AsmPrinter.cpp revision f2fc2764fa7e0db258b290b79d8eb379ba6f097c
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/DwarfWriter.h" 20#include "llvm/CodeGen/GCMetadataPrinter.h" 21#include "llvm/CodeGen/MachineConstantPool.h" 22#include "llvm/CodeGen/MachineFrameInfo.h" 23#include "llvm/CodeGen/MachineFunction.h" 24#include "llvm/CodeGen/MachineJumpTableInfo.h" 25#include "llvm/CodeGen/MachineLoopInfo.h" 26#include "llvm/CodeGen/MachineModuleInfo.h" 27#include "llvm/Analysis/DebugInfo.h" 28#include "llvm/MC/MCContext.h" 29#include "llvm/MC/MCInst.h" 30#include "llvm/MC/MCSection.h" 31#include "llvm/MC/MCStreamer.h" 32#include "llvm/MC/MCSymbol.h" 33#include "llvm/Support/CommandLine.h" 34#include "llvm/Support/ErrorHandling.h" 35#include "llvm/Support/FormattedStream.h" 36#include "llvm/MC/MCAsmInfo.h" 37#include "llvm/Target/Mangler.h" 38#include "llvm/Target/TargetData.h" 39#include "llvm/Target/TargetInstrInfo.h" 40#include "llvm/Target/TargetLowering.h" 41#include "llvm/Target/TargetLoweringObjectFile.h" 42#include "llvm/Target/TargetOptions.h" 43#include "llvm/Target/TargetRegisterInfo.h" 44#include "llvm/ADT/SmallPtrSet.h" 45#include "llvm/ADT/SmallString.h" 46#include <cerrno> 47using namespace llvm; 48 49static cl::opt<cl::boolOrDefault> 50AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 51 cl::init(cl::BOU_UNSET)); 52 53char AsmPrinter::ID = 0; 54AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm, 55 const MCAsmInfo *T, bool VDef) 56 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 57 TM(tm), MAI(T), TRI(tm.getRegisterInfo()), 58 59 OutContext(*new MCContext()), 60 // FIXME: Pass instprinter to streamer. 61 OutStreamer(*createAsmStreamer(OutContext, O, *T, 62 TM.getTargetData()->isLittleEndian(), 0)), 63 64 LastMI(0), LastFn(0), Counter(~0U), PrevDLT(NULL) { 65 DW = 0; MMI = 0; 66 switch (AsmVerbose) { 67 case cl::BOU_UNSET: VerboseAsm = VDef; break; 68 case cl::BOU_TRUE: VerboseAsm = true; break; 69 case cl::BOU_FALSE: VerboseAsm = false; break; 70 } 71} 72 73AsmPrinter::~AsmPrinter() { 74 for (gcp_iterator I = GCMetadataPrinters.begin(), 75 E = GCMetadataPrinters.end(); I != E; ++I) 76 delete I->second; 77 78 delete &OutStreamer; 79 delete &OutContext; 80} 81 82TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 83 return TM.getTargetLowering()->getObjFileLowering(); 84} 85 86/// getCurrentSection() - Return the current section we are emitting to. 87const MCSection *AsmPrinter::getCurrentSection() const { 88 return OutStreamer.getCurrentSection(); 89} 90 91 92void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 93 AU.setPreservesAll(); 94 MachineFunctionPass::getAnalysisUsage(AU); 95 AU.addRequired<GCModuleInfo>(); 96 if (VerboseAsm) 97 AU.addRequired<MachineLoopInfo>(); 98} 99 100bool AsmPrinter::doInitialization(Module &M) { 101 // Initialize TargetLoweringObjectFile. 102 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 103 .Initialize(OutContext, TM); 104 105 Mang = new Mangler(*MAI); 106 107 // Allow the target to emit any magic that it wants at the start of the file. 108 EmitStartOfAsmFile(M); 109 110 if (MAI->hasSingleParameterDotFile()) { 111 /* Very minimal debug info. It is ignored if we emit actual 112 debug info. If we don't, this at least helps the user find where 113 a function came from. */ 114 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 115 } 116 117 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 118 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 119 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 120 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 121 MP->beginAssembly(O, *this, *MAI); 122 123 if (!M.getModuleInlineAsm().empty()) 124 O << MAI->getCommentString() << " Start of file scope inline assembly\n" 125 << M.getModuleInlineAsm() 126 << '\n' << MAI->getCommentString() 127 << " End of file scope inline assembly\n"; 128 129 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 130 if (MMI) 131 MMI->AnalyzeModule(M); 132 DW = getAnalysisIfAvailable<DwarfWriter>(); 133 if (DW) 134 DW->BeginModule(&M, MMI, O, this, MAI); 135 136 return false; 137} 138 139/// EmitGlobalVariable - Emit the specified global variable to the .s file. 140void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 141 if (!GV->hasInitializer()) // External globals require no code. 142 return; 143 144 // Check to see if this is a special global used by LLVM, if so, emit it. 145 if (EmitSpecialLLVMGlobal(GV)) 146 return; 147 148 MCSymbol *GVSym = GetGlobalValueSymbol(GV); 149 printVisibility(GVSym, GV->getVisibility()); 150 151 if (MAI->hasDotTypeDotSizeDirective()) { 152 O << "\t.type\t" << *GVSym; 153 if (MAI->getCommentString()[0] != '@') 154 O << ",@object\n"; 155 else 156 O << ",%object\n"; 157 } 158 159 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 160 161 const TargetData *TD = TM.getTargetData(); 162 unsigned Size = TD->getTypeAllocSize(GV->getType()->getElementType()); 163 unsigned AlignLog = TD->getPreferredAlignmentLog(GV); 164 165 // Handle common and BSS local symbols (.lcomm). 166 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 167 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 168 169 if (VerboseAsm) { 170 O.PadToColumn(MAI->getCommentColumn()); 171 O << MAI->getCommentString() << ' '; 172 WriteAsOperand(O, GV, /*PrintType=*/false, GV->getParent()); 173 O << '\n'; 174 } 175 176 // Handle common symbols. 177 if (GVKind.isCommon()) { 178 // .comm _foo, 42, 4 179 OutStreamer.EmitCommonSymbol(GVSym, Size, 1 << AlignLog); 180 return; 181 } 182 183 // Handle local BSS symbols. 184 if (MAI->hasMachoZeroFillDirective()) { 185 const MCSection *TheSection = 186 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 187 // .zerofill __DATA, __bss, _foo, 400, 5 188 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 189 return; 190 } 191 192 if (const char *LComm = MAI->getLCOMMDirective()) { 193 // .lcomm _foo, 42 194 O << LComm << *GVSym << ',' << Size; 195 O << '\n'; 196 return; 197 } 198 199 // .local _foo 200 O << "\t.local\t" << *GVSym << '\n'; 201 // .comm _foo, 42, 4 202 OutStreamer.EmitCommonSymbol(GVSym, Size, 1 << AlignLog); 203 return; 204 } 205 206 const MCSection *TheSection = 207 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 208 209 // Handle the zerofill directive on darwin, which is a special form of BSS 210 // emission. 211 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 212 // .globl _foo 213 OutStreamer.EmitSymbolAttribute(GVSym, MCStreamer::Global); 214 // .zerofill __DATA, __common, _foo, 400, 5 215 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 216 return; 217 } 218 219 OutStreamer.SwitchSection(TheSection); 220 221 // TODO: Factor into an 'emit linkage' thing that is shared with function 222 // bodies. 223 switch (GV->getLinkage()) { 224 case GlobalValue::CommonLinkage: 225 case GlobalValue::LinkOnceAnyLinkage: 226 case GlobalValue::LinkOnceODRLinkage: 227 case GlobalValue::WeakAnyLinkage: 228 case GlobalValue::WeakODRLinkage: 229 case GlobalValue::LinkerPrivateLinkage: 230 if (MAI->getWeakDefDirective() != 0) { 231 // .globl _foo 232 OutStreamer.EmitSymbolAttribute(GVSym, MCStreamer::Global); 233 // .weak_definition _foo 234 OutStreamer.EmitSymbolAttribute(GVSym, MCStreamer::WeakDefinition); 235 } else if (const char *LinkOnce = MAI->getLinkOnceDirective()) { 236 // .globl _foo 237 OutStreamer.EmitSymbolAttribute(GVSym, MCStreamer::Global); 238 // .linkonce same_size 239 O << LinkOnce; 240 } else { 241 // .weak _foo 242 OutStreamer.EmitSymbolAttribute(GVSym, MCStreamer::Weak); 243 } 244 break; 245 case GlobalValue::DLLExportLinkage: 246 case GlobalValue::AppendingLinkage: 247 // FIXME: appending linkage variables should go into a section of 248 // their name or something. For now, just emit them as external. 249 case GlobalValue::ExternalLinkage: 250 // If external or appending, declare as a global symbol. 