AsmPrinter.cpp revision f18a32eb128513239b516cd055baf9415d05f24f
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "DwarfDebug.h"
17#include "DwarfException.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CodeGen/GCMetadataPrinter.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineJumpTableInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/DebugInfo.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/MC/MCContext.h"
35#include "llvm/MC/MCExpr.h"
36#include "llvm/MC/MCInst.h"
37#include "llvm/MC/MCSection.h"
38#include "llvm/MC/MCStreamer.h"
39#include "llvm/MC/MCSymbol.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/Format.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/Timer.h"
44#include "llvm/Target/Mangler.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetLowering.h"
47#include "llvm/Target/TargetLoweringObjectFile.h"
48#include "llvm/Target/TargetOptions.h"
49#include "llvm/Target/TargetRegisterInfo.h"
50using namespace llvm;
51
52static const char *DWARFGroupName = "DWARF Emission";
53static const char *DbgTimerName = "DWARF Debug Writer";
54static const char *EHTimerName = "DWARF Exception Writer";
55
56STATISTIC(EmittedInsts, "Number of machine instrs printed");
57
58char AsmPrinter::ID = 0;
59
60typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
61static gcp_map_type &getGCMap(void *&P) {
62  if (P == 0)
63    P = new gcp_map_type();
64  return *(gcp_map_type*)P;
65}
66
67
68/// getGVAlignmentLog2 - Return the alignment to use for the specified global
69/// value in log2 form.  This rounds up to the preferred alignment if possible
70/// and legal.
71static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
72                                   unsigned InBits = 0) {
73  unsigned NumBits = 0;
74  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
75    NumBits = TD.getPreferredAlignmentLog(GVar);
76
77  // If InBits is specified, round it to it.
78  if (InBits > NumBits)
79    NumBits = InBits;
80
81  // If the GV has a specified alignment, take it into account.
82  if (GV->getAlignment() == 0)
83    return NumBits;
84
85  unsigned GVAlign = Log2_32(GV->getAlignment());
86
87  // If the GVAlign is larger than NumBits, or if we are required to obey
88  // NumBits because the GV has an assigned section, obey it.
89  if (GVAlign > NumBits || GV->hasSection())
90    NumBits = GVAlign;
91  return NumBits;
92}
93
94AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
95  : MachineFunctionPass(ID),
96    TM(tm), MAI(tm.getMCAsmInfo()),
97    OutContext(Streamer.getContext()),
98    OutStreamer(Streamer),
99    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
100  DD = 0; DE = 0; MMI = 0; LI = 0;
101  CurrentFnSym = CurrentFnSymForSize = 0;
102  GCMetadataPrinters = 0;
103  VerboseAsm = Streamer.isVerboseAsm();
104}
105
106AsmPrinter::~AsmPrinter() {
107  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
108
109  if (GCMetadataPrinters != 0) {
110    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
111
112    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
113      delete I->second;
114    delete &GCMap;
115    GCMetadataPrinters = 0;
116  }
117
118  delete &OutStreamer;
119}
120
121/// getFunctionNumber - Return a unique ID for the current function.
122///
123unsigned AsmPrinter::getFunctionNumber() const {
124  return MF->getFunctionNumber();
125}
126
127const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
128  return TM.getTargetLowering()->getObjFileLowering();
129}
130
131/// getDataLayout - Return information about data layout.
132const DataLayout &AsmPrinter::getDataLayout() const {
133  return *TM.getDataLayout();
134}
135
136StringRef AsmPrinter::getTargetTriple() const {
137  return TM.getTargetTriple();
138}
139
140/// getCurrentSection() - Return the current section we are emitting to.
141const MCSection *AsmPrinter::getCurrentSection() const {
142  return OutStreamer.getCurrentSection().first;
143}
144
145
146
147void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
148  AU.setPreservesAll();
149  MachineFunctionPass::getAnalysisUsage(AU);
150  AU.addRequired<MachineModuleInfo>();
151  AU.addRequired<GCModuleInfo>();
152  if (isVerbose())
153    AU.addRequired<MachineLoopInfo>();
154}
155
156bool AsmPrinter::doInitialization(Module &M) {
157  OutStreamer.InitStreamer();
158
159  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
160  MMI->AnalyzeModule(M);
161
162  // Initialize TargetLoweringObjectFile.
163  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
164    .Initialize(OutContext, TM);
165
166  Mang = new Mangler(OutContext, *TM.getDataLayout());
167
168  // Allow the target to emit any magic that it wants at the start of the file.
169  EmitStartOfAsmFile(M);
170
171  // Very minimal debug info. It is ignored if we emit actual debug info. If we
172  // don't, this at least helps the user find where a global came from.
173  if (MAI->hasSingleParameterDotFile()) {
174    // .file "foo.c"
175    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
176  }
177
178  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
179  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
180  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
181    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
182      MP->beginAssembly(*this);
183
184  // Emit module-level inline asm if it exists.
185  if (!M.getModuleInlineAsm().empty()) {
186    OutStreamer.AddComment("Start of file scope inline assembly");
187    OutStreamer.AddBlankLine();
188    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
189    OutStreamer.AddComment("End of file scope inline assembly");
190    OutStreamer.AddBlankLine();
191  }
192
193  if (MAI->doesSupportDebugInformation())
194    DD = new DwarfDebug(this, &M);
195
196  switch (MAI->getExceptionHandlingType()) {
197  case ExceptionHandling::None:
198    return false;
199  case ExceptionHandling::SjLj:
200  case ExceptionHandling::DwarfCFI:
201    DE = new DwarfCFIException(this);
202    return false;
203  case ExceptionHandling::ARM:
204    DE = new ARMException(this);
205    return false;
206  case ExceptionHandling::Win64:
207    DE = new Win64Exception(this);
208    return false;
209  }
210
211  llvm_unreachable("Unknown exception type.");
212}
213
214void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
215  switch ((GlobalValue::LinkageTypes)Linkage) {
216  case GlobalValue::CommonLinkage:
217  case GlobalValue::LinkOnceAnyLinkage:
218  case GlobalValue::LinkOnceODRLinkage:
219  case GlobalValue::LinkOnceODRAutoHideLinkage:
220  case GlobalValue::WeakAnyLinkage:
221  case GlobalValue::WeakODRLinkage:
222  case GlobalValue::LinkerPrivateWeakLinkage:
223    if (MAI->getWeakDefDirective() != 0) {
224      // .globl _foo
225      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
226
227      if ((GlobalValue::LinkageTypes)Linkage !=
228          GlobalValue::LinkOnceODRAutoHideLinkage)
229        // .weak_definition _foo
230        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
231      else
232        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
233    } else if (MAI->getLinkOnceDirective() != 0) {
234      // .globl _foo
235      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
236      //NOTE: linkonce is handled by the section the symbol was assigned to.
237    } else {
238      // .weak _foo
239      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
240    }
241    break;
242  case GlobalValue::DLLExportLinkage:
243  case GlobalValue::AppendingLinkage:
244    // FIXME: appending linkage variables should go into a section of
245    // their name or something.  For now, just emit them as external.
246  case GlobalValue::ExternalLinkage:
247    // If external or appending, declare as a global symbol.
248    // .globl _foo
249    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
250    break;
251  case GlobalValue::PrivateLinkage:
252  case GlobalValue::InternalLinkage:
253  case GlobalValue::LinkerPrivateLinkage:
254    break;
255  default:
256    llvm_unreachable("Unknown linkage type!");
257  }
258}
259
260
261/// EmitGlobalVariable - Emit the specified global variable to the .s file.
262void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
263  if (GV->hasInitializer()) {
264    // Check to see if this is a special global used by LLVM, if so, emit it.
265    if (EmitSpecialLLVMGlobal(GV))
266      return;
267
268    if (isVerbose()) {
269      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
270                     /*PrintType=*/false, GV->getParent());
271      OutStreamer.GetCommentOS() << '\n';
272    }
273  }
274
275  MCSymbol *GVSym = Mang->getSymbol(GV);
276  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
277
278  if (!GV->hasInitializer())   // External globals require no extra code.
