AsmPrinter.cpp revision f7871d1b5018aae518bed4cd979130d2cf06ad02
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/Assembly/Writer.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Constants.h" 18#include "llvm/Module.h" 19#include "llvm/CodeGen/GCMetadataPrinter.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineFrameInfo.h" 22#include "llvm/CodeGen/MachineFunction.h" 23#include "llvm/CodeGen/MachineJumpTableInfo.h" 24#include "llvm/CodeGen/MachineLoopInfo.h" 25#include "llvm/CodeGen/MachineModuleInfo.h" 26#include "llvm/CodeGen/DwarfWriter.h" 27#include "llvm/Analysis/DebugInfo.h" 28#include "llvm/MC/MCContext.h" 29#include "llvm/MC/MCInst.h" 30#include "llvm/MC/MCSection.h" 31#include "llvm/MC/MCStreamer.h" 32#include "llvm/MC/MCSymbol.h" 33#include "llvm/Support/CommandLine.h" 34#include "llvm/Support/ErrorHandling.h" 35#include "llvm/Support/FormattedStream.h" 36#include "llvm/Support/Mangler.h" 37#include "llvm/MC/MCAsmInfo.h" 38#include "llvm/Target/TargetData.h" 39#include "llvm/Target/TargetInstrInfo.h" 40#include "llvm/Target/TargetLowering.h" 41#include "llvm/Target/TargetLoweringObjectFile.h" 42#include "llvm/Target/TargetOptions.h" 43#include "llvm/Target/TargetRegisterInfo.h" 44#include "llvm/ADT/SmallPtrSet.h" 45#include "llvm/ADT/SmallString.h" 46#include "llvm/ADT/StringExtras.h" 47#include <cerrno> 48using namespace llvm; 49 50static cl::opt<cl::boolOrDefault> 51AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), 52 cl::init(cl::BOU_UNSET)); 53 54char AsmPrinter::ID = 0; 55AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm, 56 const MCAsmInfo *T, bool VDef) 57 : MachineFunctionPass(&ID), FunctionNumber(0), O(o), 58 TM(tm), MAI(T), TRI(tm.getRegisterInfo()), 59 60 OutContext(*new MCContext()), 61 // FIXME: Pass instprinter to streamer. 62 OutStreamer(*createAsmStreamer(OutContext, O, *T, 0)), 63 64 LastMI(0), LastFn(0), Counter(~0U), 65 PrevDLT(0, 0, ~0U, ~0U) { 66 DW = 0; MMI = 0; 67 switch (AsmVerbose) { 68 case cl::BOU_UNSET: VerboseAsm = VDef; break; 69 case cl::BOU_TRUE: VerboseAsm = true; break; 70 case cl::BOU_FALSE: VerboseAsm = false; break; 71 } 72} 73 74AsmPrinter::~AsmPrinter() { 75 for (gcp_iterator I = GCMetadataPrinters.begin(), 76 E = GCMetadataPrinters.end(); I != E; ++I) 77 delete I->second; 78 79 delete &OutStreamer; 80 delete &OutContext; 81} 82 83TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 84 return TM.getTargetLowering()->getObjFileLowering(); 85} 86 87/// getCurrentSection() - Return the current section we are emitting to. 88const MCSection *AsmPrinter::getCurrentSection() const { 89 return OutStreamer.getCurrentSection(); 90} 91 92 93void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 94 AU.setPreservesAll(); 95 MachineFunctionPass::getAnalysisUsage(AU); 96 AU.addRequired<GCModuleInfo>(); 97 if (VerboseAsm) 98 AU.addRequired<MachineLoopInfo>(); 99} 100 101bool AsmPrinter::doInitialization(Module &M) { 102 // Initialize TargetLoweringObjectFile. 103 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 104 .Initialize(OutContext, TM); 105 106 Mang = new Mangler(M, MAI->getGlobalPrefix(), MAI->getPrivateGlobalPrefix(), 107 MAI->getLinkerPrivateGlobalPrefix()); 108 109 if (MAI->doesAllowQuotesInName()) 110 Mang->setUseQuotes(true); 111 112 if (MAI->doesAllowNameToStartWithDigit()) 113 Mang->setSymbolsCanStartWithDigit(true); 114 115 // Allow the target to emit any magic that it wants at the start of the file. 116 EmitStartOfAsmFile(M); 117 118 if (MAI->hasSingleParameterDotFile()) { 119 /* Very minimal debug info. It is ignored if we emit actual 120 debug info. If we don't, this at least helps the user find where 121 a function came from. */ 122 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; 123 } 124 125 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 126 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 127 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 128 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 129 MP->beginAssembly(O, *this, *MAI); 130 131 if (!M.getModuleInlineAsm().empty()) 132 O << MAI->getCommentString() << " Start of file scope inline assembly\n" 133 << M.getModuleInlineAsm() 134 << '\n' << MAI->getCommentString() 135 << " End of file scope inline assembly\n"; 136 137 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 138 if (MMI) 139 MMI->AnalyzeModule(M); 140 DW = getAnalysisIfAvailable<DwarfWriter>(); 141 if (DW) 142 DW->BeginModule(&M, MMI, O, this, MAI); 143 144 return false; 145} 146 147bool AsmPrinter::doFinalization(Module &M) { 148 // Emit global variables. 149 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 150 I != E; ++I) 151 PrintGlobalVariable(I); 152 153 // Emit final debug information. 154 if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling()) 155 DW->EndModule(); 156 157 // If the target wants to know about weak references, print them all. 158 if (MAI->getWeakRefDirective()) { 159 // FIXME: This is not lazy, it would be nice to only print weak references 160 // to stuff that is actually used. Note that doing so would require targets 161 // to notice uses in operands (due to constant exprs etc). This should 162 // happen with the MC stuff eventually. 163 164 // Print out module-level global variables here. 165 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 166 I != E; ++I) { 167 if (I->hasExternalWeakLinkage()) 168 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 169 } 170 171 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 172 if (I->hasExternalWeakLinkage()) 173 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; 174 } 175 } 176 177 if (MAI->getSetDirective()) { 178 O << '\n'; 179 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 180 I != E; ++I) { 181 std::string Name = Mang->getMangledName(I); 182 183 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 184 std::string Target = Mang->getMangledName(GV); 185 186 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 187 O << "\t.globl\t" << Name << '\n'; 188 else if (I->hasWeakLinkage()) 189 O << MAI->getWeakRefDirective() << Name << '\n'; 190 else if (!I->hasLocalLinkage()) 191 llvm_unreachable("Invalid alias linkage"); 192 193 printVisibility(Name, I->getVisibility()); 194 195 O << MAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; 196 } 197 } 198 199 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 200 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 201 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 202 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 203 MP->finishAssembly(O, *this, *MAI); 204 205 // If we don't have any trampolines, then we don't require stack memory 206 // to be executable. Some targets have a directive to declare this. 207 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 208 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 209 if (MAI->getNonexecutableStackDirective()) 210 O << MAI->getNonexecutableStackDirective() << '\n'; 211 212 213 // Allow the target to emit any magic that it wants at the end of the file, 214 // after everything else has gone out. 215 EmitEndOfAsmFile(M); 216 217 delete Mang; Mang = 0; 218 DW = 0; MMI = 0; 219 220 OutStreamer.Finish(); 221 return false; 222} 223 224void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 225 // What's my mangled name? 226 CurrentFnName = Mang->getMangledName(MF.getFunction()); 227 IncrementFunctionNumber(); 228 229 if (VerboseAsm) 230 LI = &getAnalysis<MachineLoopInfo>(); 231} 232 233namespace { 234 // SectionCPs - Keep track the alignment, constpool entries per Section. 235 struct SectionCPs { 236 const MCSection *S; 237 unsigned Alignment; 238 SmallVector<unsigned, 4> CPEs; 239 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 240 }; 241} 242 243/// EmitConstantPool - Print to the current output stream assembly 244/// representations of the constants in the constant pool MCP. This is 245/// used to print out constants which have been "spilled to memory" by 246/// the code generator. 247/// 248void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { 249 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 250 if (CP.empty()) return; 251 252 // Calculate sections for constant pool entries. We collect entries to go into 253 // the same section together to reduce amount of section switch statements. 