DwarfDebug.cpp revision 3dee575b8dfe9c3d89f581e51dd11ddd08c43cd6
1//===-- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ---------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains support for writing dwarf debug info into asm files. 11// 12//===----------------------------------------------------------------------===// 13 14#define DEBUG_TYPE "dwarfdebug" 15#include "DwarfDebug.h" 16#include "DIE.h" 17#include "DwarfAccelTable.h" 18#include "DwarfCompileUnit.h" 19#include "llvm/ADT/STLExtras.h" 20#include "llvm/ADT/Statistic.h" 21#include "llvm/ADT/StringExtras.h" 22#include "llvm/ADT/Triple.h" 23#include "llvm/CodeGen/MachineFunction.h" 24#include "llvm/CodeGen/MachineModuleInfo.h" 25#include "llvm/DIBuilder.h" 26#include "llvm/DebugInfo.h" 27#include "llvm/IR/Constants.h" 28#include "llvm/IR/DataLayout.h" 29#include "llvm/IR/Instructions.h" 30#include "llvm/IR/Module.h" 31#include "llvm/MC/MCAsmInfo.h" 32#include "llvm/MC/MCSection.h" 33#include "llvm/MC/MCStreamer.h" 34#include "llvm/MC/MCSymbol.h" 35#include "llvm/Support/CommandLine.h" 36#include "llvm/Support/Debug.h" 37#include "llvm/Support/ErrorHandling.h" 38#include "llvm/Support/FormattedStream.h" 39#include "llvm/Support/MD5.h" 40#include "llvm/Support/Path.h" 41#include "llvm/Support/Timer.h" 42#include "llvm/Support/ValueHandle.h" 43#include "llvm/Target/TargetFrameLowering.h" 44#include "llvm/Target/TargetLoweringObjectFile.h" 45#include "llvm/Target/TargetMachine.h" 46#include "llvm/Target/TargetOptions.h" 47#include "llvm/Target/TargetRegisterInfo.h" 48using namespace llvm; 49 50static cl::opt<bool> 51DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 52 cl::desc("Disable debug info printing")); 53 54static cl::opt<bool> UnknownLocations( 55 "use-unknown-locations", cl::Hidden, 56 cl::desc("Make an absence of debug location information explicit."), 57 cl::init(false)); 58 59static cl::opt<bool> 60GenerateDwarfPubNamesSection("generate-dwarf-pubnames", cl::Hidden, 61 cl::init(false), 62 cl::desc("Generate DWARF pubnames section")); 63 64static cl::opt<bool> 65GenerateODRHash("generate-odr-hash", cl::Hidden, 66 cl::desc("Add an ODR hash to external type DIEs."), 67 cl::init(false)); 68 69namespace { 70enum DefaultOnOff { 71 Default, 72 Enable, 73 Disable 74}; 75} 76 77static cl::opt<DefaultOnOff> 78DwarfAccelTables("dwarf-accel-tables", cl::Hidden, 79 cl::desc("Output prototype dwarf accelerator tables."), 80 cl::values(clEnumVal(Default, "Default for platform"), 81 clEnumVal(Enable, "Enabled"), 82 clEnumVal(Disable, "Disabled"), clEnumValEnd), 83 cl::init(Default)); 84 85static cl::opt<DefaultOnOff> 86DarwinGDBCompat("darwin-gdb-compat", cl::Hidden, 87 cl::desc("Compatibility with Darwin gdb."), 88 cl::values(clEnumVal(Default, "Default for platform"), 89 clEnumVal(Enable, "Enabled"), 90 clEnumVal(Disable, "Disabled"), clEnumValEnd), 91 cl::init(Default)); 92 93static cl::opt<DefaultOnOff> 94SplitDwarf("split-dwarf", cl::Hidden, 95 cl::desc("Output prototype dwarf split debug info."), 96 cl::values(clEnumVal(Default, "Default for platform"), 97 clEnumVal(Enable, "Enabled"), 98 clEnumVal(Disable, "Disabled"), clEnumValEnd), 99 cl::init(Default)); 100 101namespace { 102 const char *const DWARFGroupName = "DWARF Emission"; 103 const char *const DbgTimerName = "DWARF Debug Writer"; 104 105 struct CompareFirst { 106 template <typename T> bool operator()(const T &lhs, const T &rhs) const { 107 return lhs.first < rhs.first; 108 } 109 }; 110} // end anonymous namespace 111 112//===----------------------------------------------------------------------===// 113 114// Configuration values for initial hash set sizes (log2). 115// 116static const unsigned InitAbbreviationsSetSize = 9; // log2(512) 117 118namespace llvm { 119 120DIType DbgVariable::getType() const { 121 DIType Ty = Var.getType(); 122 // FIXME: isBlockByrefVariable should be reformulated in terms of complex 123 // addresses instead. 124 if (Var.isBlockByrefVariable()) { 125 /* Byref variables, in Blocks, are declared by the programmer as 126 "SomeType VarName;", but the compiler creates a 127 __Block_byref_x_VarName struct, and gives the variable VarName 128 either the struct, or a pointer to the struct, as its type. This 129 is necessary for various behind-the-scenes things the compiler 130 needs to do with by-reference variables in blocks. 131 132 However, as far as the original *programmer* is concerned, the 133 variable should still have type 'SomeType', as originally declared. 134 135 The following function dives into the __Block_byref_x_VarName 136 struct to find the original type of the variable. This will be 137 passed back to the code generating the type for the Debug 138 Information Entry for the variable 'VarName'. 'VarName' will then 139 have the original type 'SomeType' in its debug information. 140 141 The original type 'SomeType' will be the type of the field named 142 'VarName' inside the __Block_byref_x_VarName struct. 143 144 NOTE: In order for this to not completely fail on the debugger 145 side, the Debug Information Entry for the variable VarName needs to 146 have a DW_AT_location that tells the debugger how to unwind through 147 the pointers and __Block_byref_x_VarName struct to find the actual 148 value of the variable. The function addBlockByrefType does this. */ 149 DIType subType = Ty; 150 unsigned tag = Ty.getTag(); 151 152 if (tag == dwarf::DW_TAG_pointer_type) { 153 DIDerivedType DTy = DIDerivedType(Ty); 154 subType = DTy.getTypeDerivedFrom(); 155 } 156 157 DICompositeType blockStruct = DICompositeType(subType); 158 DIArray Elements = blockStruct.getTypeArray(); 159 160 for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) { 161 DIDescriptor Element = Elements.getElement(i); 162 DIDerivedType DT = DIDerivedType(Element); 163 if (getName() == DT.getName()) 164 return (DT.getTypeDerivedFrom()); 165 } 166 } 167 return Ty; 168} 169 170} // end llvm namespace 171 172/// Return Dwarf Version by checking module flags. 173static unsigned getDwarfVersionFromModule(const Module *M) { 174 Value *Val = M->getModuleFlag("Dwarf Version"); 175 if (!Val) 176 return dwarf::DWARF_VERSION; 177 return cast<ConstantInt>(Val)->getZExtValue(); 178} 179 180DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 181 : Asm(A), MMI(Asm->MMI), FirstCU(0), 182 AbbreviationsSet(InitAbbreviationsSetSize), 183 SourceIdMap(DIEValueAllocator), 184 PrevLabel(NULL), GlobalCUIndexCount(0), 185 InfoHolder(A, &AbbreviationsSet, &Abbreviations, "info_string", 186 DIEValueAllocator), 187 SkeletonAbbrevSet(InitAbbreviationsSetSize), 188 SkeletonHolder(A, &SkeletonAbbrevSet, &SkeletonAbbrevs, "skel_string", 189 DIEValueAllocator) { 190 191 DwarfInfoSectionSym = DwarfAbbrevSectionSym = 0; 192 DwarfStrSectionSym = TextSectionSym = 0; 193 DwarfDebugRangeSectionSym = DwarfDebugLocSectionSym = DwarfLineSectionSym = 0; 194 DwarfAddrSectionSym = 0; 195 DwarfAbbrevDWOSectionSym = DwarfStrDWOSectionSym = 0; 196 FunctionBeginSym = FunctionEndSym = 0; 197 198 // Turn on accelerator tables and older gdb compatibility 199 // for Darwin. 200 bool IsDarwin = Triple(A->getTargetTriple()).isOSDarwin(); 201 if (DarwinGDBCompat == Default) { 202 if (IsDarwin) 203 IsDarwinGDBCompat = true; 204 else 205 IsDarwinGDBCompat = false; 206 } else 207 IsDarwinGDBCompat = DarwinGDBCompat == Enable ? true : false; 208 209 if (DwarfAccelTables == Default) { 210 if (IsDarwin) 211 HasDwarfAccelTables = true; 212 else 213 HasDwarfAccelTables = false; 214 } else 215 HasDwarfAccelTables = DwarfAccelTables == Enable ? true : false; 216 217 if (SplitDwarf == Default) 218 HasSplitDwarf = false; 219 else 220 HasSplitDwarf = SplitDwarf == Enable ? true : false; 221 222 DwarfVersion = getDwarfVersionFromModule(MMI->getModule()); 223 224 { 225 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 226 beginModule(); 227 } 228} 229DwarfDebug::~DwarfDebug() { 230} 231 232// Switch to the specified MCSection and emit an assembler 233// temporary label to it if SymbolStem is specified. 234static MCSymbol *emitSectionSym(AsmPrinter *Asm, const MCSection *Section, 235 const char *SymbolStem = 0) { 236 Asm->OutStreamer.SwitchSection(Section); 237 if (!SymbolStem) return 0; 238 239 MCSymbol *TmpSym = Asm->GetTempSymbol(SymbolStem); 240 Asm->OutStreamer.EmitLabel(TmpSym); 241 return TmpSym; 242} 243 244MCSymbol *DwarfUnits::getStringPoolSym() { 245 return Asm->GetTempSymbol(StringPref); 246} 247 248MCSymbol *DwarfUnits::getStringPoolEntry(StringRef Str) { 249 std::pair<MCSymbol*, unsigned> &Entry = 250 StringPool.GetOrCreateValue(Str).getValue(); 251 if (Entry.first) return Entry.first; 252 253 Entry.second = NextStringPoolNumber++; 254 return Entry.first = Asm->GetTempSymbol(StringPref, Entry.second); 255} 256 257unsigned DwarfUnits::getStringPoolIndex(StringRef Str) { 258 std::pair<MCSymbol*, unsigned> &Entry = 259 StringPool.GetOrCreateValue(Str).getValue(); 260 if (Entry.first) return Entry.second; 261 262 Entry.second = NextStringPoolNumber++; 263 Entry.first = Asm->GetTempSymbol(StringPref, Entry.second); 264 return Entry.second; 265} 266 267unsigned DwarfUnits::getAddrPoolIndex(const MCSymbol *Sym) { 268 return getAddrPoolIndex(MCSymbolRefExpr::Create(Sym, Asm->OutContext)); 269} 270 271unsigned DwarfUnits::getAddrPoolIndex(const MCExpr *Sym) { 272 std::pair<DenseMap<const MCExpr *, unsigned>::iterator, bool> P = 273 AddressPool.insert(std::make_pair(Sym, NextAddrPoolNumber)); 274 if (P.second) 275 ++NextAddrPoolNumber; 276 return P.first->second; 277} 278 279// Define a unique number for the abbreviation. 280// 281void DwarfUnits::assignAbbrevNumber(DIEAbbrev &Abbrev) { 282 // Check the set for priors. 283 DIEAbbrev *InSet = AbbreviationsSet->GetOrInsertNode(&Abbrev); 284 285 // If it's newly added. 286 if (InSet == &Abbrev) { 287 // Add to abbreviation list. 288 Abbreviations->push_back(&Abbrev); 289 290 // Assign the vector position + 1 as its number. 291 Abbrev.setNumber(Abbreviations->size()); 292 } else { 293 // Assign existing abbreviation number. 294 Abbrev.setNumber(InSet->getNumber()); 295 } 296} 297 298static bool isObjCClass(StringRef Name) { 299 return Name.startswith("+") || Name.startswith("-"); 300} 301 302static bool hasObjCCategory(StringRef Name) { 303 if (!isObjCClass(Name)) return false; 304 305 size_t pos = Name.find(')'); 306 if (pos != std::string::npos) { 307 if (Name[pos+1] != ' ') return false; 308 return true; 309 } 310 return false; 311} 312 313static void getObjCClassCategory(StringRef In, StringRef &Class, 314 StringRef &Category) { 315 if (!hasObjCCategory(In)) { 316 Class = In.slice(In.find('[') + 1, In.find(' ')); 317 Category = ""; 318 return; 319 } 320 321 Class = In.slice(In.find('[') + 1, In.find('(')); 322 Category = In.slice(In.find('[') + 1, In.find(' ')); 323 return; 324} 325 326static StringRef getObjCMethodName(StringRef In) { 327 return In.slice(In.find(' ') + 1, In.find(']')); 328} 329 330// Add the various names to the Dwarf accelerator table names. 331static void addSubprogramNames(CompileUnit *TheCU, DISubprogram SP, 332 DIE* Die) { 333 if (!SP.isDefinition()) return; 334 335 TheCU->addAccelName(SP.getName(), Die); 336 337 // If the linkage name is different than the name, go ahead and output 338 // that as well into the name table. 339 if (SP.getLinkageName() != "" && SP.getName() != SP.getLinkageName()) 340 TheCU->addAccelName(SP.getLinkageName(), Die); 341 342 // If this is an Objective-C selector name add it to the ObjC accelerator 343 // too. 344 if (isObjCClass(SP.getName())) { 345 StringRef Class, Category; 346 getObjCClassCategory(SP.getName(), Class, Category); 347 TheCU->addAccelObjC(Class, Die); 348 if (Category != "") 349 TheCU->addAccelObjC(Category, Die); 350 // Also add the base method name to the name table. 351 TheCU->addAccelName(getObjCMethodName(SP.getName()), Die); 352 } 353} 354 355// Find DIE for the given subprogram and attach appropriate DW_AT_low_pc 356// and DW_AT_high_pc attributes. If there are global variables in this 357// scope then create and insert DIEs for these variables. 358DIE *DwarfDebug::updateSubprogramScopeDIE(CompileUnit *SPCU, 359 const MDNode *SPNode) { 360 DIE *SPDie = SPCU->getDIE(SPNode); 361 362 assert(SPDie && "Unable to find subprogram DIE!"); 363 DISubprogram SP(SPNode); 364 365 // If we're updating an abstract DIE, then we will be adding the children and 366 // object pointer later on. But what we don't want to do is process the 367 // concrete DIE twice. 368 DIE *AbsSPDIE = AbstractSPDies.lookup(SPNode); 369 if (AbsSPDIE) { 370 bool InSameCU = (AbsSPDIE->getCompileUnit() == SPCU->getCUDie()); 371 // Pick up abstract subprogram DIE. 372 SPDie = new DIE(dwarf::DW_TAG_subprogram); 373 // If AbsSPDIE belongs to a different CU, use DW_FORM_ref_addr instead of 374 // DW_FORM_ref4. 375 SPCU->addDIEEntry(SPDie, dwarf::DW_AT_abstract_origin, 376 InSameCU ? dwarf::DW_FORM_ref4 : dwarf::DW_FORM_ref_addr, 377 AbsSPDIE); 378 SPCU->addDie(SPDie); 379 } else { 380 DISubprogram SPDecl = SP.getFunctionDeclaration(); 381 if (!SPDecl.isSubprogram()) { 382 // There is not any need to generate specification DIE for a function 383 // defined at compile unit level. If a function is defined inside another 384 // function then gdb prefers the definition at top level and but does not 385 // expect specification DIE in parent function. So avoid creating 386 // specification DIE for a function defined inside a function. 