279    return;
280
281  if (MAI->hasDotTypeDotSizeDirective())
282    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
283
284  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
285
286  const DataLayout *TD = TM.getDataLayout();
287  uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
288
289  // If the alignment is specified, we *must* obey it.  Overaligning a global
290  // with a specified alignment is a prompt way to break globals emitted to
291  // sections and expected to be contiguous (e.g. ObjC metadata).
292  unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
293
294  // Handle common and BSS local symbols (.lcomm).
295  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
296    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
297    unsigned Align = 1 << AlignLog;
298
299    // Handle common symbols.
300    if (GVKind.isCommon()) {
301      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
302        Align = 0;
303
304      // .comm _foo, 42, 4
305      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
306      return;
307    }
308
309    // Handle local BSS symbols.
310    if (MAI->hasMachoZeroFillDirective()) {
311      const MCSection *TheSection =
312        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
313      // .zerofill __DATA, __bss, _foo, 400, 5
314      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
315      return;
316    }
317
318    // Use .lcomm only if it supports user-specified alignment.
319    // Otherwise, while it would still be correct to use .lcomm in some
320    // cases (e.g. when Align == 1), the external assembler might enfore
321    // some -unknown- default alignment behavior, which could cause
322    // spurious differences between external and integrated assembler.
323    // Prefer to simply fall back to .local / .comm in this case.
324    if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
325      // .lcomm _foo, 42
326      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
327      return;
328    }
329
330    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
331      Align = 0;
332
333    // .local _foo
334    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
335    // .comm _foo, 42, 4
336    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
337    return;
338  }
339
340  const MCSection *TheSection =
341    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
342
343  // Handle the zerofill directive on darwin, which is a special form of BSS
344  // emission.
345  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
346    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
347
348    // .globl _foo
349    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
350    // .zerofill __DATA, __common, _foo, 400, 5
351    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
352    return;
353  }
354
355  // Handle thread local data for mach-o which requires us to output an
356  // additional structure of data and mangle the original symbol so that we
357  // can reference it later.
358  //
359  // TODO: This should become an "emit thread local global" method on TLOF.
360  // All of this macho specific stuff should be sunk down into TLOFMachO and
361  // stuff like "TLSExtraDataSection" should no longer be part of the parent
362  // TLOF class.  This will also make it more obvious that stuff like
363  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
364  // specific code.
365  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
366    // Emit the .tbss symbol
367    MCSymbol *MangSym =
368      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
369
370    if (GVKind.isThreadBSS())
371      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
372    else if (GVKind.isThreadData()) {
373      OutStreamer.SwitchSection(TheSection);
374
375      EmitAlignment(AlignLog, GV);
376      OutStreamer.EmitLabel(MangSym);
377
378      EmitGlobalConstant(GV->getInitializer());
379    }
380
381    OutStreamer.AddBlankLine();
382
383    // Emit the variable struct for the runtime.
384    const MCSection *TLVSect
385      = getObjFileLowering().getTLSExtraDataSection();
386
387    OutStreamer.SwitchSection(TLVSect);
388    // Emit the linkage here.
389    EmitLinkage(GV->getLinkage(), GVSym);
390    OutStreamer.EmitLabel(GVSym);
391
392    // Three pointers in size:
393    //   - __tlv_bootstrap - used to make sure support exists
394    //   - spare pointer, used when mapped by the runtime
395    //   - pointer to mangled symbol above with initializer
396    unsigned PtrSize = TD->getPointerSizeInBits()/8;
397    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
398				PtrSize);
399    OutStreamer.EmitIntValue(0, PtrSize);
400    OutStreamer.EmitSymbolValue(MangSym, PtrSize);
401
402    OutStreamer.AddBlankLine();
403    return;
404  }
405
406  OutStreamer.SwitchSection(TheSection);
407
408  EmitLinkage(GV->getLinkage(), GVSym);
409  EmitAlignment(AlignLog, GV);
410
411  OutStreamer.EmitLabel(GVSym);
412
413  EmitGlobalConstant(GV->getInitializer());
414
415  if (MAI->hasDotTypeDotSizeDirective())
416    // .size foo, 42
417    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
418
419  OutStreamer.AddBlankLine();
420}
421
422/// EmitFunctionHeader - This method emits the header for the current
423/// function.
424void AsmPrinter::EmitFunctionHeader() {
425  // Print out constants referenced by the function
426  EmitConstantPool();
427
428  // Print the 'header' of function.
429  const Function *F = MF->getFunction();
430
431  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
432  EmitVisibility(CurrentFnSym, F->getVisibility());
433
434  EmitLinkage(F->getLinkage(), CurrentFnSym);
435  EmitAlignment(MF->getAlignment(), F);
436
437  if (MAI->hasDotTypeDotSizeDirective())
438    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
439
440  if (isVerbose()) {
441    WriteAsOperand(OutStreamer.GetCommentOS(), F,
442                   /*PrintType=*/false, F->getParent());
443    OutStreamer.GetCommentOS() << '\n';
444  }
445
446  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
447  // do their wild and crazy things as required.
448  EmitFunctionEntryLabel();
449
450  // If the function had address-taken blocks that got deleted, then we have
451  // references to the dangling symbols.  Emit them at the start of the function
452  // so that we don't get references to undefined symbols.
453  std::vector<MCSymbol*> DeadBlockSyms;
454  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
455  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
456    OutStreamer.AddComment("Address taken block that was later removed");
457    OutStreamer.EmitLabel(DeadBlockSyms[i]);
458  }
459
460  // Add some workaround for linkonce linkage on Cygwin\MinGW.
461  if (MAI->getLinkOnceDirective() != 0 &&
462      (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
463    // FIXME: What is this?
464    MCSymbol *FakeStub =
465      OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
466                                   CurrentFnSym->getName());
467    OutStreamer.EmitLabel(FakeStub);
468  }
469
470  // Emit pre-function debug and/or EH information.
471  if (DE) {
472    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
473    DE->BeginFunction(MF);
474  }
475  if (DD) {
476    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
477    DD->beginFunction(MF);
478  }
479}
480
481/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
482/// function.  This can be overridden by targets as required to do custom stuff.
483void AsmPrinter::EmitFunctionEntryLabel() {
484  // The function label could have already been emitted if two symbols end up
485  // conflicting due to asm renaming.  Detect this and emit an error.
486  if (CurrentFnSym->isUndefined())
487    return OutStreamer.EmitLabel(CurrentFnSym);
488
489  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
490                     "' label emitted multiple times to assembly file");
491}
492
493/// emitComments - Pretty-print comments for instructions.
494static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
495  const MachineFunction *MF = MI.getParent()->getParent();
496  const TargetMachine &TM = MF->getTarget();
497
498  // Check for spills and reloads
499  int FI;
500
501  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
502
503  // We assume a single instruction only has a spill or reload, not
504  // both.
505  const MachineMemOperand *MMO;
506  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
507    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
508      MMO = *MI.memoperands_begin();
509      CommentOS << MMO->getSize() << "-byte Reload\n";
510    }
511  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
512    if (FrameInfo->isSpillSlotObjectIndex(FI))
513      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
514  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
515    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
516      MMO = *MI.memoperands_begin();
517      CommentOS << MMO->getSize() << "-byte Spill\n";
518    }
519  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
520    if (FrameInfo->isSpillSlotObjectIndex(FI))
521      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
522  }
523
524  // Check for spill-induced copies
525  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
526    CommentOS << " Reload Reuse\n";
527}
528
529/// emitImplicitDef - This method emits the specified machine instruction
530/// that is an implicit def.
531static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
532  unsigned RegNo = MI->getOperand(0).getReg();
533  AP.OutStreamer.AddComment(Twine("implicit-def: ") +
534                            AP.TM.getRegisterInfo()->getName(RegNo));
535  AP.OutStreamer.AddBlankLine();
536}
537
538static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
539  std::string Str = "kill:";
540  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
541    const MachineOperand &Op = MI->getOperand(i);
542    assert(Op.isReg() && "KILL instruction must have only register operands");
543    Str += ' ';
544    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
545    Str += (Op.isDef() ? "<def>" : "<kill>");
546  }
547  AP.OutStreamer.AddComment(Str);
548  AP.OutStreamer.AddBlankLine();
549}
550
551/// emitDebugValueComment - This method handles the target-independent form
552/// of DBG_VALUE, returning true if it was able to do so.  A false return
553/// means the target will need to handle MI in EmitInstruction.