254 SmallVector<SectionCPs, 4> CPSections; 255 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 256 const MachineConstantPoolEntry &CPE = CP[i]; 257 unsigned Align = CPE.getAlignment(); 258 259 SectionKind Kind; 260 switch (CPE.getRelocationInfo()) { 261 default: llvm_unreachable("Unknown section kind"); 262 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 263 case 1: 264 Kind = SectionKind::getReadOnlyWithRelLocal(); 265 break; 266 case 0: 267 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 268 case 4: Kind = SectionKind::getMergeableConst4(); break; 269 case 8: Kind = SectionKind::getMergeableConst8(); break; 270 case 16: Kind = SectionKind::getMergeableConst16();break; 271 default: Kind = SectionKind::getMergeableConst(); break; 272 } 273 } 274 275 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 276 277 // The number of sections are small, just do a linear search from the 278 // last section to the first. 279 bool Found = false; 280 unsigned SecIdx = CPSections.size(); 281 while (SecIdx != 0) { 282 if (CPSections[--SecIdx].S == S) { 283 Found = true; 284 break; 285 } 286 } 287 if (!Found) { 288 SecIdx = CPSections.size(); 289 CPSections.push_back(SectionCPs(S, Align)); 290 } 291 292 if (Align > CPSections[SecIdx].Alignment) 293 CPSections[SecIdx].Alignment = Align; 294 CPSections[SecIdx].CPEs.push_back(i); 295 } 296 297 // Now print stuff into the calculated sections. 298 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 299 OutStreamer.SwitchSection(CPSections[i].S); 300 EmitAlignment(Log2_32(CPSections[i].Alignment)); 301 302 unsigned Offset = 0; 303 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 304 unsigned CPI = CPSections[i].CPEs[j]; 305 MachineConstantPoolEntry CPE = CP[CPI]; 306 307 // Emit inter-object padding for alignment. 308 unsigned AlignMask = CPE.getAlignment() - 1; 309 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 310 EmitZeros(NewOffset - Offset); 311 312 const Type *Ty = CPE.getType(); 313 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 314 315 O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 316 << CPI << ':'; 317 if (VerboseAsm) { 318 O.PadToColumn(MAI->getCommentColumn()); 319 O << MAI->getCommentString() << " constant "; 320 WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent()); 321 } 322 O << '\n'; 323 if (CPE.isMachineConstantPoolEntry()) 324 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 325 else 326 EmitGlobalConstant(CPE.Val.ConstVal); 327 } 328 } 329} 330 331/// EmitJumpTableInfo - Print assembly representations of the jump tables used 332/// by the current function to the current output stream. 333/// 334void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, 335 MachineFunction &MF) { 336 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 337 if (JT.empty()) return; 338 339 bool IsPic = TM.getRelocationModel() == Reloc::PIC_; 340 341 // Pick the directive to use to print the jump table entries, and switch to 342 // the appropriate section. 343 TargetLowering *LoweringInfo = TM.getTargetLowering(); 344 345 const Function *F = MF.getFunction(); 346 bool JTInDiffSection = false; 347 if (F->isWeakForLinker() || 348 (IsPic && !LoweringInfo->usesGlobalOffsetTable())) { 349 // In PIC mode, we need to emit the jump table to the same section as the 350 // function body itself, otherwise the label differences won't make sense. 351 // We should also do if the section name is NULL or function is declared in 352 // discardable section. 353 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, 354 TM)); 355 } else { 356 // Otherwise, drop it in the readonly section. 357 const MCSection *ReadOnlySection = 358 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 359 OutStreamer.SwitchSection(ReadOnlySection); 360 JTInDiffSection = true; 361 } 362 363 EmitAlignment(Log2_32(MJTI->getAlignment())); 364 365 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 366 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; 367 368 // If this jump table was deleted, ignore it. 369 if (JTBBs.empty()) continue; 370 371 // For PIC codegen, if possible we want to use the SetDirective to reduce 372 // the number of relocations the assembler will generate for the jump table. 373 // Set directives are all printed before the jump table itself. 374 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; 375 if (MAI->getSetDirective() && IsPic) 376 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 377 if (EmittedSets.insert(JTBBs[ii])) 378 printPICJumpTableSetLabel(i, JTBBs[ii]); 379 380 // On some targets (e.g. Darwin) we want to emit two consequtive labels 381 // before each jump table. The first label is never referenced, but tells 382 // the assembler and linker the extents of the jump table object. The 383 // second label is actually referenced by the code. 384 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) { 385 O << MAI->getLinkerPrivateGlobalPrefix() 386 << "JTI" << getFunctionNumber() << '_' << i << ":\n"; 387 } 388 389 O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 390 << '_' << i << ":\n"; 391 392 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 393 printPICJumpTableEntry(MJTI, JTBBs[ii], i); 394 O << '\n'; 395 } 396 } 397} 398 399void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, 400 const MachineBasicBlock *MBB, 401 unsigned uid) const { 402 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 403 404 // Use JumpTableDirective otherwise honor the entry size from the jump table 405 // info. 406 const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC); 407 bool HadJTEntryDirective = JTEntryDirective != NULL; 408 if (!HadJTEntryDirective) { 409 JTEntryDirective = MJTI->getEntrySize() == 4 ? 410 MAI->getData32bitsDirective() : MAI->getData64bitsDirective(); 411 } 412 413 O << JTEntryDirective << ' '; 414 415 // If we have emitted set directives for the jump table entries, print 416 // them rather than the entries themselves. If we're emitting PIC, then 417 // emit the table entries as differences between two text section labels. 418 // If we're emitting non-PIC code, then emit the entries as direct 419 // references to the target basic blocks. 420 if (!isPIC) { 421 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 422 } else if (MAI->getSetDirective()) { 423 O << MAI->getPrivateGlobalPrefix() << getFunctionNumber() 424 << '_' << uid << "_set_" << MBB->getNumber(); 425 } else { 426 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 427 // If the arch uses custom Jump Table directives, don't calc relative to 428 // JT 429 if (!HadJTEntryDirective) 430 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" 431 << getFunctionNumber() << '_' << uid; 432 } 433} 434 435 436/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 437/// special global used by LLVM. If so, emit it and return true, otherwise 438/// do nothing and return false. 439bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 440 if (GV->getName() == "llvm.used") { 441 if (MAI->getUsedDirective() != 0) // No need to emit this at all. 442 EmitLLVMUsedList(GV->getInitializer()); 443 return true; 444 } 445 446 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 447 if (GV->getSection() == "llvm.metadata" || 448 GV->hasAvailableExternallyLinkage()) 449 return true; 450 451 if (!GV->hasAppendingLinkage()) return false; 452 453 assert(GV->hasInitializer() && "Not a special LLVM global!"); 454 455 const TargetData *TD = TM.getTargetData(); 456 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 457 if (GV->getName() == "llvm.global_ctors") { 458 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection()); 459 EmitAlignment(Align, 0); 460 EmitXXStructorList(GV->getInitializer()); 461 return true; 462 } 463 464 if (GV->getName() == "llvm.global_dtors") { 465 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection()); 466 EmitAlignment(Align, 0); 467 EmitXXStructorList(GV->getInitializer()); 468 return true; 469 } 470 471 return false; 472} 473 474/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 475/// global in the specified llvm.used list for which emitUsedDirectiveFor 476/// is true, as being used with this directive. 477void AsmPrinter::EmitLLVMUsedList(Constant *List) { 478 const char *Directive = MAI->getUsedDirective(); 479 480 // Should be an array of 'i8*'. 481 ConstantArray *InitList = dyn_cast<ConstantArray>(List); 482 if (InitList == 0) return; 483 484 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 485 const GlobalValue *GV = 486 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 487 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) { 488 O << Directive; 489 EmitConstantValueOnly(InitList->getOperand(i)); 490 O << '\n'; 491 } 492 } 493} 494 495/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 496/// function pointers, ignoring the init priority. 