387 if (SP.isDefinition() && !SP.getContext().isCompileUnit() && 388 !SP.getContext().isFile() && 389 !isSubprogramContext(SP.getContext())) { 390 SPCU->addFlag(SPDie, dwarf::DW_AT_declaration); 391 392 // Add arguments. 393 DICompositeType SPTy = SP.getType(); 394 DIArray Args = SPTy.getTypeArray(); 395 unsigned SPTag = SPTy.getTag(); 396 if (SPTag == dwarf::DW_TAG_subroutine_type) 397 for (unsigned i = 1, N = Args.getNumElements(); i < N; ++i) { 398 DIE *Arg = new DIE(dwarf::DW_TAG_formal_parameter); 399 DIType ATy = DIType(Args.getElement(i)); 400 SPCU->addType(Arg, ATy); 401 if (ATy.isArtificial()) 402 SPCU->addFlag(Arg, dwarf::DW_AT_artificial); 403 if (ATy.isObjectPointer()) 404 SPCU->addDIEEntry(SPDie, dwarf::DW_AT_object_pointer, 405 dwarf::DW_FORM_ref4, Arg); 406 SPDie->addChild(Arg); 407 } 408 DIE *SPDeclDie = SPDie; 409 SPDie = new DIE(dwarf::DW_TAG_subprogram); 410 SPCU->addDIEEntry(SPDie, dwarf::DW_AT_specification, 411 dwarf::DW_FORM_ref4, SPDeclDie); 412 SPCU->addDie(SPDie); 413 } 414 } 415 } 416 417 SPCU->addLabelAddress(SPDie, dwarf::DW_AT_low_pc, 418 Asm->GetTempSymbol("func_begin", 419 Asm->getFunctionNumber())); 420 SPCU->addLabelAddress(SPDie, dwarf::DW_AT_high_pc, 421 Asm->GetTempSymbol("func_end", 422 Asm->getFunctionNumber())); 423 const TargetRegisterInfo *RI = Asm->TM.getRegisterInfo(); 424 MachineLocation Location(RI->getFrameRegister(*Asm->MF)); 425 SPCU->addAddress(SPDie, dwarf::DW_AT_frame_base, Location); 426 427 // Add name to the name table, we do this here because we're guaranteed 428 // to have concrete versions of our DW_TAG_subprogram nodes. 429 addSubprogramNames(SPCU, SP, SPDie); 430 431 return SPDie; 432} 433 434// Construct new DW_TAG_lexical_block for this scope and attach 435// DW_AT_low_pc/DW_AT_high_pc labels. 436DIE *DwarfDebug::constructLexicalScopeDIE(CompileUnit *TheCU, 437 LexicalScope *Scope) { 438 DIE *ScopeDIE = new DIE(dwarf::DW_TAG_lexical_block); 439 if (Scope->isAbstractScope()) 440 return ScopeDIE; 441 442 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 443 if (Ranges.empty()) 444 return 0; 445 446 // If we have multiple ranges, emit them into the range section. 447 if (Ranges.size() > 1) { 448 // .debug_range section has not been laid out yet. Emit offset in 449 // .debug_range as a uint, size 4, for now. emitDIE will handle 450 // DW_AT_ranges appropriately. 451 TheCU->addUInt(ScopeDIE, dwarf::DW_AT_ranges, dwarf::DW_FORM_data4, 452 DebugRangeSymbols.size() 453 * Asm->getDataLayout().getPointerSize()); 454 for (SmallVectorImpl<InsnRange>::const_iterator RI = Ranges.begin(), 455 RE = Ranges.end(); RI != RE; ++RI) { 456 DebugRangeSymbols.push_back(getLabelBeforeInsn(RI->first)); 457 DebugRangeSymbols.push_back(getLabelAfterInsn(RI->second)); 458 } 459 460 // Terminate the range list. 461 DebugRangeSymbols.push_back(NULL); 462 DebugRangeSymbols.push_back(NULL); 463 return ScopeDIE; 464 } 465 466 // Construct the address range for this DIE. 467 SmallVectorImpl<InsnRange>::const_iterator RI = Ranges.begin(); 468 MCSymbol *Start = getLabelBeforeInsn(RI->first); 469 MCSymbol *End = getLabelAfterInsn(RI->second); 470 471 if (End == 0) return 0; 472 473 assert(Start->isDefined() && "Invalid starting label for an inlined scope!"); 474 assert(End->isDefined() && "Invalid end label for an inlined scope!"); 475 476 TheCU->addLabelAddress(ScopeDIE, dwarf::DW_AT_low_pc, Start); 477 TheCU->addLabelAddress(ScopeDIE, dwarf::DW_AT_high_pc, End); 478 479 return ScopeDIE; 480} 481 482// This scope represents inlined body of a function. Construct DIE to 483// represent this concrete inlined copy of the function. 484DIE *DwarfDebug::constructInlinedScopeDIE(CompileUnit *TheCU, 485 LexicalScope *Scope) { 486 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 487 assert(Ranges.empty() == false && 488 "LexicalScope does not have instruction markers!"); 489 490 if (!Scope->getScopeNode()) 491 return NULL; 492 DIScope DS(Scope->getScopeNode()); 493 DISubprogram InlinedSP = getDISubprogram(DS); 494 DIE *OriginDIE = TheCU->getDIE(InlinedSP); 495 if (!OriginDIE) { 496 DEBUG(dbgs() << "Unable to find original DIE for an inlined subprogram."); 497 return NULL; 498 } 499 500 DIE *ScopeDIE = new DIE(dwarf::DW_TAG_inlined_subroutine); 501 TheCU->addDIEEntry(ScopeDIE, dwarf::DW_AT_abstract_origin, 502 dwarf::DW_FORM_ref4, OriginDIE); 503 504 if (Ranges.size() > 1) { 505 // .debug_range section has not been laid out yet. Emit offset in 506 // .debug_range as a uint, size 4, for now. emitDIE will handle 507 // DW_AT_ranges appropriately. 508 TheCU->addUInt(ScopeDIE, dwarf::DW_AT_ranges, dwarf::DW_FORM_data4, 509 DebugRangeSymbols.size() 510 * Asm->getDataLayout().getPointerSize()); 511 for (SmallVectorImpl<InsnRange>::const_iterator RI = Ranges.begin(), 512 RE = Ranges.end(); RI != RE; ++RI) { 513 DebugRangeSymbols.push_back(getLabelBeforeInsn(RI->first)); 514 DebugRangeSymbols.push_back(getLabelAfterInsn(RI->second)); 515 } 516 DebugRangeSymbols.push_back(NULL); 517 DebugRangeSymbols.push_back(NULL); 518 } else { 519 SmallVectorImpl<InsnRange>::const_iterator RI = Ranges.begin(); 520 MCSymbol *StartLabel = getLabelBeforeInsn(RI->first); 521 MCSymbol *EndLabel = getLabelAfterInsn(RI->second); 522 523 if (StartLabel == 0 || EndLabel == 0) 524 llvm_unreachable("Unexpected Start and End labels for an inlined scope!"); 525 526 assert(StartLabel->isDefined() && 527 "Invalid starting label for an inlined scope!"); 528 assert(EndLabel->isDefined() && "Invalid end label for an inlined scope!"); 529 530 TheCU->addLabelAddress(ScopeDIE, dwarf::DW_AT_low_pc, StartLabel); 531 TheCU->addLabelAddress(ScopeDIE, dwarf::DW_AT_high_pc, EndLabel); 532 } 533 534 InlinedSubprogramDIEs.insert(OriginDIE); 535 536 // Add the call site information to the DIE. 537 DILocation DL(Scope->getInlinedAt()); 538 TheCU->addUInt(ScopeDIE, dwarf::DW_AT_call_file, 0, 539 getOrCreateSourceID(DL.getFilename(), DL.getDirectory(), 540 TheCU->getUniqueID())); 541 TheCU->addUInt(ScopeDIE, dwarf::DW_AT_call_line, 0, DL.getLineNumber()); 542 543 // Track the start label for this inlined function. 544 //.debug_inlined section specification does not clearly state how 545 // to emit inlined scopes that are split into multiple instruction ranges. 546 // For now, use the first instruction range and emit low_pc/high_pc pair and 547 // corresponding the .debug_inlined section entry for this pair. 548 if (Asm->MAI->doesDwarfUseInlineInfoSection()) { 549 MCSymbol *StartLabel = getLabelBeforeInsn(Ranges.begin()->first); 550 InlineInfoMap::iterator I = InlineInfo.find(InlinedSP); 551 552 if (I == InlineInfo.end()) { 553 InlineInfo[InlinedSP].push_back(std::make_pair(StartLabel, ScopeDIE)); 554 InlinedSPNodes.push_back(InlinedSP); 555 } else 556 I->second.push_back(std::make_pair(StartLabel, ScopeDIE)); 557 } 558 559 // Add name to the name table, we do this here because we're guaranteed 560 // to have concrete versions of our DW_TAG_inlined_subprogram nodes. 561 addSubprogramNames(TheCU, InlinedSP, ScopeDIE); 562 563 return ScopeDIE; 564} 565 566// Construct a DIE for this scope. 567DIE *DwarfDebug::constructScopeDIE(CompileUnit *TheCU, LexicalScope *Scope) { 568 if (!Scope || !Scope->getScopeNode()) 569 return NULL; 570 571 DIScope DS(Scope->getScopeNode()); 572 // Early return to avoid creating dangling variable|scope DIEs. 573 if (!Scope->getInlinedAt() && DS.isSubprogram() && Scope->isAbstractScope() && 574 !TheCU->getDIE(DS)) 575 return NULL; 576 577 SmallVector<DIE *, 8> Children; 578 DIE *ObjectPointer = NULL; 579 580 // Collect arguments for current function. 581 if (LScopes.isCurrentFunctionScope(Scope)) 582 for (unsigned i = 0, N = CurrentFnArguments.size(); i < N; ++i) 583 if (DbgVariable *ArgDV = CurrentFnArguments[i]) 584 if (DIE *Arg = 585 TheCU->constructVariableDIE(ArgDV, Scope->isAbstractScope())) { 586 Children.push_back(Arg); 587 if (ArgDV->isObjectPointer()) ObjectPointer = Arg; 588 } 589 590 // Collect lexical scope children first. 591 const SmallVectorImpl<DbgVariable *> &Variables =ScopeVariables.lookup(Scope); 592 for (unsigned i = 0, N = Variables.size(); i < N; ++i) 593 if (DIE *Variable = 594 TheCU->constructVariableDIE(Variables[i], Scope->isAbstractScope())) { 595 Children.push_back(Variable); 596 if (Variables[i]->isObjectPointer()) ObjectPointer = Variable; 597 } 598 const SmallVectorImpl<LexicalScope *> &Scopes = Scope->getChildren(); 599 for (unsigned j = 0, M = Scopes.size(); j < M; ++j) 600 if (DIE *Nested = constructScopeDIE(TheCU, Scopes[j])) 601 Children.push_back(Nested); 602 DIE *ScopeDIE = NULL; 603 if (Scope->getInlinedAt()) 604 ScopeDIE = constructInlinedScopeDIE(TheCU, Scope); 605 else if (DS.isSubprogram()) { 606 ProcessedSPNodes.insert(DS); 607 if (Scope->isAbstractScope()) { 608 ScopeDIE = TheCU->getDIE(DS); 609 // Note down abstract DIE. 610 if (ScopeDIE) 611 AbstractSPDies.insert(std::make_pair(DS, ScopeDIE)); 612 } 613 else 614 ScopeDIE = updateSubprogramScopeDIE(TheCU, DS); 615 } 616 else { 617 // There is no need to emit empty lexical block DIE. 618 std::pair<ImportedEntityMap::const_iterator, 619 ImportedEntityMap::const_iterator> Range = std::equal_range( 620 ScopesWithImportedEntities.begin(), ScopesWithImportedEntities.end(), 621 std::pair<const MDNode *, const MDNode *>(DS, (const MDNode*)0), 622 CompareFirst()); 623 if (Children.empty() && Range.first == Range.second) 624 return NULL; 625 ScopeDIE = constructLexicalScopeDIE(TheCU, Scope); 626 for (ImportedEntityMap::const_iterator i = Range.first; i != Range.second; 627 ++i) 628 constructImportedEntityDIE(TheCU, i->second, ScopeDIE); 629 } 630 631 if (!ScopeDIE) return NULL; 632 633 // Add children 634 for (SmallVectorImpl<DIE *>::iterator I = Children.begin(), 635 E = Children.end(); I != E; ++I) 636 ScopeDIE->addChild(*I); 637 638 if (DS.isSubprogram() && ObjectPointer != NULL) 639 TheCU->addDIEEntry(ScopeDIE, dwarf::DW_AT_object_pointer, 640 dwarf::DW_FORM_ref4, ObjectPointer); 641 642 if (DS.isSubprogram()) 643 TheCU->addPubTypes(DISubprogram(DS)); 644 645 return ScopeDIE; 646} 647 648// Look up the source id with the given directory and source file names. 649// If none currently exists, create a new id and insert it in the 650// SourceIds map. This can update DirectoryNames and SourceFileNames maps 651// as well. 652unsigned DwarfDebug::getOrCreateSourceID(StringRef FileName, 653 StringRef DirName, unsigned CUID) { 654 // If we use .loc in assembly, we can't separate .file entries according to 655 // compile units. Thus all files will belong to the default compile unit. 656 if (Asm->TM.hasMCUseLoc() && 657 Asm->OutStreamer.getKind() == MCStreamer::SK_AsmStreamer) 658 CUID = 0; 659 660 // If FE did not provide a file name, then assume stdin. 661 if (FileName.empty()) 662 return getOrCreateSourceID("<stdin>", StringRef(), CUID); 663 664 // TODO: this might not belong here. See if we can factor this better. 665 if (DirName == CompilationDir) 666 DirName = ""; 667 668 // FileIDCUMap stores the current ID for the given compile unit. 669 unsigned SrcId = FileIDCUMap[CUID] + 1; 670 671 // We look up the CUID/file/dir by concatenating them with a zero byte. 672 SmallString<128> NamePair; 673 NamePair += utostr(CUID); 674 NamePair += '\0'; 675 NamePair += DirName; 676 NamePair += '\0'; // Zero bytes are not allowed in paths. 677 NamePair += FileName; 678 679 StringMapEntry<unsigned> &Ent = SourceIdMap.GetOrCreateValue(NamePair, SrcId); 680 if (Ent.getValue() != SrcId) 681 return Ent.getValue(); 682 683 FileIDCUMap[CUID] = SrcId; 684 // Print out a .file directive to specify files for .loc directives. 685 Asm->OutStreamer.EmitDwarfFileDirective(SrcId, DirName, FileName, CUID); 686 687 return SrcId; 688} 689 690// Create new CompileUnit for the given metadata node with tag 691// DW_TAG_compile_unit. 692CompileUnit *DwarfDebug::constructCompileUnit(const MDNode *N) { 693 DICompileUnit DIUnit(N); 694 StringRef FN = DIUnit.getFilename(); 695 CompilationDir = DIUnit.getDirectory(); 696 697 DIE *Die = new DIE(dwarf::DW_TAG_compile_unit); 698 CompileUnit *NewCU = new CompileUnit(GlobalCUIndexCount++, 699 DIUnit.getLanguage(), Die, N, Asm, 700 this, &InfoHolder); 701 702 FileIDCUMap[NewCU->getUniqueID()] = 0; 703 // Call this to emit a .file directive if it wasn't emitted for the source 704 // file this CU comes from yet. 705 getOrCreateSourceID(FN, CompilationDir, NewCU->getUniqueID()); 706 707 NewCU->addString(Die, dwarf::DW_AT_producer, DIUnit.getProducer()); 708 NewCU->addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 709 DIUnit.getLanguage()); 710 NewCU->addString(Die, dwarf::DW_AT_name, FN); 711 712 // 2.17.1 requires that we use DW_AT_low_pc for a single entry point 713 // into an entity. We're using 0 (or a NULL label) for this. For 714 // split dwarf it's in the skeleton CU so omit it here. 715 if (!useSplitDwarf()) 716 NewCU->addLabelAddress(Die, dwarf::DW_AT_low_pc, NULL); 717 718 // Define start line table label for each Compile Unit. 719 MCSymbol *LineTableStartSym = Asm->GetTempSymbol("line_table_start", 720 NewCU->getUniqueID()); 721 Asm->OutStreamer.getContext().setMCLineTableSymbol(LineTableStartSym, 722 NewCU->getUniqueID()); 723 724 // Use a single line table if we are using .loc and generating assembly. 