AsmPrinter.cpp revision f3840d2c16a4ec4c879a8ded402835746de380f8
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#define DEBUG_TYPE "asm-printer" 15#include "llvm/CodeGen/AsmPrinter.h" 16#include "DwarfDebug.h" 17#include "DwarfException.h" 18#include "llvm/DebugInfo.h" 19#include "llvm/Module.h" 20#include "llvm/CodeGen/GCMetadataPrinter.h" 21#include "llvm/CodeGen/MachineConstantPool.h" 22#include "llvm/CodeGen/MachineFrameInfo.h" 23#include "llvm/CodeGen/MachineFunction.h" 24#include "llvm/CodeGen/MachineJumpTableInfo.h" 25#include "llvm/CodeGen/MachineLoopInfo.h" 26#include "llvm/CodeGen/MachineModuleInfo.h" 27#include "llvm/Analysis/ConstantFolding.h" 28#include "llvm/MC/MCAsmInfo.h" 29#include "llvm/MC/MCContext.h" 30#include "llvm/MC/MCExpr.h" 31#include "llvm/MC/MCInst.h" 32#include "llvm/MC/MCSection.h" 33#include "llvm/MC/MCStreamer.h" 34#include "llvm/MC/MCSymbol.h" 35#include "llvm/Target/Mangler.h" 36#include "llvm/DataLayout.h" 37#include "llvm/Target/TargetInstrInfo.h" 38#include "llvm/Target/TargetLowering.h" 39#include "llvm/Target/TargetLoweringObjectFile.h" 40#include "llvm/Target/TargetOptions.h" 41#include "llvm/Target/TargetRegisterInfo.h" 42#include "llvm/Assembly/Writer.h" 43#include "llvm/ADT/SmallString.h" 44#include "llvm/ADT/Statistic.h" 45#include "llvm/Support/ErrorHandling.h" 46#include "llvm/Support/Format.h" 47#include "llvm/Support/MathExtras.h" 48#include "llvm/Support/Timer.h" 49using namespace llvm; 50 51static const char *DWARFGroupName = "DWARF Emission"; 52static const char *DbgTimerName = "DWARF Debug Writer"; 53static const char *EHTimerName = "DWARF Exception Writer"; 54 55STATISTIC(EmittedInsts, "Number of machine instrs printed"); 56 57char AsmPrinter::ID = 0; 58 59typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type; 60static gcp_map_type &getGCMap(void *&P) { 61 if (P == 0) 62 P = new gcp_map_type(); 63 return *(gcp_map_type*)P; 64} 65 66 67/// getGVAlignmentLog2 - Return the alignment to use for the specified global 68/// value in log2 form. This rounds up to the preferred alignment if possible 69/// and legal. 70static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, 71 unsigned InBits = 0) { 72 unsigned NumBits = 0; 73 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 74 NumBits = TD.getPreferredAlignmentLog(GVar); 75 76 // If InBits is specified, round it to it. 77 if (InBits > NumBits) 78 NumBits = InBits; 79 80 // If the GV has a specified alignment, take it into account. 81 if (GV->getAlignment() == 0) 82 return NumBits; 83 84 unsigned GVAlign = Log2_32(GV->getAlignment()); 85 86 // If the GVAlign is larger than NumBits, or if we are required to obey 87 // NumBits because the GV has an assigned section, obey it. 88 if (GVAlign > NumBits || GV->hasSection()) 89 NumBits = GVAlign; 90 return NumBits; 91} 92 93 94 95 96AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 97 : MachineFunctionPass(ID), 98 TM(tm), MAI(tm.getMCAsmInfo()), 99 OutContext(Streamer.getContext()), 100 OutStreamer(Streamer), 101 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { 102 DD = 0; DE = 0; MMI = 0; LI = 0; 103 CurrentFnSym = CurrentFnSymForSize = 0; 104 GCMetadataPrinters = 0; 105 VerboseAsm = Streamer.isVerboseAsm(); 106} 107 108AsmPrinter::~AsmPrinter() { 109 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized"); 110 111 if (GCMetadataPrinters != 0) { 112 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 113 114 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I) 115 delete I->second; 116 delete &GCMap; 117 GCMetadataPrinters = 0; 118 } 119 120 delete &OutStreamer; 121} 122 123/// getFunctionNumber - Return a unique ID for the current function. 124/// 125unsigned AsmPrinter::getFunctionNumber() const { 126 return MF->getFunctionNumber(); 127} 128 129const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 130 return TM.getTargetLowering()->getObjFileLowering(); 131} 132 133 134/// getDataLayout - Return information about data layout. 135const DataLayout &AsmPrinter::getDataLayout() const { 136 return *TM.getDataLayout(); 137} 138 139/// getCurrentSection() - Return the current section we are emitting to. 140const MCSection *AsmPrinter::getCurrentSection() const { 141 return OutStreamer.getCurrentSection(); 142} 143 144 145 146void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 147 AU.setPreservesAll(); 148 MachineFunctionPass::getAnalysisUsage(AU); 149 AU.addRequired<MachineModuleInfo>(); 150 AU.addRequired<GCModuleInfo>(); 151 if (isVerbose()) 152 AU.addRequired<MachineLoopInfo>(); 153} 154 155bool AsmPrinter::doInitialization(Module &M) { 156 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 157 MMI->AnalyzeModule(M); 158 159 // Initialize TargetLoweringObjectFile. 160 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 161 .Initialize(OutContext, TM); 162 163 Mang = new Mangler(OutContext, *TM.getDataLayout()); 164 165 // Allow the target to emit any magic that it wants at the start of the file. 166 EmitStartOfAsmFile(M); 167 168 // Very minimal debug info. It is ignored if we emit actual debug info. If we 169 // don't, this at least helps the user find where a global came from. 170 if (MAI->hasSingleParameterDotFile()) { 171 // .file "foo.c" 172 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 173 } 174 175 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 176 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 177 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 178 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 179 MP->beginAssembly(*this); 180 181 // Emit module-level inline asm if it exists. 182 if (!M.getModuleInlineAsm().empty()) { 183 OutStreamer.AddComment("Start of file scope inline assembly"); 184 OutStreamer.AddBlankLine(); 185 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 186 OutStreamer.AddComment("End of file scope inline assembly"); 187 OutStreamer.AddBlankLine(); 188 } 189 190 if (MAI->doesSupportDebugInformation()) 191 DD = new DwarfDebug(this, &M); 192 193 switch (MAI->getExceptionHandlingType()) { 194 case ExceptionHandling::None: 195 return false; 196 case ExceptionHandling::SjLj: 197 case ExceptionHandling::DwarfCFI: 198 DE = new DwarfCFIException(this); 199 return false; 200 case ExceptionHandling::ARM: 201 DE = new ARMException(this); 202 return false; 203 case ExceptionHandling::Win64: 204 DE = new Win64Exception(this); 205 return false; 206 } 207 208 llvm_unreachable("Unknown exception type."); 209} 210 211void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const { 212 switch ((GlobalValue::LinkageTypes)Linkage) { 213 case GlobalValue::CommonLinkage: 214 case GlobalValue::LinkOnceAnyLinkage: 215 case GlobalValue::LinkOnceODRLinkage: 216 case GlobalValue::LinkOnceODRAutoHideLinkage: 217 case GlobalValue::WeakAnyLinkage: 218 case GlobalValue::WeakODRLinkage: 219 case GlobalValue::LinkerPrivateWeakLinkage: 220 if (MAI->getWeakDefDirective() != 0) { 221 // .globl _foo 222 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 223 224 if ((GlobalValue::LinkageTypes)Linkage != 225 GlobalValue::LinkOnceODRAutoHideLinkage) 226 // .weak_definition _foo 227 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 228 else 229 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 230 } else if (MAI->getLinkOnceDirective() != 0) { 231 // .globl _foo 232 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 233 //NOTE: linkonce is handled by the section the symbol was assigned to. 234 } else { 235 // .weak _foo 236 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 237 } 238 break; 239 case GlobalValue::DLLExportLinkage: 240 case GlobalValue::AppendingLinkage: 241 // FIXME: appending linkage variables should go into a section of 242 // their name or something. For now, just emit them as external. 243 case GlobalValue::ExternalLinkage: 244 // If external or appending, declare as a global symbol. 245 // .globl _foo 246 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 247 break; 248 case GlobalValue::PrivateLinkage: 249 case GlobalValue::InternalLinkage: 250 case GlobalValue::LinkerPrivateLinkage: 251 break; 252 default: 253 llvm_unreachable("Unknown linkage type!"); 254 } 255} 256 257 258/// EmitGlobalVariable - Emit the specified global variable to the .s file. 259void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 260 if (GV->hasInitializer()) { 261 // Check to see if this is a special global used by LLVM, if so, emit it. 262 if (EmitSpecialLLVMGlobal(GV)) 263 return; 264 265 if (isVerbose()) { 266 WriteAsOperand(OutStreamer.GetCommentOS(), GV, 267 /*PrintType=*/false, GV->getParent()); 268 OutStreamer.GetCommentOS() << '\n'; 269 } 270 } 271 272 MCSymbol *GVSym = Mang->getSymbol(GV); 273 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 274 275 if (!GV->hasInitializer()) // External globals require no extra code. 276 return; 277 278 if (MAI->hasDotTypeDotSizeDirective()) 279 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 280 281 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 282 283 const DataLayout *TD = TM.getDataLayout(); 284 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType()); 285 286 // If the alignment is specified, we *must* obey it. Overaligning a global 287 // with a specified alignment is a prompt way to break globals emitted to 288 // sections and expected to be contiguous (e.g. ObjC metadata). 289 unsigned AlignLog = getGVAlignmentLog2(GV, *TD); 290 291 // Handle common and BSS local symbols (.lcomm). 292 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 293 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 294 unsigned Align = 1 << AlignLog; 295 296 // Handle common symbols. 297 if (GVKind.isCommon()) { 298 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 299 Align = 0; 300 301 // .comm _foo, 42, 4 302 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 303 return; 304 } 305 306 // Handle local BSS symbols. 