251 // .globl _foo 252 OutStreamer.EmitSymbolAttribute(GVSym, MCStreamer::Global); 253 break; 254 case GlobalValue::PrivateLinkage: 255 case GlobalValue::InternalLinkage: 256 break; 257 default: 258 llvm_unreachable("Unknown linkage type!"); 259 } 260 261 EmitAlignment(AlignLog, GV); 262 if (VerboseAsm) { 263 O.PadToColumn(MAI->getCommentColumn()); 264 O << MAI->getCommentString() << ' '; 265 WriteAsOperand(O, GV, /*PrintType=*/false, GV->getParent()); 266 O << '\n'; 267 } 268 OutStreamer.EmitLabel(GVSym); 269 270 EmitGlobalConstant(GV->getInitializer()); 271 272 if (MAI->hasDotTypeDotSizeDirective()) 273 O << "\t.size\t" << *GVSym << ", " << Size << '\n'; 274} 275 276 277bool AsmPrinter::doFinalization(Module &M) { 278 // Emit global variables. 279 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 280 I != E; ++I) 281 EmitGlobalVariable(I); 282 283 // Emit final debug information. 284 if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling()) 285 DW->EndModule(); 286 287 // If the target wants to know about weak references, print them all. 288 if (MAI->getWeakRefDirective()) { 289 // FIXME: This is not lazy, it would be nice to only print weak references 290 // to stuff that is actually used. Note that doing so would require targets 291 // to notice uses in operands (due to constant exprs etc). This should 292 // happen with the MC stuff eventually. 293 294 // Print out module-level global variables here. 295 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 296 I != E; ++I) { 297 if (!I->hasExternalWeakLinkage()) continue; 298 O << MAI->getWeakRefDirective() << *GetGlobalValueSymbol(I) << '\n'; 299 } 300 301 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 302 if (!I->hasExternalWeakLinkage()) continue; 303 O << MAI->getWeakRefDirective() << *GetGlobalValueSymbol(I) << '\n'; 304 } 305 } 306 307 if (MAI->getSetDirective()) { 308 O << '\n'; 309 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 310 I != E; ++I) { 311 MCSymbol *Name = GetGlobalValueSymbol(I); 312 313 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 314 MCSymbol *Target = GetGlobalValueSymbol(GV); 315 316 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 317 O << "\t.globl\t" << *Name << '\n'; 318 else if (I->hasWeakLinkage()) 319 O << MAI->getWeakRefDirective() << *Name << '\n'; 320 else 321 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 322 323 printVisibility(Name, I->getVisibility()); 324 325 O << MAI->getSetDirective() << ' ' << *Name << ", " << *Target << '\n'; 326 } 327 } 328 329 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 330 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 331 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 332 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 333 MP->finishAssembly(O, *this, *MAI); 334 335 // If we don't have any trampolines, then we don't require stack memory 336 // to be executable. Some targets have a directive to declare this. 337 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 338 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 339 if (MAI->getNonexecutableStackDirective()) 340 O << MAI->getNonexecutableStackDirective() << '\n'; 341 342 343 // Allow the target to emit any magic that it wants at the end of the file, 344 // after everything else has gone out. 345 EmitEndOfAsmFile(M); 346 347 delete Mang; Mang = 0; 348 DW = 0; MMI = 0; 349 350 OutStreamer.Finish(); 351 return false; 352} 353 354void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 355 // Get the function symbol. 356 CurrentFnSym = GetGlobalValueSymbol(MF.getFunction()); 357 IncrementFunctionNumber(); 358 359 if (VerboseAsm) 360 LI = &getAnalysis<MachineLoopInfo>(); 361} 362 363namespace { 364 // SectionCPs - Keep track the alignment, constpool entries per Section. 365 struct SectionCPs { 366 const MCSection *S; 367 unsigned Alignment; 368 SmallVector<unsigned, 4> CPEs; 369 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 370 }; 371} 372 373/// EmitConstantPool - Print to the current output stream assembly 374/// representations of the constants in the constant pool MCP. This is 375/// used to print out constants which have been "spilled to memory" by 376/// the code generator. 377/// 378void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 379 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 380 if (CP.empty()) return; 381 382 // Calculate sections for constant pool entries. We collect entries to go into 383 // the same section together to reduce amount of section switch statements. 384 SmallVector<SectionCPs, 4> CPSections; 385 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 386 const MachineConstantPoolEntry &CPE = CP[i]; 387 unsigned Align = CPE.getAlignment(); 388 389 SectionKind Kind; 390 switch (CPE.getRelocationInfo()) { 391 default: llvm_unreachable("Unknown section kind"); 392 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 393 case 1: 394 Kind = SectionKind::getReadOnlyWithRelLocal(); 395 break; 396 case 0: 397 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 398 case 4: Kind = SectionKind::getMergeableConst4(); break; 399 case 8: Kind = SectionKind::getMergeableConst8(); break; 400 case 16: Kind = SectionKind::getMergeableConst16();break; 401 default: Kind = SectionKind::getMergeableConst(); break; 402 } 403 } 404 405 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 406 407 // The number of sections are small, just do a linear search from the 408 // last section to the first. 409 bool Found = false; 410 unsigned SecIdx = CPSections.size(); 411 while (SecIdx != 0) { 412 if (CPSections[--SecIdx].S == S) { 413 Found = true; 414 break; 415 } 416 } 417 if (!Found) { 418 SecIdx = CPSections.size(); 419 CPSections.push_back(SectionCPs(S, Align)); 420 } 421 422 if (Align > CPSections[SecIdx].Alignment) 423 CPSections[SecIdx].Alignment = Align; 424 CPSections[SecIdx].CPEs.push_back(i); 425 } 426 427 // Now print stuff into the calculated sections. 428 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 429 OutStreamer.SwitchSection(CPSections[i].S); 430 EmitAlignment(Log2_32(CPSections[i].Alignment)); 431 432 unsigned Offset = 0; 433 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 434 unsigned CPI = CPSections[i].CPEs[j]; 435 MachineConstantPoolEntry CPE = CP[CPI]; 436 437 // Emit inter-object padding for alignment. 438 unsigned AlignMask = CPE.getAlignment() - 1; 439 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 440 OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/); 441 442 const Type *Ty = CPE.getType(); 443 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 444 445 O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 446 << CPI << ':'; 447 if (VerboseAsm) { 448 O.PadToColumn(MAI->getCommentColumn()); 449 O << MAI->getCommentString() << " constant "; 450 WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent()); 451 } 452 O << '\n'; 453 if (CPE.isMachineConstantPoolEntry()) 454 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 455 else 456 EmitGlobalConstant(CPE.Val.ConstVal); 457 } 458 } 459} 460 461/// EmitJumpTableInfo - Print assembly representations of the jump tables used 462/// by the current function to the current output stream. 463/// 464void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 465 MachineFunction &MF) { 466 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 467 if (JT.empty()) return; 468 469 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 470 471 // Pick the directive to use to print the jump table entries, and switch to 472 // the appropriate section. 473 TargetLowering *LoweringInfo = TM.getTargetLowering(); 474 475 const Function *F = MF.getFunction(); 476 bool JTInDiffSection = false; 477 if (F->isWeakForLinker() || 478 (IsPic && !LoweringInfo->usesGlobalOffsetTable())) { 479 // In PIC mode, we need to emit the jump table to the same section as the 480 // function body itself, otherwise the label differences won't make sense. 481 // We should also do if the section name is NULL or function is declared in 482 // discardable section. 483 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, 484 TM)); 485 } else { 486 // Otherwise, drop it in the readonly section. 487 const MCSection *ReadOnlySection = 488 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 489 OutStreamer.SwitchSection(ReadOnlySection); 490 JTInDiffSection = true; 491 } 492 493 EmitAlignment(Log2_32(MJTI->getAlignment())); 494 495 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 496 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 497 498 // If this jump table was deleted, ignore it. 499 if (JTBBs.empty()) continue; 500 501 // For PIC codegen, if possible we want to use the SetDirective to reduce 502 // the number of relocations the assembler will generate for the jump table. 