DwarfAccelTable.cpp revision 7eabae3f50d43af1b76f2bcc5ac6c47700d12b8b
1//=-- llvm/CodeGen/DwarfAccelTable.cpp - Dwarf Accelerator Tables -*- C++ -*-=// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains support for writing dwarf accelerator tables. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/MC/MCExpr.h" 16#include "llvm/MC/MCStreamer.h" 17#include "llvm/MC/MCSymbol.h" 18#include "llvm/Support/Debug.h" 19#include "DwarfAccelTable.h" 20#include "DwarfDebug.h" 21#include "DIE.h" 22 23using namespace llvm; 24 25const char *DwarfAccelTable::Atom::AtomTypeString(enum AtomType AT) { 26 switch (AT) { 27 default: llvm_unreachable("invalid AtomType!"); 28 case eAtomTypeNULL: return "eAtomTypeNULL"; 29 case eAtomTypeDIEOffset: return "eAtomTypeDIEOffset"; 30 case eAtomTypeCUOffset: return "eAtomTypeCUOffset"; 31 case eAtomTypeTag: return "eAtomTypeTag"; 32 case eAtomTypeNameFlags: return "eAtomTypeNameFlags"; 33 case eAtomTypeTypeFlags: return "eAtomTypeTypeFlags"; 34 } 35} 36 37// The general case would need to have a less hard coded size for the 38// length of the HeaderData, however, if we're constructing based on a 39// single Atom then we know it will always be: 4 + 4 + 2 + 2. 40DwarfAccelTable::DwarfAccelTable(DwarfAccelTable::Atom atom) : 41 Header(12), 42 HeaderData(atom) { 43} 44 45// The length of the header data is always going to be 4 + 4 + 4*NumAtoms. 46DwarfAccelTable::DwarfAccelTable(std::vector<DwarfAccelTable::Atom> &atomList) : 47 Header(8 + (atomList.size() * 4)), 48 HeaderData(atomList) { 49} 50 51DwarfAccelTable::~DwarfAccelTable() { 52 for (size_t i = 0, e = Data.size(); i < e; ++i) 53 delete Data[i]; 54 for (StringMap<DataArray>::iterator 55 EI = Entries.begin(), EE = Entries.end(); EI != EE; ++EI) 56 for (DataArray::iterator DI = (*EI).second.begin(), 57 DE = (*EI).second.end(); DI != DE; ++DI) 58 delete (*DI); 59} 60 61void DwarfAccelTable::AddName(StringRef Name, DIE* die, char Flags) { 62 // If the string is in the list already then add this die to the list 63 // otherwise add a new one. 64 DataArray &DIEs = Entries[Name]; 65 DIEs.push_back(new HashDataContents(die, Flags)); 66} 67 68void DwarfAccelTable::ComputeBucketCount(void) { 69 // First get the number of unique hashes. 70 std::vector<uint32_t> uniques; 71 uniques.resize(Data.size()); 72 for (size_t i = 0, e = Data.size(); i < e; ++i) 73 uniques[i] = Data[i]->HashValue; 74 std::stable_sort(uniques.begin(), uniques.end()); 75 std::vector<uint32_t>::iterator p = 76 std::unique(uniques.begin(), uniques.end()); 77 uint32_t num = std::distance(uniques.begin(), p); 78 79 // Then compute the bucket size, minimum of 1 bucket. 80 if (num > 1024) Header.bucket_count = num/4; 81 if (num > 16) Header.bucket_count = num/2; 82 else Header.bucket_count = num > 0 ? num : 1; 83 84 Header.hashes_count = num; 85} 86 87namespace { 88 // DIESorter - comparison predicate that sorts DIEs by their offset. 89 struct DIESorter { 90 bool operator()(const struct DwarfAccelTable::HashDataContents *A, 91 const struct DwarfAccelTable::HashDataContents *B) const { 92 return A->Die->getOffset() < B->Die->getOffset(); 93 } 94 }; 95} 96 97void DwarfAccelTable::FinalizeTable(AsmPrinter *Asm, const char *Prefix) { 98 // Create the individual hash data outputs. 99 for (StringMap<DataArray>::iterator 100 EI = Entries.begin(), EE = Entries.end(); EI != EE; ++EI) { 101 struct HashData *Entry = new HashData((*EI).getKeyData()); 102 103 // Unique the entries. 