497void AsmPrinter::EmitXXStructorList(Constant *List) { 498 // Should be an array of '{ int, void ()* }' structs. The first value is the 499 // init priority, which we ignore. 500 if (!isa<ConstantArray>(List)) return; 501 ConstantArray *InitList = cast<ConstantArray>(List); 502 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 503 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 504 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 505 506 if (CS->getOperand(1)->isNullValue()) 507 return; // Found a null terminator, exit printing. 508 // Emit the function pointer. 509 EmitGlobalConstant(CS->getOperand(1)); 510 } 511} 512 513 514//===----------------------------------------------------------------------===// 515/// LEB 128 number encoding. 516 517/// PrintULEB128 - Print a series of hexadecimal values (separated by commas) 518/// representing an unsigned leb128 value. 519void AsmPrinter::PrintULEB128(unsigned Value) const { 520 char Buffer[20]; 521 do { 522 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 523 Value >>= 7; 524 if (Value) Byte |= 0x80; 525 O << "0x" << utohex_buffer(Byte, Buffer+20); 526 if (Value) O << ", "; 527 } while (Value); 528} 529 530/// PrintSLEB128 - Print a series of hexadecimal values (separated by commas) 531/// representing a signed leb128 value. 532void AsmPrinter::PrintSLEB128(int Value) const { 533 int Sign = Value >> (8 * sizeof(Value) - 1); 534 bool IsMore; 535 char Buffer[20]; 536 537 do { 538 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); 539 Value >>= 7; 540 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 541 if (IsMore) Byte |= 0x80; 542 O << "0x" << utohex_buffer(Byte, Buffer+20); 543 if (IsMore) O << ", "; 544 } while (IsMore); 545} 546 547//===--------------------------------------------------------------------===// 548// Emission and print routines 549// 550 551/// PrintHex - Print a value as a hexadecimal value. 552/// 553void AsmPrinter::PrintHex(int Value) const { 554 char Buffer[20]; 555 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); 556} 557 558/// EOL - Print a newline character to asm stream. If a comment is present 559/// then it will be printed first. Comments should not contain '\n'. 560void AsmPrinter::EOL() const { 561 O << '\n'; 562} 563 564void AsmPrinter::EOL(const std::string &Comment) const { 565 if (VerboseAsm && !Comment.empty()) { 566 O.PadToColumn(MAI->getCommentColumn()); 567 O << MAI->getCommentString() 568 << ' ' 569 << Comment; 570 } 571 O << '\n'; 572} 573 574void AsmPrinter::EOL(const char* Comment) const { 575 if (VerboseAsm && *Comment) { 576 O.PadToColumn(MAI->getCommentColumn()); 577 O << MAI->getCommentString() 578 << ' ' 579 << Comment; 580 } 581 O << '\n'; 582} 583 584static const char *DecodeDWARFEncoding(unsigned Encoding) { 585 switch (Encoding) { 586 case dwarf::DW_EH_PE_absptr: 587 return "absptr"; 588 case dwarf::DW_EH_PE_omit: 589 return "omit"; 590 case dwarf::DW_EH_PE_pcrel: 591 return "pcrel"; 592 case dwarf::DW_EH_PE_udata4: 593 return "udata4"; 594 case dwarf::DW_EH_PE_udata8: 595 return "udata8"; 596 case dwarf::DW_EH_PE_sdata4: 597 return "sdata4"; 598 case dwarf::DW_EH_PE_sdata8: 599 return "sdata8"; 600 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4: 601 return "pcrel udata4"; 602 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4: 603 return "pcrel sdata4"; 604 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8: 605 return "pcrel udata8"; 606 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8: 607 return "pcrel sdata8"; 608 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4: 609 return "indirect pcrel udata4"; 610 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4: 611 return "indirect pcrel sdata4"; 612 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8: 613 return "indirect pcrel udata8"; 614 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8: 615 return "indirect pcrel sdata8"; 616 } 617 618 return 0; 619} 620 621void AsmPrinter::EOL(const char *Comment, unsigned Encoding) const { 622 if (VerboseAsm && *Comment) { 623 O.PadToColumn(MAI->getCommentColumn()); 624 O << MAI->getCommentString() 625 << ' ' 626 << Comment; 627 628 if (const char *EncStr = DecodeDWARFEncoding(Encoding)) 629 O << " (" << EncStr << ')'; 630 } 631 O << '\n'; 632} 633 634/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an 635/// unsigned leb128 value. 636void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { 637 if (MAI->hasLEB128()) { 638 O << "\t.uleb128\t" 639 << Value; 640 } else { 641 O << MAI->getData8bitsDirective(); 642 PrintULEB128(Value); 643 } 644} 645 646/// EmitSLEB128Bytes - print an assembler byte data directive to compose a 647/// signed leb128 value. 648void AsmPrinter::EmitSLEB128Bytes(int Value) const { 649 if (MAI->hasLEB128()) { 650 O << "\t.sleb128\t" 651 << Value; 652 } else { 653 O << MAI->getData8bitsDirective(); 654 PrintSLEB128(Value); 655 } 656} 657 658/// EmitInt8 - Emit a byte directive and value. 659/// 660void AsmPrinter::EmitInt8(int Value) const { 661 O << MAI->getData8bitsDirective(); 662 PrintHex(Value & 0xFF); 663} 664 665/// EmitInt16 - Emit a short directive and value. 666/// 667void AsmPrinter::EmitInt16(int Value) const { 668 O << MAI->getData16bitsDirective(); 669 PrintHex(Value & 0xFFFF); 670} 671 672/// EmitInt32 - Emit a long directive and value. 673/// 674void AsmPrinter::EmitInt32(int Value) const { 675 O << MAI->getData32bitsDirective(); 676 PrintHex(Value); 677} 678 679/// EmitInt64 - Emit a long long directive and value. 680/// 681void AsmPrinter::EmitInt64(uint64_t Value) const { 682 if (MAI->getData64bitsDirective()) { 683 O << MAI->getData64bitsDirective(); 684 PrintHex(Value); 685 } else { 686 if (TM.getTargetData()->isBigEndian()) { 687 EmitInt32(unsigned(Value >> 32)); O << '\n'; 688 EmitInt32(unsigned(Value)); 689 } else { 690 EmitInt32(unsigned(Value)); O << '\n'; 691 EmitInt32(unsigned(Value >> 32)); 692 } 693 } 694} 695 696/// toOctal - Convert the low order bits of X into an octal digit. 697/// 698static inline char toOctal(int X) { 699 return (X&7)+'0'; 700} 701 702/// printStringChar - Print a char, escaped if necessary. 703/// 704static void printStringChar(formatted_raw_ostream &O, unsigned char C) { 705 if (C == '"') { 706 O << "\\\""; 707 } else if (C == '\\') { 708 O << "\\\\"; 709 } else if (isprint((unsigned char)C)) { 710 O << C; 711 } else { 712 switch(C) { 713 case '\b': O << "\\b"; break; 714 case '\f': O << "\\f"; break; 715 case '\n': O << "\\n"; break; 716 case '\r': O << "\\r"; break; 717 case '\t': O << "\\t"; break; 718 default: 719 O << '\\'; 720 O << toOctal(C >> 6); 721 O << toOctal(C >> 3); 722 O << toOctal(C >> 0); 723 break; 724 } 725 } 726} 727 728/// EmitString - Emit a string with quotes and a null terminator. 729/// Special characters are emitted properly. 730/// \literal (Eg. '\t') \endliteral 731void AsmPrinter::EmitString(const StringRef String) const { 732 EmitString(String.data(), String.size()); 733} 734 735void AsmPrinter::EmitString(const char *String, unsigned Size) const { 736 const char* AscizDirective = MAI->getAscizDirective(); 737 if (AscizDirective) 738 O << AscizDirective; 739 else 740 O << MAI->getAsciiDirective(); 741 O << '\"'; 742 for (unsigned i = 0; i < Size; ++i) 743 printStringChar(O, String[i]); 744 if (AscizDirective) 745 O << '\"'; 746 else 747 O << "\\0\""; 748} 749 750 751/// EmitFile - Emit a .file directive. 752void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { 753 O << "\t.file\t" << Number << " \""; 754 for (unsigned i = 0, N = Name.size(); i < N; ++i) 755 printStringChar(O, Name[i]); 756 O << '\"'; 757} 758 759 760//===----------------------------------------------------------------------===// 761 762// EmitAlignment - Emit an alignment directive to the specified power of 763// two boundary. For example, if you pass in 3 here, you will get an 8 764// byte alignment. If a global value is specified, and if that global has 765// an explicit alignment requested, it will unconditionally override the 766// alignment request. However, if ForcedAlignBits is specified, this value 767// has final say: the ultimate alignment will be the max of ForcedAlignBits 768// and the alignment computed with NumBits and the global. 