DwarfException.cpp revision 1c90c6f1c530e22aea5be055004b2517e77a0f02
1//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains support for writing DWARF exception info into asm files. 11// 12//===----------------------------------------------------------------------===// 13 14#include "DwarfException.h" 15#include "llvm/Module.h" 16#include "llvm/CodeGen/MachineModuleInfo.h" 17#include "llvm/CodeGen/MachineFrameInfo.h" 18#include "llvm/CodeGen/MachineFunction.h" 19#include "llvm/CodeGen/MachineLocation.h" 20#include "llvm/MC/MCSection.h" 21#include "llvm/MC/MCStreamer.h" 22#include "llvm/MC/MCAsmInfo.h" 23#include "llvm/Target/TargetData.h" 24#include "llvm/Target/TargetFrameInfo.h" 25#include "llvm/Target/TargetLoweringObjectFile.h" 26#include "llvm/Target/TargetOptions.h" 27#include "llvm/Target/TargetRegisterInfo.h" 28#include "llvm/Support/Dwarf.h" 29#include "llvm/Support/Mangler.h" 30#include "llvm/Support/Timer.h" 31#include "llvm/Support/raw_ostream.h" 32#include "llvm/ADT/SmallString.h" 33#include "llvm/ADT/StringExtras.h" 34using namespace llvm; 35 36static TimerGroup &getDwarfTimerGroup() { 37 static TimerGroup DwarfTimerGroup("DWARF Exception"); 38 return DwarfTimerGroup; 39} 40 41DwarfException::DwarfException(raw_ostream &OS, AsmPrinter *A, 42 const MCAsmInfo *T) 43 : Dwarf(OS, A, T, "eh"), shouldEmitTable(false), shouldEmitMoves(false), 44 shouldEmitTableModule(false), shouldEmitMovesModule(false), 45 ExceptionTimer(0) { 46 if (TimePassesIsEnabled) 47 ExceptionTimer = new Timer("DWARF Exception Writer", 48 getDwarfTimerGroup()); 49} 50 51DwarfException::~DwarfException() { 52 delete ExceptionTimer; 53} 54 55/// SizeOfEncodedValue - Return the size of the encoding in bytes. 56unsigned DwarfException::SizeOfEncodedValue(unsigned Encoding) { 57 if (Encoding == dwarf::DW_EH_PE_omit) 58 return 0; 59 60 switch (Encoding & 0x07) { 61 case dwarf::DW_EH_PE_absptr: 62 return TD->getPointerSize(); 63 case dwarf::DW_EH_PE_udata2: 64 return 2; 65 case dwarf::DW_EH_PE_udata4: 66 return 4; 67 case dwarf::DW_EH_PE_udata8: 68 return 8; 69 } 70 71 assert(0 && "Invalid encoded value."); 72 return 0; 73} 74 75/// EmitCIE - Emit a Common Information Entry (CIE). This holds information that 76/// is shared among many Frame Description Entries. There is at least one CIE 77/// in every non-empty .debug_frame section. 78void DwarfException::EmitCIE(const Function *Personality, unsigned Index) { 79 // Size and sign of stack growth. 80 int stackGrowth = 81 Asm->TM.getFrameInfo()->getStackGrowthDirection() == 82 TargetFrameInfo::StackGrowsUp ? 83 TD->getPointerSize() : -TD->getPointerSize(); 84 85 // Begin eh frame section. 86 Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection()); 87 88 if (MAI->is_EHSymbolPrivate()) 89 O << MAI->getPrivateGlobalPrefix(); 90 91 O << "EH_frame" << Index << ":\n"; 92 EmitLabel("section_eh_frame", Index); 93 94 // Define base labels. 95 EmitLabel("eh_frame_common", Index); 96 97 // Define the eh frame length. 98 EmitDifference("eh_frame_common_end", Index, 99 "eh_frame_common_begin", Index, true); 100 Asm->EOL("Length of Common Information Entry"); 101 102 // EH frame header. 103 EmitLabel("eh_frame_common_begin", Index); 104 Asm->EmitInt32((int)0); 105 Asm->EOL("CIE Identifier Tag"); 106 Asm->EmitInt8(dwarf::DW_CIE_VERSION); 107 Asm->EOL("CIE Version"); 108 109 // The personality presence indicates that language specific information will 110 // show up in the eh frame. 111 112 // FIXME: Don't hardcode these encodings. 113 unsigned PerEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 114 if (Personality && MAI->getNeedsIndirectEncoding()) 115 PerEncoding |= dwarf::DW_EH_PE_indirect; 116 unsigned LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 117 unsigned FDEEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 118 119 char Augmentation[5] = { 0 }; 120 unsigned AugmentationSize = 0; 121 char *APtr = Augmentation + 1; 122 123 if (Personality) { 124 // There is a personality function. 125 *APtr++ = 'P'; 126 AugmentationSize += 1 + SizeOfEncodedValue(PerEncoding); 127 } 128 129 if (UsesLSDA[Index]) { 130 // An LSDA pointer is in the FDE augmentation. 131 *APtr++ = 'L'; 132 ++AugmentationSize; 133 } 134 135 if (FDEEncoding != dwarf::DW_EH_PE_absptr) { 136 // A non-default pointer encoding for the FDE. 137 *APtr++ = 'R'; 138 ++AugmentationSize; 139 } 140 141 if (APtr != Augmentation + 1) 142 Augmentation[0] = 'z'; 143 144 Asm->EmitString(Augmentation); 145 Asm->EOL("CIE Augmentation"); 146 147 // Round out reader. 