307 if (MAI->hasMachoZeroFillDirective()) { 308 const MCSection *TheSection = 309 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 310 // .zerofill __DATA, __bss, _foo, 400, 5 311 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 312 return; 313 } 314 315 if (Align == 1 || 316 MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 317 // .lcomm _foo, 42 318 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 319 return; 320 } 321 322 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 323 Align = 0; 324 325 // .local _foo 326 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 327 // .comm _foo, 42, 4 328 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 329 return; 330 } 331 332 const MCSection *TheSection = 333 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 334 335 // Handle the zerofill directive on darwin, which is a special form of BSS 336 // emission. 337 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 338 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 339 340 // .globl _foo 341 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 342 // .zerofill __DATA, __common, _foo, 400, 5 343 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 344 return; 345 } 346 347 // Handle thread local data for mach-o which requires us to output an 348 // additional structure of data and mangle the original symbol so that we 349 // can reference it later. 350 // 351 // TODO: This should become an "emit thread local global" method on TLOF. 352 // All of this macho specific stuff should be sunk down into TLOFMachO and 353 // stuff like "TLSExtraDataSection" should no longer be part of the parent 354 // TLOF class. This will also make it more obvious that stuff like 355 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 356 // specific code. 357 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 358 // Emit the .tbss symbol 359 MCSymbol *MangSym = 360 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 361 362 if (GVKind.isThreadBSS()) 363 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 364 else if (GVKind.isThreadData()) { 365 OutStreamer.SwitchSection(TheSection); 366 367 EmitAlignment(AlignLog, GV); 368 OutStreamer.EmitLabel(MangSym); 369 370 EmitGlobalConstant(GV->getInitializer()); 371 } 372 373 OutStreamer.AddBlankLine(); 374 375 // Emit the variable struct for the runtime. 376 const MCSection *TLVSect 377 = getObjFileLowering().getTLSExtraDataSection(); 378 379 OutStreamer.SwitchSection(TLVSect); 380 // Emit the linkage here. 381 EmitLinkage(GV->getLinkage(), GVSym); 382 OutStreamer.EmitLabel(GVSym); 383 384 // Three pointers in size: 385 // - __tlv_bootstrap - used to make sure support exists 386 // - spare pointer, used when mapped by the runtime 387 // - pointer to mangled symbol above with initializer 388 unsigned AS = GV->getType()->getAddressSpace(); 389 unsigned PtrSize = TD->getPointerSizeInBits(AS)/8; 390 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 391 PtrSize, 0); 392 OutStreamer.EmitIntValue(0, PtrSize, 0); 393 OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0); 394 395 OutStreamer.AddBlankLine(); 396 return; 397 } 398 399 OutStreamer.SwitchSection(TheSection); 400 401 EmitLinkage(GV->getLinkage(), GVSym); 402 EmitAlignment(AlignLog, GV); 403 404 OutStreamer.EmitLabel(GVSym); 405 406 EmitGlobalConstant(GV->getInitializer()); 407 408 if (MAI->hasDotTypeDotSizeDirective()) 409 // .size foo, 42 410 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 411 412 OutStreamer.AddBlankLine(); 413} 414 415/// EmitFunctionHeader - This method emits the header for the current 416/// function. 417void AsmPrinter::EmitFunctionHeader() { 418 // Print out constants referenced by the function 419 EmitConstantPool(); 420 421 // Print the 'header' of function. 422 const Function *F = MF->getFunction(); 423 424 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); 425 EmitVisibility(CurrentFnSym, F->getVisibility()); 426 427 EmitLinkage(F->getLinkage(), CurrentFnSym); 428 EmitAlignment(MF->getAlignment(), F); 429 430 if (MAI->hasDotTypeDotSizeDirective()) 431 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 432 433 if (isVerbose()) { 434 WriteAsOperand(OutStreamer.GetCommentOS(), F, 435 /*PrintType=*/false, F->getParent()); 436 OutStreamer.GetCommentOS() << '\n'; 437 } 438 439 // Emit the CurrentFnSym. This is a virtual function to allow targets to 440 // do their wild and crazy things as required. 441 EmitFunctionEntryLabel(); 442 443 // If the function had address-taken blocks that got deleted, then we have 444 // references to the dangling symbols. Emit them at the start of the function 445 // so that we don't get references to undefined symbols. 446 std::vector<MCSymbol*> DeadBlockSyms; 447 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 448 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 449 OutStreamer.AddComment("Address taken block that was later removed"); 450 OutStreamer.EmitLabel(DeadBlockSyms[i]); 451 } 452 453 // Add some workaround for linkonce linkage on Cygwin\MinGW. 454 if (MAI->getLinkOnceDirective() != 0 && 455 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) { 456 // FIXME: What is this? 457 MCSymbol *FakeStub = 458 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+ 459 CurrentFnSym->getName()); 460 OutStreamer.EmitLabel(FakeStub); 461 } 462 463 // Emit pre-function debug and/or EH information. 464 if (DE) { 465 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 466 DE->BeginFunction(MF); 467 } 468 if (DD) { 469 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 470 DD->beginFunction(MF); 471 } 472} 473 474/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 475/// function. This can be overridden by targets as required to do custom stuff. 476void AsmPrinter::EmitFunctionEntryLabel() { 477 // The function label could have already been emitted if two symbols end up 478 // conflicting due to asm renaming. Detect this and emit an error. 479 if (CurrentFnSym->isUndefined()) 480 return OutStreamer.EmitLabel(CurrentFnSym); 481 482 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 483 "' label emitted multiple times to assembly file"); 484} 485 486/// emitComments - Pretty-print comments for instructions. 487static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 488 const MachineFunction *MF = MI.getParent()->getParent(); 489 const TargetMachine &TM = MF->getTarget(); 490 491 // Check for spills and reloads 492 int FI; 493 494 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 495 496 // We assume a single instruction only has a spill or reload, not 497 // both. 498 const MachineMemOperand *MMO; 499 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 500 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 501 MMO = *MI.memoperands_begin(); 502 CommentOS << MMO->getSize() << "-byte Reload\n"; 503 } 504 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 505 if (FrameInfo->isSpillSlotObjectIndex(FI)) 506 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 507 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 508 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 509 MMO = *MI.memoperands_begin(); 510 CommentOS << MMO->getSize() << "-byte Spill\n"; 511 } 512 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 513 if (FrameInfo->isSpillSlotObjectIndex(FI)) 514 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 515 } 516 517 // Check for spill-induced copies 518 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 519 CommentOS << " Reload Reuse\n"; 520} 521 522/// emitImplicitDef - This method emits the specified machine instruction 523/// that is an implicit def. 524static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) { 525 unsigned RegNo = MI->getOperand(0).getReg(); 526 AP.OutStreamer.AddComment(Twine("implicit-def: ") + 527 AP.TM.getRegisterInfo()->getName(RegNo)); 528 AP.OutStreamer.AddBlankLine(); 529} 530 531static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 532 std::string Str = "kill:"; 533 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 534 const MachineOperand &Op = MI->getOperand(i); 535 assert(Op.isReg() && "KILL instruction must have only register operands"); 536 Str += ' '; 537 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 538 Str += (Op.isDef() ? "<def>" : "<kill>"); 539 } 540 AP.OutStreamer.AddComment(Str); 541 AP.OutStreamer.AddBlankLine(); 542} 543 544/// emitDebugValueComment - This method handles the target-independent form 545/// of DBG_VALUE, returning true if it was able to do so. A false return 546/// means the target will need to handle MI in EmitInstruction. 547static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 548 // This code handles only the 3-operand target-independent form. 549 if (MI->getNumOperands() != 3) 550 return false; 551 552 SmallString<128> Str; 553 raw_svector_ostream OS(Str); 554 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: "; 555 556 // cast away const; DIetc do not take const operands for some reason. 557 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata())); 558 if (V.getContext().isSubprogram()) 559 OS << DISubprogram(V.getContext()).getDisplayName() << ":"; 560 OS << V.getName() << " <- "; 561 562 // Register or immediate value. Register 0 means undef. 563 if (MI->getOperand(0).isFPImm()) { 564 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 565 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 566 OS << (double)APF.convertToFloat(); 567 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 568 OS << APF.convertToDouble(); 569 } else { 570 // There is no good way to print long double. Convert a copy to 571 // double. Ah well, it's only a comment. 