554static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
555  // This code handles only the 3-operand target-independent form.
556  if (MI->getNumOperands() != 3)
557    return false;
558
559  SmallString<128> Str;
560  raw_svector_ostream OS(Str);
561  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
562
563  // cast away const; DIetc do not take const operands for some reason.
564  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
565  if (V.getContext().isSubprogram())
566    OS << DISubprogram(V.getContext()).getDisplayName() << ":";
567  OS << V.getName() << " <- ";
568
569  // Register or immediate value. Register 0 means undef.
570  if (MI->getOperand(0).isFPImm()) {
571    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
572    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
573      OS << (double)APF.convertToFloat();
574    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
575      OS << APF.convertToDouble();
576    } else {
577      // There is no good way to print long double.  Convert a copy to
578      // double.  Ah well, it's only a comment.
579      bool ignored;
580      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
581                  &ignored);
582      OS << "(long double) " << APF.convertToDouble();
583    }
584  } else if (MI->getOperand(0).isImm()) {
585    OS << MI->getOperand(0).getImm();
586  } else if (MI->getOperand(0).isCImm()) {
587    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
588  } else {
589    assert(MI->getOperand(0).isReg() && "Unknown operand type");
590    if (MI->getOperand(0).getReg() == 0) {
591      // Suppress offset, it is not meaningful here.
592      OS << "undef";
593      // NOTE: Want this comment at start of line, don't emit with AddComment.
594      AP.OutStreamer.EmitRawText(OS.str());
595      return true;
596    }
597    OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
598  }
599
600  OS << '+' << MI->getOperand(1).getImm();
601  // NOTE: Want this comment at start of line, don't emit with AddComment.
602  AP.OutStreamer.EmitRawText(OS.str());
603  return true;
604}
605
606AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
607  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
608      MF->getFunction()->needsUnwindTableEntry())
609    return CFI_M_EH;
610
611  if (MMI->hasDebugInfo())
612    return CFI_M_Debug;
613
614  return CFI_M_None;
615}
616
617bool AsmPrinter::needsSEHMoves() {
618  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
619    MF->getFunction()->needsUnwindTableEntry();
620}
621
622bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
623  return MAI->doesDwarfUseRelocationsAcrossSections();
624}
625
626void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
627  MCSymbol *Label = MI.getOperand(0).getMCSymbol();
628
629  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
630    return;
631
632  if (needsCFIMoves() == CFI_M_None)
633    return;
634
635  if (MMI->getCompactUnwindEncoding() != 0)
636    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
637
638  MachineModuleInfo &MMI = MF->getMMI();
639  std::vector<MachineMove> &Moves = MMI.getFrameMoves();
640  bool FoundOne = false;
641  (void)FoundOne;
642  for (std::vector<MachineMove>::iterator I = Moves.begin(),
643         E = Moves.end(); I != E; ++I) {
644    if (I->getLabel() == Label) {
645      EmitCFIFrameMove(*I);
646      FoundOne = true;
647    }
648  }
649  assert(FoundOne);
650}
651
652/// EmitFunctionBody - This method emits the body and trailer for a
653/// function.
654void AsmPrinter::EmitFunctionBody() {
655  // Emit target-specific gunk before the function body.
656  EmitFunctionBodyStart();
657
658  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
659
660  // Print out code for the function.
661  bool HasAnyRealCode = false;
662  const MachineInstr *LastMI = 0;
663  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
664       I != E; ++I) {
665    // Print a label for the basic block.
666    EmitBasicBlockStart(I);
667    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
668         II != IE; ++II) {
669      LastMI = II;
670
671      // Print the assembly for the instruction.
672      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
673          !II->isDebugValue()) {
674        HasAnyRealCode = true;
675        ++EmittedInsts;
676      }
677
678      if (ShouldPrintDebugScopes) {
679        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
680        DD->beginInstruction(II);
681      }
682
683      if (isVerbose())
684        emitComments(*II, OutStreamer.GetCommentOS());
685
686      switch (II->getOpcode()) {
687      case TargetOpcode::PROLOG_LABEL:
688        emitPrologLabel(*II);
689        break;
690
691      case TargetOpcode::EH_LABEL:
692      case TargetOpcode::GC_LABEL:
693        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
694        break;
695      case TargetOpcode::INLINEASM:
696        EmitInlineAsm(II);
697        break;
698      case TargetOpcode::DBG_VALUE:
699        if (isVerbose()) {
700          if (!emitDebugValueComment(II, *this))
701            EmitInstruction(II);
702        }
703        break;
704      case TargetOpcode::IMPLICIT_DEF:
705        if (isVerbose()) emitImplicitDef(II, *this);
706        break;
707      case TargetOpcode::KILL:
708        if (isVerbose()) emitKill(II, *this);
709        break;
710      default:
711        if (!TM.hasMCUseLoc())
712          MCLineEntry::Make(&OutStreamer, getCurrentSection());
713
714        EmitInstruction(II);
715        break;
716      }
717
718      if (ShouldPrintDebugScopes) {
719        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
720        DD->endInstruction(II);
721      }
722    }
723  }
724
725  // If the last instruction was a prolog label, then we have a situation where
726  // we emitted a prolog but no function body. This results in the ending prolog
727  // label equaling the end of function label and an invalid "row" in the
728  // FDE. We need to emit a noop in this situation so that the FDE's rows are
729  // valid.
730  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
731
732  // If the function is empty and the object file uses .subsections_via_symbols,
733  // then we need to emit *something* to the function body to prevent the
734  // labels from collapsing together.  Just emit a noop.
735  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
736    MCInst Noop;
737    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
738    if (Noop.getOpcode()) {
739      OutStreamer.AddComment("avoids zero-length function");
740      OutStreamer.EmitInstruction(Noop);
741    } else  // Target not mc-ized yet.
742      OutStreamer.EmitRawText(StringRef("\tnop\n"));
743  }
744
745  const Function *F = MF->getFunction();
746  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
747    const BasicBlock *BB = i;
748    if (!BB->hasAddressTaken())
749      continue;
750    MCSymbol *Sym = GetBlockAddressSymbol(BB);
751    if (Sym->isDefined())
752      continue;
753    OutStreamer.AddComment("Address of block that was removed by CodeGen");
754    OutStreamer.EmitLabel(Sym);
755  }
756
757  // Emit target-specific gunk after the function body.
758  EmitFunctionBodyEnd();
759
760  // If the target wants a .size directive for the size of the function, emit
761  // it.
762  if (MAI->hasDotTypeDotSizeDirective()) {
763    // Create a symbol for the end of function, so we can get the size as
764    // difference between the function label and the temp label.
765    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
766    OutStreamer.EmitLabel(FnEndLabel);
767
768    const MCExpr *SizeExp =
769      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
770                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
771                                                      OutContext),
772                              OutContext);
773    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
774  }
775
776  // Emit post-function debug information.
777  if (DD) {
778    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
779    DD->endFunction(MF);
780  }
781  if (DE) {
782    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
783    DE->EndFunction();
784  }
785  MMI->EndFunction();
786
787  // Print out jump tables referenced by the function.
788  EmitJumpTableInfo();
789
790  OutStreamer.AddBlankLine();
791}
792
793/// getDebugValueLocation - Get location information encoded by DBG_VALUE
794/// operands.
795MachineLocation AsmPrinter::
796getDebugValueLocation(const MachineInstr *MI) const {
797  // Target specific DBG_VALUE instructions are handled by each target.
798  return MachineLocation();
799}
800
801/// EmitDwarfRegOp - Emit dwarf register operation.
802void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
803  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
804  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
805
806  for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
807       ++SR) {
808    Reg = TRI->getDwarfRegNum(*SR, false);
809    // FIXME: Get the bit range this register uses of the superregister
810    // so that we can produce a DW_OP_bit_piece
811  }
812
813  // FIXME: Handle cases like a super register being encoded as
814  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
815
816  // FIXME: We have no reasonable way of handling errors in here. The
817  // caller might be in the middle of an dwarf expression. We should
818  // probably assert that Reg >= 0 once debug info generation is more mature.
