DwarfAccelTable.cpp revision c36145f19c1e164f7d630b813e9970600d8f2976
1//=-- llvm/CodeGen/DwarfAccelTable.cpp - Dwarf Accelerator Tables -*- C++ -*-=// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains support for writing dwarf accelerator tables. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/AsmPrinter.h" 15#include "llvm/MC/MCExpr.h" 16#include "llvm/MC/MCStreamer.h" 17#include "llvm/MC/MCSymbol.h" 18#include "llvm/Support/Debug.h" 19#include "DwarfAccelTable.h" 20#include "DwarfDebug.h" 21#include "DIE.h" 22 23using namespace llvm; 24 25const char *DwarfAccelTable::Atom::AtomTypeString(enum AtomType AT) { 26 switch (AT) { 27 default: llvm_unreachable("invalid AtomType!"); 28 case eAtomTypeNULL: return "eAtomTypeNULL"; 29 case eAtomTypeDIEOffset: return "eAtomTypeDIEOffset"; 30 case eAtomTypeCUOffset: return "eAtomTypeCUOffset"; 31 case eAtomTypeTag: return "eAtomTypeTag"; 32 case eAtomTypeNameFlags: return "eAtomTypeNameFlags"; 33 case eAtomTypeTypeFlags: return "eAtomTypeTypeFlags"; 34 } 35} 36 37// The general case would need to have a less hard coded size for the 38// length of the HeaderData, however, if we're constructing based on a 39// single Atom then we know it will always be: 4 + 4 + 2 + 2. 40DwarfAccelTable::DwarfAccelTable(DwarfAccelTable::Atom atom) : 41 Header(12), 42 HeaderData(atom) { 43} 44 45// The length of the header data is always going to be 4 + 4 + 4*NumAtoms. 46DwarfAccelTable::DwarfAccelTable(std::vector<DwarfAccelTable::Atom> &atomList) : 47 Header(8 + (atomList.size() * 4)), 48 HeaderData(atomList) { 49} 50 51DwarfAccelTable::~DwarfAccelTable() { 52 for (size_t i = 0, e = Data.size(); i < e; ++i) 53 delete Data[i]; 54} 55 56void DwarfAccelTable::AddName(StringRef Name, DIE* die, char Flags) { 57 // If the string is in the list already then add this die to the list 58 // otherwise add a new one. 59 DataArray &DIEs = Entries[Name]; 60 DIEs.push_back(new HashDataContents(die, Flags)); 61} 62 63void DwarfAccelTable::ComputeBucketCount(void) { 64 // First get the number of unique hashes. 65 std::vector<uint32_t> uniques; 66 uniques.resize(Data.size()); 67 for (size_t i = 0, e = Data.size(); i < e; ++i) 68 uniques[i] = Data[i]->HashValue; 69 std::stable_sort(uniques.begin(), uniques.end()); 70 std::vector<uint32_t>::iterator p = 71 std::unique(uniques.begin(), uniques.end()); 72 uint32_t num = std::distance(uniques.begin(), p); 73 74 // Then compute the bucket size, minimum of 1 bucket. 75 if (num > 1024) Header.bucket_count = num/4; 76 if (num > 16) Header.bucket_count = num/2; 77 else Header.bucket_count = num > 0 ? num : 1; 78 79 Header.hashes_count = num; 80} 81 82namespace { 83 // DIESorter - comparison predicate that sorts DIEs by their offset. 84 struct DIESorter { 85 bool operator()(const struct DwarfAccelTable::HashDataContents *A, 86 const struct DwarfAccelTable::HashDataContents *B) const { 87 return A->Die->getOffset() < B->Die->getOffset(); 88 } 89 }; 90} 91 92void DwarfAccelTable::FinalizeTable(AsmPrinter *Asm, const char *Prefix) { 93 // Create the individual hash data outputs. 94 for (StringMap<DataArray>::iterator 95 EI = Entries.begin(), EE = Entries.end(); EI != EE; ++EI) { 96 struct HashData *Entry = new HashData((*EI).getKeyData()); 97 98 // Unique the entries. 