572 bool ignored; 573 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 574 &ignored); 575 OS << "(long double) " << APF.convertToDouble(); 576 } 577 } else if (MI->getOperand(0).isImm()) { 578 OS << MI->getOperand(0).getImm(); 579 } else if (MI->getOperand(0).isCImm()) { 580 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 581 } else { 582 assert(MI->getOperand(0).isReg() && "Unknown operand type"); 583 if (MI->getOperand(0).getReg() == 0) { 584 // Suppress offset, it is not meaningful here. 585 OS << "undef"; 586 // NOTE: Want this comment at start of line, don't emit with AddComment. 587 AP.OutStreamer.EmitRawText(OS.str()); 588 return true; 589 } 590 OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg()); 591 } 592 593 OS << '+' << MI->getOperand(1).getImm(); 594 // NOTE: Want this comment at start of line, don't emit with AddComment. 595 AP.OutStreamer.EmitRawText(OS.str()); 596 return true; 597} 598 599AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 600 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 601 MF->getFunction()->needsUnwindTableEntry()) 602 return CFI_M_EH; 603 604 if (MMI->hasDebugInfo()) 605 return CFI_M_Debug; 606 607 return CFI_M_None; 608} 609 610bool AsmPrinter::needsSEHMoves() { 611 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 612 MF->getFunction()->needsUnwindTableEntry(); 613} 614 615bool AsmPrinter::needsRelocationsForDwarfStringPool() const { 616 return MAI->doesDwarfUseRelocationsAcrossSections(); 617} 618 619void AsmPrinter::emitPrologLabel(const MachineInstr &MI) { 620 MCSymbol *Label = MI.getOperand(0).getMCSymbol(); 621 622 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 623 return; 624 625 if (needsCFIMoves() == CFI_M_None) 626 return; 627 628 if (MMI->getCompactUnwindEncoding() != 0) 629 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 630 631 MachineModuleInfo &MMI = MF->getMMI(); 632 std::vector<MachineMove> &Moves = MMI.getFrameMoves(); 633 bool FoundOne = false; 634 (void)FoundOne; 635 for (std::vector<MachineMove>::iterator I = Moves.begin(), 636 E = Moves.end(); I != E; ++I) { 637 if (I->getLabel() == Label) { 638 EmitCFIFrameMove(*I); 639 FoundOne = true; 640 } 641 } 642 assert(FoundOne); 643} 644 645/// EmitFunctionBody - This method emits the body and trailer for a 646/// function. 647void AsmPrinter::EmitFunctionBody() { 648 // Emit target-specific gunk before the function body. 649 EmitFunctionBodyStart(); 650 651 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo(); 652 653 // Print out code for the function. 654 bool HasAnyRealCode = false; 655 const MachineInstr *LastMI = 0; 656 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 657 I != E; ++I) { 658 // Print a label for the basic block. 659 EmitBasicBlockStart(I); 660 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); 661 II != IE; ++II) { 662 LastMI = II; 663 664 // Print the assembly for the instruction. 665 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() && 666 !II->isDebugValue()) { 667 HasAnyRealCode = true; 668 ++EmittedInsts; 669 } 670 671 if (ShouldPrintDebugScopes) { 672 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 673 DD->beginInstruction(II); 674 } 675 676 if (isVerbose()) 677 emitComments(*II, OutStreamer.GetCommentOS()); 678 679 switch (II->getOpcode()) { 680 case TargetOpcode::PROLOG_LABEL: 681 emitPrologLabel(*II); 682 break; 683 684 case TargetOpcode::EH_LABEL: 685 case TargetOpcode::GC_LABEL: 686 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol()); 687 break; 688 case TargetOpcode::INLINEASM: 689 EmitInlineAsm(II); 690 break; 691 case TargetOpcode::DBG_VALUE: 692 if (isVerbose()) { 693 if (!emitDebugValueComment(II, *this)) 694 EmitInstruction(II); 695 } 696 break; 697 case TargetOpcode::IMPLICIT_DEF: 698 if (isVerbose()) emitImplicitDef(II, *this); 699 break; 700 case TargetOpcode::KILL: 701 if (isVerbose()) emitKill(II, *this); 702 break; 703 default: 704 if (!TM.hasMCUseLoc()) 705 MCLineEntry::Make(&OutStreamer, getCurrentSection()); 706 707 EmitInstruction(II); 708 break; 709 } 710 711 if (ShouldPrintDebugScopes) { 712 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 713 DD->endInstruction(II); 714 } 715 } 716 } 717 718 // If the last instruction was a prolog label, then we have a situation where 719 // we emitted a prolog but no function body. This results in the ending prolog 720 // label equaling the end of function label and an invalid "row" in the 721 // FDE. We need to emit a noop in this situation so that the FDE's rows are 722 // valid. 723 bool RequiresNoop = LastMI && LastMI->isPrologLabel(); 724 725 // If the function is empty and the object file uses .subsections_via_symbols, 726 // then we need to emit *something* to the function body to prevent the 727 // labels from collapsing together. Just emit a noop. 728 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 729 MCInst Noop; 730 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 731 if (Noop.getOpcode()) { 732 OutStreamer.AddComment("avoids zero-length function"); 733 OutStreamer.EmitInstruction(Noop); 734 } else // Target not mc-ized yet. 735 OutStreamer.EmitRawText(StringRef("\tnop\n")); 736 } 737 738 const Function *F = MF->getFunction(); 739 for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) { 740 const BasicBlock *BB = i; 741 if (!BB->hasAddressTaken()) 742 continue; 743 MCSymbol *Sym = GetBlockAddressSymbol(BB); 744 if (Sym->isDefined()) 745 continue; 746 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 747 OutStreamer.EmitLabel(Sym); 748 } 749 750 // Emit target-specific gunk after the function body. 751 EmitFunctionBodyEnd(); 752 753 // If the target wants a .size directive for the size of the function, emit 754 // it. 755 if (MAI->hasDotTypeDotSizeDirective()) { 756 // Create a symbol for the end of function, so we can get the size as 757 // difference between the function label and the temp label. 758 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 759 OutStreamer.EmitLabel(FnEndLabel); 760 761 const MCExpr *SizeExp = 762 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 763 MCSymbolRefExpr::Create(CurrentFnSymForSize, 764 OutContext), 765 OutContext); 766 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 767 } 768 769 // Emit post-function debug information. 770 if (DD) { 771 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 772 DD->endFunction(MF); 773 } 774 if (DE) { 775 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 776 DE->EndFunction(); 777 } 778 MMI->EndFunction(); 779 780 // Print out jump tables referenced by the function. 781 EmitJumpTableInfo(); 782 783 OutStreamer.AddBlankLine(); 784} 785 786/// getDebugValueLocation - Get location information encoded by DBG_VALUE 787/// operands. 788MachineLocation AsmPrinter:: 789getDebugValueLocation(const MachineInstr *MI) const { 790 // Target specific DBG_VALUE instructions are handled by each target. 791 return MachineLocation(); 792} 793 794/// EmitDwarfRegOp - Emit dwarf register operation. 795void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const { 796 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 797 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); 798 799 for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0; 800 ++SR) { 801 Reg = TRI->getDwarfRegNum(*SR, false); 802 // FIXME: Get the bit range this register uses of the superregister 803 // so that we can produce a DW_OP_bit_piece 804 } 805 806 // FIXME: Handle cases like a super register being encoded as 807 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33 808 809 // FIXME: We have no reasonable way of handling errors in here. The 810 // caller might be in the middle of an dwarf expression. We should 811 // probably assert that Reg >= 0 once debug info generation is more mature. 812 813 if (int Offset = MLoc.getOffset()) { 814 if (Reg < 32) { 815 OutStreamer.AddComment( 816 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); 817 EmitInt8(dwarf::DW_OP_breg0 + Reg); 818 } else { 819 OutStreamer.AddComment("DW_OP_bregx"); 820 EmitInt8(dwarf::DW_OP_bregx); 821 OutStreamer.AddComment(Twine(Reg)); 822 EmitULEB128(Reg); 823 } 824 EmitSLEB128(Offset); 825 } else { 826 if (Reg < 32) { 827 OutStreamer.AddComment( 828 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); 829 EmitInt8(dwarf::DW_OP_reg0 + Reg); 830 } else { 831 OutStreamer.AddComment("DW_OP_regx"); 832 EmitInt8(dwarf::DW_OP_regx); 833 OutStreamer.AddComment(Twine(Reg)); 834 EmitULEB128(Reg); 835 } 836 } 837 838 // FIXME: Produce a DW_OP_bit_piece if we used a superregister 839} 840 841bool AsmPrinter::doFinalization(Module &M) { 842 // Emit global variables. 843 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 844 I != E; ++I) 845 EmitGlobalVariable(I); 846 847 // Emit visibility info for declarations 848 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 849 const Function &F = *I; 850 if (!F.isDeclaration()) 851 continue; 852 GlobalValue::VisibilityTypes V = F.getVisibility(); 853 if (V == GlobalValue::DefaultVisibility) 854 continue; 855 856 MCSymbol *Name = Mang->getSymbol(&F); 857 EmitVisibility(Name, V, false); 858 } 859 860 // Emit module flags. 861 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 862 M.getModuleFlagsMetadata(ModuleFlags); 863 if (!ModuleFlags.empty()) 864 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM); 865 866 // Finalize debug and EH information. 867 if (DE) { 868 { 869 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 870 DE->EndModule(); 871 } 872 delete DE; DE = 0; 873 } 874 if (DD) { 875 { 876 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 877 DD->endModule(); 878 } 879 delete DD; DD = 0; 880 } 881 882 // If the target wants to know about weak references, print them all. 883 if (MAI->getWeakRefDirective()) { 884 // FIXME: This is not lazy, it would be nice to only print weak references 885 // to stuff that is actually used. Note that doing so would require targets 886 // to notice uses in operands (due to constant exprs etc). This should 887 // happen with the MC stuff eventually. 