503 // Set directives are all printed before the jump table itself. 504 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 505 if (MAI->getSetDirective() && IsPic) 506 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 507 if (EmittedSets.insert(JTBBs[ii])) 508 printPICJumpTableSetLabel(i, JTBBs[ii]); 509 510 // On some targets (e.g. Darwin) we want to emit two consequtive labels 511 // before each jump table. The first label is never referenced, but tells 512 // the assembler and linker the extents of the jump table object. The 513 // second label is actually referenced by the code. 514 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) { 515 O << MAI->getLinkerPrivateGlobalPrefix() 516 << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 517 } 518 519 O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 520 << '_' << i << ":\n"; 521 522 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 523 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 524 O << '\n'; 525 } 526 } 527} 528 529void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 530 const MachineBasicBlock *MBB, 531 unsigned uid) const { 532 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 533 534 // Use JumpTableDirective otherwise honor the entry size from the jump table 535 // info. 536 const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC); 537 bool HadJTEntryDirective = JTEntryDirective != NULL; 538 if (!HadJTEntryDirective) { 539 JTEntryDirective = MJTI->getEntrySize() == 4 ? 540 MAI->getData32bitsDirective() : MAI->getData64bitsDirective(); 541 } 542 543 O << JTEntryDirective << ' '; 544 545 // If we have emitted set directives for the jump table entries, print 546 // them rather than the entries themselves. If we're emitting PIC, then 547 // emit the table entries as differences between two text section labels. 548 // If we're emitting non-PIC code, then emit the entries as direct 549 // references to the target basic blocks. 550 if (!isPIC) { 551 O << *GetMBBSymbol(MBB->getNumber()); 552 } else if (MAI->getSetDirective()) { 553 O << MAI->getPrivateGlobalPrefix() << getFunctionNumber() 554 << '_' << uid << "_set_" << MBB->getNumber(); 555 } else { 556 O << *GetMBBSymbol(MBB->getNumber()); 557 // If the arch uses custom Jump Table directives, don't calc relative to 558 // JT 559 if (!HadJTEntryDirective) 560 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" 561 << getFunctionNumber() << '_' << uid; 562 } 563} 564 565 566/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 567/// special global used by LLVM. If so, emit it and return true, otherwise 568/// do nothing and return false. 569bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 570 if (GV->getName() == "llvm.used") { 571 if (MAI->getUsedDirective() != 0) // No need to emit this at all. 572 EmitLLVMUsedList(GV->getInitializer()); 573 return true; 574 } 575 576 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 577 if (GV->getSection() == "llvm.metadata" || 578 GV->hasAvailableExternallyLinkage()) 579 return true; 580 581 if (!GV->hasAppendingLinkage()) return false; 582 583 assert(GV->hasInitializer() && "Not a special LLVM global!"); 584 585 const TargetData *TD = TM.getTargetData(); 586 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 587 if (GV->getName() == "llvm.global_ctors") { 588 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection()); 589 EmitAlignment(Align, 0); 590 EmitXXStructorList(GV->getInitializer()); 591 592 if (TM.getRelocationModel() == Reloc::Static && 593 MAI->hasStaticCtorDtorReferenceInStaticMode()) 594 O << ".reference .constructors_used\n"; 595 return true; 596 } 597 598 if (GV->getName() == "llvm.global_dtors") { 599 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection()); 600 EmitAlignment(Align, 0); 601 EmitXXStructorList(GV->getInitializer()); 602 603 if (TM.getRelocationModel() == Reloc::Static && 604 MAI->hasStaticCtorDtorReferenceInStaticMode()) 605 O << ".reference .destructors_used\n"; 606 return true; 607 } 608 609 return false; 610} 611 612/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 613/// global in the specified llvm.used list for which emitUsedDirectiveFor 614/// is true, as being used with this directive. 615void AsmPrinter::EmitLLVMUsedList(Constant *List) { 616 const char *Directive = MAI->getUsedDirective(); 617 618 // Should be an array of 'i8*'. 619 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 620 if (InitList == 0) return; 621 622 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 623 const GlobalValue *GV = 624 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 625 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) { 626 O << Directive; 627 EmitConstantValueOnly(InitList->getOperand(i)); 628 O << '\n'; 629 } 630 } 631} 632 633/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 634/// function pointers, ignoring the init priority. 635void AsmPrinter::EmitXXStructorList(Constant *List) { 636 // Should be an array of '{ int, void ()* }' structs. The first value is the 637 // init priority, which we ignore. 638 if (!isa<ConstantArray>(List)) return; 639 ConstantArray *InitList = cast<ConstantArray>(List); 640 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 641 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 642 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 643 644 if (CS->getOperand(1)->isNullValue()) 645 return; // Found a null terminator, exit printing. 646 // Emit the function pointer. 647 EmitGlobalConstant(CS->getOperand(1)); 648 } 649} 650 651 652//===----------------------------------------------------------------------===// 653/// LEB 128 number encoding. 654 655/// PrintULEB128 - Print a series of hexadecimal values (separated by commas) 656/// representing an unsigned leb128 value. 657void AsmPrinter::PrintULEB128(unsigned Value) const { 658 do { 659 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 660 Value >>= 7; 661 if (Value) Byte |= 0x80; 662 PrintHex(Byte); 663 if (Value) O << ", "; 664 } while (Value); 665} 666 667/// PrintSLEB128 - Print a series of hexadecimal values (separated by commas) 668/// representing a signed leb128 value. 669void AsmPrinter::PrintSLEB128(int Value) const { 670 int Sign = Value >> (8 * sizeof(Value) - 1); 671 bool IsMore; 672 673 do { 674 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 675 Value >>= 7; 676 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 677 if (IsMore) Byte |= 0x80; 678 PrintHex(Byte); 679 if (IsMore) O << ", "; 680 } while (IsMore); 681} 682 683//===--------------------------------------------------------------------===// 684// Emission and print routines 685// 686 687/// PrintHex - Print a value as a hexadecimal value. 688/// 689void AsmPrinter::PrintHex(uint64_t Value) const { 690 O << "0x"; 691 O.write_hex(Value); 692} 693 694/// EOL - Print a newline character to asm stream. If a comment is present 695/// then it will be printed first. Comments should not contain '\n'. 696void AsmPrinter::EOL() const { 697 O << '\n'; 698} 699 700void AsmPrinter::EOL(const Twine &Comment) const { 701 if (VerboseAsm && !Comment.isTriviallyEmpty()) { 702 O.PadToColumn(MAI->getCommentColumn()); 703 O << MAI->getCommentString() 704 << ' ' 705 << Comment; 706 } 707 O << '\n'; 708} 709 710static const char *DecodeDWARFEncoding(unsigned Encoding) { 711 switch (Encoding) { 712 case dwarf::DW_EH_PE_absptr: 713 return "absptr"; 714 case dwarf::DW_EH_PE_omit: 715 return "omit"; 716 case dwarf::DW_EH_PE_pcrel: 717 return "pcrel"; 718 case dwarf::DW_EH_PE_udata4: 719 return "udata4"; 720 case dwarf::DW_EH_PE_udata8: 721 return "udata8"; 722 case dwarf::DW_EH_PE_sdata4: 723 return "sdata4"; 724 case dwarf::DW_EH_PE_sdata8: 725 return "sdata8"; 726 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4: 727 return "pcrel udata4"; 728 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4: 729 return "pcrel sdata4"; 730 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8: 731 return "pcrel udata8"; 732 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8: 733 return "pcrel sdata8"; 734 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4: 735 return "indirect pcrel udata4"; 736 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4: 737 return "indirect pcrel sdata4"; 738 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8: 739 return "indirect pcrel udata8"; 740 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8: 741 return "indirect pcrel sdata8"; 742 } 743 744 return 0; 745} 746 747void AsmPrinter::EOL(const Twine &Comment, unsigned Encoding) const { 748 if (VerboseAsm && !Comment.isTriviallyEmpty()) { 749 O.PadToColumn(MAI->getCommentColumn()); 750 O << MAI->getCommentString() 751 << ' ' 752 << Comment; 753 754 if (const char *EncStr = DecodeDWARFEncoding(Encoding)) 755 O << " (" << EncStr << ')'; 756 } 757 O << '\n'; 758} 759 760/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 761/// unsigned leb128 value. 