769// 770// The algorithm is: 771// Align = NumBits; 772// if (GV && GV->hasalignment) Align = GV->getalignment(); 773// Align = std::max(Align, ForcedAlignBits); 774// 775void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, 776 unsigned ForcedAlignBits, 777 bool UseFillExpr) const { 778 if (GV && GV->getAlignment()) 779 NumBits = Log2_32(GV->getAlignment()); 780 NumBits = std::max(NumBits, ForcedAlignBits); 781 782 if (NumBits == 0) return; // No need to emit alignment. 783 784 unsigned FillValue = 0; 785 if (getCurrentSection()->getKind().isText()) 786 FillValue = MAI->getTextAlignFillValue(); 787 788 OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0); 789} 790 791/// EmitZeros - Emit a block of zeros. 792/// 793void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const { 794 if (NumZeros) { 795 if (MAI->getZeroDirective()) { 796 O << MAI->getZeroDirective() << NumZeros; 797 if (MAI->getZeroDirectiveSuffix()) 798 O << MAI->getZeroDirectiveSuffix(); 799 O << '\n'; 800 } else { 801 for (; NumZeros; --NumZeros) 802 O << MAI->getData8bitsDirective(AddrSpace) << "0\n"; 803 } 804 } 805} 806 807// Print out the specified constant, without a storage class. Only the 808// constants valid in constant expressions can occur here. 809void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { 810 if (CV->isNullValue() || isa<UndefValue>(CV)) { 811 O << '0'; 812 return; 813 } 814 815 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 816 O << CI->getZExtValue(); 817 return; 818 } 819 820 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { 821 // This is a constant address for a global variable or function. Use the 822 // name of the variable or function as the address value. 823 O << Mang->getMangledName(GV); 824 return; 825 } 826 827 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 828 GetBlockAddressSymbol(BA)->print(O, MAI); 829 return; 830 } 831 832 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 833 if (CE == 0) { 834 llvm_unreachable("Unknown constant value!"); 835 O << '0'; 836 return; 837 } 838 839 switch (CE->getOpcode()) { 840 case Instruction::ZExt: 841 case Instruction::SExt: 842 case Instruction::FPTrunc: 843 case Instruction::FPExt: 844 case Instruction::UIToFP: 845 case Instruction::SIToFP: 846 case Instruction::FPToUI: 847 case Instruction::FPToSI: 848 default: 849 llvm_unreachable("FIXME: Don't support this constant cast expr"); 850 case Instruction::GetElementPtr: { 851 // generate a symbolic expression for the byte address 852 const TargetData *TD = TM.getTargetData(); 853 const Constant *ptrVal = CE->getOperand(0); 854 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); 855 int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], 856 idxVec.size()); 857 if (Offset == 0) 858 return EmitConstantValueOnly(ptrVal); 859 860 // Truncate/sext the offset to the pointer size. 861 if (TD->getPointerSizeInBits() != 64) { 862 int SExtAmount = 64-TD->getPointerSizeInBits(); 863 Offset = (Offset << SExtAmount) >> SExtAmount; 864 } 865 866 if (Offset) 867 O << '('; 868 EmitConstantValueOnly(ptrVal); 869 if (Offset > 0) 870 O << ") + " << Offset; 871 else 872 O << ") - " << -Offset; 873 return; 874 } 875 case Instruction::BitCast: 876 return EmitConstantValueOnly(CE->getOperand(0)); 877 878 case Instruction::IntToPtr: { 879 // Handle casts to pointers by changing them into casts to the appropriate 880 // integer type. This promotes constant folding and simplifies this code. 881 const TargetData *TD = TM.getTargetData(); 882 Constant *Op = CE->getOperand(0); 883 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()), 884 false/*ZExt*/); 885 return EmitConstantValueOnly(Op); 886 } 887 888 case Instruction::PtrToInt: { 889 // Support only foldable casts to/from pointers that can be eliminated by 890 // changing the pointer to the appropriately sized integer type. 891 Constant *Op = CE->getOperand(0); 892 const Type *Ty = CE->getType(); 893 const TargetData *TD = TM.getTargetData(); 894 895 // We can emit the pointer value into this slot if the slot is an 896 // integer slot greater or equal to the size of the pointer. 897 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType())) 898 return EmitConstantValueOnly(Op); 899 900 O << "(("; 901 EmitConstantValueOnly(Op); 902 APInt ptrMask = 903 APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType())); 904 905 SmallString<40> S; 906 ptrMask.toStringUnsigned(S); 907 O << ") & " << S.str() << ')'; 908 return; 909 } 910 911 case Instruction::Trunc: 912 // We emit the value and depend on the assembler to truncate the generated 913 // expression properly. This is important for differences between 914 // blockaddress labels. Since the two labels are in the same function, it 915 // is reasonable to treat their delta as a 32-bit value. 916 return EmitConstantValueOnly(CE->getOperand(0)); 917 918 case Instruction::Add: 919 case Instruction::Sub: 920 case Instruction::And: 921 case Instruction::Or: 922 case Instruction::Xor: 923 O << '('; 924 EmitConstantValueOnly(CE->getOperand(0)); 925 O << ')'; 926 switch (CE->getOpcode()) { 927 case Instruction::Add: 928 O << " + "; 929 break; 930 case Instruction::Sub: 931 O << " - "; 932 break; 933 case Instruction::And: 934 O << " & "; 935 break; 936 case Instruction::Or: 937 O << " | "; 938 break; 939 case Instruction::Xor: 940 O << " ^ "; 941 break; 942 default: 943 break; 944 } 945 O << '('; 946 EmitConstantValueOnly(CE->getOperand(1)); 947 O << ')'; 948 break; 949 } 950} 951 952/// printAsCString - Print the specified array as a C compatible string, only if 953/// the predicate isString is true. 954/// 955static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA, 956 unsigned LastElt) { 957 assert(CVA->isString() && "Array is not string compatible!"); 958 959 O << '\"'; 960 for (unsigned i = 0; i != LastElt; ++i) { 961 unsigned char C = 962 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); 963 printStringChar(O, C); 964 } 965 O << '\"'; 966} 967 968/// EmitString - Emit a zero-byte-terminated string constant. 969/// 970void AsmPrinter::EmitString(const ConstantArray *CVA) const { 971 unsigned NumElts = CVA->getNumOperands(); 972 if (MAI->getAscizDirective() && NumElts && 973 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { 974 O << MAI->getAscizDirective(); 975 printAsCString(O, CVA, NumElts-1); 976 } else { 977 O << MAI->getAsciiDirective(); 978 printAsCString(O, CVA, NumElts); 979 } 980 O << '\n'; 981} 982 983void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA, 984 unsigned AddrSpace) { 985 if (CVA->isString()) { 986 EmitString(CVA); 987 } else { // Not a string. Print the values in successive locations 988 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) 989 EmitGlobalConstant(CVA->getOperand(i), AddrSpace); 990 } 991} 992 993void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) { 994 const VectorType *PTy = CP->getType(); 995 996 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) 997 EmitGlobalConstant(CP->getOperand(I)); 998} 999 1000void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS, 1001 unsigned AddrSpace) { 1002 // Print the fields in successive locations. Pad to align if needed! 1003 const TargetData *TD = TM.getTargetData(); 1004 unsigned Size = TD->getTypeAllocSize(CVS->getType()); 1005 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); 1006 uint64_t sizeSoFar = 0; 1007 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { 1008 const Constant* field = CVS->getOperand(i); 1009 1010 // Check if padding is needed and insert one or more 0s. 1011 uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); 1012 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) 1013 - cvsLayout->getElementOffset(i)) - fieldSize; 1014 sizeSoFar += fieldSize + padSize; 1015 1016 // Now print the actual field value. 1017 EmitGlobalConstant(field, AddrSpace); 1018 1019 // Insert padding - this may include padding to increase the size of the 1020 // current field up to the ABI size (if the struct is not packed) as well 1021 // as padding to ensure that the next field starts at the right offset. 1022 EmitZeros(padSize, AddrSpace); 1023 } 1024 assert(sizeSoFar == cvsLayout->getSizeInBytes() && 1025 "Layout of constant struct may be incorrect!"); 1026} 1027 1028void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP, 1029 unsigned AddrSpace) { 1030 // FP Constants are printed as integer constants to avoid losing 1031 // precision... 