888 889 // Print out module-level global variables here. 890 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 891 I != E; ++I) { 892 if (!I->hasExternalWeakLinkage()) continue; 893 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 894 } 895 896 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 897 if (!I->hasExternalWeakLinkage()) continue; 898 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 899 } 900 } 901 902 if (MAI->hasSetDirective()) { 903 OutStreamer.AddBlankLine(); 904 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 905 I != E; ++I) { 906 MCSymbol *Name = Mang->getSymbol(I); 907 908 const GlobalValue *GV = I->getAliasedGlobal(); 909 MCSymbol *Target = Mang->getSymbol(GV); 910 911 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 912 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 913 else if (I->hasWeakLinkage()) 914 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 915 else 916 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 917 918 EmitVisibility(Name, I->getVisibility()); 919 920 // Emit the directives as assignments aka .set: 921 OutStreamer.EmitAssignment(Name, 922 MCSymbolRefExpr::Create(Target, OutContext)); 923 } 924 } 925 926 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 927 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 928 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 929 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 930 MP->finishAssembly(*this); 931 932 // If we don't have any trampolines, then we don't require stack memory 933 // to be executable. Some targets have a directive to declare this. 934 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 935 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 936 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 937 OutStreamer.SwitchSection(S); 938 939 // Allow the target to emit any magic that it wants at the end of the file, 940 // after everything else has gone out. 941 EmitEndOfAsmFile(M); 942 943 delete Mang; Mang = 0; 944 MMI = 0; 945 946 OutStreamer.Finish(); 947 return false; 948} 949 950void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 951 this->MF = &MF; 952 // Get the function symbol. 953 CurrentFnSym = Mang->getSymbol(MF.getFunction()); 954 CurrentFnSymForSize = CurrentFnSym; 955 956 if (isVerbose()) 957 LI = &getAnalysis<MachineLoopInfo>(); 958} 959 960namespace { 961 // SectionCPs - Keep track the alignment, constpool entries per Section. 962 struct SectionCPs { 963 const MCSection *S; 964 unsigned Alignment; 965 SmallVector<unsigned, 4> CPEs; 966 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 967 }; 968} 969 970/// EmitConstantPool - Print to the current output stream assembly 971/// representations of the constants in the constant pool MCP. This is 972/// used to print out constants which have been "spilled to memory" by 973/// the code generator. 974/// 975void AsmPrinter::EmitConstantPool() { 976 const MachineConstantPool *MCP = MF->getConstantPool(); 977 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 978 if (CP.empty()) return; 979 980 // Calculate sections for constant pool entries. We collect entries to go into 981 // the same section together to reduce amount of section switch statements. 982 SmallVector<SectionCPs, 4> CPSections; 983 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 984 const MachineConstantPoolEntry &CPE = CP[i]; 985 unsigned Align = CPE.getAlignment(); 986 987 SectionKind Kind; 988 switch (CPE.getRelocationInfo()) { 989 default: llvm_unreachable("Unknown section kind"); 990 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 991 case 1: 992 Kind = SectionKind::getReadOnlyWithRelLocal(); 993 break; 994 case 0: 995 switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) { 996 case 4: Kind = SectionKind::getMergeableConst4(); break; 997 case 8: Kind = SectionKind::getMergeableConst8(); break; 998 case 16: Kind = SectionKind::getMergeableConst16();break; 999 default: Kind = SectionKind::getMergeableConst(); break; 1000 } 1001 } 1002 1003 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 1004 1005 // The number of sections are small, just do a linear search from the 1006 // last section to the first. 1007 bool Found = false; 1008 unsigned SecIdx = CPSections.size(); 1009 while (SecIdx != 0) { 1010 if (CPSections[--SecIdx].S == S) { 1011 Found = true; 1012 break; 1013 } 1014 } 1015 if (!Found) { 1016 SecIdx = CPSections.size(); 1017 CPSections.push_back(SectionCPs(S, Align)); 1018 } 1019 1020 if (Align > CPSections[SecIdx].Alignment) 1021 CPSections[SecIdx].Alignment = Align; 1022 CPSections[SecIdx].CPEs.push_back(i); 1023 } 1024 1025 // Now print stuff into the calculated sections. 1026 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1027 OutStreamer.SwitchSection(CPSections[i].S); 1028 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1029 1030 unsigned Offset = 0; 1031 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1032 unsigned CPI = CPSections[i].CPEs[j]; 1033 MachineConstantPoolEntry CPE = CP[CPI]; 1034 1035 // Emit inter-object padding for alignment. 1036 unsigned AlignMask = CPE.getAlignment() - 1; 1037 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1038 OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/); 1039 1040 Type *Ty = CPE.getType(); 1041 Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty); 1042 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1043 1044 if (CPE.isMachineConstantPoolEntry()) 1045 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1046 else 1047 EmitGlobalConstant(CPE.Val.ConstVal); 1048 } 1049 } 1050} 1051 1052/// EmitJumpTableInfo - Print assembly representations of the jump tables used 1053/// by the current function to the current output stream. 1054/// 1055void AsmPrinter::EmitJumpTableInfo() { 1056 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1057 if (MJTI == 0) return; 1058 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1059 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1060 if (JT.empty()) return; 1061 1062 // Pick the directive to use to print the jump table entries, and switch to 1063 // the appropriate section. 1064 const Function *F = MF->getFunction(); 1065 bool JTInDiffSection = false; 1066 if (// In PIC mode, we need to emit the jump table to the same section as the 1067 // function body itself, otherwise the label differences won't make sense. 1068 // FIXME: Need a better predicate for this: what about custom entries? 1069 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1070 // We should also do if the section name is NULL or function is declared 1071 // in discardable section 1072 // FIXME: this isn't the right predicate, should be based on the MCSection 1073 // for the function. 1074 F->isWeakForLinker()) { 1075 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); 1076 } else { 1077 // Otherwise, drop it in the readonly section. 1078 const MCSection *ReadOnlySection = 1079 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1080 OutStreamer.SwitchSection(ReadOnlySection); 1081 JTInDiffSection = true; 1082 } 1083 1084 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout()))); 1085 1086 // Jump tables in code sections are marked with a data_region directive 1087 // where that's supported. 1088 if (!JTInDiffSection) 1089 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 1090 1091 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1092 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1093 1094 // If this jump table was deleted, ignore it. 1095 if (JTBBs.empty()) continue; 1096 1097 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1098 // .set directive for each unique entry. This reduces the number of 1099 // relocations the assembler will generate for the jump table. 1100 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1101 MAI->hasSetDirective()) { 1102 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1103 const TargetLowering *TLI = TM.getTargetLowering(); 1104 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1105 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1106 const MachineBasicBlock *MBB = JTBBs[ii]; 1107 if (!EmittedSets.insert(MBB)) continue; 1108 1109 // .set LJTSet, LBB32-base 1110 const MCExpr *LHS = 1111 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1112 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1113 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1114 } 1115 } 1116 1117 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1118 // before each jump table. The first label is never referenced, but tells 1119 // the assembler and linker the extents of the jump table object. The 1120 // second label is actually referenced by the code. 1121 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) 1122 // FIXME: This doesn't have to have any specific name, just any randomly 1123 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1124 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1125 1126 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1127 1128 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1129 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1130 } 1131 if (!JTInDiffSection) 1132 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1133} 1134 1135/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1136/// current stream. 