762void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 763 if (MAI->hasLEB128()) { 764 O << "\t.uleb128\t" 765 << Value; 766 } else { 767 O << MAI->getData8bitsDirective(); 768 PrintULEB128(Value); 769 } 770} 771 772/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 773/// signed leb128 value. 774void AsmPrinter::EmitSLEB128Bytes(int Value) const { 775 if (MAI->hasLEB128()) { 776 O << "\t.sleb128\t" 777 << Value; 778 } else { 779 O << MAI->getData8bitsDirective(); 780 PrintSLEB128(Value); 781 } 782} 783 784/// EmitInt8 - Emit a byte directive and value. 785/// 786void AsmPrinter::EmitInt8(int Value) const { 787 OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/); 788} 789 790/// EmitInt16 - Emit a short directive and value. 791/// 792void AsmPrinter::EmitInt16(int Value) const { 793 OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/); 794} 795 796/// EmitInt32 - Emit a long directive and value. 797/// 798void AsmPrinter::EmitInt32(int Value) const { 799 OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/); 800} 801 802/// EmitInt64 - Emit a long long directive and value. 803/// 804void AsmPrinter::EmitInt64(uint64_t Value) const { 805 OutStreamer.EmitIntValue(Value, 8, 0/*addrspace*/); 806} 807 808/// toOctal - Convert the low order bits of X into an octal digit. 809/// 810static inline char toOctal(int X) { 811 return (X&7)+'0'; 812} 813 814/// printStringChar - Print a char, escaped if necessary. 815/// 816static void printStringChar(formatted_raw_ostream &O, unsigned char C) { 817 if (C == '"') { 818 O << "\\\""; 819 } else if (C == '\\') { 820 O << "\\\\"; 821 } else if (isprint((unsigned char)C)) { 822 O << C; 823 } else { 824 switch(C) { 825 case '\b': O << "\\b"; break; 826 case '\f': O << "\\f"; break; 827 case '\n': O << "\\n"; break; 828 case '\r': O << "\\r"; break; 829 case '\t': O << "\\t"; break; 830 default: 831 O << '\\'; 832 O << toOctal(C >> 6); 833 O << toOctal(C >> 3); 834 O << toOctal(C >> 0); 835 break; 836 } 837 } 838} 839 840/// EmitString - Emit a string with quotes and a null terminator. 841/// Special characters are emitted properly. 842/// \literal (Eg. '\t') \endliteral 843void AsmPrinter::EmitString(const StringRef String) const { 844 EmitString(String.data(), String.size()); 845} 846 847void AsmPrinter::EmitString(const char *String, unsigned Size) const { 848 const char* AscizDirective = MAI->getAscizDirective(); 849 if (AscizDirective) 850 O << AscizDirective; 851 else 852 O << MAI->getAsciiDirective(); 853 O << '\"'; 854 for (unsigned i = 0; i < Size; ++i) 855 printStringChar(O, String[i]); 856 if (AscizDirective) 857 O << '\"'; 858 else 859 O << "\\0\""; 860} 861 862 863/// EmitFile - Emit a .file directive. 864void AsmPrinter::EmitFile(unsigned Number, StringRef Name) const { 865 O << "\t.file\t" << Number << " \""; 866 for (unsigned i = 0, N = Name.size(); i < N; ++i) 867 printStringChar(O, Name[i]); 868 O << '\"'; 869} 870 871 872//===----------------------------------------------------------------------===// 873 874// EmitAlignment - Emit an alignment directive to the specified power of 875// two boundary. For example, if you pass in 3 here, you will get an 8 876// byte alignment. If a global value is specified, and if that global has 877// an explicit alignment requested, it will unconditionally override the 878// alignment request. However, if ForcedAlignBits is specified, this value 879// has final say: the ultimate alignment will be the max of ForcedAlignBits 880// and the alignment computed with NumBits and the global. 881// 882// The algorithm is: 883// Align = NumBits; 884// if (GV && GV->hasalignment) Align = GV->getalignment(); 885// Align = std::max(Align, ForcedAlignBits); 886// 887void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 888 unsigned ForcedAlignBits, 889 bool UseFillExpr) const { 890 if (GV && GV->getAlignment()) 891 NumBits = Log2_32(GV->getAlignment()); 892 NumBits = std::max(NumBits, ForcedAlignBits); 893 894 if (NumBits == 0) return; // No need to emit alignment. 895 896 unsigned FillValue = 0; 897 if (getCurrentSection()->getKind().isText()) 898 FillValue = MAI->getTextAlignFillValue(); 899 900 OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0); 901} 902 903// Print out the specified constant, without a storage class. Only the 904// constants valid in constant expressions can occur here. 905void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 906 if (CV->isNullValue() || isa<UndefValue>(CV)) { 907 O << '0'; 908 return; 909 } 910 911 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 912 O << CI->getZExtValue(); 913 return; 914 } 915 916 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 917 // This is a constant address for a global variable or function. Use the 918 // name of the variable or function as the address value. 919 O << *GetGlobalValueSymbol(GV); 920 return; 921 } 922 923 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 924 O << *GetBlockAddressSymbol(BA); 925 return; 926 } 927 928 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 929 if (CE == 0) { 930 llvm_unreachable("Unknown constant value!"); 931 O << '0'; 932 return; 933 } 934 935 switch (CE->getOpcode()) { 936 case Instruction::ZExt: 937 case Instruction::SExt: 938 case Instruction::FPTrunc: 939 case Instruction::FPExt: 940 case Instruction::UIToFP: 941 case Instruction::SIToFP: 942 case Instruction::FPToUI: 943 case Instruction::FPToSI: 944 default: 945 llvm_unreachable("FIXME: Don't support this constant cast expr"); 946 case Instruction::GetElementPtr: { 947 // generate a symbolic expression for the byte address 948 const TargetData *TD = TM.getTargetData(); 949 const Constant *ptrVal = CE->getOperand(0); 950 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 951 int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 952 idxVec.size()); 953 if (Offset == 0) 954 return EmitConstantValueOnly(ptrVal); 955 956 // Truncate/sext the offset to the pointer size. 957 if (TD->getPointerSizeInBits() != 64) { 958 int SExtAmount = 64-TD->getPointerSizeInBits(); 959 Offset = (Offset << SExtAmount) >> SExtAmount; 960 } 961 962 if (Offset) 963 O << '('; 964 EmitConstantValueOnly(ptrVal); 965 if (Offset > 0) 966 O << ") + " << Offset; 967 else 968 O << ") - " << -Offset; 969 return; 970 } 971 case Instruction::BitCast: 972 return EmitConstantValueOnly(CE->getOperand(0)); 973 974 case Instruction::IntToPtr: { 975 // Handle casts to pointers by changing them into casts to the appropriate 976 // integer type. This promotes constant folding and simplifies this code. 977 const TargetData *TD = TM.getTargetData(); 978 Constant *Op = CE->getOperand(0); 979 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()), 980 false/*ZExt*/); 981 return EmitConstantValueOnly(Op); 982 } 983 984 case Instruction::PtrToInt: { 985 // Support only foldable casts to/from pointers that can be eliminated by 986 // changing the pointer to the appropriately sized integer type. 987 Constant *Op = CE->getOperand(0); 988 const Type *Ty = CE->getType(); 989 const TargetData *TD = TM.getTargetData(); 990 991 // We can emit the pointer value into this slot if the slot is an 992 // integer slot greater or equal to the size of the pointer. 