148 Asm->EmitULEB128Bytes(1); 149 Asm->EOL("CIE Code Alignment Factor"); 150 Asm->EmitSLEB128Bytes(stackGrowth); 151 Asm->EOL("CIE Data Alignment Factor"); 152 Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true)); 153 Asm->EOL("CIE Return Address Column"); 154 155 Asm->EmitULEB128Bytes(AugmentationSize); 156 Asm->EOL("Augmentation Size"); 157 158 Asm->EmitInt8(PerEncoding); 159 Asm->EOL("Personality", PerEncoding); 160 161 // If there is a personality, we need to indicate the function's location. 162 if (Personality) { 163 O << MAI->getData32bitsDirective(); 164 165 O << MAI->getPersonalityPrefix(); 166 O << Asm->Mang->getMangledName(Personality); 167 O << MAI->getPersonalitySuffix(); 168 169 if (strcmp(MAI->getPersonalitySuffix(), "+4@GOTPCREL")) 170 O << "-" << MAI->getPCSymbol(); 171 Asm->EOL("Personality"); 172 173 Asm->EmitInt8(LSDAEncoding); 174 Asm->EOL("LSDA Encoding", LSDAEncoding); 175 176 Asm->EmitInt8(FDEEncoding); 177 Asm->EOL("FDE Encoding", FDEEncoding); 178 } 179 180 // Indicate locations of general callee saved registers in frame. 181 std::vector<MachineMove> Moves; 182 RI->getInitialFrameState(Moves); 183 EmitFrameMoves(NULL, 0, Moves, true); 184 185 // On Darwin the linker honors the alignment of eh_frame, which means it must 186 // be 8-byte on 64-bit targets to match what gcc does. Otherwise you get 187 // holes which confuse readers of eh_frame. 188 Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3, 189 0, 0, false); 190 EmitLabel("eh_frame_common_end", Index); 191 192 Asm->EOL(); 193} 194 195/// EmitFDE - Emit the Frame Description Entry (FDE) for the function. 196void DwarfException::EmitFDE(const FunctionEHFrameInfo &EHFrameInfo) { 197 assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() && 198 "Should not emit 'available externally' functions at all"); 199 200 const Function *TheFunc = EHFrameInfo.function; 201 202 Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection()); 203 204 // Externally visible entry into the functions eh frame info. If the 205 // corresponding function is static, this should not be externally visible. 206 if (!TheFunc->hasLocalLinkage()) 207 if (const char *GlobalEHDirective = MAI->getGlobalEHDirective()) 208 O << GlobalEHDirective << EHFrameInfo.FnName << "\n"; 209 210 // If corresponding function is weak definition, this should be too. 211 if (TheFunc->isWeakForLinker() && MAI->getWeakDefDirective()) 212 O << MAI->getWeakDefDirective() << EHFrameInfo.FnName << "\n"; 213 214 // If there are no calls then you can't unwind. This may mean we can omit the 215 // EH Frame, but some environments do not handle weak absolute symbols. If 216 // UnwindTablesMandatory is set we cannot do this optimization; the unwind 217 // info is to be available for non-EH uses. 218 if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory && 219 (!TheFunc->isWeakForLinker() || 220 !MAI->getWeakDefDirective() || 221 MAI->getSupportsWeakOmittedEHFrame())) { 222 O << EHFrameInfo.FnName << " = 0\n"; 223 // This name has no connection to the function, so it might get 224 // dead-stripped when the function is not, erroneously. Prohibit 225 // dead-stripping unconditionally. 226 if (const char *UsedDirective = MAI->getUsedDirective()) 227 O << UsedDirective << EHFrameInfo.FnName << "\n\n"; 228 } else { 229 O << EHFrameInfo.FnName << ":\n"; 230 231 // EH frame header. 232 EmitDifference("eh_frame_end", EHFrameInfo.Number, 233 "eh_frame_begin", EHFrameInfo.Number, true); 234 Asm->EOL("Length of Frame Information Entry"); 235 236 EmitLabel("eh_frame_begin", EHFrameInfo.Number); 237 238 EmitSectionOffset("eh_frame_begin", "eh_frame_common", 239 EHFrameInfo.Number, EHFrameInfo.PersonalityIndex, 240 true, true, false); 241 242 Asm->EOL("FDE CIE offset"); 243 244 EmitReference("eh_func_begin", EHFrameInfo.Number, true, true); 245 Asm->EOL("FDE initial location"); 246 EmitDifference("eh_func_end", EHFrameInfo.Number, 247 "eh_func_begin", EHFrameInfo.Number, true); 248 Asm->EOL("FDE address range"); 249 250 // If there is a personality and landing pads then point to the language 251 // specific data area in the exception table. 252 if (MMI->getPersonalities()[0] != NULL) { 253 bool is4Byte = TD->getPointerSize() == sizeof(int32_t); 254 255 Asm->EmitULEB128Bytes(is4Byte ? 4 : 8); 256 Asm->EOL("Augmentation size"); 257 258 if (EHFrameInfo.hasLandingPads) 259 EmitReference("exception", EHFrameInfo.Number, true, false); 260 else { 261 if (is4Byte) 262 Asm->EmitInt32((int)0); 263 else 264 Asm->EmitInt64((int)0); 265 } 266 Asm->EOL("Language Specific Data Area"); 267 } else { 268 Asm->EmitULEB128Bytes(0); 269 Asm->EOL("Augmentation size"); 270 } 271 272 // Indicate locations of function specific callee saved registers in frame. 