1137void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1138 const MachineBasicBlock *MBB, 1139 unsigned UID) const { 1140 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1141 const MCExpr *Value = 0; 1142 switch (MJTI->getEntryKind()) { 1143 case MachineJumpTableInfo::EK_Inline: 1144 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1145 case MachineJumpTableInfo::EK_Custom32: 1146 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1147 OutContext); 1148 break; 1149 case MachineJumpTableInfo::EK_BlockAddress: 1150 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1151 // .word LBB123 1152 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1153 break; 1154 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1155 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1156 // with a relocation as gp-relative, e.g.: 1157 // .gprel32 LBB123 1158 MCSymbol *MBBSym = MBB->getSymbol(); 1159 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1160 return; 1161 } 1162 1163 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1164 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1165 // with a relocation as gp-relative, e.g.: 1166 // .gpdword LBB123 1167 MCSymbol *MBBSym = MBB->getSymbol(); 1168 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1169 return; 1170 } 1171 1172 case MachineJumpTableInfo::EK_LabelDifference32: { 1173 // EK_LabelDifference32 - Each entry is the address of the block minus 1174 // the address of the jump table. This is used for PIC jump tables where 1175 // gprel32 is not supported. e.g.: 1176 // .word LBB123 - LJTI1_2 1177 // If the .set directive is supported, this is emitted as: 1178 // .set L4_5_set_123, LBB123 - LJTI1_2 1179 // .word L4_5_set_123 1180 1181 // If we have emitted set directives for the jump table entries, print 1182 // them rather than the entries themselves. If we're emitting PIC, then 1183 // emit the table entries as differences between two text section labels. 1184 if (MAI->hasSetDirective()) { 1185 // If we used .set, reference the .set's symbol. 1186 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1187 OutContext); 1188 break; 1189 } 1190 // Otherwise, use the difference as the jump table entry. 1191 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1192 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1193 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1194 break; 1195 } 1196 } 1197 1198 assert(Value && "Unknown entry kind!"); 1199 1200 unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout()); 1201 OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0); 1202} 1203 1204 1205/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1206/// special global used by LLVM. If so, emit it and return true, otherwise 1207/// do nothing and return false. 1208bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1209 if (GV->getName() == "llvm.used") { 1210 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1211 EmitLLVMUsedList(GV->getInitializer()); 1212 return true; 1213 } 1214 1215 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1216 if (GV->getSection() == "llvm.metadata" || 1217 GV->hasAvailableExternallyLinkage()) 1218 return true; 1219 1220 if (!GV->hasAppendingLinkage()) return false; 1221 1222 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1223 1224 if (GV->getName() == "llvm.global_ctors") { 1225 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1226 1227 if (TM.getRelocationModel() == Reloc::Static && 1228 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1229 StringRef Sym(".constructors_used"); 1230 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1231 MCSA_Reference); 1232 } 1233 return true; 1234 } 1235 1236 if (GV->getName() == "llvm.global_dtors") { 1237 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1238 1239 if (TM.getRelocationModel() == Reloc::Static && 1240 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1241 StringRef Sym(".destructors_used"); 1242 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1243 MCSA_Reference); 1244 } 1245 return true; 1246 } 1247 1248 return false; 1249} 1250 1251/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1252/// global in the specified llvm.used list for which emitUsedDirectiveFor 1253/// is true, as being used with this directive. 1254void AsmPrinter::EmitLLVMUsedList(const Constant *List) { 1255 // Should be an array of 'i8*'. 1256 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1257 if (InitList == 0) return; 1258 1259 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1260 const GlobalValue *GV = 1261 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1262 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) 1263 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip); 1264 } 1265} 1266 1267typedef std::pair<unsigned, Constant*> Structor; 1268 1269static bool priority_order(const Structor& lhs, const Structor& rhs) { 1270 return lhs.first < rhs.first; 1271} 1272 1273/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1274/// priority. 1275void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1276 // Should be an array of '{ int, void ()* }' structs. The first value is the 1277 // init priority. 1278 if (!isa<ConstantArray>(List)) return; 1279 1280 // Sanity check the structors list. 1281 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1282 if (!InitList) return; // Not an array! 1283 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1284 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs! 1285 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1286 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1287 1288 // Gather the structors in a form that's convenient for sorting by priority. 1289 SmallVector<Structor, 8> Structors; 1290 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1291 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 1292 if (!CS) continue; // Malformed. 1293 if (CS->getOperand(1)->isNullValue()) 1294 break; // Found a null terminator, skip the rest. 1295 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1296 if (!Priority) continue; // Malformed. 1297 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535), 1298 CS->getOperand(1))); 1299 } 1300 1301 // Emit the function pointers in the target-specific order 1302 const DataLayout *TD = TM.getDataLayout(); 1303 unsigned Align = Log2_32(TD->getPointerPrefAlignment(0)); 1304 std::stable_sort(Structors.begin(), Structors.end(), priority_order); 1305 for (unsigned i = 0, e = Structors.size(); i != e; ++i) { 1306 const MCSection *OutputSection = 1307 (isCtor ? 1308 getObjFileLowering().getStaticCtorSection(Structors[i].first) : 1309 getObjFileLowering().getStaticDtorSection(Structors[i].first)); 1310 OutStreamer.SwitchSection(OutputSection); 1311 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1312 EmitAlignment(Align); 1313 EmitXXStructor(Structors[i].second); 1314 } 1315} 1316 1317//===--------------------------------------------------------------------===// 1318// Emission and print routines 1319// 1320 1321/// EmitInt8 - Emit a byte directive and value. 1322/// 1323void AsmPrinter::EmitInt8(int Value) const { 1324 OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/); 1325} 1326 1327/// EmitInt16 - Emit a short directive and value. 1328/// 1329void AsmPrinter::EmitInt16(int Value) const { 1330 OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/); 1331} 1332 1333/// EmitInt32 - Emit a long directive and value. 1334/// 1335void AsmPrinter::EmitInt32(int Value) const { 1336 OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/); 1337} 1338 1339/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1340/// in bytes of the directive is specified by Size and Hi/Lo specify the 1341/// labels. This implicitly uses .set if it is available. 1342void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1343 unsigned Size) const { 1344 // Get the Hi-Lo expression. 1345 const MCExpr *Diff = 1346 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1347 MCSymbolRefExpr::Create(Lo, OutContext), 1348 OutContext); 1349 1350 if (!MAI->hasSetDirective()) { 1351 OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/); 1352 return; 1353 } 1354 1355 // Otherwise, emit with .set (aka assignment). 1356 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1357 OutStreamer.EmitAssignment(SetLabel, Diff); 1358 OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/); 1359} 1360 1361/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1362/// where the size in bytes of the directive is specified by Size and Hi/Lo 1363/// specify the labels. This implicitly uses .set if it is available. 1364void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1365 const MCSymbol *Lo, unsigned Size) 1366 const { 1367 1368 // Emit Hi+Offset - Lo 1369 // Get the Hi+Offset expression. 1370 const MCExpr *Plus = 1371 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1372 MCConstantExpr::Create(Offset, OutContext), 1373 OutContext); 1374 1375 // Get the Hi+Offset-Lo expression. 1376 const MCExpr *Diff = 1377 MCBinaryExpr::CreateSub(Plus, 1378 MCSymbolRefExpr::Create(Lo, OutContext), 1379 OutContext); 1380 1381 if (!MAI->hasSetDirective()) 1382 OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/); 1383 else { 1384 // Otherwise, emit with .set (aka assignment). 1385 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1386 OutStreamer.EmitAssignment(SetLabel, Diff); 1387 OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/); 1388 } 1389} 1390 1391/// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1392/// where the size in bytes of the directive is specified by Size and Label 1393/// specifies the label. This implicitly uses .set if it is available. 1394void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1395 unsigned Size) 1396 const { 1397 1398 // Emit Label+Offset (or just Label if Offset is zero) 1399 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1400 if (Offset) 1401 Expr = MCBinaryExpr::CreateAdd(Expr, 1402 MCConstantExpr::Create(Offset, OutContext), 1403 OutContext); 1404 1405 OutStreamer.EmitValue(Expr, Size, 0/*AddrSpace*/); 1406} 1407 1408 1409//===----------------------------------------------------------------------===// 1410 1411// EmitAlignment - Emit an alignment directive to the specified power of 1412// two boundary. For example, if you pass in 3 here, you will get an 8 1413// byte alignment. If a global value is specified, and if that global has 1414// an explicit alignment requested, it will override the alignment request 1415// if required for correctness. 