993 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType())) 994 return EmitConstantValueOnly(Op); 995 996 O << "(("; 997 EmitConstantValueOnly(Op); 998 APInt ptrMask = 999 APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType())); 1000 1001 SmallString<40> S; 1002 ptrMask.toStringUnsigned(S); 1003 O << ") & " << S.str() << ')'; 1004 return; 1005 } 1006 1007 case Instruction::Trunc: 1008 // We emit the value and depend on the assembler to truncate the generated 1009 // expression properly. This is important for differences between 1010 // blockaddress labels. Since the two labels are in the same function, it 1011 // is reasonable to treat their delta as a 32-bit value. 1012 return EmitConstantValueOnly(CE->getOperand(0)); 1013 1014 case Instruction::Add: 1015 case Instruction::Sub: 1016 case Instruction::And: 1017 case Instruction::Or: 1018 case Instruction::Xor: 1019 O << '('; 1020 EmitConstantValueOnly(CE->getOperand(0)); 1021 O << ')'; 1022 switch (CE->getOpcode()) { 1023 case Instruction::Add: 1024 O << " + "; 1025 break; 1026 case Instruction::Sub: 1027 O << " - "; 1028 break; 1029 case Instruction::And: 1030 O << " & "; 1031 break; 1032 case Instruction::Or: 1033 O << " | "; 1034 break; 1035 case Instruction::Xor: 1036 O << " ^ "; 1037 break; 1038 default: 1039 break; 1040 } 1041 O << '('; 1042 EmitConstantValueOnly(CE->getOperand(1)); 1043 O << ')'; 1044 break; 1045 } 1046} 1047 1048/// printAsCString - Print the specified array as a C compatible string, only if 1049/// the predicate isString is true. 1050/// 1051static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA, 1052 unsigned LastElt) { 1053 assert(CVA->isString() && "Array is not string compatible!"); 1054 1055 O << '\"'; 1056 for (unsigned i = 0; i != LastElt; ++i) { 1057 unsigned char C = 1058 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 1059 printStringChar(O, C); 1060 } 1061 O << '\"'; 1062} 1063 1064/// EmitString - Emit a zero-byte-terminated string constant. 1065/// 1066void AsmPrinter::EmitString(const ConstantArray *CVA) const { 1067 unsigned NumElts = CVA->getNumOperands(); 1068 if (MAI->getAscizDirective() && NumElts && 1069 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 1070 O << MAI->getAscizDirective(); 1071 printAsCString(O, CVA, NumElts-1); 1072 } else { 1073 O << MAI->getAsciiDirective(); 1074 printAsCString(O, CVA, NumElts); 1075 } 1076 O << '\n'; 1077} 1078 1079static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace, 1080 AsmPrinter &AP) { 1081 if (AddrSpace == 0 && CA->isString()) { 1082 AP.EmitString(CA); 1083 } else { // Not a string. Print the values in successive locations 1084 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1085 AP.EmitGlobalConstant(CA->getOperand(i), AddrSpace); 1086 } 1087} 1088 1089static void EmitGlobalConstantVector(const ConstantVector *CV, 1090 unsigned AddrSpace, AsmPrinter &AP) { 1091 const VectorType *VTy = CV->getType(); 1092 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 1093 AP.EmitGlobalConstant(CV->getOperand(i), AddrSpace); 1094} 1095 1096static void EmitGlobalConstantStruct(const ConstantStruct *CS, 1097 unsigned AddrSpace, AsmPrinter &AP) { 1098 // Print the fields in successive locations. Pad to align if needed! 1099 const TargetData *TD = AP.TM.getTargetData(); 1100 unsigned Size = TD->getTypeAllocSize(CS->getType()); 1101 const StructLayout *Layout = TD->getStructLayout(CS->getType()); 1102 uint64_t SizeSoFar = 0; 1103 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1104 const Constant *field = CS->getOperand(i); 1105 1106 // Check if padding is needed and insert one or more 0s. 1107 uint64_t FieldSize = TD->getTypeAllocSize(field->getType()); 1108 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1109 - Layout->getElementOffset(i)) - FieldSize; 1110 SizeSoFar += FieldSize + PadSize; 1111 1112 // Now print the actual field value. 1113 AP.EmitGlobalConstant(field, AddrSpace); 1114 1115 // Insert padding - this may include padding to increase the size of the 1116 // current field up to the ABI size (if the struct is not packed) as well 1117 // as padding to ensure that the next field starts at the right offset. 1118 AP.OutStreamer.EmitZeros(PadSize, AddrSpace); 1119 } 1120 assert(SizeSoFar == Layout->getSizeInBytes() && 1121 "Layout of constant struct may be incorrect!"); 1122} 1123 1124static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace, 1125 AsmPrinter &AP) { 1126 // FP Constants are printed as integer constants to avoid losing 1127 // precision. 1128 if (CFP->getType()->isDoubleTy()) { 1129 if (AP.VerboseAsm) { 1130 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 1131 AP.O.PadToColumn(AP.MAI->getCommentColumn()); 1132 AP.O << AP.MAI->getCommentString() << " double " << Val << '\n'; 1133 } 1134 1135 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1136 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1137 return; 1138 } 1139 1140 if (CFP->getType()->isFloatTy()) { 1141 if (AP.VerboseAsm) { 1142 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1143 AP.O.PadToColumn(AP.MAI->getCommentColumn()); 1144 AP.O << AP.MAI->getCommentString() << " float " << Val << '\n'; 1145 } 1146 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1147 AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace); 1148 return; 1149 } 1150 1151 if (CFP->getType()->isX86_FP80Ty()) { 1152 // all long double variants are printed as hex 1153 // api needed to prevent premature destruction 1154 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1155 const uint64_t *p = API.getRawData(); 1156 if (AP.VerboseAsm) { 1157 // Convert to double so we can print the approximate val as a comment. 1158 APFloat DoubleVal = CFP->getValueAPF(); 1159 bool ignored; 1160 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1161 &ignored); 1162 AP.O.PadToColumn(AP.MAI->getCommentColumn()); 1163 AP.O << AP.MAI->getCommentString() << " x86_fp80 ~= " 1164 << DoubleVal.convertToDouble() << '\n'; 1165 } 1166 1167 if (AP.TM.getTargetData()->isBigEndian()) { 1168 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1169 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1170 } else { 1171 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1172 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1173 } 1174 1175 // Emit the tail padding for the long double. 1176 const TargetData &TD = *AP.TM.getTargetData(); 1177 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - 1178 TD.getTypeStoreSize(CFP->getType()), AddrSpace); 1179 return; 1180 } 1181 1182 assert(CFP->getType()->isPPC_FP128Ty() && 1183 "Floating point constant type not handled"); 1184 // All long double variants are printed as hex api needed to prevent 1185 // premature destruction. 1186 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1187 const uint64_t *p = API.getRawData(); 1188 if (AP.TM.getTargetData()->isBigEndian()) { 1189 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1190 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1191 } else { 1192 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1193 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1194 } 1195} 1196 1197static void EmitGlobalConstantLargeInt(const ConstantInt *CI, 1198 unsigned AddrSpace, AsmPrinter &AP) { 1199 const TargetData *TD = AP.TM.getTargetData(); 1200 unsigned BitWidth = CI->getBitWidth(); 1201 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); 1202 1203 // We don't expect assemblers to support integer data directives 1204 // for more than 64 bits, so we emit the data in at most 64-bit 1205 // quantities at a time. 1206 const uint64_t *RawData = CI->getValue().getRawData(); 1207 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1208 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1209 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1210 } 1211} 1212 1213/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1214void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1215 if (CV->isNullValue() || isa<UndefValue>(CV)) { 1216 uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); 1217 return OutStreamer.EmitZeros(Size, AddrSpace); 1218 } 1219 1220 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1221 unsigned Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); 1222 switch (Size) { 1223 case 1: 1224 case 2: 1225 case 4: 1226 case 8: 1227 if (VerboseAsm) { 1228 O.PadToColumn(MAI->getCommentColumn()); 