273 EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves, 274 true); 275 276 // On Darwin the linker honors the alignment of eh_frame, which means it 277 // must be 8-byte on 64-bit targets to match what gcc does. Otherwise you 278 // get holes which confuse readers of eh_frame. 279 Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3, 280 0, 0, false); 281 EmitLabel("eh_frame_end", EHFrameInfo.Number); 282 283 // If the function is marked used, this table should be also. We cannot 284 // make the mark unconditional in this case, since retaining the table also 285 // retains the function in this case, and there is code around that depends 286 // on unused functions (calling undefined externals) being dead-stripped to 287 // link correctly. Yes, there really is. 288 if (MMI->isUsedFunction(EHFrameInfo.function)) 289 if (const char *UsedDirective = MAI->getUsedDirective()) 290 O << UsedDirective << EHFrameInfo.FnName << "\n\n"; 291 } 292 293 Asm->EOL(); 294} 295 296/// SharedTypeIds - How many leading type ids two landing pads have in common. 297unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L, 298 const LandingPadInfo *R) { 299 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; 300 unsigned LSize = LIds.size(), RSize = RIds.size(); 301 unsigned MinSize = LSize < RSize ? LSize : RSize; 302 unsigned Count = 0; 303 304 for (; Count != MinSize; ++Count) 305 if (LIds[Count] != RIds[Count]) 306 return Count; 307 308 return Count; 309} 310 311/// PadLT - Order landing pads lexicographically by type id. 312bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) { 313 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; 314 unsigned LSize = LIds.size(), RSize = RIds.size(); 315 unsigned MinSize = LSize < RSize ? LSize : RSize; 316 317 for (unsigned i = 0; i != MinSize; ++i) 318 if (LIds[i] != RIds[i]) 319 return LIds[i] < RIds[i]; 320 321 return LSize < RSize; 322} 323 324/// ComputeActionsTable - Compute the actions table and gather the first action 325/// index for each landing pad site. 326unsigned DwarfException:: 327ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads, 328 SmallVectorImpl<ActionEntry> &Actions, 329 SmallVectorImpl<unsigned> &FirstActions) { 330 331 // The action table follows the call-site table in the LSDA. The individual 332 // records are of two types: 333 // 334 // * Catch clause 335 // * Exception specification 336 // 337 // The two record kinds have the same format, with only small differences. 338 // They are distinguished by the "switch value" field: Catch clauses 339 // (TypeInfos) have strictly positive switch values, and exception 340 // specifications (FilterIds) have strictly negative switch values. Value 0 341 // indicates a catch-all clause. 342 // 343 // Negative type IDs index into FilterIds. Positive type IDs index into 344 // TypeInfos. The value written for a positive type ID is just the type ID 345 // itself. For a negative type ID, however, the value written is the 346 // (negative) byte offset of the corresponding FilterIds entry. The byte 347 // offset is usually equal to the type ID (because the FilterIds entries are 348 // written using a variable width encoding, which outputs one byte per entry 349 // as long as the value written is not too large) but can differ. This kind 350 // of complication does not occur for positive type IDs because type infos are 351 // output using a fixed width encoding. FilterOffsets[i] holds the byte 352 // offset corresponding to FilterIds[i]. 353 354 const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); 355 SmallVector<int, 16> FilterOffsets; 356 FilterOffsets.reserve(FilterIds.size()); 357 int Offset = -1; 358 359 for (std::vector<unsigned>::const_iterator 360 I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { 361 FilterOffsets.push_back(Offset); 362 Offset -= MCAsmInfo::getULEB128Size(*I); 363 } 364 365 FirstActions.reserve(LandingPads.size()); 366 367 int FirstAction = 0; 368 unsigned SizeActions = 0; 369 const LandingPadInfo *PrevLPI = 0; 370 371 for (SmallVectorImpl<const LandingPadInfo *>::const_iterator 372 I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) { 373 const LandingPadInfo *LPI = *I; 374 const std::vector<int> &TypeIds = LPI->TypeIds; 375 const unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0; 376 unsigned SizeSiteActions = 0; 377 378 if (NumShared < TypeIds.size()) { 379 unsigned SizeAction = 0; 380 ActionEntry *PrevAction = 0; 381 382 if (NumShared) { 383 const unsigned SizePrevIds = PrevLPI->TypeIds.size(); 384 assert(Actions.size()); 385 PrevAction = &Actions.back(); 386 SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) + 387 MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); 388 389 for (unsigned j = NumShared; j != SizePrevIds; ++j) { 390 SizeAction -= 391 MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); 392 SizeAction += -PrevAction->NextAction; 393 PrevAction = PrevAction->Previous; 394 } 395 } 396 397 // Compute the actions. 