1032 LLVMContext &Context = CFP->getContext(); 1033 const TargetData *TD = TM.getTargetData(); 1034 if (CFP->getType()->isDoubleTy()) { 1035 double Val = CFP->getValueAPF().convertToDouble(); // for comment only 1036 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1037 if (MAI->getData64bitsDirective(AddrSpace)) { 1038 O << MAI->getData64bitsDirective(AddrSpace) << i; 1039 if (VerboseAsm) { 1040 O.PadToColumn(MAI->getCommentColumn()); 1041 O << MAI->getCommentString() << " double " << Val; 1042 } 1043 O << '\n'; 1044 } else if (TD->isBigEndian()) { 1045 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1046 if (VerboseAsm) { 1047 O.PadToColumn(MAI->getCommentColumn()); 1048 O << MAI->getCommentString() 1049 << " most significant word of double " << Val; 1050 } 1051 O << '\n'; 1052 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1053 if (VerboseAsm) { 1054 O.PadToColumn(MAI->getCommentColumn()); 1055 O << MAI->getCommentString() 1056 << " least significant word of double " << Val; 1057 } 1058 O << '\n'; 1059 } else { 1060 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i); 1061 if (VerboseAsm) { 1062 O.PadToColumn(MAI->getCommentColumn()); 1063 O << MAI->getCommentString() 1064 << " least significant word of double " << Val; 1065 } 1066 O << '\n'; 1067 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); 1068 if (VerboseAsm) { 1069 O.PadToColumn(MAI->getCommentColumn()); 1070 O << MAI->getCommentString() 1071 << " most significant word of double " << Val; 1072 } 1073 O << '\n'; 1074 } 1075 return; 1076 } 1077 1078 if (CFP->getType()->isFloatTy()) { 1079 float Val = CFP->getValueAPF().convertToFloat(); // for comment only 1080 O << MAI->getData32bitsDirective(AddrSpace) 1081 << CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1082 if (VerboseAsm) { 1083 O.PadToColumn(MAI->getCommentColumn()); 1084 O << MAI->getCommentString() << " float " << Val; 1085 } 1086 O << '\n'; 1087 return; 1088 } 1089 1090 if (CFP->getType()->isX86_FP80Ty()) { 1091 // all long double variants are printed as hex 1092 // api needed to prevent premature destruction 1093 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1094 const uint64_t *p = api.getRawData(); 1095 // Convert to double so we can print the approximate val as a comment. 1096 APFloat DoubleVal = CFP->getValueAPF(); 1097 bool ignored; 1098 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1099 &ignored); 1100 if (TD->isBigEndian()) { 1101 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1102 if (VerboseAsm) { 1103 O.PadToColumn(MAI->getCommentColumn()); 1104 O << MAI->getCommentString() 1105 << " most significant halfword of x86_fp80 ~" 1106 << DoubleVal.convertToDouble(); 1107 } 1108 O << '\n'; 1109 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1110 if (VerboseAsm) { 1111 O.PadToColumn(MAI->getCommentColumn()); 1112 O << MAI->getCommentString() << " next halfword"; 1113 } 1114 O << '\n'; 1115 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1116 if (VerboseAsm) { 1117 O.PadToColumn(MAI->getCommentColumn()); 1118 O << MAI->getCommentString() << " next halfword"; 1119 } 1120 O << '\n'; 1121 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1122 if (VerboseAsm) { 1123 O.PadToColumn(MAI->getCommentColumn()); 1124 O << MAI->getCommentString() << " next halfword"; 1125 } 1126 O << '\n'; 1127 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1128 if (VerboseAsm) { 1129 O.PadToColumn(MAI->getCommentColumn()); 1130 O << MAI->getCommentString() 1131 << " least significant halfword"; 1132 } 1133 O << '\n'; 1134 } else { 1135 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); 1136 if (VerboseAsm) { 1137 O.PadToColumn(MAI->getCommentColumn()); 1138 O << MAI->getCommentString() 1139 << " least significant halfword of x86_fp80 ~" 1140 << DoubleVal.convertToDouble(); 1141 } 1142 O << '\n'; 1143 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); 1144 if (VerboseAsm) { 1145 O.PadToColumn(MAI->getCommentColumn()); 1146 O << MAI->getCommentString() 1147 << " next halfword"; 1148 } 1149 O << '\n'; 1150 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); 1151 if (VerboseAsm) { 1152 O.PadToColumn(MAI->getCommentColumn()); 1153 O << MAI->getCommentString() 1154 << " next halfword"; 1155 } 1156 O << '\n'; 1157 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); 1158 if (VerboseAsm) { 1159 O.PadToColumn(MAI->getCommentColumn()); 1160 O << MAI->getCommentString() 1161 << " next halfword"; 1162 } 1163 O << '\n'; 1164 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); 1165 if (VerboseAsm) { 1166 O.PadToColumn(MAI->getCommentColumn()); 1167 O << MAI->getCommentString() 1168 << " most significant halfword"; 1169 } 1170 O << '\n'; 1171 } 1172 EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) - 1173 TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace); 1174 return; 1175 } 1176 1177 if (CFP->getType()->isPPC_FP128Ty()) { 1178 // all long double variants are printed as hex 1179 // api needed to prevent premature destruction 1180 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1181 const uint64_t *p = api.getRawData(); 1182 if (TD->isBigEndian()) { 1183 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1184 if (VerboseAsm) { 1185 O.PadToColumn(MAI->getCommentColumn()); 1186 O << MAI->getCommentString() 1187 << " most significant word of ppc_fp128"; 1188 } 1189 O << '\n'; 1190 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1191 if (VerboseAsm) { 1192 O.PadToColumn(MAI->getCommentColumn()); 1193 O << MAI->getCommentString() 1194 << " next word"; 1195 } 1196 O << '\n'; 1197 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1198 if (VerboseAsm) { 1199 O.PadToColumn(MAI->getCommentColumn()); 1200 O << MAI->getCommentString() 1201 << " next word"; 1202 } 1203 O << '\n'; 1204 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1205 if (VerboseAsm) { 1206 O.PadToColumn(MAI->getCommentColumn()); 1207 O << MAI->getCommentString() 1208 << " least significant word"; 1209 } 1210 O << '\n'; 1211 } else { 1212 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); 1213 if (VerboseAsm) { 1214 O.PadToColumn(MAI->getCommentColumn()); 1215 O << MAI->getCommentString() 1216 << " least significant word of ppc_fp128"; 1217 } 1218 O << '\n'; 1219 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); 1220 if (VerboseAsm) { 1221 O.PadToColumn(MAI->getCommentColumn()); 1222 O << MAI->getCommentString() 1223 << " next word"; 1224 } 1225 O << '\n'; 1226 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); 1227 if (VerboseAsm) { 1228 O.PadToColumn(MAI->getCommentColumn()); 1229 O << MAI->getCommentString() 1230 << " next word"; 1231 } 1232 O << '\n'; 1233 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); 1234 if (VerboseAsm) { 1235 O.PadToColumn(MAI->getCommentColumn()); 1236 O << MAI->getCommentString() 1237 << " most significant word"; 1238 } 1239 O << '\n'; 1240 } 1241 return; 1242 } else llvm_unreachable("Floating point constant type not handled"); 1243} 1244 1245void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 1246 unsigned AddrSpace) { 1247 const TargetData *TD = TM.getTargetData(); 1248 unsigned BitWidth = CI->getBitWidth(); 1249 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); 1250 1251 // We don't expect assemblers to support integer data directives 1252 // for more than 64 bits, so we emit the data in at most 64-bit 1253 // quantities at a time. 1254 const uint64_t *RawData = CI->getValue().getRawData(); 1255 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1256 uint64_t Val; 1257 if (TD->isBigEndian()) 1258 Val = RawData[e - i - 1]; 1259 else 1260 Val = RawData[i]; 1261 1262 if (MAI->getData64bitsDirective(AddrSpace)) { 1263 O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n'; 1264 continue; 1265 } 1266 1267 // Emit two 32-bit chunks, order depends on endianness. 