DwarfException.cpp revision 40121bccbee44d387ab5d6a5194c5fc27c542e12
1//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains support for writing dwarf exception info into asm files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DwarfException.h"
15#include "llvm/Module.h"
16#include "llvm/CodeGen/MachineModuleInfo.h"
17#include "llvm/CodeGen/MachineFrameInfo.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/CodeGen/MachineLocation.h"
20#include "llvm/MC/MCStreamer.h"
21#include "llvm/MC/MCAsmInfo.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Target/TargetFrameInfo.h"
24#include "llvm/Target/TargetLoweringObjectFile.h"
25#include "llvm/Target/TargetOptions.h"
26#include "llvm/Target/TargetRegisterInfo.h"
27#include "llvm/Support/Dwarf.h"
28#include "llvm/Support/Mangler.h"
29#include "llvm/Support/Timer.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/StringExtras.h"
33using namespace llvm;
34
35static TimerGroup &getDwarfTimerGroup() {
36  static TimerGroup DwarfTimerGroup("Dwarf Exception");
37  return DwarfTimerGroup;
38}
39
40DwarfException::DwarfException(raw_ostream &OS, AsmPrinter *A,
41                               const MCAsmInfo *T)
42  : Dwarf(OS, A, T, "eh"), shouldEmitTable(false), shouldEmitMoves(false),
43    shouldEmitTableModule(false), shouldEmitMovesModule(false),
44    ExceptionTimer(0) {
45  if (TimePassesIsEnabled)
46    ExceptionTimer = new Timer("Dwarf Exception Writer",
47                               getDwarfTimerGroup());
48}
49
50DwarfException::~DwarfException() {
51  delete ExceptionTimer;
52}
53
54/// SizeOfEncodedValue - Return the size of the encoding in bytes.
55unsigned DwarfException::SizeOfEncodedValue(unsigned Encoding) {
56  if (Encoding == dwarf::DW_EH_PE_omit)
57    return 0;
58
59  switch (Encoding & 0x07) {
60  case dwarf::DW_EH_PE_absptr:
61    return TD->getPointerSize();
62  case dwarf::DW_EH_PE_udata2:
63    return 2;
64  case dwarf::DW_EH_PE_udata4:
65    return 4;
66  case dwarf::DW_EH_PE_udata8:
67    return 8;
68  }
69
70  llvm_unreachable("Invalid encoded value.");
71  return 0;
72}
73
74/// EmitCIE - Emit a Common Information Entry (CIE). This holds information that
75/// is shared among many Frame Description Entries.  There is at least one CIE
76/// in every non-empty .debug_frame section.
77void DwarfException::EmitCIE(const Function *Personality, unsigned Index) {
78  // Size and sign of stack growth.
79  int stackGrowth =
80    Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
81    TargetFrameInfo::StackGrowsUp ?
82    TD->getPointerSize() : -TD->getPointerSize();
83
84  // Begin eh frame section.
85  Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection());
86
87  if (MAI->is_EHSymbolPrivate())
88    O << MAI->getPrivateGlobalPrefix();
89
90  O << "EH_frame" << Index << ":\n";
91  EmitLabel("section_eh_frame", Index);
92
93  // Define base labels.
94  EmitLabel("eh_frame_common", Index);
95
96  // Define the eh frame length.
97  EmitDifference("eh_frame_common_end", Index,
98                 "eh_frame_common_begin", Index, true);
99  Asm->EOL("Length of Common Information Entry");
100
101  // EH frame header.
102  EmitLabel("eh_frame_common_begin", Index);
103  Asm->EmitInt32((int)0);
104  Asm->EOL("CIE Identifier Tag");
105  Asm->EmitInt8(dwarf::DW_CIE_VERSION);
106  Asm->EOL("CIE Version");
107
108  // The personality presence indicates that language specific information will
109  // show up in the eh frame.
110
111  // FIXME: Don't hardcode these encodings.