398 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) { 399 int TypeID = TypeIds[J]; 400 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); 401 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; 402 unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID); 403 404 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; 405 SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction); 406 SizeSiteActions += SizeAction; 407 408 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction }; 409 Actions.push_back(Action); 410 PrevAction = &Actions.back(); 411 } 412 413 // Record the first action of the landing pad site. 414 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; 415 } // else identical - re-use previous FirstAction 416 417 // Information used when created the call-site table. The action record 418 // field of the call site record is the offset of the first associated 419 // action record, relative to the start of the actions table. This value is 420 // biased by 1 (1 in dicating the start of the actions table), and 0 421 // indicates that there are no actions. 422 FirstActions.push_back(FirstAction); 423 424 // Compute this sites contribution to size. 425 SizeActions += SizeSiteActions; 426 427 PrevLPI = LPI; 428 } 429 430 return SizeActions; 431} 432 433/// ComputeCallSiteTable - Compute the call-site table. The entry for an invoke 434/// has a try-range containing the call, a non-zero landing pad, and an 435/// appropriate action. The entry for an ordinary call has a try-range 436/// containing the call and zero for the landing pad and the action. Calls 437/// marked 'nounwind' have no entry and must not be contained in the try-range 438/// of any entry - they form gaps in the table. Entries must be ordered by 439/// try-range address. 440void DwarfException:: 441ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites, 442 const RangeMapType &PadMap, 443 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 444 const SmallVectorImpl<unsigned> &FirstActions) { 445 // The end label of the previous invoke or nounwind try-range. 446 unsigned LastLabel = 0; 447 448 // Whether there is a potentially throwing instruction (currently this means 449 // an ordinary call) between the end of the previous try-range and now. 450 bool SawPotentiallyThrowing = false; 451 452 // Whether the last CallSite entry was for an invoke. 453 bool PreviousIsInvoke = false; 454 455 // Visit all instructions in order of address. 456 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 457 I != E; ++I) { 458 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); 459 MI != E; ++MI) { 460 if (!MI->isLabel()) { 461 SawPotentiallyThrowing |= MI->getDesc().isCall(); 462 continue; 463 } 464 465 unsigned BeginLabel = MI->getOperand(0).getImm(); 466 assert(BeginLabel && "Invalid label!"); 467 468 // End of the previous try-range? 469 if (BeginLabel == LastLabel) 470 SawPotentiallyThrowing = false; 471 472 // Beginning of a new try-range? 473 RangeMapType::iterator L = PadMap.find(BeginLabel); 474 if (L == PadMap.end()) 475 // Nope, it was just some random label. 476 continue; 477 478 const PadRange &P = L->second; 479 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; 480 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && 481 "Inconsistent landing pad map!"); 482 483 // For Dwarf exception handling (SjLj handling doesn't use this). If some 484 // instruction between the previous try-range and this one may throw, 485 // create a call-site entry with no landing pad for the region between the 486 // try-ranges. 487 if (SawPotentiallyThrowing && 488 MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) { 489 CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 }; 490 CallSites.push_back(Site); 491 PreviousIsInvoke = false; 492 } 493 494 LastLabel = LandingPad->EndLabels[P.RangeIndex]; 495 assert(BeginLabel && LastLabel && "Invalid landing pad!"); 496 497 if (LandingPad->LandingPadLabel) { 498 // This try-range is for an invoke. 