1229 O << MAI->getCommentString() << " 0x"; 1230 O.write_hex(CI->getZExtValue()); 1231 O << '\n'; 1232 } 1233 OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace); 1234 return; 1235 default: 1236 EmitGlobalConstantLargeInt(CI, AddrSpace, *this); 1237 return; 1238 } 1239 } 1240 1241 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1242 return EmitGlobalConstantArray(CVA, AddrSpace, *this); 1243 1244 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1245 return EmitGlobalConstantStruct(CVS, AddrSpace, *this); 1246 1247 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1248 return EmitGlobalConstantFP(CFP, AddrSpace, *this); 1249 1250 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1251 return EmitGlobalConstantVector(V, AddrSpace, *this); 1252 1253 printDataDirective(CV->getType(), AddrSpace); 1254 EmitConstantValueOnly(CV); 1255 O << '\n'; 1256} 1257 1258void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1259 // Target doesn't support this yet! 1260 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1261} 1262 1263/// PrintSpecial - Print information related to the specified machine instr 1264/// that is independent of the operand, and may be independent of the instr 1265/// itself. This can be useful for portably encoding the comment character 1266/// or other bits of target-specific knowledge into the asmstrings. The 1267/// syntax used is ${:comment}. Targets can override this to add support 1268/// for their own strange codes. 1269void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1270 if (!strcmp(Code, "private")) { 1271 O << MAI->getPrivateGlobalPrefix(); 1272 } else if (!strcmp(Code, "comment")) { 1273 if (VerboseAsm) 1274 O << MAI->getCommentString(); 1275 } else if (!strcmp(Code, "uid")) { 1276 // Comparing the address of MI isn't sufficient, because machineinstrs may 1277 // be allocated to the same address across functions. 1278 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1279 1280 // If this is a new LastFn instruction, bump the counter. 1281 if (LastMI != MI || LastFn != ThisF) { 1282 ++Counter; 1283 LastMI = MI; 1284 LastFn = ThisF; 1285 } 1286 O << Counter; 1287 } else { 1288 std::string msg; 1289 raw_string_ostream Msg(msg); 1290 Msg << "Unknown special formatter '" << Code 1291 << "' for machine instr: " << *MI; 1292 llvm_report_error(Msg.str()); 1293 } 1294} 1295 1296/// processDebugLoc - Processes the debug information of each machine 1297/// instruction's DebugLoc. 1298void AsmPrinter::processDebugLoc(const MachineInstr *MI, 1299 bool BeforePrintingInsn) { 1300 if (!MAI || !DW || !MAI->doesSupportDebugInformation() 1301 || !DW->ShouldEmitDwarfDebug()) 1302 return; 1303 DebugLoc DL = MI->getDebugLoc(); 1304 if (DL.isUnknown()) 1305 return; 1306 DILocation CurDLT = MF->getDILocation(DL); 1307 if (CurDLT.getScope().isNull()) 1308 return; 1309 1310 if (BeforePrintingInsn) { 1311 if (CurDLT.getNode() != PrevDLT) { 1312 unsigned L = DW->RecordSourceLine(CurDLT.getLineNumber(), 1313 CurDLT.getColumnNumber(), 1314 CurDLT.getScope().getNode()); 1315 printLabel(L); 1316 O << '\n'; 1317 DW->BeginScope(MI, L); 1318 PrevDLT = CurDLT.getNode(); 1319 } 1320 } else { 1321 // After printing instruction 1322 DW->EndScope(MI); 1323 } 1324} 1325 1326 1327/// printInlineAsm - This method formats and prints the specified machine 1328/// instruction that is an inline asm. 1329void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1330 unsigned NumOperands = MI->getNumOperands(); 1331 1332 // Count the number of register definitions. 1333 unsigned NumDefs = 0; 1334 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1335 ++NumDefs) 1336 assert(NumDefs != NumOperands-1 && "No asm string?"); 1337 1338 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1339 1340 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1341 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1342 1343 O << '\t'; 1344 1345 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1346 // These are useful to see where empty asm's wound up. 1347 if (AsmStr[0] == 0) { 1348 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1349 O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n'; 1350 return; 1351 } 1352 1353 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1354 1355 // The variant of the current asmprinter. 1356 int AsmPrinterVariant = MAI->getAssemblerDialect(); 1357 1358 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1359 const char *LastEmitted = AsmStr; // One past the last character emitted. 1360 1361 while (*LastEmitted) { 1362 switch (*LastEmitted) { 1363 default: { 1364 // Not a special case, emit the string section literally. 1365 const char *LiteralEnd = LastEmitted+1; 1366 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1367 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1368 ++LiteralEnd; 1369 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1370 O.write(LastEmitted, LiteralEnd-LastEmitted); 1371 LastEmitted = LiteralEnd; 1372 break; 1373 } 1374 case '\n': 1375 ++LastEmitted; // Consume newline character. 1376 O << '\n'; // Indent code with newline. 1377 break; 1378 case '$': { 1379 ++LastEmitted; // Consume '$' character. 1380 bool Done = true; 1381 1382 // Handle escapes. 1383 switch (*LastEmitted) { 1384 default: Done = false; break; 1385 case '$': // $$ -> $ 1386 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1387 O << '$'; 1388 ++LastEmitted; // Consume second '$' character. 1389 break; 1390 case '(': // $( -> same as GCC's { character. 1391 ++LastEmitted; // Consume '(' character. 1392 if (CurVariant != -1) { 1393 llvm_report_error("Nested variants found in inline asm string: '" 1394 + std::string(AsmStr) + "'"); 1395 } 1396 CurVariant = 0; // We're in the first variant now. 1397 break; 1398 case '|': 1399 ++LastEmitted; // consume '|' character. 1400 if (CurVariant == -1) 1401 O << '|'; // this is gcc's behavior for | outside a variant 1402 else 1403 ++CurVariant; // We're in the next variant. 1404 break; 1405 case ')': // $) -> same as GCC's } char. 1406 ++LastEmitted; // consume ')' character. 1407 if (CurVariant == -1) 1408 O << '}'; // this is gcc's behavior for } outside a variant 1409 else 1410 CurVariant = -1; 1411 break; 1412 } 1413 if (Done) break; 1414 1415 bool HasCurlyBraces = false; 1416 if (*LastEmitted == '{') { // ${variable} 1417 ++LastEmitted; // Consume '{' character. 1418 HasCurlyBraces = true; 1419 } 1420 1421 // If we have ${:foo}, then this is not a real operand reference, it is a 1422 // "magic" string reference, just like in .td files. Arrange to call 1423 // PrintSpecial. 1424 if (HasCurlyBraces && *LastEmitted == ':') { 1425 ++LastEmitted; 1426 const char *StrStart = LastEmitted; 1427 const char *StrEnd = strchr(StrStart, '}'); 1428 if (StrEnd == 0) { 1429 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '" 1430 + std::string(AsmStr) + "'"); 1431 } 1432 1433 std::string Val(StrStart, StrEnd); 1434 PrintSpecial(MI, Val.c_str()); 1435 LastEmitted = StrEnd+1; 1436 break; 1437 } 1438 1439 const char *IDStart = LastEmitted; 1440 char *IDEnd; 1441 errno = 0; 1442 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1443 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1444 llvm_report_error("Bad $ operand number in inline asm string: '" 1445 + std::string(AsmStr) + "'"); 1446 } 1447 LastEmitted = IDEnd; 1448 1449 char Modifier[2] = { 0, 0 }; 1450 1451 if (HasCurlyBraces) { 1452 // If we have curly braces, check for a modifier character. This 1453 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1454 if (*LastEmitted == ':') { 1455 ++LastEmitted; // Consume ':' character. 1456 if (*LastEmitted == 0) { 1457 llvm_report_error("Bad ${:} expression in inline asm string: '" 1458 + std::string(AsmStr) + "'"); 1459 } 1460 1461 Modifier[0] = *LastEmitted; 1462 ++LastEmitted; // Consume modifier character. 1463 } 1464 1465 if (*LastEmitted != '}') { 1466 llvm_report_error("Bad ${} expression in inline asm string: '" 1467 + std::string(AsmStr) + "'"); 1468 } 1469 ++LastEmitted; // Consume '}' character. 1470 } 1471 1472 if ((unsigned)Val >= NumOperands-1) { 1473 llvm_report_error("Invalid $ operand number in inline asm string: '" 1474 + std::string(AsmStr) + "'"); 1475 } 1476 1477 // Okay, we finally have a value number. Ask the target to print this 1478 // operand! 