725 bool UseTheFirstCU = 726 (Asm->TM.hasMCUseLoc() && 727 Asm->OutStreamer.getKind() == MCStreamer::SK_AsmStreamer) || 728 (NewCU->getUniqueID() == 0); 729 730 // DW_AT_stmt_list is a offset of line number information for this 731 // compile unit in debug_line section. For split dwarf this is 732 // left in the skeleton CU and so not included. 733 // The line table entries are not always emitted in assembly, so it 734 // is not okay to use line_table_start here. 735 if (!useSplitDwarf()) { 736 if (Asm->MAI->doesDwarfUseRelocationsAcrossSections()) 737 NewCU->addLabel(Die, dwarf::DW_AT_stmt_list, dwarf::DW_FORM_data4, 738 UseTheFirstCU ? 739 Asm->GetTempSymbol("section_line") : LineTableStartSym); 740 else if (UseTheFirstCU) 741 NewCU->addUInt(Die, dwarf::DW_AT_stmt_list, dwarf::DW_FORM_data4, 0); 742 else 743 NewCU->addDelta(Die, dwarf::DW_AT_stmt_list, dwarf::DW_FORM_data4, 744 LineTableStartSym, DwarfLineSectionSym); 745 } 746 747 // If we're using split dwarf the compilation dir is going to be in the 748 // skeleton CU and so we don't need to duplicate it here. 749 if (!useSplitDwarf() && !CompilationDir.empty()) 750 NewCU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 751 if (DIUnit.isOptimized()) 752 NewCU->addFlag(Die, dwarf::DW_AT_APPLE_optimized); 753 754 StringRef Flags = DIUnit.getFlags(); 755 if (!Flags.empty()) 756 NewCU->addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 757 758 if (unsigned RVer = DIUnit.getRunTimeVersion()) 759 NewCU->addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 760 dwarf::DW_FORM_data1, RVer); 761 762 if (!FirstCU) 763 FirstCU = NewCU; 764 765 InfoHolder.addUnit(NewCU); 766 767 CUMap.insert(std::make_pair(N, NewCU)); 768 return NewCU; 769} 770 771// Construct subprogram DIE. 772void DwarfDebug::constructSubprogramDIE(CompileUnit *TheCU, 773 const MDNode *N) { 774 CompileUnit *&CURef = SPMap[N]; 775 if (CURef) 776 return; 777 CURef = TheCU; 778 779 DISubprogram SP(N); 780 if (!SP.isDefinition()) 781 // This is a method declaration which will be handled while constructing 782 // class type. 783 return; 784 785 DIE *SubprogramDie = TheCU->getOrCreateSubprogramDIE(SP); 786 787 // Add to map. 788 TheCU->insertDIE(N, SubprogramDie); 789 790 // Add to context owner. 791 TheCU->addToContextOwner(SubprogramDie, SP.getContext()); 792 793 // Expose as global, if requested. 794 if (GenerateDwarfPubNamesSection) 795 TheCU->addGlobalName(SP.getName(), SubprogramDie); 796} 797 798void DwarfDebug::constructImportedEntityDIE(CompileUnit *TheCU, 799 const MDNode *N) { 800 DIImportedEntity Module(N); 801 if (!Module.Verify()) 802 return; 803 if (DIE *D = TheCU->getOrCreateContextDIE(Module.getContext())) 804 constructImportedEntityDIE(TheCU, Module, D); 805} 806 807void DwarfDebug::constructImportedEntityDIE(CompileUnit *TheCU, const MDNode *N, 808 DIE *Context) { 809 DIImportedEntity Module(N); 810 if (!Module.Verify()) 811 return; 812 return constructImportedEntityDIE(TheCU, Module, Context); 813} 814 815void DwarfDebug::constructImportedEntityDIE(CompileUnit *TheCU, 816 const DIImportedEntity &Module, 817 DIE *Context) { 818 assert(Module.Verify() && 819 "Use one of the MDNode * overloads to handle invalid metadata"); 820 assert(Context && "Should always have a context for an imported_module"); 821 DIE *IMDie = new DIE(Module.getTag()); 822 TheCU->insertDIE(Module, IMDie); 823 DIE *EntityDie; 824 DIDescriptor Entity = Module.getEntity(); 825 if (Entity.isNameSpace()) 826 EntityDie = TheCU->getOrCreateNameSpace(DINameSpace(Entity)); 827 else if (Entity.isSubprogram()) 828 EntityDie = TheCU->getOrCreateSubprogramDIE(DISubprogram(Entity)); 829 else if (Entity.isType()) 830 EntityDie = TheCU->getOrCreateTypeDIE(DIType(Entity)); 831 else 832 EntityDie = TheCU->getDIE(Entity); 833 unsigned FileID = getOrCreateSourceID(Module.getContext().getFilename(), 834 Module.getContext().getDirectory(), 835 TheCU->getUniqueID()); 836 TheCU->addUInt(IMDie, dwarf::DW_AT_decl_file, 0, FileID); 837 TheCU->addUInt(IMDie, dwarf::DW_AT_decl_line, 0, Module.getLineNumber()); 838 TheCU->addDIEEntry(IMDie, dwarf::DW_AT_import, dwarf::DW_FORM_ref4, 839 EntityDie); 840 StringRef Name = Module.getName(); 841 if (!Name.empty()) 842 TheCU->addString(IMDie, dwarf::DW_AT_name, Name); 843 Context->addChild(IMDie); 844} 845 846// Emit all Dwarf sections that should come prior to the content. Create 847// global DIEs and emit initial debug info sections. This is invoked by 848// the target AsmPrinter. 849void DwarfDebug::beginModule() { 850 if (DisableDebugInfoPrinting) 851 return; 852 853 const Module *M = MMI->getModule(); 854 855 // If module has named metadata anchors then use them, otherwise scan the 856 // module using debug info finder to collect debug info. 857 NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu"); 858 if (!CU_Nodes) 859 return; 860 861 // Emit initial sections so we can reference labels later. 862 emitSectionLabels(); 863 864 for (unsigned i = 0, e = CU_Nodes->getNumOperands(); i != e; ++i) { 865 DICompileUnit CUNode(CU_Nodes->getOperand(i)); 866 CompileUnit *CU = constructCompileUnit(CUNode); 867 DIArray ImportedEntities = CUNode.getImportedEntities(); 868 for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i) 869 ScopesWithImportedEntities.push_back(std::make_pair( 870 DIImportedEntity(ImportedEntities.getElement(i)).getContext(), 871 ImportedEntities.getElement(i))); 872 std::sort(ScopesWithImportedEntities.begin(), 873 ScopesWithImportedEntities.end(), CompareFirst()); 874 DIArray GVs = CUNode.getGlobalVariables(); 875 for (unsigned i = 0, e = GVs.getNumElements(); i != e; ++i) 876 CU->createGlobalVariableDIE(GVs.getElement(i)); 877 DIArray SPs = CUNode.getSubprograms(); 878 for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i) 879 constructSubprogramDIE(CU, SPs.getElement(i)); 880 DIArray EnumTypes = CUNode.getEnumTypes(); 881 for (unsigned i = 0, e = EnumTypes.getNumElements(); i != e; ++i) 882 CU->getOrCreateTypeDIE(EnumTypes.getElement(i)); 883 DIArray RetainedTypes = CUNode.getRetainedTypes(); 884 for (unsigned i = 0, e = RetainedTypes.getNumElements(); i != e; ++i) 885 CU->getOrCreateTypeDIE(RetainedTypes.getElement(i)); 886 // Emit imported_modules last so that the relevant context is already 887 // available. 888 for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i) 889 constructImportedEntityDIE(CU, ImportedEntities.getElement(i)); 890 // If we're splitting the dwarf out now that we've got the entire 891 // CU then construct a skeleton CU based upon it. 892 if (useSplitDwarf()) { 893 // This should be a unique identifier when we want to build .dwp files. 894 CU->addUInt(CU->getCUDie(), dwarf::DW_AT_GNU_dwo_id, 895 dwarf::DW_FORM_data8, 0); 896 // Now construct the skeleton CU associated. 897 constructSkeletonCU(CUNode); 898 } 899 } 900 901 // Tell MMI that we have debug info. 902 MMI->setDebugInfoAvailability(true); 903 904 // Prime section data. 905 SectionMap.insert(Asm->getObjFileLowering().getTextSection()); 906} 907 908// Attach DW_AT_inline attribute with inlined subprogram DIEs. 909void DwarfDebug::computeInlinedDIEs() { 910 // Attach DW_AT_inline attribute with inlined subprogram DIEs. 911 for (SmallPtrSet<DIE *, 4>::iterator AI = InlinedSubprogramDIEs.begin(), 912 AE = InlinedSubprogramDIEs.end(); AI != AE; ++AI) { 913 DIE *ISP = *AI; 914 FirstCU->addUInt(ISP, dwarf::DW_AT_inline, 0, dwarf::DW_INL_inlined); 915 } 916 for (DenseMap<const MDNode *, DIE *>::iterator AI = AbstractSPDies.begin(), 917 AE = AbstractSPDies.end(); AI != AE; ++AI) { 918 DIE *ISP = AI->second; 919 if (InlinedSubprogramDIEs.count(ISP)) 920 continue; 921 FirstCU->addUInt(ISP, dwarf::DW_AT_inline, 0, dwarf::DW_INL_inlined); 922 } 923} 924 925// Collect info for variables that were optimized out. 926void DwarfDebug::collectDeadVariables() { 927 const Module *M = MMI->getModule(); 928 DenseMap<const MDNode *, LexicalScope *> DeadFnScopeMap; 929 930 if (NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu")) { 931 for (unsigned i = 0, e = CU_Nodes->getNumOperands(); i != e; ++i) { 932 DICompileUnit TheCU(CU_Nodes->getOperand(i)); 933 DIArray Subprograms = TheCU.getSubprograms(); 934 for (unsigned i = 0, e = Subprograms.getNumElements(); i != e; ++i) { 935 DISubprogram SP(Subprograms.getElement(i)); 936 if (ProcessedSPNodes.count(SP) != 0) continue; 937 if (!SP.isSubprogram()) continue; 938 if (!SP.isDefinition()) continue; 939 DIArray Variables = SP.getVariables(); 940 if (Variables.getNumElements() == 0) continue; 941 942 LexicalScope *Scope = 943 new LexicalScope(NULL, DIDescriptor(SP), NULL, false); 944 DeadFnScopeMap[SP] = Scope; 945 946 // Construct subprogram DIE and add variables DIEs. 947 CompileUnit *SPCU = CUMap.lookup(TheCU); 948 assert(SPCU && "Unable to find Compile Unit!"); 949 constructSubprogramDIE(SPCU, SP); 950 DIE *ScopeDIE = SPCU->getDIE(SP); 951 for (unsigned vi = 0, ve = Variables.getNumElements(); vi != ve; ++vi) { 952 DIVariable DV(Variables.getElement(vi)); 953 if (!DV.isVariable()) continue; 954 DbgVariable *NewVar = new DbgVariable(DV, NULL); 955 if (DIE *VariableDIE = 956 SPCU->constructVariableDIE(NewVar, Scope->isAbstractScope())) 957 ScopeDIE->addChild(VariableDIE); 958 } 959 } 960 } 961 } 962 DeleteContainerSeconds(DeadFnScopeMap); 963} 964 965// Type Signature computation code. 966typedef ArrayRef<uint8_t> HashValue; 967 968/// \brief Grabs the string in whichever attribute is passed in and returns 969/// a reference to it. 970static StringRef getDIEStringAttr(DIE *Die, unsigned Attr) { 971 const SmallVectorImpl<DIEValue *> &Values = Die->getValues(); 972 const DIEAbbrev &Abbrevs = Die->getAbbrev(); 973 974 // Iterate through all the attributes until we find the one we're 975 // looking for, if we can't find it return an empty string. 976 for (size_t i = 0; i < Values.size(); ++i) { 977 if (Abbrevs.getData()[i].getAttribute() == Attr) { 978 DIEValue *V = Values[i]; 979 assert(isa<DIEString>(V) && "String requested. Not a string."); 980 DIEString *S = cast<DIEString>(V); 981 return S->getString(); 982 } 983 } 984 return StringRef(""); 985} 986 987/// \brief Adds the string in \p Str to the hash in \p Hash. This also hashes 988/// a trailing NULL with the string. 989static void addStringToHash(MD5 &Hash, StringRef Str) { 990 DEBUG(dbgs() << "Adding string " << Str << " to hash.\n"); 991 HashValue SVal((const uint8_t *)Str.data(), Str.size()); 992 const uint8_t NB = '\0'; 993 HashValue NBVal((const uint8_t *)&NB, 1); 994 Hash.update(SVal); 995 Hash.update(NBVal); 996} 997 998/// \brief Adds the character string in \p Str to the hash in \p Hash. This does 999/// not hash a trailing NULL on the character. 1000static void addLetterToHash(MD5 &Hash, StringRef Str) { 1001 DEBUG(dbgs() << "Adding letter " << Str << " to hash.\n"); 1002 assert(Str.size() == 1 && "Trying to add a too large letter?"); 1003 HashValue SVal((const uint8_t *)Str.data(), Str.size()); 1004 Hash.update(SVal); 1005} 1006 1007// FIXME: These are copied and only slightly modified out of LEB128.h. 1008 1009/// \brief Adds the unsigned in \p N to the hash in \p Hash. This also encodes 1010/// the unsigned as a ULEB128. 1011static void addULEB128ToHash(MD5 &Hash, uint64_t Value) { 1012 DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n"); 1013 do { 1014 uint8_t Byte = Value & 0x7f; 1015 Value >>= 7; 1016 if (Value != 0) 1017 Byte |= 0x80; // Mark this byte to show that more bytes will follow. 1018 Hash.update(Byte); 1019 } while (Value != 0); 1020} 1021 1022/// \brief Including \p Parent adds the context of Parent to \p Hash. 1023static void addParentContextToHash(MD5 &Hash, DIE *Parent) { 1024 unsigned Tag = Parent->getTag(); 1025 1026 DEBUG(dbgs() << "Adding parent context to hash...\n"); 1027 1028 // For each surrounding type or namespace... 1029 if (Tag != dwarf::DW_TAG_namespace && Tag != dwarf::DW_TAG_class_type && 1030 Tag != dwarf::DW_TAG_structure_type) 1031 return; 1032 1033 // ... beginning with the outermost such construct... 1034 if (Parent->getParent() != NULL) 1035 addParentContextToHash(Hash, Parent->getParent()); 1036 1037 // Append the letter "C" to the sequence. 1038 addLetterToHash(Hash, "C"); 1039 1040 // Followed by the DWARF tag of the construct. 1041 addULEB128ToHash(Hash, Parent->getTag()); 1042 1043 // Then the name, taken from the DW_AT_name attribute. 1044 StringRef Name = getDIEStringAttr(Parent, dwarf::DW_AT_name); 1045 if (!Name.empty()) 1046 addStringToHash(Hash, Name); 1047} 1048 1049/// This is based on the type signature computation given in section 7.27 of the 1050/// DWARF4 standard. It is the md5 hash of a flattened description of the DIE. 1051static void addDIEODRSignature(MD5 &Hash, CompileUnit *CU, DIE *Die) { 1052 1053 // Add the contexts to the hash. 1054 DIE *Parent = Die->getParent(); 1055 if (Parent) 1056 addParentContextToHash(Hash, Parent); 1057 1058 // Add the current DIE information. 1059 1060 // Add the DWARF tag of the DIE. 1061 addULEB128ToHash(Hash, Die->getTag()); 1062 1063 // Add the name of the type to the hash. 1064 addStringToHash(Hash, getDIEStringAttr(Die, dwarf::DW_AT_name)); 1065 1066 // Now get the result. 