819
820  if (MLoc.isIndirect()) {
821    if (Reg < 32) {
822      OutStreamer.AddComment(
823        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
824      EmitInt8(dwarf::DW_OP_breg0 + Reg);
825    } else {
826      OutStreamer.AddComment("DW_OP_bregx");
827      EmitInt8(dwarf::DW_OP_bregx);
828      OutStreamer.AddComment(Twine(Reg));
829      EmitULEB128(Reg);
830    }
831    EmitSLEB128(MLoc.getOffset());
832  } else {
833    if (Reg < 32) {
834      OutStreamer.AddComment(
835        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
836      EmitInt8(dwarf::DW_OP_reg0 + Reg);
837    } else {
838      OutStreamer.AddComment("DW_OP_regx");
839      EmitInt8(dwarf::DW_OP_regx);
840      OutStreamer.AddComment(Twine(Reg));
841      EmitULEB128(Reg);
842    }
843  }
844
845  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
846}
847
848bool AsmPrinter::doFinalization(Module &M) {
849  // Emit global variables.
850  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
851       I != E; ++I)
852    EmitGlobalVariable(I);
853
854  // Emit visibility info for declarations
855  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
856    const Function &F = *I;
857    if (!F.isDeclaration())
858      continue;
859    GlobalValue::VisibilityTypes V = F.getVisibility();
860    if (V == GlobalValue::DefaultVisibility)
861      continue;
862
863    MCSymbol *Name = Mang->getSymbol(&F);
864    EmitVisibility(Name, V, false);
865  }
866
867  // Emit module flags.
868  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
869  M.getModuleFlagsMetadata(ModuleFlags);
870  if (!ModuleFlags.empty())
871    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
872
873  // Finalize debug and EH information.
874  if (DE) {
875    {
876      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
877      DE->EndModule();
878    }
879    delete DE; DE = 0;
880  }
881  if (DD) {
882    {
883      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
884      DD->endModule();
885    }
886    delete DD; DD = 0;
887  }
888
889  // If the target wants to know about weak references, print them all.
890  if (MAI->getWeakRefDirective()) {
891    // FIXME: This is not lazy, it would be nice to only print weak references
892    // to stuff that is actually used.  Note that doing so would require targets
893    // to notice uses in operands (due to constant exprs etc).  This should
894    // happen with the MC stuff eventually.
895
896    // Print out module-level global variables here.
897    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
898         I != E; ++I) {
899      if (!I->hasExternalWeakLinkage()) continue;
900      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
901    }
902
903    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
904      if (!I->hasExternalWeakLinkage()) continue;
905      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
906    }
907  }
908
909  if (MAI->hasSetDirective()) {
910    OutStreamer.AddBlankLine();
911    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
912         I != E; ++I) {
913      MCSymbol *Name = Mang->getSymbol(I);
914
915      const GlobalValue *GV = I->getAliasedGlobal();
916      MCSymbol *Target = Mang->getSymbol(GV);
917
918      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
919        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
920      else if (I->hasWeakLinkage())
921        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
922      else
923        assert(I->hasLocalLinkage() && "Invalid alias linkage");
924
925      EmitVisibility(Name, I->getVisibility());
926
927      // Emit the directives as assignments aka .set:
928      OutStreamer.EmitAssignment(Name,
929                                 MCSymbolRefExpr::Create(Target, OutContext));
930    }
931  }
932
933  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
934  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
935  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
936    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
937      MP->finishAssembly(*this);
938
939  // If we don't have any trampolines, then we don't require stack memory
940  // to be executable. Some targets have a directive to declare this.
941  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
942  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
943    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
944      OutStreamer.SwitchSection(S);
945
946  // Allow the target to emit any magic that it wants at the end of the file,
947  // after everything else has gone out.
948  EmitEndOfAsmFile(M);
949
950  delete Mang; Mang = 0;
951  MMI = 0;
952
953  OutStreamer.Finish();
954  OutStreamer.reset();
955
956  return false;
957}
958
959void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
960  this->MF = &MF;
961  // Get the function symbol.
962  CurrentFnSym = Mang->getSymbol(MF.getFunction());
963  CurrentFnSymForSize = CurrentFnSym;
964
965  if (isVerbose())
966    LI = &getAnalysis<MachineLoopInfo>();
967}
968
969namespace {
970  // SectionCPs - Keep track the alignment, constpool entries per Section.
971  struct SectionCPs {
972    const MCSection *S;
973    unsigned Alignment;
974    SmallVector<unsigned, 4> CPEs;
975    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
976  };
977}
978
979/// EmitConstantPool - Print to the current output stream assembly
980/// representations of the constants in the constant pool MCP. This is
981/// used to print out constants which have been "spilled to memory" by
982/// the code generator.
983///
984void AsmPrinter::EmitConstantPool() {
985  const MachineConstantPool *MCP = MF->getConstantPool();
986  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
987  if (CP.empty()) return;
988
989  // Calculate sections for constant pool entries. We collect entries to go into
990  // the same section together to reduce amount of section switch statements.
991  SmallVector<SectionCPs, 4> CPSections;
992  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
993    const MachineConstantPoolEntry &CPE = CP[i];
994    unsigned Align = CPE.getAlignment();
995
996    SectionKind Kind;
997    switch (CPE.getRelocationInfo()) {
998    default: llvm_unreachable("Unknown section kind");
999    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
1000    case 1:
1001      Kind = SectionKind::getReadOnlyWithRelLocal();
1002      break;
1003    case 0:
1004    switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
1005    case 4:  Kind = SectionKind::getMergeableConst4(); break;
1006    case 8:  Kind = SectionKind::getMergeableConst8(); break;
1007    case 16: Kind = SectionKind::getMergeableConst16();break;
1008    default: Kind = SectionKind::getMergeableConst(); break;
1009    }
1010    }
1011
1012    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1013
1014    // The number of sections are small, just do a linear search from the
1015    // last section to the first.
1016    bool Found = false;
1017    unsigned SecIdx = CPSections.size();
1018    while (SecIdx != 0) {
1019      if (CPSections[--SecIdx].S == S) {
1020        Found = true;
1021        break;
1022      }
1023    }
1024    if (!Found) {
1025      SecIdx = CPSections.size();
1026      CPSections.push_back(SectionCPs(S, Align));
1027    }
1028
1029    if (Align > CPSections[SecIdx].Alignment)
1030      CPSections[SecIdx].Alignment = Align;
1031    CPSections[SecIdx].CPEs.push_back(i);
1032  }
1033
1034  // Now print stuff into the calculated sections.
1035  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1036    OutStreamer.SwitchSection(CPSections[i].S);
1037    EmitAlignment(Log2_32(CPSections[i].Alignment));
1038
1039    unsigned Offset = 0;
1040    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1041      unsigned CPI = CPSections[i].CPEs[j];
1042      MachineConstantPoolEntry CPE = CP[CPI];
1043
1044      // Emit inter-object padding for alignment.
1045      unsigned AlignMask = CPE.getAlignment() - 1;
1046      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1047      OutStreamer.EmitZeros(NewOffset - Offset);
1048
1049      Type *Ty = CPE.getType();
1050      Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
1051      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1052
1053      if (CPE.isMachineConstantPoolEntry())
1054        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1055      else
1056        EmitGlobalConstant(CPE.Val.ConstVal);
1057    }
1058  }
1059}
1060
1061/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1062/// by the current function to the current output stream.
1063///
1064void AsmPrinter::EmitJumpTableInfo() {
1065  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1066  if (MJTI == 0) return;
1067  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1068  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1069  if (JT.empty()) return;
1070
1071  // Pick the directive to use to print the jump table entries, and switch to
1072  // the appropriate section.
1073  const Function *F = MF->getFunction();
1074  bool JTInDiffSection = false;
1075  if (// In PIC mode, we need to emit the jump table to the same section as the
1076      // function body itself, otherwise the label differences won't make sense.
1077      // FIXME: Need a better predicate for this: what about custom entries?
1078      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1079      // We should also do if the section name is NULL or function is declared
1080      // in discardable section
1081      // FIXME: this isn't the right predicate, should be based on the MCSection
1082      // for the function.