104 std::stable_sort((*EI).second.begin(), (*EI).second.end(), DIESorter()); 105 (*EI).second.erase(std::unique((*EI).second.begin(), (*EI).second.end()), 106 (*EI).second.end()); 107 108 for (DataArray::const_iterator DI = (*EI).second.begin(), 109 DE = (*EI).second.end(); 110 DI != DE; ++DI) 111 Entry->addData((*DI)); 112 Data.push_back(Entry); 113 } 114 115 // Figure out how many buckets we need, then compute the bucket 116 // contents and the final ordering. We'll emit the hashes and offsets 117 // by doing a walk during the emission phase. We add temporary 118 // symbols to the data so that we can reference them during the offset 119 // later, we'll emit them when we emit the data. 120 ComputeBucketCount(); 121 122 // Compute bucket contents and final ordering. 123 Buckets.resize(Header.bucket_count); 124 for (size_t i = 0, e = Data.size(); i < e; ++i) { 125 uint32_t bucket = Data[i]->HashValue % Header.bucket_count; 126 Buckets[bucket].push_back(Data[i]); 127 Data[i]->Sym = Asm->GetTempSymbol(Prefix, i); 128 } 129} 130 131// Emits the header for the table via the AsmPrinter. 132void DwarfAccelTable::EmitHeader(AsmPrinter *Asm) { 133 Asm->OutStreamer.AddComment("Header Magic"); 134 Asm->EmitInt32(Header.magic); 135 Asm->OutStreamer.AddComment("Header Version"); 136 Asm->EmitInt16(Header.version); 137 Asm->OutStreamer.AddComment("Header Hash Function"); 138 Asm->EmitInt16(Header.hash_function); 139 Asm->OutStreamer.AddComment("Header Bucket Count"); 140 Asm->EmitInt32(Header.bucket_count); 141 Asm->OutStreamer.AddComment("Header Hash Count"); 142 Asm->EmitInt32(Header.hashes_count); 143 Asm->OutStreamer.AddComment("Header Data Length"); 144 Asm->EmitInt32(Header.header_data_len); 145 Asm->OutStreamer.AddComment("HeaderData Die Offset Base"); 146 Asm->EmitInt32(HeaderData.die_offset_base); 147 Asm->OutStreamer.AddComment("HeaderData Atom Count"); 148 Asm->EmitInt32(HeaderData.Atoms.size()); 149 for (size_t i = 0; i < HeaderData.Atoms.size(); i++) { 150 Atom A = HeaderData.Atoms[i]; 151 Asm->OutStreamer.AddComment(Atom::AtomTypeString(A.type)); 152 Asm->EmitInt16(A.type); 153 Asm->OutStreamer.AddComment(dwarf::FormEncodingString(A.form)); 154 Asm->EmitInt16(A.form); 155 } 156} 157 158// Walk through and emit the buckets for the table. This will look 159// like a list of numbers of how many elements are in each bucket. 160void DwarfAccelTable::EmitBuckets(AsmPrinter *Asm) { 161 unsigned index = 0; 162 for (size_t i = 0, e = Buckets.size(); i < e; ++i) { 163 Asm->OutStreamer.AddComment("Bucket " + Twine(i)); 164 if (Buckets[i].size() != 0) 165 Asm->EmitInt32(index); 166 else 167 Asm->EmitInt32(UINT32_MAX); 168 index += Buckets[i].size(); 169 } 170} 171 172// Walk through the buckets and emit the individual hashes for each 173// bucket. 