1479 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1480 unsigned OpNo = 1; 1481 1482 bool Error = false; 1483 1484 // Scan to find the machine operand number for the operand. 1485 for (; Val; --Val) { 1486 if (OpNo >= MI->getNumOperands()) break; 1487 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1488 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1489 } 1490 1491 if (OpNo >= MI->getNumOperands()) { 1492 Error = true; 1493 } else { 1494 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1495 ++OpNo; // Skip over the ID number. 1496 1497 if (Modifier[0] == 'l') // labels are target independent 1498 O << *GetMBBSymbol(MI->getOperand(OpNo).getMBB()->getNumber()); 1499 else { 1500 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1501 if ((OpFlags & 7) == 4) { 1502 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1503 Modifier[0] ? Modifier : 0); 1504 } else { 1505 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1506 Modifier[0] ? Modifier : 0); 1507 } 1508 } 1509 } 1510 if (Error) { 1511 std::string msg; 1512 raw_string_ostream Msg(msg); 1513 Msg << "Invalid operand found in inline asm: '" << AsmStr << "'\n"; 1514 MI->print(Msg); 1515 llvm_report_error(Msg.str()); 1516 } 1517 } 1518 break; 1519 } 1520 } 1521 } 1522 O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd(); 1523} 1524 1525/// printImplicitDef - This method prints the specified machine instruction 1526/// that is an implicit def. 1527void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1528 if (!VerboseAsm) return; 1529 O.PadToColumn(MAI->getCommentColumn()); 1530 O << MAI->getCommentString() << " implicit-def: " 1531 << TRI->getName(MI->getOperand(0).getReg()); 1532} 1533 1534void AsmPrinter::printKill(const MachineInstr *MI) const { 1535 if (!VerboseAsm) return; 1536 O.PadToColumn(MAI->getCommentColumn()); 1537 O << MAI->getCommentString() << " kill:"; 1538 for (unsigned n = 0, e = MI->getNumOperands(); n != e; ++n) { 1539 const MachineOperand &op = MI->getOperand(n); 1540 assert(op.isReg() && "KILL instruction must have only register operands"); 1541 O << ' ' << TRI->getName(op.getReg()) << (op.isDef() ? "<def>" : "<kill>"); 1542 } 1543} 1544 1545/// printLabel - This method prints a local label used by debug and 1546/// exception handling tables. 1547void AsmPrinter::printLabel(const MachineInstr *MI) const { 1548 printLabel(MI->getOperand(0).getImm()); 1549} 1550 1551void AsmPrinter::printLabel(unsigned Id) const { 1552 O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':'; 1553} 1554 1555/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1556/// instruction, using the specified assembler variant. Targets should 1557/// override this to format as appropriate. 1558bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1559 unsigned AsmVariant, const char *ExtraCode) { 1560 // Target doesn't support this yet! 1561 return true; 1562} 1563 1564bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1565 unsigned AsmVariant, 1566 const char *ExtraCode) { 1567 // Target doesn't support this yet! 1568 return true; 1569} 1570 1571MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA, 1572 const char *Suffix) const { 1573 return GetBlockAddressSymbol(BA->getFunction(), BA->getBasicBlock(), Suffix); 1574} 1575 1576MCSymbol *AsmPrinter::GetBlockAddressSymbol(const Function *F, 1577 const BasicBlock *BB, 1578 const char *Suffix) const { 1579 assert(BB->hasName() && 1580 "Address of anonymous basic block not supported yet!"); 1581 1582 // This code must use the function name itself, and not the function number, 1583 // since it must be possible to generate the label name from within other 1584 // functions. 1585 SmallString<60> FnName; 1586 Mang->getNameWithPrefix(FnName, F, false); 1587 1588 // FIXME: THIS IS BROKEN IF THE LLVM BASIC BLOCK DOESN'T HAVE A NAME! 1589 SmallString<60> NameResult; 1590 Mang->getNameWithPrefix(NameResult, 1591 StringRef("BA") + Twine((unsigned)FnName.size()) + 1592 "_" + FnName.str() + "_" + BB->getName() + Suffix, 1593 Mangler::Private); 1594 1595 return OutContext.GetOrCreateSymbol(NameResult.str()); 1596} 1597 1598MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const { 1599 SmallString<60> Name; 1600 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB" 1601 << getFunctionNumber() << '_' << MBBID; 1602 1603 return OutContext.GetOrCreateSymbol(Name.str()); 1604} 1605 1606/// GetGlobalValueSymbol - Return the MCSymbol for the specified global 1607/// value. 1608MCSymbol *AsmPrinter::GetGlobalValueSymbol(const GlobalValue *GV) const { 1609 SmallString<60> NameStr; 1610 Mang->getNameWithPrefix(NameStr, GV, false); 1611 return OutContext.GetOrCreateSymbol(NameStr.str()); 1612} 1613 1614/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with 1615/// global value name as its base, with the specified suffix, and where the 1616/// symbol is forced to have private linkage if ForcePrivate is true. 1617MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, 1618 StringRef Suffix, 1619 bool ForcePrivate) const { 1620 SmallString<60> NameStr; 1621 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); 1622 NameStr.append(Suffix.begin(), Suffix.end()); 1623 return OutContext.GetOrCreateSymbol(NameStr.str()); 1624} 1625 1626/// GetExternalSymbolSymbol - Return the MCSymbol for the specified 1627/// ExternalSymbol. 1628MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 1629 SmallString<60> NameStr; 1630 Mang->getNameWithPrefix(NameStr, Sym); 1631 return OutContext.GetOrCreateSymbol(NameStr.str()); 1632} 1633 1634 1635/// EmitBasicBlockStart - This method prints the label for the specified 1636/// MachineBasicBlock, an alignment (if present) and a comment describing 1637/// it if appropriate. 1638void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 1639 // Emit an alignment directive for this block, if needed. 1640 if (unsigned Align = MBB->getAlignment()) 1641 EmitAlignment(Log2_32(Align)); 1642 1643 // If the block has its address taken, emit a special label to satisfy 1644 // references to the block. This is done so that we don't need to 1645 // remember the number of this label, and so that we can make 1646 // forward references to labels without knowing what their numbers 1647 // will be. 1648 if (MBB->hasAddressTaken()) { 1649 O << *GetBlockAddressSymbol(MBB->getBasicBlock()->getParent(), 1650 MBB->getBasicBlock()); 1651 O << ':'; 1652 if (VerboseAsm) { 1653 O.PadToColumn(MAI->getCommentColumn()); 1654 O << MAI->getCommentString() << " Address Taken"; 1655 } 1656 O << '\n'; 1657 } 1658 1659 // Print the main label for the block. 1660 if (MBB->pred_empty() || MBB->isOnlyReachableByFallthrough()) { 1661 if (VerboseAsm) 1662 O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':'; 1663 } else { 1664 O << *GetMBBSymbol(MBB->getNumber()) << ':'; 1665 if (!VerboseAsm) 1666 O << '\n'; 1667 } 1668 1669 // Print some comments to accompany the label. 1670 if (VerboseAsm) { 1671 if (const BasicBlock *BB = MBB->getBasicBlock()) 1672 if (BB->hasName()) { 1673 O.PadToColumn(MAI->getCommentColumn()); 1674 O << MAI->getCommentString() << ' '; 1675 WriteAsOperand(O, BB, /*PrintType=*/false); 1676 } 1677 1678 EmitComments(*MBB); 1679 O << '\n'; 1680 } 1681} 1682 1683/// printPICJumpTableSetLabel - This method prints a set label for the 1684/// specified MachineBasicBlock for a jumptable entry. 