1268 unsigned FirstChunk = unsigned(Val), SecondChunk = unsigned(Val >> 32); 1269 const char *FirstName = " least", *SecondName = " most"; 1270 if (TD->isBigEndian()) { 1271 std::swap(FirstChunk, SecondChunk); 1272 std::swap(FirstName, SecondName); 1273 } 1274 1275 O << MAI->getData32bitsDirective(AddrSpace) << FirstChunk; 1276 if (VerboseAsm) { 1277 O.PadToColumn(MAI->getCommentColumn()); 1278 O << MAI->getCommentString() 1279 << FirstName << " significant half of i64 " << Val; 1280 } 1281 O << '\n'; 1282 1283 O << MAI->getData32bitsDirective(AddrSpace) << SecondChunk; 1284 if (VerboseAsm) { 1285 O.PadToColumn(MAI->getCommentColumn()); 1286 O << MAI->getCommentString() 1287 << SecondName << " significant half of i64 " << Val; 1288 } 1289 O << '\n'; 1290 } 1291} 1292 1293/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1294void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1295 const TargetData *TD = TM.getTargetData(); 1296 const Type *type = CV->getType(); 1297 unsigned Size = TD->getTypeAllocSize(type); 1298 1299 if (CV->isNullValue() || isa<UndefValue>(CV)) { 1300 EmitZeros(Size, AddrSpace); 1301 return; 1302 } 1303 1304 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { 1305 EmitGlobalConstantArray(CVA , AddrSpace); 1306 return; 1307 } 1308 1309 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { 1310 EmitGlobalConstantStruct(CVS, AddrSpace); 1311 return; 1312 } 1313 1314 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1315 EmitGlobalConstantFP(CFP, AddrSpace); 1316 return; 1317 } 1318 1319 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1320 // If we can directly emit an 8-byte constant, do it. 1321 if (Size == 8) 1322 if (const char *Data64Dir = MAI->getData64bitsDirective(AddrSpace)) { 1323 O << Data64Dir << CI->getZExtValue() << '\n'; 1324 return; 1325 } 1326 1327 // Small integers are handled below; large integers are handled here. 1328 if (Size > 4) { 1329 EmitGlobalConstantLargeInt(CI, AddrSpace); 1330 return; 1331 } 1332 } 1333 1334 if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 1335 EmitGlobalConstantVector(CP); 1336 return; 1337 } 1338 1339 printDataDirective(type, AddrSpace); 1340 EmitConstantValueOnly(CV); 1341 if (VerboseAsm) { 1342 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1343 SmallString<40> S; 1344 CI->getValue().toStringUnsigned(S, 16); 1345 O.PadToColumn(MAI->getCommentColumn()); 1346 O << MAI->getCommentString() << " 0x" << S.str(); 1347 } 1348 } 1349 O << '\n'; 1350} 1351 1352void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1353 // Target doesn't support this yet! 1354 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1355} 1356 1357/// PrintSpecial - Print information related to the specified machine instr 1358/// that is independent of the operand, and may be independent of the instr 1359/// itself. This can be useful for portably encoding the comment character 1360/// or other bits of target-specific knowledge into the asmstrings. The 1361/// syntax used is ${:comment}. Targets can override this to add support 1362/// for their own strange codes. 1363void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { 1364 if (!strcmp(Code, "private")) { 1365 O << MAI->getPrivateGlobalPrefix(); 1366 } else if (!strcmp(Code, "comment")) { 1367 if (VerboseAsm) 1368 O << MAI->getCommentString(); 1369 } else if (!strcmp(Code, "uid")) { 1370 // Comparing the address of MI isn't sufficient, because machineinstrs may 1371 // be allocated to the same address across functions. 1372 const Function *ThisF = MI->getParent()->getParent()->getFunction(); 1373 1374 // If this is a new LastFn instruction, bump the counter. 1375 if (LastMI != MI || LastFn != ThisF) { 1376 ++Counter; 1377 LastMI = MI; 1378 LastFn = ThisF; 1379 } 1380 O << Counter; 1381 } else { 1382 std::string msg; 1383 raw_string_ostream Msg(msg); 1384 Msg << "Unknown special formatter '" << Code 1385 << "' for machine instr: " << *MI; 1386 llvm_report_error(Msg.str()); 1387 } 1388} 1389 1390/// processDebugLoc - Processes the debug information of each machine 1391/// instruction's DebugLoc. 1392void AsmPrinter::processDebugLoc(const MachineInstr *MI, 1393 bool BeforePrintingInsn) { 1394 if (!MAI || !DW || !MAI->doesSupportDebugInformation() 1395 || !DW->ShouldEmitDwarfDebug()) 1396 return; 1397 DebugLoc DL = MI->getDebugLoc(); 1398 if (DL.isUnknown()) 1399 return; 1400 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL); 1401 if (CurDLT.Scope == 0) 1402 return; 1403 1404 if (BeforePrintingInsn) { 1405 if (CurDLT != PrevDLT) { 1406 unsigned L = DW->RecordSourceLine(CurDLT.Line, CurDLT.Col, 1407 CurDLT.Scope); 1408 printLabel(L); 1409 O << '\n'; 1410 DW->BeginScope(MI, L); 1411 PrevDLT = CurDLT; 1412 } 1413 } else { 1414 // After printing instruction 1415 DW->EndScope(MI); 1416 } 1417} 1418 1419 1420/// printInlineAsm - This method formats and prints the specified machine 1421/// instruction that is an inline asm. 1422void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { 1423 unsigned NumOperands = MI->getNumOperands(); 1424 1425 // Count the number of register definitions. 1426 unsigned NumDefs = 0; 1427 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1428 ++NumDefs) 1429 assert(NumDefs != NumOperands-1 && "No asm string?"); 1430 1431 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); 1432 1433 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. 1434 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1435 1436 O << '\t'; 1437 1438 // If this asmstr is empty, just print the #APP/#NOAPP markers. 1439 // These are useful to see where empty asm's wound up. 1440 if (AsmStr[0] == 0) { 1441 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1442 O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n'; 1443 return; 1444 } 1445 1446 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t"; 1447 1448 // The variant of the current asmprinter. 1449 int AsmPrinterVariant = MAI->getAssemblerDialect(); 1450 1451 int CurVariant = -1; // The number of the {.|.|.} region we are in. 1452 const char *LastEmitted = AsmStr; // One past the last character emitted. 1453 1454 while (*LastEmitted) { 1455 switch (*LastEmitted) { 1456 default: { 1457 // Not a special case, emit the string section literally. 1458 const char *LiteralEnd = LastEmitted+1; 1459 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && 1460 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') 1461 ++LiteralEnd; 1462 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1463 O.write(LastEmitted, LiteralEnd-LastEmitted); 1464 LastEmitted = LiteralEnd; 1465 break; 1466 } 1467 case '\n': 1468 ++LastEmitted; // Consume newline character. 1469 O << '\n'; // Indent code with newline. 1470 break; 1471 case '$': { 1472 ++LastEmitted; // Consume '$' character. 1473 bool Done = true; 1474 1475 // Handle escapes. 1476 switch (*LastEmitted) { 1477 default: Done = false; break; 1478 case '$': // $$ -> $ 1479 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) 1480 O << '$'; 1481 ++LastEmitted; // Consume second '$' character. 1482 break; 1483 case '(': // $( -> same as GCC's { character. 1484 ++LastEmitted; // Consume '(' character. 1485 if (CurVariant != -1) { 1486 llvm_report_error("Nested variants found in inline asm string: '" 1487 + std::string(AsmStr) + "'"); 1488 } 1489 CurVariant = 0; // We're in the first variant now. 1490 break; 1491 case '|': 1492 ++LastEmitted; // consume '|' character. 1493 if (CurVariant == -1) 1494 O << '|'; // this is gcc's behavior for | outside a variant 1495 else 1496 ++CurVariant; // We're in the next variant. 1497 break; 1498 case ')': // $) -> same as GCC's } char. 1499 ++LastEmitted; // consume ')' character. 1500 if (CurVariant == -1) 1501 O << '}'; // this is gcc's behavior for } outside a variant 1502 else 1503 CurVariant = -1; 1504 break; 1505 } 1506 if (Done) break; 1507 1508 bool HasCurlyBraces = false; 1509 if (*LastEmitted == '{') { // ${variable} 1510 ++LastEmitted; // Consume '{' character. 1511 HasCurlyBraces = true; 1512 } 1513 1514 // If we have ${:foo}, then this is not a real operand reference, it is a 1515 // "magic" string reference, just like in .td files. Arrange to call 1516 // PrintSpecial. 1517 if (HasCurlyBraces && *LastEmitted == ':') { 1518 ++LastEmitted; 1519 const char *StrStart = LastEmitted; 1520 const char *StrEnd = strchr(StrStart, '}'); 1521 if (StrEnd == 0) { 1522 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '" 1523 + std::string(AsmStr) + "'"); 1524 } 1525 1526 std::string Val(StrStart, StrEnd); 1527 PrintSpecial(MI, Val.c_str()); 1528 LastEmitted = StrEnd+1; 1529 break; 1530 } 1531 1532 const char *IDStart = LastEmitted; 1533 char *IDEnd; 1534 errno = 0; 1535 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. 1536 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { 1537 llvm_report_error("Bad $ operand number in inline asm string: '" 1538 + std::string(AsmStr) + "'"); 1539 } 1540 LastEmitted = IDEnd; 1541 1542 char Modifier[2] = { 0, 0 }; 1543 1544 if (HasCurlyBraces) { 1545 // If we have curly braces, check for a modifier character. This 1546 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. 1547 if (*LastEmitted == ':') { 1548 ++LastEmitted; // Consume ':' character. 1549 if (*LastEmitted == 0) { 1550 llvm_report_error("Bad ${:} expression in inline asm string: '" 1551 + std::string(AsmStr) + "'"); 1552 } 1553 1554 Modifier[0] = *LastEmitted; 1555 ++LastEmitted; // Consume modifier character. 