1067 MD5::MD5Result Result; 1068 Hash.final(Result); 1069 1070 // ... take the least significant 8 bytes and store those as the attribute. 1071 uint64_t Signature; 1072 memcpy(&Signature, &Result[8], 8); 1073 1074 // FIXME: This should be added onto the type unit, not the type, but this 1075 // works as an intermediate stage. 1076 CU->addUInt(Die, dwarf::DW_AT_GNU_odr_signature, dwarf::DW_FORM_data8, 1077 Signature); 1078} 1079 1080/// Return true if the current DIE is contained within an anonymous namespace. 1081static bool isContainedInAnonNamespace(DIE *Die) { 1082 DIE *Parent = Die->getParent(); 1083 1084 while (Parent) { 1085 if (Die->getTag() == dwarf::DW_TAG_namespace && 1086 getDIEStringAttr(Die, dwarf::DW_AT_name) == "") 1087 return true; 1088 Parent = Parent->getParent(); 1089 } 1090 1091 return false; 1092} 1093 1094void DwarfDebug::finalizeModuleInfo() { 1095 // Collect info for variables that were optimized out. 1096 collectDeadVariables(); 1097 1098 // Attach DW_AT_inline attribute with inlined subprogram DIEs. 1099 computeInlinedDIEs(); 1100 1101 // Emit DW_AT_containing_type attribute to connect types with their 1102 // vtable holding type. 1103 for (DenseMap<const MDNode *, CompileUnit *>::iterator CUI = CUMap.begin(), 1104 CUE = CUMap.end(); CUI != CUE; ++CUI) { 1105 CompileUnit *TheCU = CUI->second; 1106 TheCU->constructContainingTypeDIEs(); 1107 } 1108 1109 // For types that we'd like to move to type units or ODR check go ahead 1110 // and either move the types out or add the ODR attribute now. 1111 // FIXME: Do type splitting. 1112 for (unsigned i = 0, e = TypeUnits.size(); i != e; ++i) { 1113 MD5 Hash; 1114 DIE *Die = TypeUnits[i]; 1115 // If we're in C++ and we want to generate the hash then go ahead and do 1116 // that now. 1117 if (GenerateODRHash && 1118 CUMap.begin()->second->getLanguage() == dwarf::DW_LANG_C_plus_plus && 1119 !isContainedInAnonNamespace(Die)) 1120 addDIEODRSignature(Hash, CUMap.begin()->second, Die); 1121 } 1122 1123 // Compute DIE offsets and sizes. 1124 InfoHolder.computeSizeAndOffsets(); 1125 if (useSplitDwarf()) 1126 SkeletonHolder.computeSizeAndOffsets(); 1127} 1128 1129void DwarfDebug::endSections() { 1130 // Standard sections final addresses. 1131 Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getTextSection()); 1132 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("text_end")); 1133 Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getDataSection()); 1134 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("data_end")); 1135 1136 // End text sections. 1137 for (unsigned I = 0, E = SectionMap.size(); I != E; ++I) { 1138 Asm->OutStreamer.SwitchSection(SectionMap[I]); 1139 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("section_end", I+1)); 1140 } 1141} 1142 1143// Emit all Dwarf sections that should come after the content. 1144void DwarfDebug::endModule() { 1145 1146 if (!FirstCU) return; 1147 1148 // End any existing sections. 1149 // TODO: Does this need to happen? 1150 endSections(); 1151 1152 // Finalize the debug info for the module. 1153 finalizeModuleInfo(); 1154 1155 if (!useSplitDwarf()) { 1156 // Emit all the DIEs into a debug info section. 1157 emitDebugInfo(); 1158 1159 // Corresponding abbreviations into a abbrev section. 1160 emitAbbreviations(); 1161 1162 // Emit info into a debug loc section. 1163 emitDebugLoc(); 1164 1165 // Emit info into a debug aranges section. 1166 emitDebugARanges(); 1167 1168 // Emit info into a debug ranges section. 1169 emitDebugRanges(); 1170 1171 // Emit info into a debug macinfo section. 1172 emitDebugMacInfo(); 1173 1174 // Emit inline info. 1175 // TODO: When we don't need the option anymore we 1176 // can remove all of the code that this section 1177 // depends upon. 1178 if (useDarwinGDBCompat()) 1179 emitDebugInlineInfo(); 1180 } else { 1181 // TODO: Fill this in for separated debug sections and separate 1182 // out information into new sections. 1183 1184 // Emit the debug info section and compile units. 1185 emitDebugInfo(); 1186 emitDebugInfoDWO(); 1187 1188 // Corresponding abbreviations into a abbrev section. 1189 emitAbbreviations(); 1190 emitDebugAbbrevDWO(); 1191 1192 // Emit info into a debug loc section. 1193 emitDebugLoc(); 1194 1195 // Emit info into a debug aranges section. 1196 emitDebugARanges(); 1197 1198 // Emit info into a debug ranges section. 1199 emitDebugRanges(); 1200 1201 // Emit info into a debug macinfo section. 1202 emitDebugMacInfo(); 1203 1204 // Emit DWO addresses. 1205 InfoHolder.emitAddresses(Asm->getObjFileLowering().getDwarfAddrSection()); 1206 1207 // Emit inline info. 1208 // TODO: When we don't need the option anymore we 1209 // can remove all of the code that this section 1210 // depends upon. 1211 if (useDarwinGDBCompat()) 1212 emitDebugInlineInfo(); 1213 } 1214 1215 // Emit info into the dwarf accelerator table sections. 1216 if (useDwarfAccelTables()) { 1217 emitAccelNames(); 1218 emitAccelObjC(); 1219 emitAccelNamespaces(); 1220 emitAccelTypes(); 1221 } 1222 1223 // Emit info into a debug pubnames section, if requested. 1224 if (GenerateDwarfPubNamesSection) 1225 emitDebugPubnames(); 1226 1227 // Emit info into a debug pubtypes section. 1228 // TODO: When we don't need the option anymore we can 1229 // remove all of the code that adds to the table. 1230 if (useDarwinGDBCompat()) 1231 emitDebugPubTypes(); 1232 1233 // Finally emit string information into a string table. 1234 emitDebugStr(); 1235 if (useSplitDwarf()) 1236 emitDebugStrDWO(); 1237 1238 // clean up. 1239 SPMap.clear(); 1240 for (DenseMap<const MDNode *, CompileUnit *>::iterator I = CUMap.begin(), 1241 E = CUMap.end(); I != E; ++I) 1242 delete I->second; 1243 1244 for (SmallVectorImpl<CompileUnit *>::iterator I = SkeletonCUs.begin(), 1245 E = SkeletonCUs.end(); I != E; ++I) 1246 delete *I; 1247 1248 // Reset these for the next Module if we have one. 1249 FirstCU = NULL; 1250} 1251 1252// Find abstract variable, if any, associated with Var. 1253DbgVariable *DwarfDebug::findAbstractVariable(DIVariable &DV, 1254 DebugLoc ScopeLoc) { 1255 LLVMContext &Ctx = DV->getContext(); 1256 // More then one inlined variable corresponds to one abstract variable. 1257 DIVariable Var = cleanseInlinedVariable(DV, Ctx); 1258 DbgVariable *AbsDbgVariable = AbstractVariables.lookup(Var); 1259 if (AbsDbgVariable) 1260 return AbsDbgVariable; 1261 1262 LexicalScope *Scope = LScopes.findAbstractScope(ScopeLoc.getScope(Ctx)); 1263 if (!Scope) 1264 return NULL; 1265 1266 AbsDbgVariable = new DbgVariable(Var, NULL); 1267 addScopeVariable(Scope, AbsDbgVariable); 1268 AbstractVariables[Var] = AbsDbgVariable; 1269 return AbsDbgVariable; 1270} 1271 1272// If Var is a current function argument then add it to CurrentFnArguments list. 1273bool DwarfDebug::addCurrentFnArgument(const MachineFunction *MF, 1274 DbgVariable *Var, LexicalScope *Scope) { 1275 if (!LScopes.isCurrentFunctionScope(Scope)) 1276 return false; 1277 DIVariable DV = Var->getVariable(); 1278 if (DV.getTag() != dwarf::DW_TAG_arg_variable) 1279 return false; 1280 unsigned ArgNo = DV.getArgNumber(); 1281 if (ArgNo == 0) 1282 return false; 1283 1284 size_t Size = CurrentFnArguments.size(); 1285 if (Size == 0) 1286 CurrentFnArguments.resize(MF->getFunction()->arg_size()); 1287 // llvm::Function argument size is not good indicator of how many 1288 // arguments does the function have at source level. 1289 if (ArgNo > Size) 1290 CurrentFnArguments.resize(ArgNo * 2); 1291 CurrentFnArguments[ArgNo - 1] = Var; 1292 return true; 1293} 1294 1295// Collect variable information from side table maintained by MMI. 1296void 1297DwarfDebug::collectVariableInfoFromMMITable(const MachineFunction *MF, 1298 SmallPtrSet<const MDNode *, 16> &Processed) { 1299 MachineModuleInfo::VariableDbgInfoMapTy &VMap = MMI->getVariableDbgInfo(); 1300 for (MachineModuleInfo::VariableDbgInfoMapTy::iterator VI = VMap.begin(), 1301 VE = VMap.end(); VI != VE; ++VI) { 1302 const MDNode *Var = VI->first; 1303 if (!Var) continue; 1304 Processed.insert(Var); 1305 DIVariable DV(Var); 1306 const std::pair<unsigned, DebugLoc> &VP = VI->second; 1307 1308 LexicalScope *Scope = LScopes.findLexicalScope(VP.second); 1309 1310 // If variable scope is not found then skip this variable. 1311 if (Scope == 0) 1312 continue; 1313 1314 DbgVariable *AbsDbgVariable = findAbstractVariable(DV, VP.second); 1315 DbgVariable *RegVar = new DbgVariable(DV, AbsDbgVariable); 1316 RegVar->setFrameIndex(VP.first); 1317 if (!addCurrentFnArgument(MF, RegVar, Scope)) 1318 addScopeVariable(Scope, RegVar); 1319 if (AbsDbgVariable) 1320 AbsDbgVariable->setFrameIndex(VP.first); 1321 } 1322} 1323 1324// Return true if debug value, encoded by DBG_VALUE instruction, is in a 1325// defined reg. 1326static bool isDbgValueInDefinedReg(const MachineInstr *MI) { 1327 assert(MI->isDebugValue() && "Invalid DBG_VALUE machine instruction!"); 1328 return MI->getNumOperands() == 3 && 1329 MI->getOperand(0).isReg() && MI->getOperand(0).getReg() && 1330 (MI->getOperand(1).isImm() || 1331 (MI->getOperand(1).isReg() && MI->getOperand(1).getReg() == 0U)); 1332} 1333 1334// Get .debug_loc entry for the instruction range starting at MI. 1335static DotDebugLocEntry getDebugLocEntry(AsmPrinter *Asm, 1336 const MCSymbol *FLabel, 1337 const MCSymbol *SLabel, 1338 const MachineInstr *MI) { 1339 const MDNode *Var = MI->getOperand(MI->getNumOperands() - 1).getMetadata(); 1340 1341 assert(MI->getNumOperands() == 3); 1342 if (MI->getOperand(0).isReg()) { 1343 MachineLocation MLoc; 1344 // If the second operand is an immediate, this is a 1345 // register-indirect address. 1346 if (!MI->getOperand(1).isImm()) 1347 MLoc.set(MI->getOperand(0).getReg()); 1348 else 1349 MLoc.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm()); 1350 return DotDebugLocEntry(FLabel, SLabel, MLoc, Var); 1351 } 1352 if (MI->getOperand(0).isImm()) 1353 return DotDebugLocEntry(FLabel, SLabel, MI->getOperand(0).getImm()); 1354 if (MI->getOperand(0).isFPImm()) 1355 return DotDebugLocEntry(FLabel, SLabel, MI->getOperand(0).getFPImm()); 1356 if (MI->getOperand(0).isCImm()) 1357 return DotDebugLocEntry(FLabel, SLabel, MI->getOperand(0).getCImm()); 1358 1359 llvm_unreachable("Unexpected 3 operand DBG_VALUE instruction!"); 1360} 1361 1362// Find variables for each lexical scope. 1363void 1364DwarfDebug::collectVariableInfo(const MachineFunction *MF, 1365 SmallPtrSet<const MDNode *, 16> &Processed) { 1366 1367 // Grab the variable info that was squirreled away in the MMI side-table. 1368 collectVariableInfoFromMMITable(MF, Processed); 1369 1370 for (SmallVectorImpl<const MDNode*>::const_iterator 1371 UVI = UserVariables.begin(), UVE = UserVariables.end(); UVI != UVE; 1372 ++UVI) { 1373 const MDNode *Var = *UVI; 1374 if (Processed.count(Var)) 1375 continue; 1376 1377 // History contains relevant DBG_VALUE instructions for Var and instructions 1378 // clobbering it. 1379 SmallVectorImpl<const MachineInstr*> &History = DbgValues[Var]; 1380 if (History.empty()) 1381 continue; 1382 const MachineInstr *MInsn = History.front(); 1383 1384 DIVariable DV(Var); 1385 LexicalScope *Scope = NULL; 1386 if (DV.getTag() == dwarf::DW_TAG_arg_variable && 1387 DISubprogram(DV.getContext()).describes(MF->getFunction())) 1388 Scope = LScopes.getCurrentFunctionScope(); 1389 else if (MDNode *IA = DV.getInlinedAt()) 1390 Scope = LScopes.findInlinedScope(DebugLoc::getFromDILocation(IA)); 1391 else 1392 Scope = LScopes.findLexicalScope(cast<MDNode>(DV->getOperand(1))); 1393 // If variable scope is not found then skip this variable. 1394 if (!Scope) 1395 continue; 1396 1397 Processed.insert(DV); 1398 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1399 DbgVariable *AbsVar = findAbstractVariable(DV, MInsn->getDebugLoc()); 1400 DbgVariable *RegVar = new DbgVariable(DV, AbsVar); 1401 if (!addCurrentFnArgument(MF, RegVar, Scope)) 1402 addScopeVariable(Scope, RegVar); 1403 if (AbsVar) 1404 AbsVar->setMInsn(MInsn); 1405 1406 // Simplify ranges that are fully coalesced. 1407 if (History.size() <= 1 || (History.size() == 2 && 1408 MInsn->isIdenticalTo(History.back()))) { 1409 RegVar->setMInsn(MInsn); 1410 continue; 1411 } 1412 1413 // Handle multiple DBG_VALUE instructions describing one variable. 1414 RegVar->setDotDebugLocOffset(DotDebugLocEntries.size()); 1415 1416 for (SmallVectorImpl<const MachineInstr*>::const_iterator 1417 HI = History.begin(), HE = History.end(); HI != HE; ++HI) { 1418 const MachineInstr *Begin = *HI; 1419 assert(Begin->isDebugValue() && "Invalid History entry"); 1420 1421 // Check if DBG_VALUE is truncating a range. 1422 if (Begin->getNumOperands() > 1 && Begin->getOperand(0).isReg() 1423 && !Begin->getOperand(0).getReg()) 1424 continue; 1425 1426 // Compute the range for a register location. 1427 const MCSymbol *FLabel = getLabelBeforeInsn(Begin); 1428 const MCSymbol *SLabel = 0; 1429 1430 if (HI + 1 == HE) 1431 // If Begin is the last instruction in History then its value is valid 1432 // until the end of the function. 1433 SLabel = FunctionEndSym; 1434 else { 1435 const MachineInstr *End = HI[1]; 1436 DEBUG(dbgs() << "DotDebugLoc Pair:\n" 1437 << "\t" << *Begin << "\t" << *End << "\n"); 1438 if (End->isDebugValue()) 1439 SLabel = getLabelBeforeInsn(End); 1440 else { 1441 // End is a normal instruction clobbering the range. 