99 std::stable_sort((*EI).second.begin(), (*EI).second.end(), DIESorter()); 100 (*EI).second.erase(std::unique((*EI).second.begin(), (*EI).second.end()), 101 (*EI).second.end()); 102 103 for (DataArray::const_iterator DI = (*EI).second.begin(), 104 DE = (*EI).second.end(); 105 DI != DE; ++DI) 106 Entry->addData((*DI)); 107 Data.push_back(Entry); 108 } 109 110 // Figure out how many buckets we need, then compute the bucket 111 // contents and the final ordering. We'll emit the hashes and offsets 112 // by doing a walk during the emission phase. We add temporary 113 // symbols to the data so that we can reference them during the offset 114 // later, we'll emit them when we emit the data. 115 ComputeBucketCount(); 116 117 // Compute bucket contents and final ordering. 118 Buckets.resize(Header.bucket_count); 119 for (size_t i = 0, e = Data.size(); i < e; ++i) { 120 uint32_t bucket = Data[i]->HashValue % Header.bucket_count; 121 Buckets[bucket].push_back(Data[i]); 122 Data[i]->Sym = Asm->GetTempSymbol(Prefix, i); 123 } 124} 125 126// Emits the header for the table via the AsmPrinter. 127void DwarfAccelTable::EmitHeader(AsmPrinter *Asm) { 128 Asm->OutStreamer.AddComment("Header Magic"); 129 Asm->EmitInt32(Header.magic); 130 Asm->OutStreamer.AddComment("Header Version"); 131 Asm->EmitInt16(Header.version); 132 Asm->OutStreamer.AddComment("Header Hash Function"); 133 Asm->EmitInt16(Header.hash_function); 134 Asm->OutStreamer.AddComment("Header Bucket Count"); 135 Asm->EmitInt32(Header.bucket_count); 136 Asm->OutStreamer.AddComment("Header Hash Count"); 137 Asm->EmitInt32(Header.hashes_count); 138 Asm->OutStreamer.AddComment("Header Data Length"); 139 Asm->EmitInt32(Header.header_data_len); 140 Asm->OutStreamer.AddComment("HeaderData Die Offset Base"); 141 Asm->EmitInt32(HeaderData.die_offset_base); 142 Asm->OutStreamer.AddComment("HeaderData Atom Count"); 143 Asm->EmitInt32(HeaderData.Atoms.size()); 144 for (size_t i = 0; i < HeaderData.Atoms.size(); i++) { 145 Atom A = HeaderData.Atoms[i]; 146 Asm->OutStreamer.AddComment(Atom::AtomTypeString(A.type)); 147 Asm->EmitInt16(A.type); 148 Asm->OutStreamer.AddComment(dwarf::FormEncodingString(A.form)); 149 Asm->EmitInt16(A.form); 150 } 151} 152 153// Walk through and emit the buckets for the table. This will look 154// like a list of numbers of how many elements are in each bucket. 155void DwarfAccelTable::EmitBuckets(AsmPrinter *Asm) { 156 unsigned index = 0; 157 for (size_t i = 0, e = Buckets.size(); i < e; ++i) { 158 Asm->OutStreamer.AddComment("Bucket " + Twine(i)); 159 if (Buckets[i].size() != 0) 160 Asm->EmitInt32(index); 161 else 162 Asm->EmitInt32(UINT32_MAX); 163 index += Buckets[i].size(); 164 } 165} 166 167// Walk through the buckets and emit the individual hashes for each 168// bucket. 169void DwarfAccelTable::EmitHashes(AsmPrinter *Asm) { 170 for (size_t i = 0, e = Buckets.size(); i < e; ++i) { 171 for (HashList::const_iterator HI = Buckets[i].begin(), 172 HE = Buckets[i].end(); HI != HE; ++HI) { 173 Asm->OutStreamer.AddComment("Hash in Bucket " + Twine(i)); 174 Asm->EmitInt32((*HI)->HashValue); 175 } 176 } 177} 178 179// Walk through the buckets and emit the individual offsets for each 180// element in each bucket. This is done via a symbol subtraction from the 181// beginning of the section. The non-section symbol will be output later 