499 CallSiteEntry Site = { 500 BeginLabel, 501 LastLabel, 502 LandingPad->LandingPadLabel, 503 FirstActions[P.PadIndex] 504 }; 505 506 // Try to merge with the previous call-site. SJLJ doesn't do this 507 if (PreviousIsInvoke && 508 MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) { 509 CallSiteEntry &Prev = CallSites.back(); 510 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { 511 // Extend the range of the previous entry. 512 Prev.EndLabel = Site.EndLabel; 513 continue; 514 } 515 } 516 517 // Otherwise, create a new call-site. 518 CallSites.push_back(Site); 519 PreviousIsInvoke = true; 520 } else { 521 // Create a gap. 522 PreviousIsInvoke = false; 523 } 524 } 525 } 526 527 // If some instruction between the previous try-range and the end of the 528 // function may throw, create a call-site entry with no landing pad for the 529 // region following the try-range. 530 if (SawPotentiallyThrowing && 531 MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) { 532 CallSiteEntry Site = { LastLabel, 0, 0, 0 }; 533 CallSites.push_back(Site); 534 } 535} 536 537/// EmitExceptionTable - Emit landing pads and actions. 538/// 539/// The general organization of the table is complex, but the basic concepts are 540/// easy. First there is a header which describes the location and organization 541/// of the three components that follow. 542/// 543/// 1. The landing pad site information describes the range of code covered by 544/// the try. In our case it's an accumulation of the ranges covered by the 545/// invokes in the try. There is also a reference to the landing pad that 546/// handles the exception once processed. Finally an index into the actions 547/// table. 548/// 2. The action table, in our case, is composed of pairs of type IDs and next 549/// action offset. Starting with the action index from the landing pad 550/// site, each type ID is checked for a match to the current exception. If 551/// it matches then the exception and type id are passed on to the landing 552/// pad. Otherwise the next action is looked up. This chain is terminated 553/// with a next action of zero. If no type id is found then the frame is 554/// unwound and handling continues. 555/// 3. Type ID table contains references to all the C++ typeinfo for all 556/// catches in the function. This tables is reverse indexed base 1. 557void DwarfException::EmitExceptionTable() { 558 const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); 559 const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); 560 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); 561 if (PadInfos.empty()) return; 562 563 // Sort the landing pads in order of their type ids. This is used to fold 564 // duplicate actions. 565 SmallVector<const LandingPadInfo *, 64> LandingPads; 566 LandingPads.reserve(PadInfos.size()); 567 568 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) 569 LandingPads.push_back(&PadInfos[i]); 570 571 std::sort(LandingPads.begin(), LandingPads.end(), PadLT); 572 573 // Compute the actions table and gather the first action index for each 574 // landing pad site. 575 SmallVector<ActionEntry, 32> Actions; 576 SmallVector<unsigned, 64> FirstActions; 577 unsigned SizeActions = ComputeActionsTable(LandingPads, Actions, 578 FirstActions); 579 580 // Invokes and nounwind calls have entries in PadMap (due to being bracketed 581 // by try-range labels when lowered). Ordinary calls do not, so appropriate 582 // try-ranges for them need be deduced when using DWARF exception handling. 583 RangeMapType PadMap; 584 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { 585 const LandingPadInfo *LandingPad = LandingPads[i]; 586 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { 587 unsigned BeginLabel = LandingPad->BeginLabels[j]; 588 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); 589 PadRange P = { i, j }; 590 PadMap[BeginLabel] = P; 591 } 592 } 593 594 // Compute the call-site table. 595 SmallVector<CallSiteEntry, 64> CallSites; 596 ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions); 597 598 // Final tallies. 599 600 // Call sites. 601 const unsigned SiteStartSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4); 602 const unsigned SiteLengthSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4); 603 const unsigned LandingPadSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4); 604 bool IsSJLJ = MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 605 bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true; 606 unsigned SizeSites; 607 608 if (IsSJLJ) 609 SizeSites = 0; 610 else 611 SizeSites = CallSites.size() * 612 (SiteStartSize + SiteLengthSize + LandingPadSize); 613 614 for (unsigned i = 0, e = CallSites.size(); i < e; ++i) { 615 SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action); 616 if (IsSJLJ) 617 SizeSites += MCAsmInfo::getULEB128Size(i); 618 } 619 620 // Type infos. 