1442 SLabel = getLabelAfterInsn(End); 1443 assert(SLabel && "Forgot label after clobber instruction"); 1444 ++HI; 1445 } 1446 } 1447 1448 // The value is valid until the next DBG_VALUE or clobber. 1449 DotDebugLocEntries.push_back(getDebugLocEntry(Asm, FLabel, SLabel, 1450 Begin)); 1451 } 1452 DotDebugLocEntries.push_back(DotDebugLocEntry()); 1453 } 1454 1455 // Collect info for variables that were optimized out. 1456 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1457 DIArray Variables = DISubprogram(FnScope->getScopeNode()).getVariables(); 1458 for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) { 1459 DIVariable DV(Variables.getElement(i)); 1460 if (!DV || !DV.isVariable() || !Processed.insert(DV)) 1461 continue; 1462 if (LexicalScope *Scope = LScopes.findLexicalScope(DV.getContext())) 1463 addScopeVariable(Scope, new DbgVariable(DV, NULL)); 1464 } 1465} 1466 1467// Return Label preceding the instruction. 1468MCSymbol *DwarfDebug::getLabelBeforeInsn(const MachineInstr *MI) { 1469 MCSymbol *Label = LabelsBeforeInsn.lookup(MI); 1470 assert(Label && "Didn't insert label before instruction"); 1471 return Label; 1472} 1473 1474// Return Label immediately following the instruction. 1475MCSymbol *DwarfDebug::getLabelAfterInsn(const MachineInstr *MI) { 1476 return LabelsAfterInsn.lookup(MI); 1477} 1478 1479// Process beginning of an instruction. 1480void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1481 // Check if source location changes, but ignore DBG_VALUE locations. 1482 if (!MI->isDebugValue()) { 1483 DebugLoc DL = MI->getDebugLoc(); 1484 if (DL != PrevInstLoc && (!DL.isUnknown() || UnknownLocations)) { 1485 unsigned Flags = 0; 1486 PrevInstLoc = DL; 1487 if (DL == PrologEndLoc) { 1488 Flags |= DWARF2_FLAG_PROLOGUE_END; 1489 PrologEndLoc = DebugLoc(); 1490 } 1491 if (PrologEndLoc.isUnknown()) 1492 Flags |= DWARF2_FLAG_IS_STMT; 1493 1494 if (!DL.isUnknown()) { 1495 const MDNode *Scope = DL.getScope(Asm->MF->getFunction()->getContext()); 1496 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1497 } else 1498 recordSourceLine(0, 0, 0, 0); 1499 } 1500 } 1501 1502 // Insert labels where requested. 1503 DenseMap<const MachineInstr*, MCSymbol*>::iterator I = 1504 LabelsBeforeInsn.find(MI); 1505 1506 // No label needed. 1507 if (I == LabelsBeforeInsn.end()) 1508 return; 1509 1510 // Label already assigned. 1511 if (I->second) 1512 return; 1513 1514 if (!PrevLabel) { 1515 PrevLabel = MMI->getContext().CreateTempSymbol(); 1516 Asm->OutStreamer.EmitLabel(PrevLabel); 1517 } 1518 I->second = PrevLabel; 1519} 1520 1521// Process end of an instruction. 1522void DwarfDebug::endInstruction(const MachineInstr *MI) { 1523 // Don't create a new label after DBG_VALUE instructions. 1524 // They don't generate code. 1525 if (!MI->isDebugValue()) 1526 PrevLabel = 0; 1527 1528 DenseMap<const MachineInstr*, MCSymbol*>::iterator I = 1529 LabelsAfterInsn.find(MI); 1530 1531 // No label needed. 1532 if (I == LabelsAfterInsn.end()) 1533 return; 1534 1535 // Label already assigned. 1536 if (I->second) 1537 return; 1538 1539 // We need a label after this instruction. 1540 if (!PrevLabel) { 1541 PrevLabel = MMI->getContext().CreateTempSymbol(); 1542 Asm->OutStreamer.EmitLabel(PrevLabel); 1543 } 1544 I->second = PrevLabel; 1545} 1546 1547// Each LexicalScope has first instruction and last instruction to mark 1548// beginning and end of a scope respectively. Create an inverse map that list 1549// scopes starts (and ends) with an instruction. One instruction may start (or 1550// end) multiple scopes. Ignore scopes that are not reachable. 1551void DwarfDebug::identifyScopeMarkers() { 1552 SmallVector<LexicalScope *, 4> WorkList; 1553 WorkList.push_back(LScopes.getCurrentFunctionScope()); 1554 while (!WorkList.empty()) { 1555 LexicalScope *S = WorkList.pop_back_val(); 1556 1557 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren(); 1558 if (!Children.empty()) 1559 for (SmallVectorImpl<LexicalScope *>::const_iterator SI = Children.begin(), 1560 SE = Children.end(); SI != SE; ++SI) 1561 WorkList.push_back(*SI); 1562 1563 if (S->isAbstractScope()) 1564 continue; 1565 1566 const SmallVectorImpl<InsnRange> &Ranges = S->getRanges(); 1567 if (Ranges.empty()) 1568 continue; 1569 for (SmallVectorImpl<InsnRange>::const_iterator RI = Ranges.begin(), 1570 RE = Ranges.end(); RI != RE; ++RI) { 1571 assert(RI->first && "InsnRange does not have first instruction!"); 1572 assert(RI->second && "InsnRange does not have second instruction!"); 1573 requestLabelBeforeInsn(RI->first); 1574 requestLabelAfterInsn(RI->second); 1575 } 1576 } 1577} 1578 1579// Get MDNode for DebugLoc's scope. 1580static MDNode *getScopeNode(DebugLoc DL, const LLVMContext &Ctx) { 1581 if (MDNode *InlinedAt = DL.getInlinedAt(Ctx)) 1582 return getScopeNode(DebugLoc::getFromDILocation(InlinedAt), Ctx); 1583 return DL.getScope(Ctx); 1584} 1585 1586// Walk up the scope chain of given debug loc and find line number info 1587// for the function. 1588static DebugLoc getFnDebugLoc(DebugLoc DL, const LLVMContext &Ctx) { 1589 const MDNode *Scope = getScopeNode(DL, Ctx); 1590 DISubprogram SP = getDISubprogram(Scope); 1591 if (SP.isSubprogram()) { 1592 // Check for number of operands since the compatibility is 1593 // cheap here. 1594 if (SP->getNumOperands() > 19) 1595 return DebugLoc::get(SP.getScopeLineNumber(), 0, SP); 1596 else 1597 return DebugLoc::get(SP.getLineNumber(), 0, SP); 1598 } 1599 1600 return DebugLoc(); 1601} 1602 1603// Gather pre-function debug information. Assumes being called immediately 1604// after the function entry point has been emitted. 1605void DwarfDebug::beginFunction(const MachineFunction *MF) { 1606 if (!MMI->hasDebugInfo()) return; 1607 LScopes.initialize(*MF); 1608 if (LScopes.empty()) return; 1609 identifyScopeMarkers(); 1610 1611 // Set DwarfCompileUnitID in MCContext to the Compile Unit this function 1612 // belongs to. 1613 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1614 CompileUnit *TheCU = SPMap.lookup(FnScope->getScopeNode()); 1615 assert(TheCU && "Unable to find compile unit!"); 1616 if (Asm->TM.hasMCUseLoc() && 1617 Asm->OutStreamer.getKind() == MCStreamer::SK_AsmStreamer) 1618 // Use a single line table if we are using .loc and generating assembly. 1619 Asm->OutStreamer.getContext().setDwarfCompileUnitID(0); 1620 else 1621 Asm->OutStreamer.getContext().setDwarfCompileUnitID(TheCU->getUniqueID()); 1622 1623 FunctionBeginSym = Asm->GetTempSymbol("func_begin", 1624 Asm->getFunctionNumber()); 1625 // Assumes in correct section after the entry point. 1626 Asm->OutStreamer.EmitLabel(FunctionBeginSym); 1627 1628 assert(UserVariables.empty() && DbgValues.empty() && "Maps weren't cleaned"); 1629 1630 const TargetRegisterInfo *TRI = Asm->TM.getRegisterInfo(); 1631 // LiveUserVar - Map physreg numbers to the MDNode they contain. 1632 std::vector<const MDNode*> LiveUserVar(TRI->getNumRegs()); 1633 1634 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 1635 I != E; ++I) { 1636 bool AtBlockEntry = true; 1637 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); 1638 II != IE; ++II) { 1639 const MachineInstr *MI = II; 1640 1641 if (MI->isDebugValue()) { 1642 assert(MI->getNumOperands() > 1 && "Invalid machine instruction!"); 1643 1644 // Keep track of user variables. 1645 const MDNode *Var = 1646 MI->getOperand(MI->getNumOperands() - 1).getMetadata(); 1647 1648 // Variable is in a register, we need to check for clobbers. 1649 if (isDbgValueInDefinedReg(MI)) 1650 LiveUserVar[MI->getOperand(0).getReg()] = Var; 1651 1652 // Check the history of this variable. 1653 SmallVectorImpl<const MachineInstr*> &History = DbgValues[Var]; 1654 if (History.empty()) { 1655 UserVariables.push_back(Var); 1656 // The first mention of a function argument gets the FunctionBeginSym 1657 // label, so arguments are visible when breaking at function entry. 1658 DIVariable DV(Var); 1659 if (DV.isVariable() && DV.getTag() == dwarf::DW_TAG_arg_variable && 1660 DISubprogram(getDISubprogram(DV.getContext())) 1661 .describes(MF->getFunction())) 1662 LabelsBeforeInsn[MI] = FunctionBeginSym; 1663 } else { 1664 // We have seen this variable before. Try to coalesce DBG_VALUEs. 1665 const MachineInstr *Prev = History.back(); 1666 if (Prev->isDebugValue()) { 1667 // Coalesce identical entries at the end of History. 1668 if (History.size() >= 2 && 1669 Prev->isIdenticalTo(History[History.size() - 2])) { 1670 DEBUG(dbgs() << "Coalescing identical DBG_VALUE entries:\n" 1671 << "\t" << *Prev 1672 << "\t" << *History[History.size() - 2] << "\n"); 1673 History.pop_back(); 1674 } 1675 1676 // Terminate old register assignments that don't reach MI; 1677 MachineFunction::const_iterator PrevMBB = Prev->getParent(); 1678 if (PrevMBB != I && (!AtBlockEntry || llvm::next(PrevMBB) != I) && 1679 isDbgValueInDefinedReg(Prev)) { 1680 // Previous register assignment needs to terminate at the end of 1681 // its basic block. 1682 MachineBasicBlock::const_iterator LastMI = 1683 PrevMBB->getLastNonDebugInstr(); 1684 if (LastMI == PrevMBB->end()) { 1685 // Drop DBG_VALUE for empty range. 1686 DEBUG(dbgs() << "Dropping DBG_VALUE for empty range:\n" 1687 << "\t" << *Prev << "\n"); 1688 History.pop_back(); 1689 } else if (llvm::next(PrevMBB) != PrevMBB->getParent()->end()) 1690 // Terminate after LastMI. 1691 History.push_back(LastMI); 1692 } 1693 } 1694 } 1695 History.push_back(MI); 1696 } else { 1697 // Not a DBG_VALUE instruction. 1698 if (!MI->isLabel()) 1699 AtBlockEntry = false; 1700 1701 // First known non-DBG_VALUE and non-frame setup location marks 1702 // the beginning of the function body. 1703 if (!MI->getFlag(MachineInstr::FrameSetup) && 1704 (PrologEndLoc.isUnknown() && !MI->getDebugLoc().isUnknown())) 1705 PrologEndLoc = MI->getDebugLoc(); 1706 1707 // Check if the instruction clobbers any registers with debug vars. 1708 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), 1709 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 1710 if (!MOI->isReg() || !MOI->isDef() || !MOI->getReg()) 1711 continue; 1712 for (MCRegAliasIterator AI(MOI->getReg(), TRI, true); 1713 AI.isValid(); ++AI) { 1714 unsigned Reg = *AI; 1715 const MDNode *Var = LiveUserVar[Reg]; 1716 if (!Var) 1717 continue; 1718 // Reg is now clobbered. 1719 LiveUserVar[Reg] = 0; 1720 1721 // Was MD last defined by a DBG_VALUE referring to Reg? 1722 DbgValueHistoryMap::iterator HistI = DbgValues.find(Var); 1723 if (HistI == DbgValues.end()) 1724 continue; 1725 SmallVectorImpl<const MachineInstr*> &History = HistI->second; 1726 if (History.empty()) 1727 continue; 1728 const MachineInstr *Prev = History.back(); 1729 // Sanity-check: Register assignments are terminated at the end of 1730 // their block. 1731 if (!Prev->isDebugValue() || Prev->getParent() != MI->getParent()) 1732 continue; 1733 // Is the variable still in Reg? 1734 if (!isDbgValueInDefinedReg(Prev) || 1735 Prev->getOperand(0).getReg() != Reg) 1736 continue; 1737 // Var is clobbered. Make sure the next instruction gets a label. 1738 History.push_back(MI); 1739 } 1740 } 1741 } 1742 } 1743 } 1744 1745 for (DbgValueHistoryMap::iterator I = DbgValues.begin(), E = DbgValues.end(); 1746 I != E; ++I) { 1747 SmallVectorImpl<const MachineInstr*> &History = I->second; 1748 if (History.empty()) 1749 continue; 1750 1751 // Make sure the final register assignments are terminated. 1752 const MachineInstr *Prev = History.back(); 1753 if (Prev->isDebugValue() && isDbgValueInDefinedReg(Prev)) { 1754 const MachineBasicBlock *PrevMBB = Prev->getParent(); 1755 MachineBasicBlock::const_iterator LastMI = 1756 PrevMBB->getLastNonDebugInstr(); 1757 if (LastMI == PrevMBB->end()) 1758 // Drop DBG_VALUE for empty range. 1759 History.pop_back(); 1760 else if (PrevMBB != &PrevMBB->getParent()->back()) { 1761 // Terminate after LastMI. 1762 History.push_back(LastMI); 1763 } 1764 } 1765 // Request labels for the full history. 1766 for (unsigned i = 0, e = History.size(); i != e; ++i) { 1767 const MachineInstr *MI = History[i]; 1768 if (MI->isDebugValue()) 1769 requestLabelBeforeInsn(MI); 1770 else 1771 requestLabelAfterInsn(MI); 1772 } 1773 } 1774 1775 PrevInstLoc = DebugLoc(); 1776 PrevLabel = FunctionBeginSym; 1777 1778 // Record beginning of function. 1779 if (!PrologEndLoc.isUnknown()) { 1780 DebugLoc FnStartDL = getFnDebugLoc(PrologEndLoc, 1781 MF->getFunction()->getContext()); 1782 recordSourceLine(FnStartDL.getLine(), FnStartDL.getCol(), 1783 FnStartDL.getScope(MF->getFunction()->getContext()), 1784 // We'd like to list the prologue as "not statements" but GDB behaves 1785 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 1786 DWARF2_FLAG_IS_STMT); 1787 } 1788} 1789 1790void DwarfDebug::addScopeVariable(LexicalScope *LS, DbgVariable *Var) { 1791 SmallVectorImpl<DbgVariable *> &Vars = ScopeVariables[LS]; 1792 DIVariable DV = Var->getVariable(); 1793 // Variables with positive arg numbers are parameters. 1794 if (unsigned ArgNum = DV.getArgNumber()) { 1795 // Keep all parameters in order at the start of the variable list to ensure 1796 // function types are correct (no out-of-order parameters) 1797 // 1798 // This could be improved by only doing it for optimized builds (unoptimized 1799 // builds have the right order to begin with), searching from the back (this 1800 // would catch the unoptimized case quickly), or doing a binary search 1801 // rather than linear search. 