1083      F->isWeakForLinker()) {
1084    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1085  } else {
1086    // Otherwise, drop it in the readonly section.
1087    const MCSection *ReadOnlySection =
1088      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1089    OutStreamer.SwitchSection(ReadOnlySection);
1090    JTInDiffSection = true;
1091  }
1092
1093  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
1094
1095  // Jump tables in code sections are marked with a data_region directive
1096  // where that's supported.
1097  if (!JTInDiffSection)
1098    OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1099
1100  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1101    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1102
1103    // If this jump table was deleted, ignore it.
1104    if (JTBBs.empty()) continue;
1105
1106    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1107    // .set directive for each unique entry.  This reduces the number of
1108    // relocations the assembler will generate for the jump table.
1109    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1110        MAI->hasSetDirective()) {
1111      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1112      const TargetLowering *TLI = TM.getTargetLowering();
1113      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1114      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1115        const MachineBasicBlock *MBB = JTBBs[ii];
1116        if (!EmittedSets.insert(MBB)) continue;
1117
1118        // .set LJTSet, LBB32-base
1119        const MCExpr *LHS =
1120          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1121        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1122                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1123      }
1124    }
1125
1126    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1127    // before each jump table.  The first label is never referenced, but tells
1128    // the assembler and linker the extents of the jump table object.  The
1129    // second label is actually referenced by the code.
1130    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1131      // FIXME: This doesn't have to have any specific name, just any randomly
1132      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1133      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1134
1135    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1136
1137    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1138      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1139  }
1140  if (!JTInDiffSection)
1141    OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1142}
1143
1144/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1145/// current stream.
1146void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1147                                    const MachineBasicBlock *MBB,
1148                                    unsigned UID) const {
1149  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1150  const MCExpr *Value = 0;
1151  switch (MJTI->getEntryKind()) {
1152  case MachineJumpTableInfo::EK_Inline:
1153    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1154  case MachineJumpTableInfo::EK_Custom32:
1155    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1156                                                              OutContext);
1157    break;
1158  case MachineJumpTableInfo::EK_BlockAddress:
1159    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1160    //     .word LBB123
1161    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1162    break;
1163  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1164    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1165    // with a relocation as gp-relative, e.g.:
1166    //     .gprel32 LBB123
1167    MCSymbol *MBBSym = MBB->getSymbol();
1168    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1169    return;
1170  }
1171
1172  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1173    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1174    // with a relocation as gp-relative, e.g.:
1175    //     .gpdword LBB123
1176    MCSymbol *MBBSym = MBB->getSymbol();
1177    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1178    return;
1179  }
1180
1181  case MachineJumpTableInfo::EK_LabelDifference32: {
1182    // EK_LabelDifference32 - Each entry is the address of the block minus
1183    // the address of the jump table.  This is used for PIC jump tables where
1184    // gprel32 is not supported.  e.g.:
1185    //      .word LBB123 - LJTI1_2
1186    // If the .set directive is supported, this is emitted as:
1187    //      .set L4_5_set_123, LBB123 - LJTI1_2
1188    //      .word L4_5_set_123
1189
1190    // If we have emitted set directives for the jump table entries, print
1191    // them rather than the entries themselves.  If we're emitting PIC, then
1192    // emit the table entries as differences between two text section labels.
1193    if (MAI->hasSetDirective()) {
1194      // If we used .set, reference the .set's symbol.
1195      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1196                                      OutContext);
1197      break;
1198    }
1199    // Otherwise, use the difference as the jump table entry.
1200    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1201    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1202    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1203    break;
1204  }
1205  }
1206
1207  assert(Value && "Unknown entry kind!");
1208
1209  unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
1210  OutStreamer.EmitValue(Value, EntrySize);
1211}
1212
1213
1214/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1215/// special global used by LLVM.  If so, emit it and return true, otherwise
1216/// do nothing and return false.
1217bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1218  if (GV->getName() == "llvm.used") {
1219    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1220      EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1221    return true;
1222  }
1223
1224  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1225  if (GV->getSection() == "llvm.metadata" ||
1226      GV->hasAvailableExternallyLinkage())
1227    return true;
1228
1229  if (!GV->hasAppendingLinkage()) return false;
1230
1231  assert(GV->hasInitializer() && "Not a special LLVM global!");
1232
1233  if (GV->getName() == "llvm.global_ctors") {
1234    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1235
1236    if (TM.getRelocationModel() == Reloc::Static &&
1237        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1238      StringRef Sym(".constructors_used");
1239      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1240                                      MCSA_Reference);
1241    }
1242    return true;
1243  }
1244
1245  if (GV->getName() == "llvm.global_dtors") {
1246    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1247
1248    if (TM.getRelocationModel() == Reloc::Static &&
1249        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1250      StringRef Sym(".destructors_used");
1251      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1252                                      MCSA_Reference);
1253    }
1254    return true;
1255  }
1256
1257  return false;
1258}
1259
1260/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1261/// global in the specified llvm.used list for which emitUsedDirectiveFor
1262/// is true, as being used with this directive.
1263void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1264  // Should be an array of 'i8*'.
1265  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1266    const GlobalValue *GV =
1267      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1268    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1269      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1270  }
1271}
1272
1273typedef std::pair<unsigned, Constant*> Structor;
1274
1275static bool priority_order(const Structor& lhs, const Structor& rhs) {
1276  return lhs.first < rhs.first;
1277}
1278
1279/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1280/// priority.
1281void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1282  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1283  // init priority.
1284  if (!isa<ConstantArray>(List)) return;
1285
1286  // Sanity check the structors list.
1287  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1288  if (!InitList) return; // Not an array!
1289  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1290  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1291  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1292      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1293
1294  // Gather the structors in a form that's convenient for sorting by priority.
1295  SmallVector<Structor, 8> Structors;
1296  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1297    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1298    if (!CS) continue; // Malformed.
1299    if (CS->getOperand(1)->isNullValue())
1300      break;  // Found a null terminator, skip the rest.
1301    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1302    if (!Priority) continue; // Malformed.
1303    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1304                                       CS->getOperand(1)));
1305  }
1306
1307  // Emit the function pointers in the target-specific order
1308  const DataLayout *TD = TM.getDataLayout();
1309  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1310  std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1311  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1312    const MCSection *OutputSection =
1313      (isCtor ?
1314       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1315       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1316    OutStreamer.SwitchSection(OutputSection);
1317    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1318      EmitAlignment(Align);
1319    EmitXXStructor(Structors[i].second);
1320  }
1321}
1322
1323//===--------------------------------------------------------------------===//
1324// Emission and print routines
1325//
1326
1327/// EmitInt8 - Emit a byte directive and value.
1328///
1329void AsmPrinter::EmitInt8(int Value) const {
1330  OutStreamer.EmitIntValue(Value, 1);
1331}
1332
1333/// EmitInt16 - Emit a short directive and value.
1334///
1335void AsmPrinter::EmitInt16(int Value) const {
1336  OutStreamer.EmitIntValue(Value, 2);
1337}
1338
1339/// EmitInt32 - Emit a long directive and value.
1340///
1341void AsmPrinter::EmitInt32(int Value) const {
1342  OutStreamer.EmitIntValue(Value, 4);
1343}
1344
1345/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1346/// in bytes of the directive is specified by Size and Hi/Lo specify the
1347/// labels.  This implicitly uses .set if it is available.
1348void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1349                                     unsigned Size) const {
1350  // Get the Hi-Lo expression.
1351  const MCExpr *Diff =
1352    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1353                            MCSymbolRefExpr::Create(Lo, OutContext),
1354                            OutContext);
1355
1356  if (!MAI->hasSetDirective()) {
1357    OutStreamer.EmitValue(Diff, Size);
1358    return;
1359  }
1360
1361  // Otherwise, emit with .set (aka assignment).
1362  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1363  OutStreamer.EmitAssignment(SetLabel, Diff);
1364  OutStreamer.EmitSymbolValue(SetLabel, Size);
1365}
1366
1367/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1368/// where the size in bytes of the directive is specified by Size and Hi/Lo
1369/// specify the labels.  This implicitly uses .set if it is available.