1685void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1686 const MachineBasicBlock *MBB) const { 1687 if (!MAI->getSetDirective()) 1688 return; 1689 1690 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1691 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',' 1692 << *GetMBBSymbol(MBB->getNumber()) 1693 << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1694 << '_' << uid << '\n'; 1695} 1696 1697void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1698 const MachineBasicBlock *MBB) const { 1699 if (!MAI->getSetDirective()) 1700 return; 1701 1702 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1703 << getFunctionNumber() << '_' << uid << '_' << uid2 1704 << "_set_" << MBB->getNumber() << ',' 1705 << *GetMBBSymbol(MBB->getNumber()) 1706 << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1707 << '_' << uid << '_' << uid2 << '\n'; 1708} 1709 1710/// printDataDirective - This method prints the asm directive for the 1711/// specified type. 1712void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { 1713 const TargetData *TD = TM.getTargetData(); 1714 switch (type->getTypeID()) { 1715 case Type::FloatTyID: case Type::DoubleTyID: 1716 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1717 assert(0 && "Should have already output floating point constant."); 1718 default: 1719 assert(0 && "Can't handle printing this type of thing"); 1720 case Type::IntegerTyID: { 1721 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1722 if (BitWidth <= 8) 1723 O << MAI->getData8bitsDirective(AddrSpace); 1724 else if (BitWidth <= 16) 1725 O << MAI->getData16bitsDirective(AddrSpace); 1726 else if (BitWidth <= 32) 1727 O << MAI->getData32bitsDirective(AddrSpace); 1728 else if (BitWidth <= 64) { 1729 assert(MAI->getData64bitsDirective(AddrSpace) && 1730 "Target cannot handle 64-bit constant exprs!"); 1731 O << MAI->getData64bitsDirective(AddrSpace); 1732 } else { 1733 llvm_unreachable("Target cannot handle given data directive width!"); 1734 } 1735 break; 1736 } 1737 case Type::PointerTyID: 1738 if (TD->getPointerSize() == 8) { 1739 assert(MAI->getData64bitsDirective(AddrSpace) && 1740 "Target cannot handle 64-bit pointer exprs!"); 1741 O << MAI->getData64bitsDirective(AddrSpace); 1742 } else if (TD->getPointerSize() == 2) { 1743 O << MAI->getData16bitsDirective(AddrSpace); 1744 } else if (TD->getPointerSize() == 1) { 1745 O << MAI->getData8bitsDirective(AddrSpace); 1746 } else { 1747 O << MAI->getData32bitsDirective(AddrSpace); 1748 } 1749 break; 1750 } 1751} 1752 1753void AsmPrinter::printVisibility(const MCSymbol *Sym, 1754 unsigned Visibility) const { 1755 if (Visibility == GlobalValue::HiddenVisibility) { 1756 if (const char *Directive = MAI->getHiddenDirective()) 1757 O << Directive << *Sym << '\n'; 1758 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1759 if (const char *Directive = MAI->getProtectedDirective()) 1760 O << Directive << *Sym << '\n'; 1761 } 1762} 1763 1764void AsmPrinter::printOffset(int64_t Offset) const { 1765 if (Offset > 0) 1766 O << '+' << Offset; 1767 else if (Offset < 0) 1768 O << Offset; 1769} 1770 1771GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1772 if (!S->usesMetadata()) 1773 return 0; 1774 1775 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1776 if (GCPI != GCMetadataPrinters.end()) 1777 return GCPI->second; 1778 1779 const char *Name = S->getName().c_str(); 1780 1781 for (GCMetadataPrinterRegistry::iterator 1782 I = GCMetadataPrinterRegistry::begin(), 1783 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1784 if (strcmp(Name, I->getName()) == 0) { 1785 GCMetadataPrinter *GMP = I->instantiate(); 1786 GMP->S = S; 1787 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1788 return GMP; 1789 } 1790 1791 errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1792 llvm_unreachable(0); 1793} 1794 1795/// EmitComments - Pretty-print comments for instructions 1796void AsmPrinter::EmitComments(const MachineInstr &MI) const { 1797 if (!VerboseAsm) 1798 return; 1799 1800 bool Newline = false; 1801 1802 if (!MI.getDebugLoc().isUnknown()) { 1803 DILocation DLT = MF->getDILocation(MI.getDebugLoc()); 1804 1805 // Print source line info. 1806 O.PadToColumn(MAI->getCommentColumn()); 1807 O << MAI->getCommentString() << ' '; 1808 DIScope Scope = DLT.getScope(); 1809 // Omit the directory, because it's likely to be long and uninteresting. 1810 if (!Scope.isNull()) 1811 O << Scope.getFilename(); 1812 else 1813 O << "<unknown>"; 1814 O << ':' << DLT.getLineNumber(); 1815 if (DLT.getColumnNumber() != 0) 1816 O << ':' << DLT.getColumnNumber(); 1817 Newline = true; 1818 } 1819 1820 // Check for spills and reloads 1821 int FI; 1822 1823 const MachineFrameInfo *FrameInfo = 1824 MI.getParent()->getParent()->getFrameInfo(); 1825 1826 // We assume a single instruction only has a spill or reload, not 1827 // both. 1828 const MachineMemOperand *MMO; 1829 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 1830 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 1831 MMO = *MI.memoperands_begin(); 1832 if (Newline) O << '\n'; 1833 O.PadToColumn(MAI->getCommentColumn()); 1834 O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Reload"; 1835 Newline = true; 1836 } 1837 } 1838 else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 1839 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 1840 if (Newline) O << '\n'; 1841 O.PadToColumn(MAI->getCommentColumn()); 1842 O << MAI->getCommentString() << ' ' 1843 << MMO->getSize() << "-byte Folded Reload"; 1844 Newline = true; 1845 } 1846 } 1847 else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 1848 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 1849 MMO = *MI.memoperands_begin(); 1850 if (Newline) O << '\n'; 1851 O.PadToColumn(MAI->getCommentColumn()); 1852 O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Spill"; 1853 Newline = true; 1854 } 1855 } 1856 else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 1857 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 1858 if (Newline) O << '\n'; 1859 O.PadToColumn(MAI->getCommentColumn()); 1860 O << MAI->getCommentString() << ' ' 1861 << MMO->getSize() << "-byte Folded Spill"; 1862 Newline = true; 1863 } 1864 } 1865 1866 // Check for spill-induced copies 1867 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1868 if (TM.getInstrInfo()->isMoveInstr(MI, SrcReg, DstReg, 1869 SrcSubIdx, DstSubIdx)) { 1870 if (MI.getAsmPrinterFlag(ReloadReuse)) { 1871 if (Newline) O << '\n'; 1872 O.PadToColumn(MAI->getCommentColumn()); 1873 O << MAI->getCommentString() << " Reload Reuse"; 1874 } 1875 } 1876} 1877 1878/// PrintChildLoopComment - Print comments about child loops within 1879/// the loop for this basic block, with nesting. 1880/// 1881static void PrintChildLoopComment(formatted_raw_ostream &O, 1882 const MachineLoop *loop, 1883 const MCAsmInfo *MAI, 1884 int FunctionNumber) { 1885 // Add child loop information 1886 for(MachineLoop::iterator cl = loop->begin(), 1887 clend = loop->end(); 1888 cl != clend; 1889 ++cl) { 1890 MachineBasicBlock *Header = (*cl)->getHeader(); 1891 assert(Header && "No header for loop"); 1892 1893 O << '\n'; 1894 O.PadToColumn(MAI->getCommentColumn()); 1895 1896 O << MAI->getCommentString(); 1897 O.indent(((*cl)->getLoopDepth()-1)*2) 1898 << " Child Loop BB" << FunctionNumber << "_" 1899 << Header->getNumber() << " Depth " << (*cl)->getLoopDepth(); 1900 1901 PrintChildLoopComment(O, *cl, MAI, FunctionNumber); 1902 } 1903} 1904 1905/// EmitComments - Pretty-print comments for basic blocks 1906void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const { 1907 if (VerboseAsm) { 1908 // Add loop depth information 1909 const MachineLoop *loop = LI->getLoopFor(&MBB); 1910 1911 if (loop) { 1912 // Print a newline after bb# annotation. 1913 O << "\n"; 1914 O.PadToColumn(MAI->getCommentColumn()); 1915 O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth() 1916 << '\n'; 1917 1918 O.PadToColumn(MAI->getCommentColumn()); 1919 1920 MachineBasicBlock *Header = loop->getHeader(); 1921 assert(Header && "No header for loop"); 1922 1923 if (Header == &MBB) { 1924 O << MAI->getCommentString() << " Loop Header"; 1925 PrintChildLoopComment(O, loop, MAI, getFunctionNumber()); 1926 } 1927 else { 1928 O << MAI->getCommentString() << " Loop Header is BB" 1929 << getFunctionNumber() << "_" << loop->getHeader()->getNumber(); 1930 } 1931 1932 if (loop->empty()) { 1933 O << '\n'; 1934 O.PadToColumn(MAI->getCommentColumn()); 1935 O << MAI->getCommentString() << " Inner Loop"; 1936 } 1937 1938 // Add parent loop information 1939 for (const MachineLoop *CurLoop = loop->getParentLoop(); 1940 CurLoop; 1941 CurLoop = CurLoop->getParentLoop()) { 1942 MachineBasicBlock *Header = CurLoop->getHeader(); 1943 assert(Header && "No header for loop"); 1944 1945 O << '\n'; 1946 O.PadToColumn(MAI->getCommentColumn()); 1947 O << MAI->getCommentString(); 1948 O.indent((CurLoop->getLoopDepth()-1)*2) 1949 << " Inside Loop BB" << getFunctionNumber() << "_" 1950 << Header->getNumber() << " Depth " << CurLoop->getLoopDepth(); 1951 } 1952 } 1953 } 1954} 1955