112  unsigned PerEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
113  if (Personality && MAI->getNeedsIndirectEncoding())
114    PerEncoding |= dwarf::DW_EH_PE_indirect;
115  unsigned LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
116  unsigned FDEEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
117
118  char Augmentation[5] = { 0 };
119  unsigned AugmentationSize = 0;
120  char *APtr = Augmentation + 1;
121
122  if (Personality) {
123    // There is a personality function.
124    *APtr++ = 'P';
125    AugmentationSize += 1 + SizeOfEncodedValue(PerEncoding);
126  }
127
128  if (UsesLSDA[Index]) {
129    // An LSDA pointer is in the FDE augmentation.
130    *APtr++ = 'L';
131    ++AugmentationSize;
132  }
133
134  if (FDEEncoding != dwarf::DW_EH_PE_absptr) {
135    // A non-default pointer encoding for the FDE.
136    *APtr++ = 'R';
137    ++AugmentationSize;
138  }
139
140  if (APtr != Augmentation + 1)
141    Augmentation[0] = 'z';
142
143  Asm->EmitString(Augmentation);
144  Asm->EOL("CIE Augmentation");
145
146  // Round out reader.
147  Asm->EmitULEB128Bytes(1);
148  Asm->EOL("CIE Code Alignment Factor");
149  Asm->EmitSLEB128Bytes(stackGrowth);
150  Asm->EOL("CIE Data Alignment Factor");
151  Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true));
152  Asm->EOL("CIE Return Address Column");
153
154  Asm->EmitULEB128Bytes(AugmentationSize);
155  Asm->EOL("Augmentation Size");
156
157  Asm->EmitInt8(PerEncoding);
158  Asm->EOL("Personality", PerEncoding);
159
160  // If there is a personality, we need to indicate the function's location.
161  if (Personality) {
162    PrintRelDirective(true);
163    O << MAI->getPersonalityPrefix();
164    Asm->EmitExternalGlobal((const GlobalVariable *)(Personality));
165    O << MAI->getPersonalitySuffix();
166    if (strcmp(MAI->getPersonalitySuffix(), "+4@GOTPCREL"))
167      O << "-" << MAI->getPCSymbol();
168    Asm->EOL("Personality");
169
170    Asm->EmitInt8(LSDAEncoding);
171    Asm->EOL("LSDA Encoding", LSDAEncoding);
172
173    Asm->EmitInt8(FDEEncoding);
174    Asm->EOL("FDE Encoding", FDEEncoding);
175  }
176
177  // Indicate locations of general callee saved registers in frame.
178  std::vector<MachineMove> Moves;
179  RI->getInitialFrameState(Moves);
180  EmitFrameMoves(NULL, 0, Moves, true);
181
182  // On Darwin the linker honors the alignment of eh_frame, which means it must
183  // be 8-byte on 64-bit targets to match what gcc does.  Otherwise you get
184  // holes which confuse readers of eh_frame.
185  Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
186                     0, 0, false);
187  EmitLabel("eh_frame_common_end", Index);
188
189  Asm->EOL();
190}
191
192/// EmitFDE - Emit the Frame Description Entry (FDE) for the function.
193void DwarfException::EmitFDE(const FunctionEHFrameInfo &EHFrameInfo) {
194  assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() &&
195         "Should not emit 'available externally' functions at all");
196
197  const Function *TheFunc = EHFrameInfo.function;
198
199  Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection());
200
201  // Externally visible entry into the functions eh frame info. If the
202  // corresponding function is static, this should not be externally visible.
203  if (!TheFunc->hasLocalLinkage())
204    if (const char *GlobalEHDirective = MAI->getGlobalEHDirective())
205      O << GlobalEHDirective << EHFrameInfo.FnName << "\n";
206
207  // If corresponding function is weak definition, this should be too.
208  if (TheFunc->isWeakForLinker() && MAI->getWeakDefDirective())
209    O << MAI->getWeakDefDirective() << EHFrameInfo.FnName << "\n";
210
211  // If there are no calls then you can't unwind.  This may mean we can omit the
212  // EH Frame, but some environments do not handle weak absolute symbols. If
213  // UnwindTablesMandatory is set we cannot do this optimization; the unwind
214  // info is to be available for non-EH uses.