182// when we emit the actual data. 183void DwarfAccelTable::EmitOffsets(AsmPrinter *Asm, MCSymbol *SecBegin) { 184 for (size_t i = 0, e = Buckets.size(); i < e; ++i) { 185 for (HashList::const_iterator HI = Buckets[i].begin(), 186 HE = Buckets[i].end(); HI != HE; ++HI) { 187 Asm->OutStreamer.AddComment("Offset in Bucket " + Twine(i)); 188 MCContext &Context = Asm->OutStreamer.getContext(); 189 const MCExpr *Sub = 190 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create((*HI)->Sym, Context), 191 MCSymbolRefExpr::Create(SecBegin, Context), 192 Context); 193 Asm->OutStreamer.EmitValue(Sub, sizeof(uint32_t), 0); 194 } 195 } 196} 197 198// Walk through the buckets and emit the full data for each element in 199// the bucket. For the string case emit the dies and the various offsets. 200// Terminate each HashData bucket with 0. 201void DwarfAccelTable::EmitData(AsmPrinter *Asm, DwarfDebug *D) { 202 uint64_t PrevHash = UINT64_MAX; 203 for (size_t i = 0, e = Buckets.size(); i < e; ++i) { 204 for (HashList::const_iterator HI = Buckets[i].begin(), 205 HE = Buckets[i].end(); HI != HE; ++HI) { 206 // Remember to emit the label for our offset. 207 Asm->OutStreamer.EmitLabel((*HI)->Sym); 208 Asm->OutStreamer.AddComment((*HI)->Str); 209 Asm->EmitSectionOffset(D->getStringPoolEntry((*HI)->Str), 210 D->getStringPool()); 211 Asm->OutStreamer.AddComment("Num DIEs"); 212 Asm->EmitInt32((*HI)->Data.size()); 213 for (std::vector<struct HashDataContents*>::const_iterator 214 DI = (*HI)->Data.begin(), DE = (*HI)->Data.end(); 215 DI != DE; ++DI) { 216 // Emit the DIE offset 217 Asm->EmitInt32((*DI)->Die->getOffset()); 218 // If we have multiple Atoms emit that info too. 219 // FIXME: A bit of a hack, we either emit only one atom or all info. 220 if (HeaderData.Atoms.size() > 1) { 221 Asm->EmitInt16((*DI)->Die->getTag()); 222 Asm->EmitInt8((*DI)->Flags); 223 } 224 } 225 // Emit a 0 to terminate the data unless we have a hash collision. 226 if (PrevHash != (*HI)->HashValue) 227 Asm->EmitInt32(0); 228 PrevHash = (*HI)->HashValue; 229 } 230 } 231} 232 233// Emit the entire data structure to the output file. 234void DwarfAccelTable::Emit(AsmPrinter *Asm, MCSymbol *SecBegin, 235 DwarfDebug *D) { 236 // Emit the header. 237 EmitHeader(Asm); 238 239 // Emit the buckets. 240 EmitBuckets(Asm); 241 242 // Emit the hashes. 243 EmitHashes(Asm); 244 245 // Emit the offsets. 246 EmitOffsets(Asm, SecBegin); 247 248 // Emit the hash data. 249 EmitData(Asm, D); 250} 251 252#ifndef NDEBUG 253void DwarfAccelTable::print(raw_ostream &O) { 254 255 Header.print(O); 256 HeaderData.print(O); 257 258 O << "Entries: \n"; 259 for (StringMap<DataArray>::const_iterator 260 EI = Entries.begin(), EE = Entries.end(); EI != EE; ++EI) { 261 O << "Name: " << (*EI).getKeyData() << "\n"; 262 for (DataArray::const_iterator DI = (*EI).second.begin(), 263 DE = (*EI).second.end(); 264 DI != DE; ++DI) 265 (*DI)->print(O); 266 } 267 268 O << "Buckets and Hashes: \n"; 269 for (size_t i = 0, e = Buckets.size(); i < e; ++i) 270 for (HashList::const_iterator HI = Buckets[i].begin(), 271 HE = Buckets[i].end(); HI != HE; ++HI) 272 (*HI)->print(O); 273 274 O << "Data: \n"; 275 for (std::vector<HashData*>::const_iterator 276 DI = Data.begin(), DE = Data.end(); DI != DE; ++DI) 277 (*DI)->print(O); 278 279 280} 281#endif 282