621 const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection(); 622 unsigned TTypeFormat; 623 unsigned TypeFormatSize; 624 625 if (!HaveTTData) { 626 // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say 627 // that we're omitting that bit. 628 TTypeFormat = dwarf::DW_EH_PE_omit; 629 TypeFormatSize = SizeOfEncodedValue(dwarf::DW_EH_PE_absptr); 630 } else { 631 // Okay, we have actual filters or typeinfos to emit. As such, we need to 632 // pick a type encoding for them. We're about to emit a list of pointers to 633 // typeinfo objects at the end of the LSDA. However, unless we're in static 634 // mode, this reference will require a relocation by the dynamic linker. 635 // 636 // Because of this, we have a couple of options: 637 // 638 // 1) If we are in -static mode, we can always use an absolute reference 639 // from the LSDA, because the static linker will resolve it. 640 // 641 // 2) Otherwise, if the LSDA section is writable, we can output the direct 642 // reference to the typeinfo and allow the dynamic linker to relocate 643 // it. Since it is in a writable section, the dynamic linker won't 644 // have a problem. 645 // 646 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable, 647 // we need to use some form of indirection. For example, on Darwin, 648 // we can output a statically-relocatable reference to a dyld stub. The 649 // offset to the stub is constant, but the contents are in a section 650 // that is updated by the dynamic linker. This is easy enough, but we 651 // need to tell the personality function of the unwinder to indirect 652 // through the dyld stub. 653 // 654 // FIXME: When (3) is actually implemented, we'll have to emit the stubs 655 // somewhere. This predicate should be moved to a shared location that is 656 // in target-independent code. 657 // 658 if (LSDASection->getKind().isWriteable() || 659 Asm->TM.getRelocationModel() == Reloc::Static) 660 TTypeFormat = dwarf::DW_EH_PE_absptr; 661 else 662 TTypeFormat = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 663 dwarf::DW_EH_PE_sdata4; 664 665 TypeFormatSize = SizeOfEncodedValue(TTypeFormat); 666 } 667 668 // Begin the exception table. 669 Asm->OutStreamer.SwitchSection(LSDASection); 670 Asm->EmitAlignment(2, 0, 0, false); 671 672 O << "GCC_except_table" << SubprogramCount << ":\n"; 673 674 // The type infos need to be aligned. GCC does this by inserting padding just 675 // before the type infos. However, this changes the size of the exception 676 // table, so you need to take this into account when you output the exception 677 // table size. However, the size is output using a variable length encoding. 678 // So by increasing the size by inserting padding, you may increase the number 679 // of bytes used for writing the size. If it increases, say by one byte, then 680 // you now need to output one less byte of padding to get the type infos 681 // aligned. However this decreases the size of the exception table. This 682 // changes the value you have to output for the exception table size. Due to 683 // the variable length encoding, the number of bytes used for writing the 684 // length may decrease. If so, you then have to increase the amount of 685 // padding. And so on. If you look carefully at the GCC code you will see that 686 // it indeed does this in a loop, going on and on until the values stabilize. 687 // We chose another solution: don't output padding inside the table like GCC 688 // does, instead output it before the table. 689 unsigned SizeTypes = TypeInfos.size() * TypeFormatSize; 690 unsigned TyOffset = sizeof(int8_t) + // Call site format 691 MCAsmInfo::getULEB128Size(SizeSites) + // Call-site table length 692 SizeSites + SizeActions + SizeTypes; 693 unsigned TotalSize = sizeof(int8_t) + // LPStart format 694 sizeof(int8_t) + // TType format 695 (HaveTTData ? 696 MCAsmInfo::getULEB128Size(TyOffset) : 0) + // TType base offset 697 TyOffset; 698 unsigned SizeAlign = (4 - TotalSize) & 3; 699 700 for (unsigned i = 0; i != SizeAlign; ++i) { 701 Asm->EmitInt8(0); 702 Asm->EOL("Padding"); 703 } 704 705 EmitLabel("exception", SubprogramCount); 706 707 if (IsSJLJ) { 708 SmallString<16> LSDAName; 709 raw_svector_ostream(LSDAName) << MAI->getPrivateGlobalPrefix() << 710 "_LSDA_" << Asm->getFunctionNumber(); 711 O << LSDAName.str() << ":\n"; 712 } 713 714 // Emit the header. 