215  if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory &&
216      (!TheFunc->isWeakForLinker() ||
217       !MAI->getWeakDefDirective() ||
218       MAI->getSupportsWeakOmittedEHFrame())) {
219    O << EHFrameInfo.FnName << " = 0\n";
220    // This name has no connection to the function, so it might get
221    // dead-stripped when the function is not, erroneously.  Prohibit
222    // dead-stripping unconditionally.
223    if (const char *UsedDirective = MAI->getUsedDirective())
224      O << UsedDirective << EHFrameInfo.FnName << "\n\n";
225  } else {
226    O << EHFrameInfo.FnName << ":\n";
227
228    // EH frame header.
229    EmitDifference("eh_frame_end", EHFrameInfo.Number,
230                   "eh_frame_begin", EHFrameInfo.Number, true);
231    Asm->EOL("Length of Frame Information Entry");
232
233    EmitLabel("eh_frame_begin", EHFrameInfo.Number);
234
235    EmitSectionOffset("eh_frame_begin", "eh_frame_common",
236                      EHFrameInfo.Number, EHFrameInfo.PersonalityIndex,
237                      true, true, false);
238
239    Asm->EOL("FDE CIE offset");
240
241    EmitReference("eh_func_begin", EHFrameInfo.Number, true, true);
242    Asm->EOL("FDE initial location");
243    EmitDifference("eh_func_end", EHFrameInfo.Number,
244                   "eh_func_begin", EHFrameInfo.Number, true);
245    Asm->EOL("FDE address range");
246
247    // If there is a personality and landing pads then point to the language
248    // specific data area in the exception table.
249    if (MMI->getPersonalities()[0] != NULL) {
250      bool is4Byte = TD->getPointerSize() == sizeof(int32_t);
251
252      Asm->EmitULEB128Bytes(is4Byte ? 4 : 8);
253      Asm->EOL("Augmentation size");
254
255      if (EHFrameInfo.hasLandingPads)
256        EmitReference("exception", EHFrameInfo.Number, true, false);
257      else {
258        if (is4Byte)
259          Asm->EmitInt32((int)0);
260        else
261          Asm->EmitInt64((int)0);
262      }
263      Asm->EOL("Language Specific Data Area");
264    } else {
265      Asm->EmitULEB128Bytes(0);
266      Asm->EOL("Augmentation size");
267    }
268
269    // Indicate locations of function specific callee saved registers in frame.
270    EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves,
271                   true);
272
273    // On Darwin the linker honors the alignment of eh_frame, which means it
274    // must be 8-byte on 64-bit targets to match what gcc does.  Otherwise you
275    // get holes which confuse readers of eh_frame.
276    Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
277                       0, 0, false);
278    EmitLabel("eh_frame_end", EHFrameInfo.Number);
279
280    // If the function is marked used, this table should be also.  We cannot
281    // make the mark unconditional in this case, since retaining the table also
282    // retains the function in this case, and there is code around that depends
283    // on unused functions (calling undefined externals) being dead-stripped to
284    // link correctly.  Yes, there really is.
285    if (MMI->isUsedFunction(EHFrameInfo.function))
286      if (const char *UsedDirective = MAI->getUsedDirective())
287        O << UsedDirective << EHFrameInfo.FnName << "\n\n";
288  }
289
290  Asm->EOL();
291}
292
293/// SharedTypeIds - How many leading type ids two landing pads have in common.
294unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
295                                       const LandingPadInfo *R) {
296  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
297  unsigned LSize = LIds.size(), RSize = RIds.size();
298  unsigned MinSize = LSize < RSize ? LSize : RSize;
299  unsigned Count = 0;
300
301  for (; Count != MinSize; ++Count)
302    if (LIds[Count] != RIds[Count])
303      return Count;
304
305  return Count;
306}
307
308/// PadLT - Order landing pads lexicographically by type id.
309bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
310  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
311  unsigned LSize = LIds.size(), RSize = RIds.size();
312  unsigned MinSize = LSize < RSize ? LSize : RSize;
313
314  for (unsigned i = 0; i != MinSize; ++i)
315    if (LIds[i] != RIds[i])
316      return LIds[i] < RIds[i];
317
318  return LSize < RSize;
319}
320
321/// ComputeActionsTable - Compute the actions table and gather the first action
322/// index for each landing pad site.
323unsigned DwarfException::
324ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
325                    SmallVectorImpl<ActionEntry> &Actions,
326                    SmallVectorImpl<unsigned> &FirstActions) {
327
328  // The action table follows the call-site table in the LSDA. The individual
329  // records are of two types:
330  //
331  //   * Catch clause
332  //   * Exception specification
333  //
334  // The two record kinds have the same format, with only small differences.
335  // They are distinguished by the "switch value" field: Catch clauses
336  // (TypeInfos) have strictly positive switch values, and exception
337  // specifications (FilterIds) have strictly negative switch values. Value 0
338  // indicates a catch-all clause.
339  //
340  // Negative type IDs index into FilterIds. Positive type IDs index into
341  // TypeInfos.  The value written for a positive type ID is just the type ID
342  // itself.  For a negative type ID, however, the value written is the
343  // (negative) byte offset of the corresponding FilterIds entry.  The byte
344  // offset is usually equal to the type ID (because the FilterIds entries are
345  // written using a variable width encoding, which outputs one byte per entry
346  // as long as the value written is not too large) but can differ.  This kind
347  // of complication does not occur for positive type IDs because type infos are
348  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
349  // offset corresponding to FilterIds[i].
350
351  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
352  SmallVector<int, 16> FilterOffsets;
353  FilterOffsets.reserve(FilterIds.size());
354  int Offset = -1;
355
356  for (std::vector<unsigned>::const_iterator
357         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
358    FilterOffsets.push_back(Offset);
359    Offset -= MCAsmInfo::getULEB128Size(*I);
360  }
361
362  FirstActions.reserve(LandingPads.size());
363
364  int FirstAction = 0;
365  unsigned SizeActions = 0;
366  const LandingPadInfo *PrevLPI = 0;
367
368  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
369         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
370    const LandingPadInfo *LPI = *I;
371    const std::vector<int> &TypeIds = LPI->TypeIds;
372    const unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
373    unsigned SizeSiteActions = 0;
374
375    if (NumShared < TypeIds.size()) {
376      unsigned SizeAction = 0;
377      ActionEntry *PrevAction = 0;
378
379      if (NumShared) {
380        const unsigned SizePrevIds = PrevLPI->TypeIds.size();
381        assert(Actions.size());
382        PrevAction = &Actions.back();
383        SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
384          MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
385
386        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
387          SizeAction -=
388            MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
389          SizeAction += -PrevAction->NextAction;
390          PrevAction = PrevAction->Previous;
391        }
392      }
393
394      // Compute the actions.
395      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
396        int TypeID = TypeIds[J];
397        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
398        int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
399        unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
400
401        int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
402        SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
403        SizeSiteActions += SizeAction;
404
405        ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
406        Actions.push_back(Action);
407        PrevAction = &Actions.back();
408      }
409
410      // Record the first action of the landing pad site.
411      FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
412    } // else identical - re-use previous FirstAction
413
414    // Information used when created the call-site table. The action record
415    // field of the call site record is the offset of the first associated
416    // action record, relative to the start of the actions table. This value is
417    // biased by 1 (1 in dicating the start of the actions table), and 0
418    // indicates that there are no actions.
419    FirstActions.push_back(FirstAction);
420
421    // Compute this sites contribution to size.
422    SizeActions += SizeSiteActions;
423
424    PrevLPI = LPI;
425  }
426
427  return SizeActions;
428}
429
430/// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
431/// has a try-range containing the call, a non-zero landing pad, and an
432/// appropriate action.  The entry for an ordinary call has a try-range
433/// containing the call and zero for the landing pad and the action.  Calls
434/// marked 'nounwind' have no entry and must not be contained in the try-range
435/// of any entry - they form gaps in the table.  Entries must be ordered by
436/// try-range address.