1370void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1371                                           const MCSymbol *Lo, unsigned Size)
1372  const {
1373
1374  // Emit Hi+Offset - Lo
1375  // Get the Hi+Offset expression.
1376  const MCExpr *Plus =
1377    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1378                            MCConstantExpr::Create(Offset, OutContext),
1379                            OutContext);
1380
1381  // Get the Hi+Offset-Lo expression.
1382  const MCExpr *Diff =
1383    MCBinaryExpr::CreateSub(Plus,
1384                            MCSymbolRefExpr::Create(Lo, OutContext),
1385                            OutContext);
1386
1387  if (!MAI->hasSetDirective())
1388    OutStreamer.EmitValue(Diff, 4);
1389  else {
1390    // Otherwise, emit with .set (aka assignment).
1391    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1392    OutStreamer.EmitAssignment(SetLabel, Diff);
1393    OutStreamer.EmitSymbolValue(SetLabel, 4);
1394  }
1395}
1396
1397/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1398/// where the size in bytes of the directive is specified by Size and Label
1399/// specifies the label.  This implicitly uses .set if it is available.
1400void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1401                                      unsigned Size)
1402  const {
1403
1404  // Emit Label+Offset (or just Label if Offset is zero)
1405  const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1406  if (Offset)
1407    Expr = MCBinaryExpr::CreateAdd(Expr,
1408                                   MCConstantExpr::Create(Offset, OutContext),
1409                                   OutContext);
1410
1411  OutStreamer.EmitValue(Expr, Size);
1412}
1413
1414
1415//===----------------------------------------------------------------------===//
1416
1417// EmitAlignment - Emit an alignment directive to the specified power of
1418// two boundary.  For example, if you pass in 3 here, you will get an 8
1419// byte alignment.  If a global value is specified, and if that global has
1420// an explicit alignment requested, it will override the alignment request
1421// if required for correctness.
1422//
1423void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1424  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
1425
1426  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1427
1428  if (getCurrentSection()->getKind().isText())
1429    OutStreamer.EmitCodeAlignment(1 << NumBits);
1430  else
1431    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1432}
1433
1434//===----------------------------------------------------------------------===//
1435// Constant emission.
1436//===----------------------------------------------------------------------===//
1437
1438/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1439///
1440static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1441  MCContext &Ctx = AP.OutContext;
1442
1443  if (CV->isNullValue() || isa<UndefValue>(CV))
1444    return MCConstantExpr::Create(0, Ctx);
1445
1446  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1447    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1448
1449  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1450    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1451
1452  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1453    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1454
1455  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1456  if (CE == 0) {
1457    llvm_unreachable("Unknown constant value to lower!");
1458  }
1459
1460  switch (CE->getOpcode()) {
1461  default:
1462    // If the code isn't optimized, there may be outstanding folding
1463    // opportunities. Attempt to fold the expression using DataLayout as a
1464    // last resort before giving up.
1465    if (Constant *C =
1466          ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
1467      if (C != CE)
1468        return lowerConstant(C, AP);
1469
1470    // Otherwise report the problem to the user.
1471    {
1472      std::string S;
1473      raw_string_ostream OS(S);
1474      OS << "Unsupported expression in static initializer: ";
1475      WriteAsOperand(OS, CE, /*PrintType=*/false,
1476                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1477      report_fatal_error(OS.str());
1478    }
1479  case Instruction::GetElementPtr: {
1480    const DataLayout &TD = *AP.TM.getDataLayout();
1481    // Generate a symbolic expression for the byte address
1482    APInt OffsetAI(TD.getPointerSizeInBits(), 0);
1483    cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
1484
1485    const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1486    if (!OffsetAI)
1487      return Base;
1488
1489    int64_t Offset = OffsetAI.getSExtValue();
1490    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1491                                   Ctx);
1492  }
1493
1494  case Instruction::Trunc:
1495    // We emit the value and depend on the assembler to truncate the generated
1496    // expression properly.  This is important for differences between
1497    // blockaddress labels.  Since the two labels are in the same function, it
1498    // is reasonable to treat their delta as a 32-bit value.
1499    // FALL THROUGH.
1500  case Instruction::BitCast:
1501    return lowerConstant(CE->getOperand(0), AP);
1502
1503  case Instruction::IntToPtr: {
1504    const DataLayout &TD = *AP.TM.getDataLayout();
1505    // Handle casts to pointers by changing them into casts to the appropriate
1506    // integer type.  This promotes constant folding and simplifies this code.
1507    Constant *Op = CE->getOperand(0);
1508    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1509                                      false/*ZExt*/);
1510    return lowerConstant(Op, AP);
1511  }
1512
1513  case Instruction::PtrToInt: {
1514    const DataLayout &TD = *AP.TM.getDataLayout();
1515    // Support only foldable casts to/from pointers that can be eliminated by
1516    // changing the pointer to the appropriately sized integer type.
1517    Constant *Op = CE->getOperand(0);
1518    Type *Ty = CE->getType();
1519
1520    const MCExpr *OpExpr = lowerConstant(Op, AP);
1521
1522    // We can emit the pointer value into this slot if the slot is an
1523    // integer slot equal to the size of the pointer.
1524    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1525      return OpExpr;
1526
1527    // Otherwise the pointer is smaller than the resultant integer, mask off
1528    // the high bits so we are sure to get a proper truncation if the input is
1529    // a constant expr.
1530    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1531    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1532    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1533  }
1534
1535  // The MC library also has a right-shift operator, but it isn't consistently
1536  // signed or unsigned between different targets.
1537  case Instruction::Add:
1538  case Instruction::Sub:
1539  case Instruction::Mul:
1540  case Instruction::SDiv:
1541  case Instruction::SRem:
1542  case Instruction::Shl:
1543  case Instruction::And:
1544  case Instruction::Or:
1545  case Instruction::Xor: {
1546    const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1547    const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1548    switch (CE->getOpcode()) {
1549    default: llvm_unreachable("Unknown binary operator constant cast expr");
1550    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1551    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1552    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1553    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1554    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1555    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1556    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1557    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1558    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1559    }
1560  }
1561  }
1562}
1563
1564static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1565                                   AsmPrinter &AP);
1566
1567/// isRepeatedByteSequence - Determine whether the given value is
1568/// composed of a repeated sequence of identical bytes and return the
1569/// byte value.  If it is not a repeated sequence, return -1.
1570static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1571  StringRef Data = V->getRawDataValues();
1572  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1573  char C = Data[0];
1574  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1575    if (Data[i] != C) return -1;
1576  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1577}
1578
1579
1580/// isRepeatedByteSequence - Determine whether the given value is
1581/// composed of a repeated sequence of identical bytes and return the
1582/// byte value.  If it is not a repeated sequence, return -1.
1583static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1584
1585  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1586    if (CI->getBitWidth() > 64) return -1;
1587
1588    uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
1589    uint64_t Value = CI->getZExtValue();
1590
1591    // Make sure the constant is at least 8 bits long and has a power
1592    // of 2 bit width.  This guarantees the constant bit width is
1593    // always a multiple of 8 bits, avoiding issues with padding out
1594    // to Size and other such corner cases.
1595    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1596
1597    uint8_t Byte = static_cast<uint8_t>(Value);
1598
1599    for (unsigned i = 1; i < Size; ++i) {
1600      Value >>= 8;
1601      if (static_cast<uint8_t>(Value) != Byte) return -1;
1602    }
1603    return Byte;
1604  }
1605  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1606    // Make sure all array elements are sequences of the same repeated
1607    // byte.
1608    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1609    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1610    if (Byte == -1) return -1;
1611
1612    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1613      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1614      if (ThisByte == -1) return -1;
1615      if (Byte != ThisByte) return -1;
1616    }
1617    return Byte;
1618  }
1619
1620  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1621    return isRepeatedByteSequence(CDS);
1622
1623  return -1;
1624}
1625
1626static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1627                                             unsigned AddrSpace,AsmPrinter &AP){
1628
1629  // See if we can aggregate this into a .fill, if so, emit it as such.
1630  int Value = isRepeatedByteSequence(CDS, AP.TM);
1631  if (Value != -1) {
1632    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
1633    // Don't emit a 1-byte object as a .fill.