1416// 1417void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { 1418 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits); 1419 1420 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1421 1422 if (getCurrentSection()->getKind().isText()) 1423 OutStreamer.EmitCodeAlignment(1 << NumBits); 1424 else 1425 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); 1426} 1427 1428//===----------------------------------------------------------------------===// 1429// Constant emission. 1430//===----------------------------------------------------------------------===// 1431 1432/// lowerConstant - Lower the specified LLVM Constant to an MCExpr. 1433/// 1434static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) { 1435 MCContext &Ctx = AP.OutContext; 1436 1437 if (CV->isNullValue() || isa<UndefValue>(CV)) 1438 return MCConstantExpr::Create(0, Ctx); 1439 1440 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1441 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1442 1443 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1444 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); 1445 1446 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1447 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1448 1449 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1450 if (CE == 0) { 1451 llvm_unreachable("Unknown constant value to lower!"); 1452 } 1453 1454 switch (CE->getOpcode()) { 1455 default: 1456 // If the code isn't optimized, there may be outstanding folding 1457 // opportunities. Attempt to fold the expression using DataLayout as a 1458 // last resort before giving up. 1459 if (Constant *C = 1460 ConstantFoldConstantExpression(CE, AP.TM.getDataLayout())) 1461 if (C != CE) 1462 return lowerConstant(C, AP); 1463 1464 // Otherwise report the problem to the user. 1465 { 1466 std::string S; 1467 raw_string_ostream OS(S); 1468 OS << "Unsupported expression in static initializer: "; 1469 WriteAsOperand(OS, CE, /*PrintType=*/false, 1470 !AP.MF ? 0 : AP.MF->getFunction()->getParent()); 1471 report_fatal_error(OS.str()); 1472 } 1473 case Instruction::GetElementPtr: { 1474 const DataLayout &TD = *AP.TM.getDataLayout(); 1475 // Generate a symbolic expression for the byte address 1476 const Constant *PtrVal = CE->getOperand(0); 1477 SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end()); 1478 int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec); 1479 1480 const MCExpr *Base = lowerConstant(CE->getOperand(0), AP); 1481 if (Offset == 0) 1482 return Base; 1483 1484 unsigned AS = cast<PointerType>(CE->getType())->getAddressSpace(); 1485 // Truncate/sext the offset to the pointer size. 1486 unsigned Width = TD.getPointerSizeInBits(AS); 1487 if (Width < 64) 1488 Offset = SignExtend64(Offset, Width); 1489 1490 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1491 Ctx); 1492 } 1493 1494 case Instruction::Trunc: 1495 // We emit the value and depend on the assembler to truncate the generated 1496 // expression properly. This is important for differences between 1497 // blockaddress labels. Since the two labels are in the same function, it 1498 // is reasonable to treat their delta as a 32-bit value. 1499 // FALL THROUGH. 1500 case Instruction::BitCast: 1501 return lowerConstant(CE->getOperand(0), AP); 1502 1503 case Instruction::IntToPtr: { 1504 const DataLayout &TD = *AP.TM.getDataLayout(); 1505 // Handle casts to pointers by changing them into casts to the appropriate 1506 // integer type. This promotes constant folding and simplifies this code. 1507 Constant *Op = CE->getOperand(0); 1508 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), 1509 false/*ZExt*/); 1510 return lowerConstant(Op, AP); 1511 } 1512 1513 case Instruction::PtrToInt: { 1514 const DataLayout &TD = *AP.TM.getDataLayout(); 1515 // Support only foldable casts to/from pointers that can be eliminated by 1516 // changing the pointer to the appropriately sized integer type. 1517 Constant *Op = CE->getOperand(0); 1518 Type *Ty = CE->getType(); 1519 1520 const MCExpr *OpExpr = lowerConstant(Op, AP); 1521 1522 // We can emit the pointer value into this slot if the slot is an 1523 // integer slot equal to the size of the pointer. 1524 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) 1525 return OpExpr; 1526 1527 // Otherwise the pointer is smaller than the resultant integer, mask off 1528 // the high bits so we are sure to get a proper truncation if the input is 1529 // a constant expr. 1530 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); 1531 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1532 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1533 } 1534 1535 // The MC library also has a right-shift operator, but it isn't consistently 1536 // signed or unsigned between different targets. 1537 case Instruction::Add: 1538 case Instruction::Sub: 1539 case Instruction::Mul: 1540 case Instruction::SDiv: 1541 case Instruction::SRem: 1542 case Instruction::Shl: 1543 case Instruction::And: 1544 case Instruction::Or: 1545 case Instruction::Xor: { 1546 const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP); 1547 const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP); 1548 switch (CE->getOpcode()) { 1549 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1550 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1551 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1552 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1553 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1554 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1555 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1556 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1557 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1558 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1559 } 1560 } 1561 } 1562} 1563 1564static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace, 1565 AsmPrinter &AP); 1566 1567/// isRepeatedByteSequence - Determine whether the given value is 1568/// composed of a repeated sequence of identical bytes and return the 1569/// byte value. If it is not a repeated sequence, return -1. 1570static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1571 StringRef Data = V->getRawDataValues(); 1572 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1573 char C = Data[0]; 1574 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1575 if (Data[i] != C) return -1; 1576 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1577} 1578 1579 1580/// isRepeatedByteSequence - Determine whether the given value is 1581/// composed of a repeated sequence of identical bytes and return the 1582/// byte value. If it is not a repeated sequence, return -1. 1583static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1584 1585 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1586 if (CI->getBitWidth() > 64) return -1; 1587 1588 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType()); 1589 uint64_t Value = CI->getZExtValue(); 1590 1591 // Make sure the constant is at least 8 bits long and has a power 1592 // of 2 bit width. This guarantees the constant bit width is 1593 // always a multiple of 8 bits, avoiding issues with padding out 1594 // to Size and other such corner cases. 1595 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1596 1597 uint8_t Byte = static_cast<uint8_t>(Value); 1598 1599 for (unsigned i = 1; i < Size; ++i) { 1600 Value >>= 8; 1601 if (static_cast<uint8_t>(Value) != Byte) return -1; 1602 } 1603 return Byte; 1604 } 1605 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1606 // Make sure all array elements are sequences of the same repeated 1607 // byte. 1608 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1609 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1610 if (Byte == -1) return -1; 1611 1612 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1613 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1614 if (ThisByte == -1) return -1; 1615 if (Byte != ThisByte) return -1; 1616 } 1617 return Byte; 1618 } 1619 1620 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1621 return isRepeatedByteSequence(CDS); 1622 1623 return -1; 1624} 1625 1626static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1627 unsigned AddrSpace,AsmPrinter &AP){ 1628 1629 // See if we can aggregate this into a .fill, if so, emit it as such. 1630 int Value = isRepeatedByteSequence(CDS, AP.TM); 1631 if (Value != -1) { 1632 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType()); 1633 // Don't emit a 1-byte object as a .fill. 1634 if (Bytes > 1) 1635 return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1636 } 1637 1638 // If this can be emitted with .ascii/.asciz, emit it as such. 1639 if (CDS->isString()) 1640 return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace); 1641 1642 // Otherwise, emit the values in successive locations. 1643 unsigned ElementByteSize = CDS->getElementByteSize(); 1644 if (isa<IntegerType>(CDS->getElementType())) { 1645 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1646 if (AP.isVerbose()) 1647 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1648 CDS->getElementAsInteger(i)); 1649 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1650 ElementByteSize, AddrSpace); 1651 } 1652 } else if (ElementByteSize == 4) { 1653 // FP Constants are printed as integer constants to avoid losing 1654 // precision. 