437void DwarfException::
438ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
439                     const RangeMapType &PadMap,
440                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
441                     const SmallVectorImpl<unsigned> &FirstActions) {
442  // The end label of the previous invoke or nounwind try-range.
443  unsigned LastLabel = 0;
444
445  // Whether there is a potentially throwing instruction (currently this means
446  // an ordinary call) between the end of the previous try-range and now.
447  bool SawPotentiallyThrowing = false;
448
449  // Whether the last CallSite entry was for an invoke.
450  bool PreviousIsInvoke = false;
451
452  // Visit all instructions in order of address.
453  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
454       I != E; ++I) {
455    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
456         MI != E; ++MI) {
457      if (!MI->isLabel()) {
458        SawPotentiallyThrowing |= MI->getDesc().isCall();
459        continue;
460      }
461
462      unsigned BeginLabel = MI->getOperand(0).getImm();
463      assert(BeginLabel && "Invalid label!");
464
465      // End of the previous try-range?
466      if (BeginLabel == LastLabel)
467        SawPotentiallyThrowing = false;
468
469      // Beginning of a new try-range?
470      RangeMapType::iterator L = PadMap.find(BeginLabel);
471      if (L == PadMap.end())
472        // Nope, it was just some random label.
473        continue;
474
475      const PadRange &P = L->second;
476      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
477      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
478             "Inconsistent landing pad map!");
479
480      // For Dwarf exception handling (SjLj handling doesn't use this). If some
481      // instruction between the previous try-range and this one may throw,
482      // create a call-site entry with no landing pad for the region between the
483      // try-ranges.
484      if (SawPotentiallyThrowing &&
485          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
486        CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
487        CallSites.push_back(Site);
488        PreviousIsInvoke = false;
489      }
490
491      LastLabel = LandingPad->EndLabels[P.RangeIndex];
492      assert(BeginLabel && LastLabel && "Invalid landing pad!");
493
494      if (LandingPad->LandingPadLabel) {
495        // This try-range is for an invoke.
496        CallSiteEntry Site = {
497          BeginLabel,
498          LastLabel,
499          LandingPad->LandingPadLabel,
500          FirstActions[P.PadIndex]
501        };
502
503        // Try to merge with the previous call-site. SJLJ doesn't do this
504        if (PreviousIsInvoke &&
505          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
506          CallSiteEntry &Prev = CallSites.back();
507          if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
508            // Extend the range of the previous entry.
509            Prev.EndLabel = Site.EndLabel;
510            continue;
511          }
512        }
513
514        // Otherwise, create a new call-site.
515        CallSites.push_back(Site);
516        PreviousIsInvoke = true;
517      } else {
518        // Create a gap.
519        PreviousIsInvoke = false;
520      }
521    }
522  }
523
524  // If some instruction between the previous try-range and the end of the
525  // function may throw, create a call-site entry with no landing pad for the
526  // region following the try-range.
527  if (SawPotentiallyThrowing &&
528      MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
529    CallSiteEntry Site = { LastLabel, 0, 0, 0 };
530    CallSites.push_back(Site);
531  }
532}
533
534/// EmitExceptionTable - Emit landing pads and actions.
535///
536/// The general organization of the table is complex, but the basic concepts are
537/// easy.  First there is a header which describes the location and organization
538/// of the three components that follow.
539///
540///  1. The landing pad site information describes the range of code covered by
541///     the try.  In our case it's an accumulation of the ranges covered by the
542///     invokes in the try.  There is also a reference to the landing pad that
543///     handles the exception once processed.  Finally an index into the actions
544///     table.
545///  2. The action table, in our case, is composed of pairs of type IDs and next
546///     action offset.  Starting with the action index from the landing pad
547///     site, each type ID is checked for a match to the current exception.  If
548///     it matches then the exception and type id are passed on to the landing
549///     pad.  Otherwise the next action is looked up.  This chain is terminated
550///     with a next action of zero.  If no type id is found the the frame is
551///     unwound and handling continues.