1802 SmallVectorImpl<DbgVariable *>::iterator I = Vars.begin(); 1803 while (I != Vars.end()) { 1804 unsigned CurNum = (*I)->getVariable().getArgNumber(); 1805 // A local (non-parameter) variable has been found, insert immediately 1806 // before it. 1807 if (CurNum == 0) 1808 break; 1809 // A later indexed parameter has been found, insert immediately before it. 1810 if (CurNum > ArgNum) 1811 break; 1812 ++I; 1813 } 1814 Vars.insert(I, Var); 1815 return; 1816 } 1817 1818 Vars.push_back(Var); 1819} 1820 1821// Gather and emit post-function debug information. 1822void DwarfDebug::endFunction(const MachineFunction *MF) { 1823 if (!MMI->hasDebugInfo() || LScopes.empty()) return; 1824 1825 // Define end label for subprogram. 1826 FunctionEndSym = Asm->GetTempSymbol("func_end", 1827 Asm->getFunctionNumber()); 1828 // Assumes in correct section after the entry point. 1829 Asm->OutStreamer.EmitLabel(FunctionEndSym); 1830 // Set DwarfCompileUnitID in MCContext to default value. 1831 Asm->OutStreamer.getContext().setDwarfCompileUnitID(0); 1832 1833 SmallPtrSet<const MDNode *, 16> ProcessedVars; 1834 collectVariableInfo(MF, ProcessedVars); 1835 1836 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1837 CompileUnit *TheCU = SPMap.lookup(FnScope->getScopeNode()); 1838 assert(TheCU && "Unable to find compile unit!"); 1839 1840 // Construct abstract scopes. 1841 ArrayRef<LexicalScope *> AList = LScopes.getAbstractScopesList(); 1842 for (unsigned i = 0, e = AList.size(); i != e; ++i) { 1843 LexicalScope *AScope = AList[i]; 1844 DISubprogram SP(AScope->getScopeNode()); 1845 if (SP.isSubprogram()) { 1846 // Collect info for variables that were optimized out. 1847 DIArray Variables = SP.getVariables(); 1848 for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) { 1849 DIVariable DV(Variables.getElement(i)); 1850 if (!DV || !DV.isVariable() || !ProcessedVars.insert(DV)) 1851 continue; 1852 // Check that DbgVariable for DV wasn't created earlier, when 1853 // findAbstractVariable() was called for inlined instance of DV. 1854 LLVMContext &Ctx = DV->getContext(); 1855 DIVariable CleanDV = cleanseInlinedVariable(DV, Ctx); 1856 if (AbstractVariables.lookup(CleanDV)) 1857 continue; 1858 if (LexicalScope *Scope = LScopes.findAbstractScope(DV.getContext())) 1859 addScopeVariable(Scope, new DbgVariable(DV, NULL)); 1860 } 1861 } 1862 if (ProcessedSPNodes.count(AScope->getScopeNode()) == 0) 1863 constructScopeDIE(TheCU, AScope); 1864 } 1865 1866 DIE *CurFnDIE = constructScopeDIE(TheCU, FnScope); 1867 1868 if (!MF->getTarget().Options.DisableFramePointerElim(*MF)) 1869 TheCU->addFlag(CurFnDIE, dwarf::DW_AT_APPLE_omit_frame_ptr); 1870 1871 // Clear debug info 1872 for (ScopeVariablesMap::iterator 1873 I = ScopeVariables.begin(), E = ScopeVariables.end(); I != E; ++I) 1874 DeleteContainerPointers(I->second); 1875 ScopeVariables.clear(); 1876 DeleteContainerPointers(CurrentFnArguments); 1877 UserVariables.clear(); 1878 DbgValues.clear(); 1879 AbstractVariables.clear(); 1880 LabelsBeforeInsn.clear(); 1881 LabelsAfterInsn.clear(); 1882 PrevLabel = NULL; 1883} 1884 1885// Register a source line with debug info. Returns the unique label that was 1886// emitted and which provides correspondence to the source line list. 1887void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 1888 unsigned Flags) { 1889 StringRef Fn; 1890 StringRef Dir; 1891 unsigned Src = 1; 1892 if (S) { 1893 DIDescriptor Scope(S); 1894 1895 if (Scope.isCompileUnit()) { 1896 DICompileUnit CU(S); 1897 Fn = CU.getFilename(); 1898 Dir = CU.getDirectory(); 1899 } else if (Scope.isFile()) { 1900 DIFile F(S); 1901 Fn = F.getFilename(); 1902 Dir = F.getDirectory(); 1903 } else if (Scope.isSubprogram()) { 1904 DISubprogram SP(S); 1905 Fn = SP.getFilename(); 1906 Dir = SP.getDirectory(); 1907 } else if (Scope.isLexicalBlockFile()) { 1908 DILexicalBlockFile DBF(S); 1909 Fn = DBF.getFilename(); 1910 Dir = DBF.getDirectory(); 1911 } else if (Scope.isLexicalBlock()) { 1912 DILexicalBlock DB(S); 1913 Fn = DB.getFilename(); 1914 Dir = DB.getDirectory(); 1915 } else 1916 llvm_unreachable("Unexpected scope info"); 1917 1918 Src = getOrCreateSourceID(Fn, Dir, 1919 Asm->OutStreamer.getContext().getDwarfCompileUnitID()); 1920 } 1921 Asm->OutStreamer.EmitDwarfLocDirective(Src, Line, Col, Flags, 0, 0, Fn); 1922} 1923 1924//===----------------------------------------------------------------------===// 1925// Emit Methods 1926//===----------------------------------------------------------------------===// 1927 1928// Compute the size and offset of a DIE. 1929unsigned 1930DwarfUnits::computeSizeAndOffset(DIE *Die, unsigned Offset) { 1931 // Get the children. 1932 const std::vector<DIE *> &Children = Die->getChildren(); 1933 1934 // Record the abbreviation. 1935 assignAbbrevNumber(Die->getAbbrev()); 1936 1937 // Get the abbreviation for this DIE. 1938 unsigned AbbrevNumber = Die->getAbbrevNumber(); 1939 const DIEAbbrev *Abbrev = Abbreviations->at(AbbrevNumber - 1); 1940 1941 // Set DIE offset 1942 Die->setOffset(Offset); 1943 1944 // Start the size with the size of abbreviation code. 1945 Offset += MCAsmInfo::getULEB128Size(AbbrevNumber); 1946 1947 const SmallVectorImpl<DIEValue*> &Values = Die->getValues(); 1948 const SmallVectorImpl<DIEAbbrevData> &AbbrevData = Abbrev->getData(); 1949 1950 // Size the DIE attribute values. 1951 for (unsigned i = 0, N = Values.size(); i < N; ++i) 1952 // Size attribute value. 1953 Offset += Values[i]->SizeOf(Asm, AbbrevData[i].getForm()); 1954 1955 // Size the DIE children if any. 1956 if (!Children.empty()) { 1957 assert(Abbrev->getChildrenFlag() == dwarf::DW_CHILDREN_yes && 1958 "Children flag not set"); 1959 1960 for (unsigned j = 0, M = Children.size(); j < M; ++j) 1961 Offset = computeSizeAndOffset(Children[j], Offset); 1962 1963 // End of children marker. 1964 Offset += sizeof(int8_t); 1965 } 1966 1967 Die->setSize(Offset - Die->getOffset()); 1968 return Offset; 1969} 1970 1971// Compute the size and offset of all the DIEs. 1972void DwarfUnits::computeSizeAndOffsets() { 1973 // Offset from the beginning of debug info section. 1974 unsigned SecOffset = 0; 1975 for (SmallVectorImpl<CompileUnit *>::iterator I = CUs.begin(), 1976 E = CUs.end(); I != E; ++I) { 1977 (*I)->setDebugInfoOffset(SecOffset); 1978 unsigned Offset = 1979 sizeof(int32_t) + // Length of Compilation Unit Info 1980 sizeof(int16_t) + // DWARF version number 1981 sizeof(int32_t) + // Offset Into Abbrev. Section 1982 sizeof(int8_t); // Pointer Size (in bytes) 1983 1984 unsigned EndOffset = computeSizeAndOffset((*I)->getCUDie(), Offset); 1985 SecOffset += EndOffset; 1986 } 1987} 1988 1989// Emit initial Dwarf sections with a label at the start of each one. 1990void DwarfDebug::emitSectionLabels() { 1991 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1992 1993 // Dwarf sections base addresses. 1994 DwarfInfoSectionSym = 1995 emitSectionSym(Asm, TLOF.getDwarfInfoSection(), "section_info"); 1996 DwarfAbbrevSectionSym = 1997 emitSectionSym(Asm, TLOF.getDwarfAbbrevSection(), "section_abbrev"); 1998 if (useSplitDwarf()) 1999 DwarfAbbrevDWOSectionSym = 2000 emitSectionSym(Asm, TLOF.getDwarfAbbrevDWOSection(), 2001 "section_abbrev_dwo"); 2002 emitSectionSym(Asm, TLOF.getDwarfARangesSection()); 2003 2004 if (const MCSection *MacroInfo = TLOF.getDwarfMacroInfoSection()) 2005 emitSectionSym(Asm, MacroInfo); 2006 2007 DwarfLineSectionSym = 2008 emitSectionSym(Asm, TLOF.getDwarfLineSection(), "section_line"); 2009 emitSectionSym(Asm, TLOF.getDwarfLocSection()); 2010 if (GenerateDwarfPubNamesSection) 2011 emitSectionSym(Asm, TLOF.getDwarfPubNamesSection()); 2012 emitSectionSym(Asm, TLOF.getDwarfPubTypesSection()); 2013 DwarfStrSectionSym = 2014 emitSectionSym(Asm, TLOF.getDwarfStrSection(), "info_string"); 2015 if (useSplitDwarf()) { 2016 DwarfStrDWOSectionSym = 2017 emitSectionSym(Asm, TLOF.getDwarfStrDWOSection(), "skel_string"); 2018 DwarfAddrSectionSym = 2019 emitSectionSym(Asm, TLOF.getDwarfAddrSection(), "addr_sec"); 2020 } 2021 DwarfDebugRangeSectionSym = emitSectionSym(Asm, TLOF.getDwarfRangesSection(), 2022 "debug_range"); 2023 2024 DwarfDebugLocSectionSym = emitSectionSym(Asm, TLOF.getDwarfLocSection(), 2025 "section_debug_loc"); 2026 2027 TextSectionSym = emitSectionSym(Asm, TLOF.getTextSection(), "text_begin"); 2028 emitSectionSym(Asm, TLOF.getDataSection()); 2029} 2030 2031// Recursively emits a debug information entry. 2032void DwarfDebug::emitDIE(DIE *Die, std::vector<DIEAbbrev *> *Abbrevs) { 2033 // Get the abbreviation for this DIE. 2034 unsigned AbbrevNumber = Die->getAbbrevNumber(); 2035 const DIEAbbrev *Abbrev = Abbrevs->at(AbbrevNumber - 1); 2036 2037 // Emit the code (index) for the abbreviation. 2038 if (Asm->isVerbose()) 2039 Asm->OutStreamer.AddComment("Abbrev [" + Twine(AbbrevNumber) + "] 0x" + 2040 Twine::utohexstr(Die->getOffset()) + ":0x" + 2041 Twine::utohexstr(Die->getSize()) + " " + 2042 dwarf::TagString(Abbrev->getTag())); 2043 Asm->EmitULEB128(AbbrevNumber); 2044 2045 const SmallVectorImpl<DIEValue*> &Values = Die->getValues(); 2046 const SmallVectorImpl<DIEAbbrevData> &AbbrevData = Abbrev->getData(); 2047 2048 // Emit the DIE attribute values. 2049 for (unsigned i = 0, N = Values.size(); i < N; ++i) { 2050 unsigned Attr = AbbrevData[i].getAttribute(); 2051 unsigned Form = AbbrevData[i].getForm(); 2052 assert(Form && "Too many attributes for DIE (check abbreviation)"); 2053 2054 if (Asm->isVerbose()) 2055 Asm->OutStreamer.AddComment(dwarf::AttributeString(Attr)); 2056 2057 switch (Attr) { 2058 case dwarf::DW_AT_abstract_origin: { 2059 DIEEntry *E = cast<DIEEntry>(Values[i]); 2060 DIE *Origin = E->getEntry(); 2061 unsigned Addr = Origin->getOffset(); 2062 if (Form == dwarf::DW_FORM_ref_addr) { 2063 // For DW_FORM_ref_addr, output the offset from beginning of debug info 2064 // section. Origin->getOffset() returns the offset from start of the 2065 // compile unit. 2066 DwarfUnits &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2067 Addr += Holder.getCUOffset(Origin->getCompileUnit()); 2068 } 2069 Asm->OutStreamer.EmitIntValue(Addr, 2070 Form == dwarf::DW_FORM_ref_addr ? DIEEntry::getRefAddrSize(Asm) : 4); 2071 break; 2072 } 2073 case dwarf::DW_AT_ranges: { 2074 // DW_AT_range Value encodes offset in debug_range section. 2075 DIEInteger *V = cast<DIEInteger>(Values[i]); 2076 2077 if (Asm->MAI->doesDwarfUseRelocationsAcrossSections()) { 2078 Asm->EmitLabelPlusOffset(DwarfDebugRangeSectionSym, 2079 V->getValue(), 2080 4); 2081 } else { 2082 Asm->EmitLabelOffsetDifference(DwarfDebugRangeSectionSym, 2083 V->getValue(), 2084 DwarfDebugRangeSectionSym, 2085 4); 2086 } 2087 break; 2088 } 2089 case dwarf::DW_AT_location: { 2090 if (DIELabel *L = dyn_cast<DIELabel>(Values[i])) { 2091 if (Asm->MAI->doesDwarfUseRelocationsAcrossSections()) 2092 Asm->EmitLabelReference(L->getValue(), 4); 2093 else 2094 Asm->EmitLabelDifference(L->getValue(), DwarfDebugLocSectionSym, 4); 2095 } else { 2096 Values[i]->EmitValue(Asm, Form); 2097 } 2098 break; 2099 } 2100 case dwarf::DW_AT_accessibility: { 2101 if (Asm->isVerbose()) { 2102 DIEInteger *V = cast<DIEInteger>(Values[i]); 2103 Asm->OutStreamer.AddComment(dwarf::AccessibilityString(V->getValue())); 2104 } 2105 Values[i]->EmitValue(Asm, Form); 2106 break; 2107 } 2108 default: 2109 // Emit an attribute using the defined form. 2110 Values[i]->EmitValue(Asm, Form); 2111 break; 2112 } 2113 } 2114 2115 // Emit the DIE children if any. 2116 if (Abbrev->getChildrenFlag() == dwarf::DW_CHILDREN_yes) { 2117 const std::vector<DIE *> &Children = Die->getChildren(); 2118 2119 for (unsigned j = 0, M = Children.size(); j < M; ++j) 2120 emitDIE(Children[j], Abbrevs); 2121 2122 if (Asm->isVerbose()) 2123 Asm->OutStreamer.AddComment("End Of Children Mark"); 2124 Asm->EmitInt8(0); 2125 } 2126} 2127 2128// Emit the various dwarf units to the unit section USection with 2129// the abbreviations going into ASection. 2130void DwarfUnits::emitUnits(DwarfDebug *DD, 2131 const MCSection *USection, 2132 const MCSection *ASection, 2133 const MCSymbol *ASectionSym) { 2134 Asm->OutStreamer.SwitchSection(USection); 2135 for (SmallVectorImpl<CompileUnit *>::iterator I = CUs.begin(), 2136 E = CUs.end(); I != E; ++I) { 2137 CompileUnit *TheCU = *I; 2138 DIE *Die = TheCU->getCUDie(); 2139 2140 // Emit the compile units header. 2141 Asm->OutStreamer 2142 .EmitLabel(Asm->GetTempSymbol(USection->getLabelBeginName(), 2143 TheCU->getUniqueID())); 2144 2145 // Emit size of content not including length itself 2146 unsigned ContentSize = Die->getSize() + 2147 sizeof(int16_t) + // DWARF version number 2148 sizeof(int32_t) + // Offset Into Abbrev. Section 2149 sizeof(int8_t); // Pointer Size (in bytes) 2150 2151 Asm->OutStreamer.AddComment("Length of Compilation Unit Info"); 2152 Asm->EmitInt32(ContentSize); 2153 Asm->OutStreamer.AddComment("DWARF version number"); 2154 Asm->EmitInt16(DD->getDwarfVersion()); 2155 Asm->OutStreamer.AddComment("Offset Into Abbrev. Section"); 2156 Asm->EmitSectionOffset(Asm->GetTempSymbol(ASection->getLabelBeginName()), 2157 ASectionSym); 2158 Asm->OutStreamer.AddComment("Address Size (in bytes)"); 2159 Asm->EmitInt8(Asm->getDataLayout().getPointerSize()); 2160 2161 DD->emitDIE(Die, Abbreviations); 2162 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol(USection->getLabelEndName(), 2163 TheCU->getUniqueID())); 2164 } 2165} 2166 2167/// For a given compile unit DIE, returns offset from beginning of debug info. 2168unsigned DwarfUnits::getCUOffset(DIE *Die) { 2169 assert(Die->getTag() == dwarf::DW_TAG_compile_unit && 2170 "Input DIE should be compile unit in getCUOffset."); 2171 for (SmallVectorImpl<CompileUnit *>::iterator I = CUs.begin(), 2172 E = CUs.end(); I != E; ++I) { 2173 CompileUnit *TheCU = *I; 2174 if (TheCU->getCUDie() == Die) 2175 return TheCU->getDebugInfoOffset(); 2176 } 2177 llvm_unreachable("The compile unit DIE should belong to CUs in DwarfUnits."); 2178} 2179 2180// Emit the debug info section. 