174void DwarfAccelTable::EmitHashes(AsmPrinter *Asm) { 175 for (size_t i = 0, e = Buckets.size(); i < e; ++i) { 176 for (HashList::const_iterator HI = Buckets[i].begin(), 177 HE = Buckets[i].end(); HI != HE; ++HI) { 178 Asm->OutStreamer.AddComment("Hash in Bucket " + Twine(i)); 179 Asm->EmitInt32((*HI)->HashValue); 180 } 181 } 182} 183 184// Walk through the buckets and emit the individual offsets for each 185// element in each bucket. This is done via a symbol subtraction from the 186// beginning of the section. The non-section symbol will be output later 187// when we emit the actual data. 188void DwarfAccelTable::EmitOffsets(AsmPrinter *Asm, MCSymbol *SecBegin) { 189 for (size_t i = 0, e = Buckets.size(); i < e; ++i) { 190 for (HashList::const_iterator HI = Buckets[i].begin(), 191 HE = Buckets[i].end(); HI != HE; ++HI) { 192 Asm->OutStreamer.AddComment("Offset in Bucket " + Twine(i)); 193 MCContext &Context = Asm->OutStreamer.getContext(); 194 const MCExpr *Sub = 195 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create((*HI)->Sym, Context), 196 MCSymbolRefExpr::Create(SecBegin, Context), 197 Context); 198 Asm->OutStreamer.EmitValue(Sub, sizeof(uint32_t), 0); 199 } 200 } 201} 202 203// Walk through the buckets and emit the full data for each element in 204// the bucket. For the string case emit the dies and the various offsets. 205// Terminate each HashData bucket with 0. 206void DwarfAccelTable::EmitData(AsmPrinter *Asm, DwarfDebug *D) { 207 uint64_t PrevHash = UINT64_MAX; 208 for (size_t i = 0, e = Buckets.size(); i < e; ++i) { 209 for (HashList::const_iterator HI = Buckets[i].begin(), 210 HE = Buckets[i].end(); HI != HE; ++HI) { 211 // Remember to emit the label for our offset. 212 Asm->OutStreamer.EmitLabel((*HI)->Sym); 213 Asm->OutStreamer.AddComment((*HI)->Str); 214 Asm->EmitSectionOffset(D->getStringPoolEntry((*HI)->Str), 215 D->getStringPool()); 216 Asm->OutStreamer.AddComment("Num DIEs"); 217 Asm->EmitInt32((*HI)->Data.size()); 218 for (std::vector<struct HashDataContents*>::const_iterator 219 DI = (*HI)->Data.begin(), DE = (*HI)->Data.end(); 220 DI != DE; ++DI) { 221 // Emit the DIE offset 222 Asm->EmitInt32((*DI)->Die->getOffset()); 223 // If we have multiple Atoms emit that info too. 224 // FIXME: A bit of a hack, we either emit only one atom or all info. 225 if (HeaderData.Atoms.size() > 1) { 226 Asm->EmitInt16((*DI)->Die->getTag()); 227 Asm->EmitInt8((*DI)->Flags); 228 } 229 } 230 // Emit a 0 to terminate the data unless we have a hash collision. 231 if (PrevHash != (*HI)->HashValue) 232 Asm->EmitInt32(0); 233 PrevHash = (*HI)->HashValue; 234 } 235 } 236} 237 238// Emit the entire data structure to the output file. 239void DwarfAccelTable::Emit(AsmPrinter *Asm, MCSymbol *SecBegin, 240 DwarfDebug *D) { 241 // Emit the header. 242 EmitHeader(Asm); 243 244 // Emit the buckets. 245 EmitBuckets(Asm); 246 247 // Emit the hashes. 248 EmitHashes(Asm); 249 250 // Emit the offsets. 251 EmitOffsets(Asm, SecBegin); 252 253 // Emit the hash data. 254 EmitData(Asm, D); 255} 256 257#ifndef NDEBUG 258void DwarfAccelTable::print(raw_ostream &O) { 259 260 Header.print(O); 261 HeaderData.print(O); 262 263 O << "Entries: \n"; 264 for (StringMap<DataArray>::const_iterator 265 EI = Entries.begin(), EE = Entries.end(); EI != EE; ++EI) { 266 O << "Name: " << (*EI).getKeyData() << "\n"; 267 for (DataArray::const_iterator DI = (*EI).second.begin(), 268 DE = (*EI).second.end(); 269 DI != DE; ++DI) 270 (*DI)->print(O); 271 } 272 273 O << "Buckets and Hashes: \n"; 274 for (size_t i = 0, e = Buckets.size(); i < e; ++i) 275 for (HashList::const_iterator HI = Buckets[i].begin(), 276 HE = Buckets[i].end(); HI != HE; ++HI) 277 (*HI)->print(O); 278 279 O << "Data: \n"; 280 for (std::vector<HashData*>::const_iterator 281 DI = Data.begin(), DE = Data.end(); DI != DE; ++DI) 282 (*DI)->print(O); 283 284 285} 286#endif 287