552///  3. Type ID table contains references to all the C++ typeinfo for all
553///     catches in the function.  This tables is reversed indexed base 1.
554void DwarfException::EmitExceptionTable() {
555  const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
556  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
557  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
558  if (PadInfos.empty()) return;
559
560  // Sort the landing pads in order of their type ids.  This is used to fold
561  // duplicate actions.
562  SmallVector<const LandingPadInfo *, 64> LandingPads;
563  LandingPads.reserve(PadInfos.size());
564
565  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
566    LandingPads.push_back(&PadInfos[i]);
567
568  std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
569
570  // Compute the actions table and gather the first action index for each
571  // landing pad site.
572  SmallVector<ActionEntry, 32> Actions;
573  SmallVector<unsigned, 64> FirstActions;
574  unsigned SizeActions = ComputeActionsTable(LandingPads, Actions, FirstActions);
575
576  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
577  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
578  // try-ranges for them need be deduced when using Dwarf exception handling.
579  RangeMapType PadMap;
580  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
581    const LandingPadInfo *LandingPad = LandingPads[i];
582    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
583      unsigned BeginLabel = LandingPad->BeginLabels[j];
584      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
585      PadRange P = { i, j };
586      PadMap[BeginLabel] = P;
587    }
588  }
589
590  // Compute the call-site table.
591  SmallVector<CallSiteEntry, 64> CallSites;
592  ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
593
594  // Final tallies.
595
596  // Call sites.
597  const unsigned SiteStartSize  = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
598  const unsigned SiteLengthSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
599  const unsigned LandingPadSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
600  unsigned SizeSites;
601
602  bool HaveTTData = (MAI->getExceptionHandlingType() == ExceptionHandling::SjLj)
603    ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
604
605  if (MAI->getExceptionHandlingType() == ExceptionHandling::SjLj) {
606    SizeSites = 0;
607  } else
608    SizeSites = CallSites.size() *
609      (SiteStartSize + SiteLengthSize + LandingPadSize);
610  for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
611    SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
612    if (MAI->getExceptionHandlingType() == ExceptionHandling::SjLj)
613      SizeSites += MCAsmInfo::getULEB128Size(i);
614  }
615  // Type infos.
616  const unsigned TypeInfoSize = TD->getPointerSize(); // DW_EH_PE_absptr
617  unsigned SizeTypes = TypeInfos.size() * TypeInfoSize;
618
619  unsigned TypeOffset = sizeof(int8_t) +   // Call site format
620    MCAsmInfo::getULEB128Size(SizeSites) + // Call-site table length
621    SizeSites + SizeActions + SizeTypes;
622
623  unsigned TotalSize = sizeof(int8_t) + // LPStart format
624                       sizeof(int8_t) + // TType format
625       (HaveTTData ?
626          MCAsmInfo::getULEB128Size(TypeOffset) : 0) + // TType base offset
627                       TypeOffset;
628
629  unsigned SizeAlign = (4 - TotalSize) & 3;
630
631  // Begin the exception table.
632  const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
633  Asm->OutStreamer.SwitchSection(LSDASection);
634  Asm->EmitAlignment(2, 0, 0, false);
635  O << "GCC_except_table" << SubprogramCount << ":\n";
636
637  for (unsigned i = 0; i != SizeAlign; ++i) {
638    Asm->EmitInt8(0);
639    Asm->EOL("Padding");
640  }
641
642  EmitLabel("exception", SubprogramCount);
643  if (MAI->getExceptionHandlingType() == ExceptionHandling::SjLj) {
644    SmallString<16> LSDAName;
645    raw_svector_ostream(LSDAName) << MAI->getPrivateGlobalPrefix() <<
646      "_LSDA_" << Asm->getFunctionNumber();
647    O << LSDAName.str() << ":\n";
648  }
649
650  // Emit the header.