2181void DwarfDebug::emitDebugInfo() { 2182 DwarfUnits &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2183 2184 Holder.emitUnits(this, Asm->getObjFileLowering().getDwarfInfoSection(), 2185 Asm->getObjFileLowering().getDwarfAbbrevSection(), 2186 DwarfAbbrevSectionSym); 2187} 2188 2189// Emit the abbreviation section. 2190void DwarfDebug::emitAbbreviations() { 2191 if (!useSplitDwarf()) 2192 emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection(), 2193 &Abbreviations); 2194 else 2195 emitSkeletonAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2196} 2197 2198void DwarfDebug::emitAbbrevs(const MCSection *Section, 2199 std::vector<DIEAbbrev *> *Abbrevs) { 2200 // Check to see if it is worth the effort. 2201 if (!Abbrevs->empty()) { 2202 // Start the debug abbrev section. 2203 Asm->OutStreamer.SwitchSection(Section); 2204 2205 MCSymbol *Begin = Asm->GetTempSymbol(Section->getLabelBeginName()); 2206 Asm->OutStreamer.EmitLabel(Begin); 2207 2208 // For each abbrevation. 2209 for (unsigned i = 0, N = Abbrevs->size(); i < N; ++i) { 2210 // Get abbreviation data 2211 const DIEAbbrev *Abbrev = Abbrevs->at(i); 2212 2213 // Emit the abbrevations code (base 1 index.) 2214 Asm->EmitULEB128(Abbrev->getNumber(), "Abbreviation Code"); 2215 2216 // Emit the abbreviations data. 2217 Abbrev->Emit(Asm); 2218 } 2219 2220 // Mark end of abbreviations. 2221 Asm->EmitULEB128(0, "EOM(3)"); 2222 2223 MCSymbol *End = Asm->GetTempSymbol(Section->getLabelEndName()); 2224 Asm->OutStreamer.EmitLabel(End); 2225 } 2226} 2227 2228// Emit the last address of the section and the end of the line matrix. 2229void DwarfDebug::emitEndOfLineMatrix(unsigned SectionEnd) { 2230 // Define last address of section. 2231 Asm->OutStreamer.AddComment("Extended Op"); 2232 Asm->EmitInt8(0); 2233 2234 Asm->OutStreamer.AddComment("Op size"); 2235 Asm->EmitInt8(Asm->getDataLayout().getPointerSize() + 1); 2236 Asm->OutStreamer.AddComment("DW_LNE_set_address"); 2237 Asm->EmitInt8(dwarf::DW_LNE_set_address); 2238 2239 Asm->OutStreamer.AddComment("Section end label"); 2240 2241 Asm->OutStreamer.EmitSymbolValue(Asm->GetTempSymbol("section_end",SectionEnd), 2242 Asm->getDataLayout().getPointerSize()); 2243 2244 // Mark end of matrix. 2245 Asm->OutStreamer.AddComment("DW_LNE_end_sequence"); 2246 Asm->EmitInt8(0); 2247 Asm->EmitInt8(1); 2248 Asm->EmitInt8(1); 2249} 2250 2251// Emit visible names into a hashed accelerator table section. 2252void DwarfDebug::emitAccelNames() { 2253 DwarfAccelTable AT(DwarfAccelTable::Atom(DwarfAccelTable::eAtomTypeDIEOffset, 2254 dwarf::DW_FORM_data4)); 2255 for (DenseMap<const MDNode *, CompileUnit *>::iterator I = CUMap.begin(), 2256 E = CUMap.end(); I != E; ++I) { 2257 CompileUnit *TheCU = I->second; 2258 const StringMap<std::vector<DIE*> > &Names = TheCU->getAccelNames(); 2259 for (StringMap<std::vector<DIE*> >::const_iterator 2260 GI = Names.begin(), GE = Names.end(); GI != GE; ++GI) { 2261 StringRef Name = GI->getKey(); 2262 const std::vector<DIE *> &Entities = GI->second; 2263 for (std::vector<DIE *>::const_iterator DI = Entities.begin(), 2264 DE = Entities.end(); DI != DE; ++DI) 2265 AT.AddName(Name, (*DI)); 2266 } 2267 } 2268 2269 AT.FinalizeTable(Asm, "Names"); 2270 Asm->OutStreamer.SwitchSection( 2271 Asm->getObjFileLowering().getDwarfAccelNamesSection()); 2272 MCSymbol *SectionBegin = Asm->GetTempSymbol("names_begin"); 2273 Asm->OutStreamer.EmitLabel(SectionBegin); 2274 2275 // Emit the full data. 2276 AT.Emit(Asm, SectionBegin, &InfoHolder); 2277} 2278 2279// Emit objective C classes and categories into a hashed accelerator table 2280// section. 2281void DwarfDebug::emitAccelObjC() { 2282 DwarfAccelTable AT(DwarfAccelTable::Atom(DwarfAccelTable::eAtomTypeDIEOffset, 2283 dwarf::DW_FORM_data4)); 2284 for (DenseMap<const MDNode *, CompileUnit *>::iterator I = CUMap.begin(), 2285 E = CUMap.end(); I != E; ++I) { 2286 CompileUnit *TheCU = I->second; 2287 const StringMap<std::vector<DIE*> > &Names = TheCU->getAccelObjC(); 2288 for (StringMap<std::vector<DIE*> >::const_iterator 2289 GI = Names.begin(), GE = Names.end(); GI != GE; ++GI) { 2290 StringRef Name = GI->getKey(); 2291 const std::vector<DIE *> &Entities = GI->second; 2292 for (std::vector<DIE *>::const_iterator DI = Entities.begin(), 2293 DE = Entities.end(); DI != DE; ++DI) 2294 AT.AddName(Name, (*DI)); 2295 } 2296 } 2297 2298 AT.FinalizeTable(Asm, "ObjC"); 2299 Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering() 2300 .getDwarfAccelObjCSection()); 2301 MCSymbol *SectionBegin = Asm->GetTempSymbol("objc_begin"); 2302 Asm->OutStreamer.EmitLabel(SectionBegin); 2303 2304 // Emit the full data. 2305 AT.Emit(Asm, SectionBegin, &InfoHolder); 2306} 2307 2308// Emit namespace dies into a hashed accelerator table. 2309void DwarfDebug::emitAccelNamespaces() { 2310 DwarfAccelTable AT(DwarfAccelTable::Atom(DwarfAccelTable::eAtomTypeDIEOffset, 2311 dwarf::DW_FORM_data4)); 2312 for (DenseMap<const MDNode *, CompileUnit *>::iterator I = CUMap.begin(), 2313 E = CUMap.end(); I != E; ++I) { 2314 CompileUnit *TheCU = I->second; 2315 const StringMap<std::vector<DIE*> > &Names = TheCU->getAccelNamespace(); 2316 for (StringMap<std::vector<DIE*> >::const_iterator 2317 GI = Names.begin(), GE = Names.end(); GI != GE; ++GI) { 2318 StringRef Name = GI->getKey(); 2319 const std::vector<DIE *> &Entities = GI->second; 2320 for (std::vector<DIE *>::const_iterator DI = Entities.begin(), 2321 DE = Entities.end(); DI != DE; ++DI) 2322 AT.AddName(Name, (*DI)); 2323 } 2324 } 2325 2326 AT.FinalizeTable(Asm, "namespac"); 2327 Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering() 2328 .getDwarfAccelNamespaceSection()); 2329 MCSymbol *SectionBegin = Asm->GetTempSymbol("namespac_begin"); 2330 Asm->OutStreamer.EmitLabel(SectionBegin); 2331 2332 // Emit the full data. 2333 AT.Emit(Asm, SectionBegin, &InfoHolder); 2334} 2335 2336// Emit type dies into a hashed accelerator table. 2337void DwarfDebug::emitAccelTypes() { 2338 std::vector<DwarfAccelTable::Atom> Atoms; 2339 Atoms.push_back(DwarfAccelTable::Atom(DwarfAccelTable::eAtomTypeDIEOffset, 2340 dwarf::DW_FORM_data4)); 2341 Atoms.push_back(DwarfAccelTable::Atom(DwarfAccelTable::eAtomTypeTag, 2342 dwarf::DW_FORM_data2)); 2343 Atoms.push_back(DwarfAccelTable::Atom(DwarfAccelTable::eAtomTypeTypeFlags, 2344 dwarf::DW_FORM_data1)); 2345 DwarfAccelTable AT(Atoms); 2346 for (DenseMap<const MDNode *, CompileUnit *>::iterator I = CUMap.begin(), 2347 E = CUMap.end(); I != E; ++I) { 2348 CompileUnit *TheCU = I->second; 2349 const StringMap<std::vector<std::pair<DIE*, unsigned > > > &Names 2350 = TheCU->getAccelTypes(); 2351 for (StringMap<std::vector<std::pair<DIE*, unsigned> > >::const_iterator 2352 GI = Names.begin(), GE = Names.end(); GI != GE; ++GI) { 2353 StringRef Name = GI->getKey(); 2354 const std::vector<std::pair<DIE *, unsigned> > &Entities = GI->second; 2355 for (std::vector<std::pair<DIE *, unsigned> >::const_iterator DI 2356 = Entities.begin(), DE = Entities.end(); DI !=DE; ++DI) 2357 AT.AddName(Name, (*DI).first, (*DI).second); 2358 } 2359 } 2360 2361 AT.FinalizeTable(Asm, "types"); 2362 Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering() 2363 .getDwarfAccelTypesSection()); 2364 MCSymbol *SectionBegin = Asm->GetTempSymbol("types_begin"); 2365 Asm->OutStreamer.EmitLabel(SectionBegin); 2366 2367 // Emit the full data. 2368 AT.Emit(Asm, SectionBegin, &InfoHolder); 2369} 2370 2371/// emitDebugPubnames - Emit visible names into a debug pubnames section. 2372/// 2373void DwarfDebug::emitDebugPubnames() { 2374 const MCSection *ISec = Asm->getObjFileLowering().getDwarfInfoSection(); 2375 2376 typedef DenseMap<const MDNode*, CompileUnit*> CUMapType; 2377 for (CUMapType::iterator I = CUMap.begin(), E = CUMap.end(); I != E; ++I) { 2378 CompileUnit *TheCU = I->second; 2379 unsigned ID = TheCU->getUniqueID(); 2380 2381 if (TheCU->getGlobalNames().empty()) 2382 continue; 2383 2384 // Start the dwarf pubnames section. 2385 Asm->OutStreamer.SwitchSection( 2386 Asm->getObjFileLowering().getDwarfPubNamesSection()); 2387 2388 Asm->OutStreamer.AddComment("Length of Public Names Info"); 2389 Asm->EmitLabelDifference(Asm->GetTempSymbol("pubnames_end", ID), 2390 Asm->GetTempSymbol("pubnames_begin", ID), 4); 2391 2392 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("pubnames_begin", ID)); 2393 2394 Asm->OutStreamer.AddComment("DWARF Version"); 2395 Asm->EmitInt16(DwarfVersion); 2396 2397 Asm->OutStreamer.AddComment("Offset of Compilation Unit Info"); 2398 Asm->EmitSectionOffset(Asm->GetTempSymbol(ISec->getLabelBeginName(), ID), 2399 DwarfInfoSectionSym); 2400 2401 Asm->OutStreamer.AddComment("Compilation Unit Length"); 2402 Asm->EmitLabelDifference(Asm->GetTempSymbol(ISec->getLabelEndName(), ID), 2403 Asm->GetTempSymbol(ISec->getLabelBeginName(), ID), 2404 4); 2405 2406 const StringMap<DIE*> &Globals = TheCU->getGlobalNames(); 2407 for (StringMap<DIE*>::const_iterator 2408 GI = Globals.begin(), GE = Globals.end(); GI != GE; ++GI) { 2409 const char *Name = GI->getKeyData(); 2410 const DIE *Entity = GI->second; 2411 2412 Asm->OutStreamer.AddComment("DIE offset"); 2413 Asm->EmitInt32(Entity->getOffset()); 2414 2415 if (Asm->isVerbose()) 2416 Asm->OutStreamer.AddComment("External Name"); 2417 Asm->OutStreamer.EmitBytes(StringRef(Name, GI->getKeyLength()+1)); 2418 } 2419 2420 Asm->OutStreamer.AddComment("End Mark"); 2421 Asm->EmitInt32(0); 2422 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("pubnames_end", ID)); 2423 } 2424} 2425 2426void DwarfDebug::emitDebugPubTypes() { 2427 for (DenseMap<const MDNode *, CompileUnit *>::iterator I = CUMap.begin(), 2428 E = CUMap.end(); I != E; ++I) { 2429 CompileUnit *TheCU = I->second; 2430 // Start the dwarf pubtypes section. 2431 Asm->OutStreamer.SwitchSection( 2432 Asm->getObjFileLowering().getDwarfPubTypesSection()); 2433 Asm->OutStreamer.AddComment("Length of Public Types Info"); 2434 Asm->EmitLabelDifference( 2435 Asm->GetTempSymbol("pubtypes_end", TheCU->getUniqueID()), 2436 Asm->GetTempSymbol("pubtypes_begin", TheCU->getUniqueID()), 4); 2437 2438 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("pubtypes_begin", 2439 TheCU->getUniqueID())); 2440 2441 if (Asm->isVerbose()) Asm->OutStreamer.AddComment("DWARF Version"); 2442 Asm->EmitInt16(DwarfVersion); 2443 2444 Asm->OutStreamer.AddComment("Offset of Compilation Unit Info"); 2445 const MCSection *ISec = Asm->getObjFileLowering().getDwarfInfoSection(); 2446 Asm->EmitSectionOffset(Asm->GetTempSymbol(ISec->getLabelBeginName(), 2447 TheCU->getUniqueID()), 2448 DwarfInfoSectionSym); 2449 2450 Asm->OutStreamer.AddComment("Compilation Unit Length"); 2451 Asm->EmitLabelDifference(Asm->GetTempSymbol(ISec->getLabelEndName(), 2452 TheCU->getUniqueID()), 2453 Asm->GetTempSymbol(ISec->getLabelBeginName(), 2454 TheCU->getUniqueID()), 2455 4); 2456 2457 const StringMap<DIE*> &Globals = TheCU->getGlobalTypes(); 2458 for (StringMap<DIE*>::const_iterator 2459 GI = Globals.begin(), GE = Globals.end(); GI != GE; ++GI) { 2460 const char *Name = GI->getKeyData(); 2461 DIE *Entity = GI->second; 2462 2463 if (Asm->isVerbose()) Asm->OutStreamer.AddComment("DIE offset"); 2464 Asm->EmitInt32(Entity->getOffset()); 2465 2466 if (Asm->isVerbose()) Asm->OutStreamer.AddComment("External Name"); 2467 // Emit the name with a terminating null byte. 2468 Asm->OutStreamer.EmitBytes(StringRef(Name, GI->getKeyLength()+1)); 2469 } 2470 2471 Asm->OutStreamer.AddComment("End Mark"); 2472 Asm->EmitInt32(0); 2473 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("pubtypes_end", 2474 TheCU->getUniqueID())); 2475 } 2476} 2477 2478// Emit strings into a string section. 2479void DwarfUnits::emitStrings(const MCSection *StrSection, 2480 const MCSection *OffsetSection = NULL, 2481 const MCSymbol *StrSecSym = NULL) { 2482 2483 if (StringPool.empty()) return; 2484 2485 // Start the dwarf str section. 2486 Asm->OutStreamer.SwitchSection(StrSection); 2487 2488 // Get all of the string pool entries and put them in an array by their ID so 2489 // we can sort them. 2490 SmallVector<std::pair<unsigned, 2491 StringMapEntry<std::pair<MCSymbol*, unsigned> >*>, 64> Entries; 2492 2493 for (StringMap<std::pair<MCSymbol*, unsigned> >::iterator 2494 I = StringPool.begin(), E = StringPool.end(); 2495 I != E; ++I) 2496 Entries.push_back(std::make_pair(I->second.second, &*I)); 2497 2498 array_pod_sort(Entries.begin(), Entries.end()); 2499 2500 for (unsigned i = 0, e = Entries.size(); i != e; ++i) { 2501 // Emit a label for reference from debug information entries. 