1655 assert(CDS->getElementType()->isFloatTy()); 1656 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1657 union { 1658 float F; 1659 uint32_t I; 1660 }; 1661 1662 F = CDS->getElementAsFloat(i); 1663 if (AP.isVerbose()) 1664 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1665 AP.OutStreamer.EmitIntValue(I, 4, AddrSpace); 1666 } 1667 } else { 1668 assert(CDS->getElementType()->isDoubleTy()); 1669 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1670 union { 1671 double F; 1672 uint64_t I; 1673 }; 1674 1675 F = CDS->getElementAsDouble(i); 1676 if (AP.isVerbose()) 1677 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1678 AP.OutStreamer.EmitIntValue(I, 8, AddrSpace); 1679 } 1680 } 1681 1682 const DataLayout &TD = *AP.TM.getDataLayout(); 1683 unsigned Size = TD.getTypeAllocSize(CDS->getType()); 1684 unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) * 1685 CDS->getNumElements(); 1686 if (unsigned Padding = Size - EmittedSize) 1687 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1688 1689} 1690 1691static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace, 1692 AsmPrinter &AP) { 1693 // See if we can aggregate some values. Make sure it can be 1694 // represented as a series of bytes of the constant value. 1695 int Value = isRepeatedByteSequence(CA, AP.TM); 1696 1697 if (Value != -1) { 1698 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType()); 1699 AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1700 } 1701 else { 1702 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1703 emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP); 1704 } 1705} 1706 1707static void emitGlobalConstantVector(const ConstantVector *CV, 1708 unsigned AddrSpace, AsmPrinter &AP) { 1709 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1710 emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP); 1711 1712 const DataLayout &TD = *AP.TM.getDataLayout(); 1713 unsigned Size = TD.getTypeAllocSize(CV->getType()); 1714 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) * 1715 CV->getType()->getNumElements(); 1716 if (unsigned Padding = Size - EmittedSize) 1717 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1718} 1719 1720static void emitGlobalConstantStruct(const ConstantStruct *CS, 1721 unsigned AddrSpace, AsmPrinter &AP) { 1722 // Print the fields in successive locations. Pad to align if needed! 1723 const DataLayout *TD = AP.TM.getDataLayout(); 1724 unsigned Size = TD->getTypeAllocSize(CS->getType()); 1725 const StructLayout *Layout = TD->getStructLayout(CS->getType()); 1726 uint64_t SizeSoFar = 0; 1727 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1728 const Constant *Field = CS->getOperand(i); 1729 1730 // Check if padding is needed and insert one or more 0s. 1731 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType()); 1732 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1733 - Layout->getElementOffset(i)) - FieldSize; 1734 SizeSoFar += FieldSize + PadSize; 1735 1736 // Now print the actual field value. 1737 emitGlobalConstantImpl(Field, AddrSpace, AP); 1738 1739 // Insert padding - this may include padding to increase the size of the 1740 // current field up to the ABI size (if the struct is not packed) as well 1741 // as padding to ensure that the next field starts at the right offset. 1742 AP.OutStreamer.EmitZeros(PadSize, AddrSpace); 1743 } 1744 assert(SizeSoFar == Layout->getSizeInBytes() && 1745 "Layout of constant struct may be incorrect!"); 1746} 1747 1748static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace, 1749 AsmPrinter &AP) { 1750 if (CFP->getType()->isHalfTy()) { 1751 if (AP.isVerbose()) { 1752 SmallString<10> Str; 1753 CFP->getValueAPF().toString(Str); 1754 AP.OutStreamer.GetCommentOS() << "half " << Str << '\n'; 1755 } 1756 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1757 AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace); 1758 return; 1759 } 1760 1761 if (CFP->getType()->isFloatTy()) { 1762 if (AP.isVerbose()) { 1763 float Val = CFP->getValueAPF().convertToFloat(); 1764 uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1765 AP.OutStreamer.GetCommentOS() << "float " << Val << '\n' 1766 << " (" << format("0x%x", IntVal) << ")\n"; 1767 } 1768 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1769 AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace); 1770 return; 1771 } 1772 1773 // FP Constants are printed as integer constants to avoid losing 1774 // precision. 1775 if (CFP->getType()->isDoubleTy()) { 1776 if (AP.isVerbose()) { 1777 double Val = CFP->getValueAPF().convertToDouble(); 1778 uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1779 AP.OutStreamer.GetCommentOS() << "double " << Val << '\n' 1780 << " (" << format("0x%lx", IntVal) << ")\n"; 1781 } 1782 1783 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1784 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1785 return; 1786 } 1787 1788 if (CFP->getType()->isX86_FP80Ty()) { 1789 // all long double variants are printed as hex 1790 // API needed to prevent premature destruction 1791 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1792 const uint64_t *p = API.getRawData(); 1793 if (AP.isVerbose()) { 1794 // Convert to double so we can print the approximate val as a comment. 1795 APFloat DoubleVal = CFP->getValueAPF(); 1796 bool ignored; 1797 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1798 &ignored); 1799 AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= " 1800 << DoubleVal.convertToDouble() << '\n'; 1801 } 1802 1803 if (AP.TM.getDataLayout()->isBigEndian()) { 1804 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1805 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1806 } else { 1807 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1808 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1809 } 1810 1811 // Emit the tail padding for the long double. 1812 const DataLayout &TD = *AP.TM.getDataLayout(); 1813 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - 1814 TD.getTypeStoreSize(CFP->getType()), AddrSpace); 1815 return; 1816 } 1817 1818 assert(CFP->getType()->isPPC_FP128Ty() && 1819 "Floating point constant type not handled"); 1820 // All long double variants are printed as hex 1821 // API needed to prevent premature destruction. 1822 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1823 const uint64_t *p = API.getRawData(); 1824 if (AP.TM.getDataLayout()->isBigEndian()) { 1825 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1826 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1827 } else { 1828 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1829 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1830 } 1831} 1832 1833static void emitGlobalConstantLargeInt(const ConstantInt *CI, 1834 unsigned AddrSpace, AsmPrinter &AP) { 1835 const DataLayout *TD = AP.TM.getDataLayout(); 1836 unsigned BitWidth = CI->getBitWidth(); 1837 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); 1838 1839 // We don't expect assemblers to support integer data directives 1840 // for more than 64 bits, so we emit the data in at most 64-bit 1841 // quantities at a time. 1842 const uint64_t *RawData = CI->getValue().getRawData(); 1843 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1844 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1845 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1846 } 1847} 1848 1849static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace, 1850 AsmPrinter &AP) { 1851 const DataLayout *TD = AP.TM.getDataLayout(); 1852 uint64_t Size = TD->getTypeAllocSize(CV->getType()); 1853 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 1854 return AP.OutStreamer.EmitZeros(Size, AddrSpace); 1855 1856 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1857 switch (Size) { 1858 case 1: 1859 case 2: 1860 case 4: 1861 case 8: 1862 if (AP.isVerbose()) 1863 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1864 CI->getZExtValue()); 1865 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace); 1866 return; 1867 default: 1868 emitGlobalConstantLargeInt(CI, AddrSpace, AP); 1869 return; 1870 } 1871 } 1872 1873 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1874 return emitGlobalConstantFP(CFP, AddrSpace, AP); 1875 1876 if (isa<ConstantPointerNull>(CV)) { 1877 AP.OutStreamer.EmitIntValue(0, Size, AddrSpace); 1878 return; 1879 } 1880 1881 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 1882 return emitGlobalConstantDataSequential(CDS, AddrSpace, AP); 1883 1884 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1885 return emitGlobalConstantArray(CVA, AddrSpace, AP); 1886 1887 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1888 return emitGlobalConstantStruct(CVS, AddrSpace, AP); 1889 1890 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 1891 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 1892 // vectors). 1893 if (CE->getOpcode() == Instruction::BitCast) 1894 return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP); 1895 1896 if (Size > 8) { 1897 // If the constant expression's size is greater than 64-bits, then we have 1898 // to emit the value in chunks. Try to constant fold the value and emit it 1899 // that way. 1900 Constant *New = ConstantFoldConstantExpression(CE, TD); 1901 if (New && New != CE) 1902 return emitGlobalConstantImpl(New, AddrSpace, AP); 1903 } 1904 } 1905 1906 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1907 return emitGlobalConstantVector(V, AddrSpace, AP); 1908 1909 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 1910 // thread the streamer with EmitValue. 1911 AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace); 1912} 1913 1914/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1915void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1916 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType()); 1917 if (Size) 1918 emitGlobalConstantImpl(CV, AddrSpace, *this); 1919 else if (MAI->hasSubsectionsViaSymbols()) { 1920 // If the global has zero size, emit a single byte so that two labels don't 1921 // look like they are at the same location. 