715 Asm->EmitInt8(dwarf::DW_EH_PE_omit); 716 Asm->EOL("@LPStart format", dwarf::DW_EH_PE_omit); 717 718 Asm->EmitInt8(TTypeFormat); 719 Asm->EOL("@TType format", TTypeFormat); 720 721 if (HaveTTData) { 722 Asm->EmitULEB128Bytes(TyOffset); 723 Asm->EOL("@TType base offset"); 724 } 725 726 // SjLj Exception handling 727 if (IsSJLJ) { 728 Asm->EmitInt8(dwarf::DW_EH_PE_udata4); 729 Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4); 730 Asm->EmitULEB128Bytes(SizeSites); 731 Asm->EOL("Call site table length"); 732 733 // Emit the landing pad site information. 734 unsigned idx = 0; 735 for (SmallVectorImpl<CallSiteEntry>::const_iterator 736 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) { 737 const CallSiteEntry &S = *I; 738 739 // Offset of the landing pad, counted in 16-byte bundles relative to the 740 // @LPStart address. 741 Asm->EmitULEB128Bytes(idx); 742 Asm->EOL("Landing pad"); 743 744 // Offset of the first associated action record, relative to the start of 745 // the action table. This value is biased by 1 (1 indicates the start of 746 // the action table), and 0 indicates that there are no actions. 747 Asm->EmitULEB128Bytes(S.Action); 748 Asm->EOL("Action"); 749 } 750 } else { 751 // DWARF Exception handling 752 assert(MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf); 753 754 // The call-site table is a list of all call sites that may throw an 755 // exception (including C++ 'throw' statements) in the procedure 756 // fragment. It immediately follows the LSDA header. Each entry indicates, 757 // for a given call, the first corresponding action record and corresponding 758 // landing pad. 759 // 760 // The table begins with the number of bytes, stored as an LEB128 761 // compressed, unsigned integer. The records immediately follow the record 762 // count. They are sorted in increasing call-site address. Each record 763 // indicates: 764 // 765 // * The position of the call-site. 766 // * The position of the landing pad. 767 // * The first action record for that call site. 768 // 769 // A missing entry in the call-site table indicates that a call is not 770 // supposed to throw. 771 772 // Emit the landing pad call site table. 773 Asm->EmitInt8(dwarf::DW_EH_PE_udata4); 774 Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4); 775 Asm->EmitULEB128Bytes(SizeSites); 776 Asm->EOL("Call site table size"); 777 778 for (SmallVectorImpl<CallSiteEntry>::const_iterator 779 I = CallSites.begin(), E = CallSites.end(); I != E; ++I) { 780 const CallSiteEntry &S = *I; 781 const char *BeginTag; 782 unsigned BeginNumber; 783 784 if (!S.BeginLabel) { 785 BeginTag = "eh_func_begin"; 786 BeginNumber = SubprogramCount; 787 } else { 788 BeginTag = "label"; 789 BeginNumber = S.BeginLabel; 790 } 791 792 // Offset of the call site relative to the previous call site, counted in 793 // number of 16-byte bundles. The first call site is counted relative to 794 // the start of the procedure fragment. 795 EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount, 796 true, true); 797 Asm->EOL("Region start"); 798 799 if (!S.EndLabel) 800 EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber, 801 true); 802 else 803 EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true); 804 805 Asm->EOL("Region length"); 806 807 // Offset of the landing pad, counted in 16-byte bundles relative to the 808 // @LPStart address. 809 if (!S.PadLabel) 810 Asm->EmitInt32(0); 811 else 812 EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount, 813 true, true); 814 815 Asm->EOL("Landing pad"); 816 817 // Offset of the first associated action record, relative to the start of 818 // the action table. This value is biased by 1 (1 indicates the start of 819 // the action table), and 0 indicates that there are no actions. 820 Asm->EmitULEB128Bytes(S.Action); 821 Asm->EOL("Action"); 822 } 823 } 824 825 // Emit the Action Table. 826 for (SmallVectorImpl<ActionEntry>::const_iterator 827 I = Actions.begin(), E = Actions.end(); I != E; ++I) { 828 const ActionEntry &Action = *I; 829 830 // Type Filter 831 // 832 // Used by the runtime to match the type of the thrown exception to the 833 // type of the catch clauses or the types in the exception specification. 834 835 Asm->EmitSLEB128Bytes(Action.ValueForTypeID); 836 Asm->EOL("TypeInfo index"); 837 838 // Action Record 839 // 840 // Self-relative signed displacement in bytes of the next action record, 841 // or 0 if there is no next action record. 