1556 } 1557 1558 if (*LastEmitted != '}') { 1559 llvm_report_error("Bad ${} expression in inline asm string: '" 1560 + std::string(AsmStr) + "'"); 1561 } 1562 ++LastEmitted; // Consume '}' character. 1563 } 1564 1565 if ((unsigned)Val >= NumOperands-1) { 1566 llvm_report_error("Invalid $ operand number in inline asm string: '" 1567 + std::string(AsmStr) + "'"); 1568 } 1569 1570 // Okay, we finally have a value number. Ask the target to print this 1571 // operand! 1572 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { 1573 unsigned OpNo = 1; 1574 1575 bool Error = false; 1576 1577 // Scan to find the machine operand number for the operand. 1578 for (; Val; --Val) { 1579 if (OpNo >= MI->getNumOperands()) break; 1580 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1581 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 1582 } 1583 1584 if (OpNo >= MI->getNumOperands()) { 1585 Error = true; 1586 } else { 1587 unsigned OpFlags = MI->getOperand(OpNo).getImm(); 1588 ++OpNo; // Skip over the ID number. 1589 1590 if (Modifier[0]=='l') // labels are target independent 1591 GetMBBSymbol(MI->getOperand(OpNo).getMBB() 1592 ->getNumber())->print(O, MAI); 1593 else { 1594 AsmPrinter *AP = const_cast<AsmPrinter*>(this); 1595 if ((OpFlags & 7) == 4) { 1596 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, 1597 Modifier[0] ? Modifier : 0); 1598 } else { 1599 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, 1600 Modifier[0] ? Modifier : 0); 1601 } 1602 } 1603 } 1604 if (Error) { 1605 std::string msg; 1606 raw_string_ostream Msg(msg); 1607 Msg << "Invalid operand found in inline asm: '" 1608 << AsmStr << "'\n"; 1609 MI->print(Msg); 1610 llvm_report_error(Msg.str()); 1611 } 1612 } 1613 break; 1614 } 1615 } 1616 } 1617 O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd(); 1618} 1619 1620/// printImplicitDef - This method prints the specified machine instruction 1621/// that is an implicit def. 1622void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { 1623 if (!VerboseAsm) return; 1624 O.PadToColumn(MAI->getCommentColumn()); 1625 O << MAI->getCommentString() << " implicit-def: " 1626 << TRI->getName(MI->getOperand(0).getReg()); 1627} 1628 1629void AsmPrinter::printKill(const MachineInstr *MI) const { 1630 if (!VerboseAsm) return; 1631 O.PadToColumn(MAI->getCommentColumn()); 1632 O << MAI->getCommentString() << " kill:"; 1633 for (unsigned n = 0, e = MI->getNumOperands(); n != e; ++n) { 1634 const MachineOperand &op = MI->getOperand(n); 1635 assert(op.isReg() && "KILL instruction must have only register operands"); 1636 O << ' ' << TRI->getName(op.getReg()) << (op.isDef() ? "<def>" : "<kill>"); 1637 } 1638} 1639 1640/// printLabel - This method prints a local label used by debug and 1641/// exception handling tables. 1642void AsmPrinter::printLabel(const MachineInstr *MI) const { 1643 printLabel(MI->getOperand(0).getImm()); 1644} 1645 1646void AsmPrinter::printLabel(unsigned Id) const { 1647 O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':'; 1648} 1649 1650/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM 1651/// instruction, using the specified assembler variant. Targets should 1652/// override this to format as appropriate. 1653bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1654 unsigned AsmVariant, const char *ExtraCode) { 1655 // Target doesn't support this yet! 1656 return true; 1657} 1658 1659bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 1660 unsigned AsmVariant, 1661 const char *ExtraCode) { 1662 // Target doesn't support this yet! 1663 return true; 1664} 1665 1666MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA, 1667 const char *Suffix) const { 1668 return GetBlockAddressSymbol(BA->getFunction(), BA->getBasicBlock(), Suffix); 1669} 1670 1671MCSymbol *AsmPrinter::GetBlockAddressSymbol(const Function *F, 1672 const BasicBlock *BB, 1673 const char *Suffix) const { 1674 assert(BB->hasName() && 1675 "Address of anonymous basic block not supported yet!"); 1676 1677 // This code must use the function name itself, and not the function number, 1678 // since it must be possible to generate the label name from within other 1679 // functions. 1680 SmallString<60> FnName; 1681 Mang->getNameWithPrefix(FnName, F, false); 1682 1683 // FIXME: THIS IS BROKEN IF THE LLVM BASIC BLOCK DOESN'T HAVE A NAME! 1684 SmallString<60> NameResult; 1685 Mang->getNameWithPrefix(NameResult, 1686 StringRef("BA") + Twine((unsigned)FnName.size()) + 1687 "_" + FnName.str() + "_" + BB->getName() + Suffix, 1688 Mangler::Private); 1689 1690 return OutContext.GetOrCreateSymbol(NameResult.str()); 1691} 1692 1693MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const { 1694 SmallString<60> Name; 1695 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB" 1696 << getFunctionNumber() << '_' << MBBID; 1697 1698 return OutContext.GetOrCreateSymbol(Name.str()); 1699} 1700 1701/// GetGlobalValueSymbol - Return the MCSymbol for the specified global 1702/// value. 1703MCSymbol *AsmPrinter::GetGlobalValueSymbol(const GlobalValue *GV) const { 1704 SmallString<60> NameStr; 1705 Mang->getNameWithPrefix(NameStr, GV, false); 1706 return OutContext.GetOrCreateSymbol(NameStr.str()); 1707} 1708 1709/// GetPrivateGlobalValueSymbolStub - Return the MCSymbol for a symbol with 1710/// global value name as its base, with the specified suffix, and where the 1711/// symbol is forced to have private linkage. 1712MCSymbol *AsmPrinter::GetPrivateGlobalValueSymbolStub(const GlobalValue *GV, 1713 StringRef Suffix) const { 1714 SmallString<60> NameStr; 1715 Mang->getNameWithPrefix(NameStr, GV, true); 1716 NameStr.append(Suffix.begin(), Suffix.end()); 1717 return OutContext.GetOrCreateSymbol(NameStr.str()); 1718} 1719 1720/// GetExternalSymbolSymbol - Return the MCSymbol for the specified 1721/// ExternalSymbol. 1722MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 1723 SmallString<60> NameStr; 1724 Mang->getNameWithPrefix(NameStr, Sym); 1725 return OutContext.GetOrCreateSymbol(NameStr.str()); 1726} 1727 1728 1729/// EmitBasicBlockStart - This method prints the label for the specified 1730/// MachineBasicBlock, an alignment (if present) and a comment describing 1731/// it if appropriate. 1732void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 1733 // Emit an alignment directive for this block, if needed. 1734 if (unsigned Align = MBB->getAlignment()) 1735 EmitAlignment(Log2_32(Align)); 1736 1737 // If the block has its address taken, emit a special label to satisfy 1738 // references to the block. This is done so that we don't need to 1739 // remember the number of this label, and so that we can make 1740 // forward references to labels without knowing what their numbers 1741 // will be. 1742 if (MBB->hasAddressTaken()) { 1743 GetBlockAddressSymbol(MBB->getBasicBlock()->getParent(), 1744 MBB->getBasicBlock())->print(O, MAI); 1745 O << ':'; 1746 if (VerboseAsm) { 1747 O.PadToColumn(MAI->getCommentColumn()); 1748 O << MAI->getCommentString() << " Address Taken"; 1749 } 1750 O << '\n'; 1751 } 1752 1753 // Print the main label for the block. 1754 if (MBB->pred_empty() || MBB->isOnlyReachableByFallthrough()) { 1755 if (VerboseAsm) 1756 O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':'; 1757 } else { 1758 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 1759 O << ':'; 1760 if (!VerboseAsm) 1761 O << '\n'; 1762 } 1763 1764 // Print some comments to accompany the label. 1765 if (VerboseAsm) { 1766 if (const BasicBlock *BB = MBB->getBasicBlock()) 1767 if (BB->hasName()) { 1768 O.PadToColumn(MAI->getCommentColumn()); 1769 O << MAI->getCommentString() << ' '; 1770 WriteAsOperand(O, BB, /*PrintType=*/false); 1771 } 1772 1773 EmitComments(*MBB); 1774 O << '\n'; 1775 } 1776} 1777 1778/// printPICJumpTableSetLabel - This method prints a set label for the 1779/// specified MachineBasicBlock for a jumptable entry. 