1634    if (Bytes > 1)
1635      return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1636  }
1637
1638  // If this can be emitted with .ascii/.asciz, emit it as such.
1639  if (CDS->isString())
1640    return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1641
1642  // Otherwise, emit the values in successive locations.
1643  unsigned ElementByteSize = CDS->getElementByteSize();
1644  if (isa<IntegerType>(CDS->getElementType())) {
1645    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1646      if (AP.isVerbose())
1647        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1648                                                CDS->getElementAsInteger(i));
1649      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1650                                  ElementByteSize, AddrSpace);
1651    }
1652  } else if (ElementByteSize == 4) {
1653    // FP Constants are printed as integer constants to avoid losing
1654    // precision.
1655    assert(CDS->getElementType()->isFloatTy());
1656    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1657      union {
1658        float F;
1659        uint32_t I;
1660      };
1661
1662      F = CDS->getElementAsFloat(i);
1663      if (AP.isVerbose())
1664        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1665      AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1666    }
1667  } else {
1668    assert(CDS->getElementType()->isDoubleTy());
1669    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1670      union {
1671        double F;
1672        uint64_t I;
1673      };
1674
1675      F = CDS->getElementAsDouble(i);
1676      if (AP.isVerbose())
1677        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1678      AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1679    }
1680  }
1681
1682  const DataLayout &TD = *AP.TM.getDataLayout();
1683  unsigned Size = TD.getTypeAllocSize(CDS->getType());
1684  unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1685                        CDS->getNumElements();
1686  if (unsigned Padding = Size - EmittedSize)
1687    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1688
1689}
1690
1691static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1692                                    AsmPrinter &AP) {
1693  // See if we can aggregate some values.  Make sure it can be
1694  // represented as a series of bytes of the constant value.
1695  int Value = isRepeatedByteSequence(CA, AP.TM);
1696
1697  if (Value != -1) {
1698    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
1699    AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1700  }
1701  else {
1702    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1703      emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1704  }
1705}
1706
1707static void emitGlobalConstantVector(const ConstantVector *CV,
1708                                     unsigned AddrSpace, AsmPrinter &AP) {
1709  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1710    emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1711
1712  const DataLayout &TD = *AP.TM.getDataLayout();
1713  unsigned Size = TD.getTypeAllocSize(CV->getType());
1714  unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1715                         CV->getType()->getNumElements();
1716  if (unsigned Padding = Size - EmittedSize)
1717    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1718}
1719
1720static void emitGlobalConstantStruct(const ConstantStruct *CS,
1721                                     unsigned AddrSpace, AsmPrinter &AP) {
1722  // Print the fields in successive locations. Pad to align if needed!
1723  const DataLayout *TD = AP.TM.getDataLayout();
1724  unsigned Size = TD->getTypeAllocSize(CS->getType());
1725  const StructLayout *Layout = TD->getStructLayout(CS->getType());
1726  uint64_t SizeSoFar = 0;
1727  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1728    const Constant *Field = CS->getOperand(i);
1729
1730    // Check if padding is needed and insert one or more 0s.
1731    uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1732    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1733                        - Layout->getElementOffset(i)) - FieldSize;
1734    SizeSoFar += FieldSize + PadSize;
1735
1736    // Now print the actual field value.
1737    emitGlobalConstantImpl(Field, AddrSpace, AP);
1738
1739    // Insert padding - this may include padding to increase the size of the
1740    // current field up to the ABI size (if the struct is not packed) as well
1741    // as padding to ensure that the next field starts at the right offset.
1742    AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1743  }
1744  assert(SizeSoFar == Layout->getSizeInBytes() &&
1745         "Layout of constant struct may be incorrect!");
1746}
1747
1748static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1749                                 AsmPrinter &AP) {
1750  APInt API = CFP->getValueAPF().bitcastToAPInt();
1751
1752  // First print a comment with what we think the original floating-point value
1753  // should have been.
1754  if (AP.isVerbose()) {
1755    SmallString<8> StrVal;
1756    CFP->getValueAPF().toString(StrVal);
1757
1758    CFP->getType()->print(AP.OutStreamer.GetCommentOS());
1759    AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
1760  }
1761
1762  // Now iterate through the APInt chunks, emitting them in endian-correct
1763  // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
1764  // floats).
1765  unsigned NumBytes = API.getBitWidth() / 8;
1766  unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
1767  const uint64_t *p = API.getRawData();
1768
1769  // PPC's long double has odd notions of endianness compared to how LLVM
1770  // handles it: p[0] goes first for *big* endian on PPC.
1771  if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) {
1772    int Chunk = API.getNumWords() - 1;
1773
1774    if (TrailingBytes)
1775      AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes, AddrSpace);
1776
1777    for (; Chunk >= 0; --Chunk)
1778      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t), AddrSpace);
1779  } else {
1780    unsigned Chunk;
1781    for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
1782      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t), AddrSpace);
1783
1784    if (TrailingBytes)
1785      AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes, AddrSpace);
1786  }
1787
1788  // Emit the tail padding for the long double.
1789  const DataLayout &TD = *AP.TM.getDataLayout();
1790  AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1791                           TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1792}
1793
1794static void emitGlobalConstantLargeInt(const ConstantInt *CI,
1795                                       unsigned AddrSpace, AsmPrinter &AP) {
1796  const DataLayout *TD = AP.TM.getDataLayout();
1797  unsigned BitWidth = CI->getBitWidth();
1798  assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1799
1800  // We don't expect assemblers to support integer data directives
1801  // for more than 64 bits, so we emit the data in at most 64-bit
1802  // quantities at a time.
1803  const uint64_t *RawData = CI->getValue().getRawData();
1804  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1805    uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1806    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1807  }
1808}
1809
1810static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1811                                   AsmPrinter &AP) {
1812  const DataLayout *TD = AP.TM.getDataLayout();
1813  uint64_t Size = TD->getTypeAllocSize(CV->getType());
1814  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1815    return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1816
1817  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1818    switch (Size) {
1819    case 1:
1820    case 2:
1821    case 4:
1822    case 8:
1823      if (AP.isVerbose())
1824        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1825                                                CI->getZExtValue());
1826      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1827      return;
1828    default:
1829      emitGlobalConstantLargeInt(CI, AddrSpace, AP);
1830      return;
1831    }
1832  }
1833
1834  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1835    return emitGlobalConstantFP(CFP, AddrSpace, AP);
1836
1837  if (isa<ConstantPointerNull>(CV)) {
1838    AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1839    return;
1840  }
1841
1842  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1843    return emitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1844
1845  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1846    return emitGlobalConstantArray(CVA, AddrSpace, AP);
1847
1848  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1849    return emitGlobalConstantStruct(CVS, AddrSpace, AP);
1850
1851  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1852    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1853    // vectors).
1854    if (CE->getOpcode() == Instruction::BitCast)
1855      return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1856
1857    if (Size > 8) {
1858      // If the constant expression's size is greater than 64-bits, then we have
1859      // to emit the value in chunks. Try to constant fold the value and emit it
1860      // that way.
1861      Constant *New = ConstantFoldConstantExpression(CE, TD);
1862      if (New && New != CE)
1863        return emitGlobalConstantImpl(New, AddrSpace, AP);
1864    }
1865  }
1866
1867  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1868    return emitGlobalConstantVector(V, AddrSpace, AP);
1869
1870  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1871  // thread the streamer with EmitValue.
1872  AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace);
1873}
1874
1875/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1876void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1877  uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
1878  if (Size)
1879    emitGlobalConstantImpl(CV, AddrSpace, *this);
1880  else if (MAI->hasSubsectionsViaSymbols()) {
1881    // If the global has zero size, emit a single byte so that two labels don't
1882    // look like they are at the same location.
1883    OutStreamer.EmitIntValue(0, 1, AddrSpace);
1884  }
1885}
1886
1887void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1888  // Target doesn't support this yet!
1889  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1890}
1891
1892void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1893  if (Offset > 0)
1894    OS << '+' << Offset;
1895  else if (Offset < 0)
1896    OS << Offset;
1897}
1898
1899//===----------------------------------------------------------------------===//
1900// Symbol Lowering Routines.