2502 Asm->OutStreamer.EmitLabel(Entries[i].second->getValue().first); 2503 2504 // Emit the string itself with a terminating null byte. 2505 Asm->OutStreamer.EmitBytes(StringRef(Entries[i].second->getKeyData(), 2506 Entries[i].second->getKeyLength()+1)); 2507 } 2508 2509 // If we've got an offset section go ahead and emit that now as well. 2510 if (OffsetSection) { 2511 Asm->OutStreamer.SwitchSection(OffsetSection); 2512 unsigned offset = 0; 2513 unsigned size = 4; // FIXME: DWARF64 is 8. 2514 for (unsigned i = 0, e = Entries.size(); i != e; ++i) { 2515 Asm->OutStreamer.EmitIntValue(offset, size); 2516 offset += Entries[i].second->getKeyLength() + 1; 2517 } 2518 } 2519} 2520 2521// Emit strings into a string section. 2522void DwarfUnits::emitAddresses(const MCSection *AddrSection) { 2523 2524 if (AddressPool.empty()) return; 2525 2526 // Start the dwarf addr section. 2527 Asm->OutStreamer.SwitchSection(AddrSection); 2528 2529 // Order the address pool entries by ID 2530 SmallVector<const MCExpr *, 64> Entries(AddressPool.size()); 2531 2532 for (DenseMap<const MCExpr *, unsigned>::iterator I = AddressPool.begin(), 2533 E = AddressPool.end(); 2534 I != E; ++I) 2535 Entries[I->second] = I->first; 2536 2537 for (unsigned i = 0, e = Entries.size(); i != e; ++i) { 2538 // Emit an expression for reference from debug information entries. 2539 if (const MCExpr *Expr = Entries[i]) 2540 Asm->OutStreamer.EmitValue(Expr, Asm->getDataLayout().getPointerSize()); 2541 else 2542 Asm->OutStreamer.EmitIntValue(0, Asm->getDataLayout().getPointerSize()); 2543 } 2544 2545} 2546 2547// Emit visible names into a debug str section. 2548void DwarfDebug::emitDebugStr() { 2549 DwarfUnits &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2550 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection()); 2551} 2552 2553// Emit locations into the debug loc section. 2554void DwarfDebug::emitDebugLoc() { 2555 if (DotDebugLocEntries.empty()) 2556 return; 2557 2558 for (SmallVectorImpl<DotDebugLocEntry>::iterator 2559 I = DotDebugLocEntries.begin(), E = DotDebugLocEntries.end(); 2560 I != E; ++I) { 2561 DotDebugLocEntry &Entry = *I; 2562 if (I + 1 != DotDebugLocEntries.end()) 2563 Entry.Merge(I+1); 2564 } 2565 2566 // Start the dwarf loc section. 2567 Asm->OutStreamer.SwitchSection( 2568 Asm->getObjFileLowering().getDwarfLocSection()); 2569 unsigned char Size = Asm->getDataLayout().getPointerSize(); 2570 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("debug_loc", 0)); 2571 unsigned index = 1; 2572 for (SmallVectorImpl<DotDebugLocEntry>::iterator 2573 I = DotDebugLocEntries.begin(), E = DotDebugLocEntries.end(); 2574 I != E; ++I, ++index) { 2575 DotDebugLocEntry &Entry = *I; 2576 if (Entry.isMerged()) continue; 2577 if (Entry.isEmpty()) { 2578 Asm->OutStreamer.EmitIntValue(0, Size); 2579 Asm->OutStreamer.EmitIntValue(0, Size); 2580 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("debug_loc", index)); 2581 } else { 2582 Asm->OutStreamer.EmitSymbolValue(Entry.getBeginSym(), Size); 2583 Asm->OutStreamer.EmitSymbolValue(Entry.getEndSym(), Size); 2584 DIVariable DV(Entry.getVariable()); 2585 Asm->OutStreamer.AddComment("Loc expr size"); 2586 MCSymbol *begin = Asm->OutStreamer.getContext().CreateTempSymbol(); 2587 MCSymbol *end = Asm->OutStreamer.getContext().CreateTempSymbol(); 2588 Asm->EmitLabelDifference(end, begin, 2); 2589 Asm->OutStreamer.EmitLabel(begin); 2590 if (Entry.isInt()) { 2591 DIBasicType BTy(DV.getType()); 2592 if (BTy.Verify() && 2593 (BTy.getEncoding() == dwarf::DW_ATE_signed 2594 || BTy.getEncoding() == dwarf::DW_ATE_signed_char)) { 2595 Asm->OutStreamer.AddComment("DW_OP_consts"); 2596 Asm->EmitInt8(dwarf::DW_OP_consts); 2597 Asm->EmitSLEB128(Entry.getInt()); 2598 } else { 2599 Asm->OutStreamer.AddComment("DW_OP_constu"); 2600 Asm->EmitInt8(dwarf::DW_OP_constu); 2601 Asm->EmitULEB128(Entry.getInt()); 2602 } 2603 } else if (Entry.isLocation()) { 2604 MachineLocation Loc = Entry.getLoc(); 2605 if (!DV.hasComplexAddress()) 2606 // Regular entry. 2607 Asm->EmitDwarfRegOp(Loc, DV.isIndirect()); 2608 else { 2609 // Complex address entry. 2610 unsigned N = DV.getNumAddrElements(); 2611 unsigned i = 0; 2612 if (N >= 2 && DV.getAddrElement(0) == DIBuilder::OpPlus) { 2613 if (Loc.getOffset()) { 2614 i = 2; 2615 Asm->EmitDwarfRegOp(Loc, DV.isIndirect()); 2616 Asm->OutStreamer.AddComment("DW_OP_deref"); 2617 Asm->EmitInt8(dwarf::DW_OP_deref); 2618 Asm->OutStreamer.AddComment("DW_OP_plus_uconst"); 2619 Asm->EmitInt8(dwarf::DW_OP_plus_uconst); 2620 Asm->EmitSLEB128(DV.getAddrElement(1)); 2621 } else { 2622 // If first address element is OpPlus then emit 2623 // DW_OP_breg + Offset instead of DW_OP_reg + Offset. 2624 MachineLocation TLoc(Loc.getReg(), DV.getAddrElement(1)); 2625 Asm->EmitDwarfRegOp(TLoc, DV.isIndirect()); 2626 i = 2; 2627 } 2628 } else { 2629 Asm->EmitDwarfRegOp(Loc, DV.isIndirect()); 2630 } 2631 2632 // Emit remaining complex address elements. 2633 for (; i < N; ++i) { 2634 uint64_t Element = DV.getAddrElement(i); 2635 if (Element == DIBuilder::OpPlus) { 2636 Asm->EmitInt8(dwarf::DW_OP_plus_uconst); 2637 Asm->EmitULEB128(DV.getAddrElement(++i)); 2638 } else if (Element == DIBuilder::OpDeref) { 2639 if (!Loc.isReg()) 2640 Asm->EmitInt8(dwarf::DW_OP_deref); 2641 } else 2642 llvm_unreachable("unknown Opcode found in complex address"); 2643 } 2644 } 2645 } 2646 // else ... ignore constant fp. There is not any good way to 2647 // to represent them here in dwarf. 2648 Asm->OutStreamer.EmitLabel(end); 2649 } 2650 } 2651} 2652 2653// Emit visible names into a debug aranges section. 2654void DwarfDebug::emitDebugARanges() { 2655 // Start the dwarf aranges section. 2656 Asm->OutStreamer.SwitchSection( 2657 Asm->getObjFileLowering().getDwarfARangesSection()); 2658} 2659 2660// Emit visible names into a debug ranges section. 2661void DwarfDebug::emitDebugRanges() { 2662 // Start the dwarf ranges section. 2663 Asm->OutStreamer.SwitchSection( 2664 Asm->getObjFileLowering().getDwarfRangesSection()); 2665 unsigned char Size = Asm->getDataLayout().getPointerSize(); 2666 for (SmallVectorImpl<const MCSymbol *>::iterator 2667 I = DebugRangeSymbols.begin(), E = DebugRangeSymbols.end(); 2668 I != E; ++I) { 2669 if (*I) 2670 Asm->OutStreamer.EmitSymbolValue(const_cast<MCSymbol*>(*I), Size); 2671 else 2672 Asm->OutStreamer.EmitIntValue(0, Size); 2673 } 2674} 2675 2676// Emit visible names into a debug macinfo section. 2677void DwarfDebug::emitDebugMacInfo() { 2678 if (const MCSection *LineInfo = 2679 Asm->getObjFileLowering().getDwarfMacroInfoSection()) { 2680 // Start the dwarf macinfo section. 2681 Asm->OutStreamer.SwitchSection(LineInfo); 2682 } 2683} 2684 2685// Emit inline info using following format. 2686// Section Header: 2687// 1. length of section 2688// 2. Dwarf version number 2689// 3. address size. 2690// 2691// Entries (one "entry" for each function that was inlined): 2692// 2693// 1. offset into __debug_str section for MIPS linkage name, if exists; 2694// otherwise offset into __debug_str for regular function name. 2695// 2. offset into __debug_str section for regular function name. 2696// 3. an unsigned LEB128 number indicating the number of distinct inlining 2697// instances for the function. 2698// 2699// The rest of the entry consists of a {die_offset, low_pc} pair for each 2700// inlined instance; the die_offset points to the inlined_subroutine die in the 2701// __debug_info section, and the low_pc is the starting address for the 2702// inlining instance. 2703void DwarfDebug::emitDebugInlineInfo() { 2704 if (!Asm->MAI->doesDwarfUseInlineInfoSection()) 2705 return; 2706 2707 if (!FirstCU) 2708 return; 2709 2710 Asm->OutStreamer.SwitchSection( 2711 Asm->getObjFileLowering().getDwarfDebugInlineSection()); 2712 2713 Asm->OutStreamer.AddComment("Length of Debug Inlined Information Entry"); 2714 Asm->EmitLabelDifference(Asm->GetTempSymbol("debug_inlined_end", 1), 2715 Asm->GetTempSymbol("debug_inlined_begin", 1), 4); 2716 2717 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("debug_inlined_begin", 1)); 2718 2719 Asm->OutStreamer.AddComment("Dwarf Version"); 2720 Asm->EmitInt16(DwarfVersion); 2721 Asm->OutStreamer.AddComment("Address Size (in bytes)"); 2722 Asm->EmitInt8(Asm->getDataLayout().getPointerSize()); 2723 2724 for (SmallVectorImpl<const MDNode *>::iterator I = InlinedSPNodes.begin(), 2725 E = InlinedSPNodes.end(); I != E; ++I) { 2726 2727 const MDNode *Node = *I; 2728 InlineInfoMap::iterator II = InlineInfo.find(Node); 2729 SmallVectorImpl<InlineInfoLabels> &Labels = II->second; 2730 DISubprogram SP(Node); 2731 StringRef LName = SP.getLinkageName(); 2732 StringRef Name = SP.getName(); 2733 2734 Asm->OutStreamer.AddComment("MIPS linkage name"); 2735 if (LName.empty()) 2736 Asm->EmitSectionOffset(InfoHolder.getStringPoolEntry(Name), 2737 DwarfStrSectionSym); 2738 else 2739 Asm->EmitSectionOffset( 2740 InfoHolder.getStringPoolEntry(Function::getRealLinkageName(LName)), 2741 DwarfStrSectionSym); 2742 2743 Asm->OutStreamer.AddComment("Function name"); 2744 Asm->EmitSectionOffset(InfoHolder.getStringPoolEntry(Name), 2745 DwarfStrSectionSym); 2746 Asm->EmitULEB128(Labels.size(), "Inline count"); 2747 2748 for (SmallVectorImpl<InlineInfoLabels>::iterator LI = Labels.begin(), 2749 LE = Labels.end(); LI != LE; ++LI) { 2750 if (Asm->isVerbose()) Asm->OutStreamer.AddComment("DIE offset"); 2751 Asm->EmitInt32(LI->second->getOffset()); 2752 2753 if (Asm->isVerbose()) Asm->OutStreamer.AddComment("low_pc"); 2754 Asm->OutStreamer.EmitSymbolValue(LI->first, 2755 Asm->getDataLayout().getPointerSize()); 2756 } 2757 } 2758 2759 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("debug_inlined_end", 1)); 2760} 2761 2762// DWARF5 Experimental Separate Dwarf emitters. 2763 2764// This DIE has the following attributes: DW_AT_comp_dir, DW_AT_stmt_list, 2765// DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_dwo_name, DW_AT_dwo_id, 2766// DW_AT_ranges_base, DW_AT_addr_base. If DW_AT_ranges is present, 2767// DW_AT_low_pc and DW_AT_high_pc are not used, and vice versa. 2768CompileUnit *DwarfDebug::constructSkeletonCU(const MDNode *N) { 2769 DICompileUnit DIUnit(N); 2770 CompilationDir = DIUnit.getDirectory(); 2771 2772 DIE *Die = new DIE(dwarf::DW_TAG_compile_unit); 2773 CompileUnit *NewCU = new CompileUnit(GlobalCUIndexCount++, 2774 DIUnit.getLanguage(), Die, N, Asm, 2775 this, &SkeletonHolder); 2776 2777 NewCU->addLocalString(Die, dwarf::DW_AT_GNU_dwo_name, 2778 DIUnit.getSplitDebugFilename()); 2779 2780 // This should be a unique identifier when we want to build .dwp files. 2781 NewCU->addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 0); 2782 2783 // Relocate to the beginning of the addr_base section, else 0 for the 2784 // beginning of the one for this compile unit. 2785 if (Asm->MAI->doesDwarfUseRelocationsAcrossSections()) 2786 NewCU->addLabel(Die, dwarf::DW_AT_GNU_addr_base, dwarf::DW_FORM_sec_offset, 2787 DwarfAddrSectionSym); 2788 else 2789 NewCU->addUInt(Die, dwarf::DW_AT_GNU_addr_base, 2790 dwarf::DW_FORM_sec_offset, 0); 2791 2792 // 2.17.1 requires that we use DW_AT_low_pc for a single entry point 2793 // into an entity. We're using 0, or a NULL label for this. 2794 NewCU->addUInt(Die, dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 2795 2796 // DW_AT_stmt_list is a offset of line number information for this 2797 // compile unit in debug_line section. 2798 // FIXME: Should handle multiple compile units. 2799 if (Asm->MAI->doesDwarfUseRelocationsAcrossSections()) 2800 NewCU->addLabel(Die, dwarf::DW_AT_stmt_list, dwarf::DW_FORM_sec_offset, 2801 DwarfLineSectionSym); 2802 else 2803 NewCU->addUInt(Die, dwarf::DW_AT_stmt_list, dwarf::DW_FORM_sec_offset, 0); 2804 2805 if (!CompilationDir.empty()) 2806 NewCU->addLocalString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 2807 2808 SkeletonHolder.addUnit(NewCU); 2809 SkeletonCUs.push_back(NewCU); 2810 2811 return NewCU; 2812} 2813 2814void DwarfDebug::emitSkeletonAbbrevs(const MCSection *Section) { 2815 assert(useSplitDwarf() && "No split dwarf debug info?"); 2816 emitAbbrevs(Section, &SkeletonAbbrevs); 2817} 2818 2819// Emit the .debug_info.dwo section for separated dwarf. This contains the 2820// compile units that would normally be in debug_info. 2821void DwarfDebug::emitDebugInfoDWO() { 2822 assert(useSplitDwarf() && "No split dwarf debug info?"); 2823 InfoHolder.emitUnits(this, Asm->getObjFileLowering().getDwarfInfoDWOSection(), 2824 Asm->getObjFileLowering().getDwarfAbbrevDWOSection(), 2825 DwarfAbbrevDWOSectionSym); 2826} 2827 2828// Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 2829// abbreviations for the .debug_info.dwo section. 2830void DwarfDebug::emitDebugAbbrevDWO() { 2831 assert(useSplitDwarf() && "No split dwarf?"); 2832 emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection(), 2833 &Abbreviations); 2834} 2835 2836// Emit the .debug_str.dwo section for separated dwarf. This contains the 2837// string section and is identical in format to traditional .debug_str 2838// sections. 2839void DwarfDebug::emitDebugStrDWO() { 2840 assert(useSplitDwarf() && "No split dwarf?"); 2841 const MCSection *OffSec = Asm->getObjFileLowering() 2842 .getDwarfStrOffDWOSection(); 2843 const MCSymbol *StrSym = DwarfStrSectionSym; 2844 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 2845 OffSec, StrSym); 2846} 2847