1780void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 1781 const MachineBasicBlock *MBB) const { 1782 if (!MAI->getSetDirective()) 1783 return; 1784 1785 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1786 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; 1787 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 1788 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1789 << '_' << uid << '\n'; 1790} 1791 1792void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, 1793 const MachineBasicBlock *MBB) const { 1794 if (!MAI->getSetDirective()) 1795 return; 1796 1797 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix() 1798 << getFunctionNumber() << '_' << uid << '_' << uid2 1799 << "_set_" << MBB->getNumber() << ','; 1800 GetMBBSymbol(MBB->getNumber())->print(O, MAI); 1801 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 1802 << '_' << uid << '_' << uid2 << '\n'; 1803} 1804 1805/// printDataDirective - This method prints the asm directive for the 1806/// specified type. 1807void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { 1808 const TargetData *TD = TM.getTargetData(); 1809 switch (type->getTypeID()) { 1810 case Type::FloatTyID: case Type::DoubleTyID: 1811 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: 1812 assert(0 && "Should have already output floating point constant."); 1813 default: 1814 assert(0 && "Can't handle printing this type of thing"); 1815 case Type::IntegerTyID: { 1816 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); 1817 if (BitWidth <= 8) 1818 O << MAI->getData8bitsDirective(AddrSpace); 1819 else if (BitWidth <= 16) 1820 O << MAI->getData16bitsDirective(AddrSpace); 1821 else if (BitWidth <= 32) 1822 O << MAI->getData32bitsDirective(AddrSpace); 1823 else if (BitWidth <= 64) { 1824 assert(MAI->getData64bitsDirective(AddrSpace) && 1825 "Target cannot handle 64-bit constant exprs!"); 1826 O << MAI->getData64bitsDirective(AddrSpace); 1827 } else { 1828 llvm_unreachable("Target cannot handle given data directive width!"); 1829 } 1830 break; 1831 } 1832 case Type::PointerTyID: 1833 if (TD->getPointerSize() == 8) { 1834 assert(MAI->getData64bitsDirective(AddrSpace) && 1835 "Target cannot handle 64-bit pointer exprs!"); 1836 O << MAI->getData64bitsDirective(AddrSpace); 1837 } else if (TD->getPointerSize() == 2) { 1838 O << MAI->getData16bitsDirective(AddrSpace); 1839 } else if (TD->getPointerSize() == 1) { 1840 O << MAI->getData8bitsDirective(AddrSpace); 1841 } else { 1842 O << MAI->getData32bitsDirective(AddrSpace); 1843 } 1844 break; 1845 } 1846} 1847 1848void AsmPrinter::printVisibility(const std::string& Name, 1849 unsigned Visibility) const { 1850 if (Visibility == GlobalValue::HiddenVisibility) { 1851 if (const char *Directive = MAI->getHiddenDirective()) 1852 O << Directive << Name << '\n'; 1853 } else if (Visibility == GlobalValue::ProtectedVisibility) { 1854 if (const char *Directive = MAI->getProtectedDirective()) 1855 O << Directive << Name << '\n'; 1856 } 1857} 1858 1859void AsmPrinter::printOffset(int64_t Offset) const { 1860 if (Offset > 0) 1861 O << '+' << Offset; 1862 else if (Offset < 0) 1863 O << Offset; 1864} 1865 1866GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1867 if (!S->usesMetadata()) 1868 return 0; 1869 1870 gcp_iterator GCPI = GCMetadataPrinters.find(S); 1871 if (GCPI != GCMetadataPrinters.end()) 1872 return GCPI->second; 1873 1874 const char *Name = S->getName().c_str(); 1875 1876 for (GCMetadataPrinterRegistry::iterator 1877 I = GCMetadataPrinterRegistry::begin(), 1878 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 1879 if (strcmp(Name, I->getName()) == 0) { 1880 GCMetadataPrinter *GMP = I->instantiate(); 1881 GMP->S = S; 1882 GCMetadataPrinters.insert(std::make_pair(S, GMP)); 1883 return GMP; 1884 } 1885 1886 errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n"; 1887 llvm_unreachable(0); 1888} 1889 1890/// EmitComments - Pretty-print comments for instructions 1891void AsmPrinter::EmitComments(const MachineInstr &MI) const { 1892 if (!VerboseAsm) 1893 return; 1894 1895 bool Newline = false; 1896 1897 if (!MI.getDebugLoc().isUnknown()) { 1898 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); 1899 1900 // Print source line info. 1901 O.PadToColumn(MAI->getCommentColumn()); 1902 O << MAI->getCommentString() << ' '; 1903 DIScope Scope(DLT.Scope); 1904 // Omit the directory, because it's likely to be long and uninteresting. 1905 if (!Scope.isNull()) 1906 O << Scope.getFilename(); 1907 else 1908 O << "<unknown>"; 1909 O << ':' << DLT.Line; 1910 if (DLT.Col != 0) 1911 O << ':' << DLT.Col; 1912 Newline = true; 1913 } 1914 1915 // Check for spills and reloads 1916 int FI; 1917 1918 const MachineFrameInfo *FrameInfo = 1919 MI.getParent()->getParent()->getFrameInfo(); 1920 1921 // We assume a single instruction only has a spill or reload, not 1922 // both. 1923 const MachineMemOperand *MMO; 1924 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 1925 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 1926 MMO = *MI.memoperands_begin(); 1927 if (Newline) O << '\n'; 1928 O.PadToColumn(MAI->getCommentColumn()); 1929 O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Reload"; 1930 Newline = true; 1931 } 1932 } 1933 else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 1934 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 1935 if (Newline) O << '\n'; 1936 O.PadToColumn(MAI->getCommentColumn()); 1937 O << MAI->getCommentString() << ' ' 1938 << MMO->getSize() << "-byte Folded Reload"; 1939 Newline = true; 1940 } 1941 } 1942 else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 1943 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 1944 MMO = *MI.memoperands_begin(); 1945 if (Newline) O << '\n'; 1946 O.PadToColumn(MAI->getCommentColumn()); 1947 O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Spill"; 1948 Newline = true; 1949 } 1950 } 1951 else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 1952 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 1953 if (Newline) O << '\n'; 1954 O.PadToColumn(MAI->getCommentColumn()); 1955 O << MAI->getCommentString() << ' ' 1956 << MMO->getSize() << "-byte Folded Spill"; 1957 Newline = true; 1958 } 1959 } 1960 1961 // Check for spill-induced copies 1962 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1963 if (TM.getInstrInfo()->isMoveInstr(MI, SrcReg, DstReg, 1964 SrcSubIdx, DstSubIdx)) { 1965 if (MI.getAsmPrinterFlag(ReloadReuse)) { 1966 if (Newline) O << '\n'; 1967 O.PadToColumn(MAI->getCommentColumn()); 1968 O << MAI->getCommentString() << " Reload Reuse"; 1969 } 1970 } 1971} 1972 1973/// PrintChildLoopComment - Print comments about child loops within 1974/// the loop for this basic block, with nesting. 1975/// 1976static void PrintChildLoopComment(formatted_raw_ostream &O, 1977 const MachineLoop *loop, 1978 const MCAsmInfo *MAI, 1979 int FunctionNumber) { 1980 // Add child loop information 1981 for(MachineLoop::iterator cl = loop->begin(), 1982 clend = loop->end(); 1983 cl != clend; 1984 ++cl) { 1985 MachineBasicBlock *Header = (*cl)->getHeader(); 1986 assert(Header && "No header for loop"); 1987 1988 O << '\n'; 1989 O.PadToColumn(MAI->getCommentColumn()); 1990 1991 O << MAI->getCommentString(); 1992 O.indent(((*cl)->getLoopDepth()-1)*2) 1993 << " Child Loop BB" << FunctionNumber << "_" 1994 << Header->getNumber() << " Depth " << (*cl)->getLoopDepth(); 1995 1996 PrintChildLoopComment(O, *cl, MAI, FunctionNumber); 1997 } 1998} 1999 2000/// EmitComments - Pretty-print comments for basic blocks 2001void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const { 2002 if (VerboseAsm) { 2003 // Add loop depth information 2004 const MachineLoop *loop = LI->getLoopFor(&MBB); 2005 2006 if (loop) { 2007 // Print a newline after bb# annotation. 2008 O << "\n"; 2009 O.PadToColumn(MAI->getCommentColumn()); 2010 O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth() 2011 << '\n'; 2012 2013 O.PadToColumn(MAI->getCommentColumn()); 2014 2015 MachineBasicBlock *Header = loop->getHeader(); 2016 assert(Header && "No header for loop"); 2017 2018 if (Header == &MBB) { 2019 O << MAI->getCommentString() << " Loop Header"; 2020 PrintChildLoopComment(O, loop, MAI, getFunctionNumber()); 2021 } 2022 else { 2023 O << MAI->getCommentString() << " Loop Header is BB" 2024 << getFunctionNumber() << "_" << loop->getHeader()->getNumber(); 2025 } 2026 2027 if (loop->empty()) { 2028 O << '\n'; 2029 O.PadToColumn(MAI->getCommentColumn()); 2030 O << MAI->getCommentString() << " Inner Loop"; 2031 } 2032 2033 // Add parent loop information 2034 for (const MachineLoop *CurLoop = loop->getParentLoop(); 2035 CurLoop; 2036 CurLoop = CurLoop->getParentLoop()) { 2037 MachineBasicBlock *Header = CurLoop->getHeader(); 2038 assert(Header && "No header for loop"); 2039 2040 O << '\n'; 2041 O.PadToColumn(MAI->getCommentColumn()); 2042 O << MAI->getCommentString(); 2043 O.indent((CurLoop->getLoopDepth()-1)*2) 2044 << " Inside Loop BB" << getFunctionNumber() << "_" 2045 << Header->getNumber() << " Depth " << CurLoop->getLoopDepth(); 2046 } 2047 } 2048 } 2049} 2050