1901//===----------------------------------------------------------------------===//
1902
1903/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1904/// temporary label with the specified stem and unique ID.
1905MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1906  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1907                                      Name + Twine(ID));
1908}
1909
1910/// GetTempSymbol - Return an assembler temporary label with the specified
1911/// stem.
1912MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1913  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1914                                      Name);
1915}
1916
1917
1918MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1919  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1920}
1921
1922MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1923  return MMI->getAddrLabelSymbol(BB);
1924}
1925
1926/// GetCPISymbol - Return the symbol for the specified constant pool entry.
1927MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1928  return OutContext.GetOrCreateSymbol
1929    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1930     + "_" + Twine(CPID));
1931}
1932
1933/// GetJTISymbol - Return the symbol for the specified jump table entry.
1934MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1935  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1936}
1937
1938/// GetJTSetSymbol - Return the symbol for the specified jump table .set
1939/// FIXME: privatize to AsmPrinter.
1940MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1941  return OutContext.GetOrCreateSymbol
1942  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1943   Twine(UID) + "_set_" + Twine(MBBID));
1944}
1945
1946/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1947/// global value name as its base, with the specified suffix, and where the
1948/// symbol is forced to have private linkage if ForcePrivate is true.
1949MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1950                                                   StringRef Suffix,
1951                                                   bool ForcePrivate) const {
1952  SmallString<60> NameStr;
1953  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1954  NameStr.append(Suffix.begin(), Suffix.end());
1955  return OutContext.GetOrCreateSymbol(NameStr.str());
1956}
1957
1958/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1959/// ExternalSymbol.
1960MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
1961  SmallString<60> NameStr;
1962  Mang->getNameWithPrefix(NameStr, Sym);
1963  return OutContext.GetOrCreateSymbol(NameStr.str());
1964}
1965
1966
1967
1968/// PrintParentLoopComment - Print comments about parent loops of this one.
1969static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
1970                                   unsigned FunctionNumber) {
1971  if (Loop == 0) return;
1972  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
1973  OS.indent(Loop->getLoopDepth()*2)
1974    << "Parent Loop BB" << FunctionNumber << "_"
1975    << Loop->getHeader()->getNumber()
1976    << " Depth=" << Loop->getLoopDepth() << '\n';
1977}
1978
1979
1980/// PrintChildLoopComment - Print comments about child loops within
1981/// the loop for this basic block, with nesting.
1982static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
1983                                  unsigned FunctionNumber) {
1984  // Add child loop information
1985  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
1986    OS.indent((*CL)->getLoopDepth()*2)
1987      << "Child Loop BB" << FunctionNumber << "_"
1988      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
1989      << '\n';
1990    PrintChildLoopComment(OS, *CL, FunctionNumber);
1991  }
1992}
1993
1994/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
1995static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
1996                                       const MachineLoopInfo *LI,
1997                                       const AsmPrinter &AP) {
1998  // Add loop depth information
1999  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2000  if (Loop == 0) return;
2001
2002  MachineBasicBlock *Header = Loop->getHeader();
2003  assert(Header && "No header for loop");
2004
2005  // If this block is not a loop header, just print out what is the loop header
2006  // and return.
2007  if (Header != &MBB) {
2008    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2009                              Twine(AP.getFunctionNumber())+"_" +
2010                              Twine(Loop->getHeader()->getNumber())+
2011                              " Depth="+Twine(Loop->getLoopDepth()));
2012    return;
2013  }
2014
2015  // Otherwise, it is a loop header.  Print out information about child and
2016  // parent loops.
2017  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2018
2019  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2020
2021  OS << "=>";
2022  OS.indent(Loop->getLoopDepth()*2-2);
2023
2024  OS << "This ";
2025  if (Loop->empty())
2026    OS << "Inner ";
2027  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2028
2029  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2030}
2031
2032
2033/// EmitBasicBlockStart - This method prints the label for the specified
2034/// MachineBasicBlock, an alignment (if present) and a comment describing
2035/// it if appropriate.
2036void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2037  // Emit an alignment directive for this block, if needed.
2038  if (unsigned Align = MBB->getAlignment())
2039    EmitAlignment(Align);
2040
2041  // If the block has its address taken, emit any labels that were used to
2042  // reference the block.  It is possible that there is more than one label
2043  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2044  // the references were generated.
2045  if (MBB->hasAddressTaken()) {
2046    const BasicBlock *BB = MBB->getBasicBlock();
2047    if (isVerbose())
2048      OutStreamer.AddComment("Block address taken");
2049
2050    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2051
2052    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2053      OutStreamer.EmitLabel(Syms[i]);
2054  }
2055
2056  // Print some verbose block comments.
2057  if (isVerbose()) {
2058    if (const BasicBlock *BB = MBB->getBasicBlock())
2059      if (BB->hasName())
2060        OutStreamer.AddComment("%" + BB->getName());
2061    emitBasicBlockLoopComments(*MBB, LI, *this);
2062  }
2063
2064  // Print the main label for the block.
2065  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2066    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2067      // NOTE: Want this comment at start of line, don't emit with AddComment.
2068      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2069                              Twine(MBB->getNumber()) + ":");
2070    }
2071  } else {
2072    OutStreamer.EmitLabel(MBB->getSymbol());
2073  }
2074}
2075
2076void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2077                                bool IsDefinition) const {
2078  MCSymbolAttr Attr = MCSA_Invalid;
2079
2080  switch (Visibility) {
2081  default: break;
2082  case GlobalValue::HiddenVisibility:
2083    if (IsDefinition)
2084      Attr = MAI->getHiddenVisibilityAttr();
2085    else
2086      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2087    break;
2088  case GlobalValue::ProtectedVisibility:
2089    Attr = MAI->getProtectedVisibilityAttr();
2090    break;
2091  }
2092
2093  if (Attr != MCSA_Invalid)
2094    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2095}
2096
2097/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2098/// exactly one predecessor and the control transfer mechanism between
2099/// the predecessor and this block is a fall-through.
2100bool AsmPrinter::
2101isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2102  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2103  // then nothing falls through to it.
2104  if (MBB->isLandingPad() || MBB->pred_empty())
2105    return false;
2106
2107  // If there isn't exactly one predecessor, it can't be a fall through.
2108  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2109  ++PI2;
2110  if (PI2 != MBB->pred_end())
2111    return false;
2112
2113  // The predecessor has to be immediately before this block.
2114  MachineBasicBlock *Pred = *PI;
2115
2116  if (!Pred->isLayoutSuccessor(MBB))
2117    return false;
2118
2119  // If the block is completely empty, then it definitely does fall through.
2120  if (Pred->empty())
2121    return true;
2122
2123  // Check the terminators in the previous blocks
2124  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2125         IE = Pred->end(); II != IE; ++II) {
2126    MachineInstr &MI = *II;
2127
2128    // If it is not a simple branch, we are in a table somewhere.
2129    if (!MI.isBranch() || MI.isIndirectBranch())
2130      return false;
2131
2132    // If we are the operands of one of the branches, this is not
2133    // a fall through.
2134    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2135           OE = MI.operands_end(); OI != OE; ++OI) {
2136      const MachineOperand& OP = *OI;
2137      if (OP.isJTI())
2138        return false;
2139      if (OP.isMBB() && OP.getMBB() == MBB)
2140        return false;
2141    }
2142  }
2143
2144  return true;
2145}
2146
2147
2148
2149GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2150  if (!S->usesMetadata())
2151    return 0;
2152
2153  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2154  gcp_map_type::iterator GCPI = GCMap.find(S);
2155  if (GCPI != GCMap.end())
2156    return GCPI->second;
2157
2158  const char *Name = S->getName().c_str();
2159
2160  for (GCMetadataPrinterRegistry::iterator
2161         I = GCMetadataPrinterRegistry::begin(),
2162         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2163    if (strcmp(Name, I->getName()) == 0) {
2164      GCMetadataPrinter *GMP = I->instantiate();
2165      GMP->S = S;
2166      GCMap.insert(std::make_pair(S, GMP));
2167      return GMP;
2168    }
2169
2170  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2171}
2172