938 1939 // We assume a single instruction only has a spill or reload, not 1940 // both. 1941 const MachineMemOperand *MMO; 1942 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 1943 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 1944 MMO = *MI.memoperands_begin(); 1945 if (Newline) O << '\n'; 1946 O.PadToColumn(MAI->getCommentColumn()); 1947 O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Reload"; 1948 Newline = true; 1949 } 1950 } 1951 else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 1952 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 1953 if (Newline) O << '\n'; 1954 O.PadToColumn(MAI->getCommentColumn()); 1955 O << MAI->getCommentString() << ' ' 1956 << MMO->getSize() << "-byte Folded Reload"; 1957 Newline = true; 1958 } 1959 } 1960 else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 1961 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 1962 MMO = *MI.memoperands_begin(); 1963 if (Newline) O << '\n'; 1964 O.PadToColumn(MAI->getCommentColumn()); 1965 O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Spill"; 1966 Newline = true; 1967 } 1968 } 1969 else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 1970 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 1971 if (Newline) O << '\n'; 1972 O.PadToColumn(MAI->getCommentColumn()); 1973 O << MAI->getCommentString() << ' ' 1974 << MMO->getSize() << "-byte Folded Spill"; 1975 Newline = true; 1976 } 1977 } 1978 1979 // Check for spill-induced copies 1980 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1981 if (TM.getInstrInfo()->isMoveInstr(MI, SrcReg, DstReg, 1982 SrcSubIdx, DstSubIdx)) { 1983 if (MI.getAsmPrinterFlag(ReloadReuse)) { 1984 if (Newline) O << '\n'; 1985 O.PadToColumn(MAI->getCommentColumn()); 1986 O << MAI->getCommentString() << " Reload Reuse"; 1987 } 1988 } 1989} 1990 1991/// PrintChildLoopComment - Print comments about child loops within 1992/// the loop for this basic block, with nesting. 1993/// 1994static void PrintChildLoopComment(formatted_raw_ostream &O, 1995 const MachineLoop *loop, 1996 const MCAsmInfo *MAI, 1997 int FunctionNumber) { 1998 // Add child loop information 1999 for(MachineLoop::iterator cl = loop->begin(), 2000 clend = loop->end(); 2001 cl != clend; 2002 ++cl) { 2003 MachineBasicBlock *Header = (*cl)->getHeader(); 2004 assert(Header && "No header for loop"); 2005 2006 O << '\n'; 2007 O.PadToColumn(MAI->getCommentColumn()); 2008 2009 O << MAI->getCommentString(); 2010 O.indent(((*cl)->getLoopDepth()-1)*2) 2011 << " Child Loop BB" << FunctionNumber << "_" 2012 << Header->getNumber() << " Depth " << (*cl)->getLoopDepth(); 2013 2014 PrintChildLoopComment(O, *cl, MAI, FunctionNumber); 2015 } 2016} 2017 2018/// EmitComments - Pretty-print comments for basic blocks 2019void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const { 2020 if (VerboseAsm) { 2021 // Add loop depth information 2022 const MachineLoop *loop = LI->getLoopFor(&MBB); 2023 2024 if (loop) { 2025 // Print a newline after bb# annotation. 2026 O << "\n"; 2027 O.PadToColumn(MAI->getCommentColumn()); 2028 O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth() 2029 << '\n'; 2030 2031 O.PadToColumn(MAI->getCommentColumn()); 2032 2033 MachineBasicBlock *Header = loop->getHeader(); 2034 assert(Header && "No header for loop"); 2035 2036 if (Header == &MBB) { 2037 O << MAI->getCommentString() << " Loop Header"; 2038 PrintChildLoopComment(O, loop, MAI, getFunctionNumber()); 2039 } 2040 else { 2041 O << MAI->getCommentString() << " Loop Header is BB" 2042 << getFunctionNumber() << "_" << loop->getHeader()->getNumber(); 2043 } 2044 2045 if (loop->empty()) { 2046 O << '\n'; 2047 O.PadToColumn(MAI->getCommentColumn()); 2048 O << MAI->getCommentString() << " Inner Loop"; 2049 } 2050 2051 // Add parent loop information 2052 for (const MachineLoop *CurLoop = loop->getParentLoop(); 2053 CurLoop; 2054 CurLoop = CurLoop->getParentLoop()) { 2055 MachineBasicBlock *Header = CurLoop->getHeader(); 2056 assert(Header && "No header for loop"); 2057 2058 O << '\n'; 2059 O.PadToColumn(MAI->getCommentColumn()); 2060 O << MAI->getCommentString(); 2061 O.indent((CurLoop->getLoopDepth()-1)*2) 2062 << " Inside Loop BB" << getFunctionNumber() << "_" 2063 << Header->getNumber() << " Depth " << CurLoop->getLoopDepth(); 2064 } 2065 } 2066 } 2067} 2068