1922 OutStreamer.EmitIntValue(0, 1, AddrSpace); 1923 } 1924} 1925 1926void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1927 // Target doesn't support this yet! 1928 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1929} 1930 1931void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 1932 if (Offset > 0) 1933 OS << '+' << Offset; 1934 else if (Offset < 0) 1935 OS << Offset; 1936} 1937 1938//===----------------------------------------------------------------------===// 1939// Symbol Lowering Routines. 1940//===----------------------------------------------------------------------===// 1941 1942/// GetTempSymbol - Return the MCSymbol corresponding to the assembler 1943/// temporary label with the specified stem and unique ID. 1944MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const { 1945 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) + 1946 Name + Twine(ID)); 1947} 1948 1949/// GetTempSymbol - Return an assembler temporary label with the specified 1950/// stem. 1951MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const { 1952 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+ 1953 Name); 1954} 1955 1956 1957MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 1958 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 1959} 1960 1961MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 1962 return MMI->getAddrLabelSymbol(BB); 1963} 1964 1965/// GetCPISymbol - Return the symbol for the specified constant pool entry. 1966MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 1967 return OutContext.GetOrCreateSymbol 1968 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 1969 + "_" + Twine(CPID)); 1970} 1971 1972/// GetJTISymbol - Return the symbol for the specified jump table entry. 1973MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 1974 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 1975} 1976 1977/// GetJTSetSymbol - Return the symbol for the specified jump table .set 1978/// FIXME: privatize to AsmPrinter. 1979MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 1980 return OutContext.GetOrCreateSymbol 1981 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 1982 Twine(UID) + "_set_" + Twine(MBBID)); 1983} 1984 1985/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with 1986/// global value name as its base, with the specified suffix, and where the 1987/// symbol is forced to have private linkage if ForcePrivate is true. 1988MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, 1989 StringRef Suffix, 1990 bool ForcePrivate) const { 1991 SmallString<60> NameStr; 1992 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); 1993 NameStr.append(Suffix.begin(), Suffix.end()); 1994 return OutContext.GetOrCreateSymbol(NameStr.str()); 1995} 1996 1997/// GetExternalSymbolSymbol - Return the MCSymbol for the specified 1998/// ExternalSymbol. 1999MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2000 SmallString<60> NameStr; 2001 Mang->getNameWithPrefix(NameStr, Sym); 2002 return OutContext.GetOrCreateSymbol(NameStr.str()); 2003} 2004 2005 2006 2007/// PrintParentLoopComment - Print comments about parent loops of this one. 2008static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2009 unsigned FunctionNumber) { 2010 if (Loop == 0) return; 2011 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2012 OS.indent(Loop->getLoopDepth()*2) 2013 << "Parent Loop BB" << FunctionNumber << "_" 2014 << Loop->getHeader()->getNumber() 2015 << " Depth=" << Loop->getLoopDepth() << '\n'; 2016} 2017 2018 2019/// PrintChildLoopComment - Print comments about child loops within 2020/// the loop for this basic block, with nesting. 2021static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2022 unsigned FunctionNumber) { 2023 // Add child loop information 2024 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ 2025 OS.indent((*CL)->getLoopDepth()*2) 2026 << "Child Loop BB" << FunctionNumber << "_" 2027 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() 2028 << '\n'; 2029 PrintChildLoopComment(OS, *CL, FunctionNumber); 2030 } 2031} 2032 2033/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2034static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2035 const MachineLoopInfo *LI, 2036 const AsmPrinter &AP) { 2037 // Add loop depth information 2038 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2039 if (Loop == 0) return; 2040 2041 MachineBasicBlock *Header = Loop->getHeader(); 2042 assert(Header && "No header for loop"); 2043 2044 // If this block is not a loop header, just print out what is the loop header 2045 // and return. 2046 if (Header != &MBB) { 2047 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2048 Twine(AP.getFunctionNumber())+"_" + 2049 Twine(Loop->getHeader()->getNumber())+ 2050 " Depth="+Twine(Loop->getLoopDepth())); 2051 return; 2052 } 2053 2054 // Otherwise, it is a loop header. Print out information about child and 2055 // parent loops. 2056 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2057 2058 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2059 2060 OS << "=>"; 2061 OS.indent(Loop->getLoopDepth()*2-2); 2062 2063 OS << "This "; 2064 if (Loop->empty()) 2065 OS << "Inner "; 2066 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2067 2068 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2069} 2070 2071 2072/// EmitBasicBlockStart - This method prints the label for the specified 2073/// MachineBasicBlock, an alignment (if present) and a comment describing 2074/// it if appropriate. 2075void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 2076 // Emit an alignment directive for this block, if needed. 2077 if (unsigned Align = MBB->getAlignment()) 2078 EmitAlignment(Align); 2079 2080 // If the block has its address taken, emit any labels that were used to 2081 // reference the block. It is possible that there is more than one label 2082 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2083 // the references were generated. 2084 if (MBB->hasAddressTaken()) { 2085 const BasicBlock *BB = MBB->getBasicBlock(); 2086 if (isVerbose()) 2087 OutStreamer.AddComment("Block address taken"); 2088 2089 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); 2090 2091 for (unsigned i = 0, e = Syms.size(); i != e; ++i) 2092 OutStreamer.EmitLabel(Syms[i]); 2093 } 2094 2095 // Print some verbose block comments. 2096 if (isVerbose()) { 2097 if (const BasicBlock *BB = MBB->getBasicBlock()) 2098 if (BB->hasName()) 2099 OutStreamer.AddComment("%" + BB->getName()); 2100 emitBasicBlockLoopComments(*MBB, LI, *this); 2101 } 2102 2103 // Print the main label for the block. 2104 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { 2105 if (isVerbose() && OutStreamer.hasRawTextSupport()) { 2106 // NOTE: Want this comment at start of line, don't emit with AddComment. 2107 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" + 2108 Twine(MBB->getNumber()) + ":"); 2109 } 2110 } else { 2111 OutStreamer.EmitLabel(MBB->getSymbol()); 2112 } 2113} 2114 2115void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2116 bool IsDefinition) const { 2117 MCSymbolAttr Attr = MCSA_Invalid; 2118 2119 switch (Visibility) { 2120 default: break; 2121 case GlobalValue::HiddenVisibility: 2122 if (IsDefinition) 2123 Attr = MAI->getHiddenVisibilityAttr(); 2124 else 2125 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2126 break; 2127 case GlobalValue::ProtectedVisibility: 2128 Attr = MAI->getProtectedVisibilityAttr(); 2129 break; 2130 } 2131 2132 if (Attr != MCSA_Invalid) 2133 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2134} 2135 2136/// isBlockOnlyReachableByFallthough - Return true if the basic block has 2137/// exactly one predecessor and the control transfer mechanism between 2138/// the predecessor and this block is a fall-through. 2139bool AsmPrinter:: 2140isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2141 // If this is a landing pad, it isn't a fall through. If it has no preds, 2142 // then nothing falls through to it. 2143 if (MBB->isLandingPad() || MBB->pred_empty()) 2144 return false; 2145 2146 // If there isn't exactly one predecessor, it can't be a fall through. 2147 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 2148 ++PI2; 2149 if (PI2 != MBB->pred_end()) 2150 return false; 2151 2152 // The predecessor has to be immediately before this block. 2153 MachineBasicBlock *Pred = *PI; 2154 2155 if (!Pred->isLayoutSuccessor(MBB)) 2156 return false; 2157 2158 // If the block is completely empty, then it definitely does fall through. 2159 if (Pred->empty()) 2160 return true; 2161 2162 // Check the terminators in the previous blocks 2163 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(), 2164 IE = Pred->end(); II != IE; ++II) { 2165 MachineInstr &MI = *II; 2166 2167 // If it is not a simple branch, we are in a table somewhere. 2168 if (!MI.isBranch() || MI.isIndirectBranch()) 2169 return false; 2170 2171 // If we are the operands of one of the branches, this is not 2172 // a fall through. 2173 for (MachineInstr::mop_iterator OI = MI.operands_begin(), 2174 OE = MI.operands_end(); OI != OE; ++OI) { 2175 const MachineOperand& OP = *OI; 2176 if (OP.isJTI()) 2177 return false; 2178 if (OP.isMBB() && OP.getMBB() == MBB) 2179 return false; 2180 } 2181 } 2182 2183 return true; 2184} 2185 2186 2187 2188GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 2189 if (!S->usesMetadata()) 2190 return 0; 2191 2192 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2193 gcp_map_type::iterator GCPI = GCMap.find(S); 2194 if (GCPI != GCMap.end()) 2195 return GCPI->second; 2196 2197 const char *Name = S->getName().c_str(); 2198 2199 for (GCMetadataPrinterRegistry::iterator 2200 I = GCMetadataPrinterRegistry::begin(), 2201 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2202 if (strcmp(Name, I->getName()) == 0) { 2203 GCMetadataPrinter *GMP = I->instantiate(); 2204 GMP->S = S; 2205 GCMap.insert(std::make_pair(S, GMP)); 2206 return GMP; 2207 } 2208 2209 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2210} 2211