842 843 Asm->EmitSLEB128Bytes(Action.NextAction); 844 Asm->EOL("Next action"); 845 } 846 847 // Emit the Catch Clauses. The code for the catch clauses following the same 848 // try is similar to a switch statement. The catch clause action record 849 // informs the runtime about the type of a catch clause and about the 850 // associated switch value. 851 // 852 // Action Record Fields: 853 // 854 // * Filter Value 855 // Positive value, starting at 1. Index in the types table of the 856 // __typeinfo for the catch-clause type. 1 is the first word preceding 857 // TTBase, 2 is the second word, and so on. Used by the runtime to check 858 // if the thrown exception type matches the catch-clause type. Back-end 859 // generated switch statements check against this value. 860 // 861 // * Next 862 // Signed offset, in bytes from the start of this field, to the next 863 // chained action record, or zero if none. 864 // 865 // The order of the action records determined by the next field is the order 866 // of the catch clauses as they appear in the source code, and must be kept in 867 // the same order. As a result, changing the order of the catch clause would 868 // change the semantics of the program. 869 for (std::vector<GlobalVariable *>::const_reverse_iterator 870 I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) { 871 const GlobalVariable *GV = *I; 872 PrintRelDirective(); 873 874 if (GV) { 875 O << Asm->Mang->getMangledName(GV); 876 } else { 877 O << "0x0"; 878 } 879 880 Asm->EOL("TypeInfo"); 881 } 882 883 // Emit the Type Table. 884 for (std::vector<unsigned>::const_iterator 885 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) { 886 unsigned TypeID = *I; 887 Asm->EmitULEB128Bytes(TypeID); 888 Asm->EOL("Filter TypeInfo index"); 889 } 890 891 Asm->EmitAlignment(2, 0, 0, false); 892} 893 894/// EndModule - Emit all exception information that should come after the 895/// content. 896void DwarfException::EndModule() { 897 if (MAI->getExceptionHandlingType() != ExceptionHandling::Dwarf) 898 return; 899 900 if (!shouldEmitMovesModule && !shouldEmitTableModule) 901 return; 902 903 if (TimePassesIsEnabled) 904 ExceptionTimer->startTimer(); 905 906 const std::vector<Function *> Personalities = MMI->getPersonalities(); 907 908 for (unsigned I = 0, E = Personalities.size(); I < E; ++I) 909 EmitCIE(Personalities[I], I); 910 911 for (std::vector<FunctionEHFrameInfo>::iterator 912 I = EHFrames.begin(), E = EHFrames.end(); I != E; ++I) 913 EmitFDE(*I); 914 915 if (TimePassesIsEnabled) 916 ExceptionTimer->stopTimer(); 917} 918 919/// BeginFunction - Gather pre-function exception information. Assumes it's 920/// being emitted immediately after the function entry point. 921void DwarfException::BeginFunction(MachineFunction *MF) { 922 if (!MMI || !MAI->doesSupportExceptionHandling()) return; 923 924 if (TimePassesIsEnabled) 925 ExceptionTimer->startTimer(); 926 927 this->MF = MF; 928 shouldEmitTable = shouldEmitMoves = false; 929 930 // Map all labels and get rid of any dead landing pads. 931 MMI->TidyLandingPads(); 932 933 // If any landing pads survive, we need an EH table. 934 if (!MMI->getLandingPads().empty()) 935 shouldEmitTable = true; 936 937 // See if we need frame move info. 938 if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory) 939 shouldEmitMoves = true; 940 941 if (shouldEmitMoves || shouldEmitTable) 942 // Assumes in correct section after the entry point. 943 EmitLabel("eh_func_begin", ++SubprogramCount); 944 945 shouldEmitTableModule |= shouldEmitTable; 946 shouldEmitMovesModule |= shouldEmitMoves; 947 948 if (TimePassesIsEnabled) 949 ExceptionTimer->stopTimer(); 950} 951 952/// EndFunction - Gather and emit post-function exception information. 953/// 954void DwarfException::EndFunction() { 955 if (!shouldEmitMoves && !shouldEmitTable) return; 956 957 if (TimePassesIsEnabled) 958 ExceptionTimer->startTimer(); 959 960 EmitLabel("eh_func_end", SubprogramCount); 961 EmitExceptionTable(); 962 963 // Save EH frame information 964 EHFrames.push_back(FunctionEHFrameInfo(getAsm()->getCurrentFunctionEHName(MF), 965 SubprogramCount, 966 MMI->getPersonalityIndex(), 967 MF->getFrameInfo()->hasCalls(), 968 !MMI->getLandingPads().empty(), 969 MMI->getFrameMoves(), 970 MF->getFunction())); 971 972 // Record if this personality index uses a landing pad. 973 UsesLSDA[MMI->getPersonalityIndex()] |= !MMI->getLandingPads().empty(); 974 975 if (TimePassesIsEnabled) 976 ExceptionTimer->stopTimer(); 977} 978