651  Asm->EmitInt8(dwarf::DW_EH_PE_omit);
652  Asm->EOL("@LPStart format", dwarf::DW_EH_PE_omit);
653
654#if 0
655  if (TypeInfos.empty() && FilterIds.empty()) {
656    // If there are no typeinfos or filters, there is nothing to emit, optimize
657    // by specifying the "omit" encoding.
658    Asm->EmitInt8(dwarf::DW_EH_PE_omit);
659    Asm->EOL("@TType format", dwarf::DW_EH_PE_omit);
660  } else {
661    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
662    // pick a type encoding for them.  We're about to emit a list of pointers to
663    // typeinfo objects at the end of the LSDA.  However, unless we're in static
664    // mode, this reference will require a relocation by the dynamic linker.
665    //
666    // Because of this, we have a couple of options:
667    //   1) If we are in -static mode, we can always use an absolute reference
668    //      from the LSDA, because the static linker will resolve it.
669    //   2) Otherwise, if the LSDA section is writable, we can output the direct
670    //      reference to the typeinfo and allow the dynamic linker to relocate
671    //      it.  Since it is in a writable section, the dynamic linker won't
672    //      have a problem.
673    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
674    //      we need to use some form of indirection.  For example, on Darwin,
675    //      we can output a statically-relocatable reference to a dyld stub. The
676    //      offset to the stub is constant, but the contents are in a section
677    //      that is updated by the dynamic linker.  This is easy enough, but we
678    //      need to tell the personality function of the unwinder to indirect
679    //      through the dyld stub.
680    //
681    // FIXME: When this is actually implemented, we'll have to emit the stubs
682    // somewhere.  This predicate should be moved to a shared location that is
683    // in target-independent code.
684    //
685    if (LSDASection->isWritable() ||
686        Asm->TM.getRelocationModel() == Reloc::Static) {
687      Asm->EmitInt8(DW_EH_PE_absptr);
688      Asm->EOL("TType format (DW_EH_PE_absptr)");
689    } else {
690      Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_indirect | DW_EH_PE_sdata4);
691      Asm->EOL("TType format (DW_EH_PE_pcrel | DW_EH_PE_indirect"
692               " | DW_EH_PE_sdata4)");
693    }
694    Asm->EmitULEB128Bytes(TypeOffset);
695    Asm->EOL("TType base offset");
696  }
697#else
698  // For SjLj exceptions, if there is no TypeInfo, then we just explicitly
699  // say that we're omitting that bit.
700  // FIXME: does this apply to Dwarf also? The above #if 0 implies yes?
701  if (!HaveTTData) {
702    Asm->EmitInt8(dwarf::DW_EH_PE_omit);
703    Asm->EOL("@TType format", dwarf::DW_EH_PE_omit);
704  } else {
705    Asm->EmitInt8(dwarf::DW_EH_PE_absptr);
706    Asm->EOL("@TType format", dwarf::DW_EH_PE_absptr);
707    Asm->EmitULEB128Bytes(TypeOffset);
708    Asm->EOL("@TType base offset");
709  }
710#endif
711
712  // SjLj Exception handilng
713  if (MAI->getExceptionHandlingType() == ExceptionHandling::SjLj) {
714    Asm->EmitInt8(dwarf::DW_EH_PE_udata4);
715    Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4);
716    Asm->EmitULEB128Bytes(SizeSites);
717    Asm->EOL("Call site table length");
718
719    // Emit the landing pad site information.
720    unsigned idx = 0;
721    for (SmallVectorImpl<CallSiteEntry>::const_iterator
722         I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
723      const CallSiteEntry &S = *I;
724
725      // Offset of the landing pad, counted in 16-byte bundles relative to the
726      // @LPStart address.
727      Asm->EmitULEB128Bytes(idx);
728      Asm->EOL("Landing pad");
729
730      // Offset of the first associated action record, relative to the start of
731      // the action table. This value is biased by 1 (1 indicates the start of
732      // the action table), and 0 indicates that there are no actions.
733      Asm->EmitULEB128Bytes(S.Action);
734      Asm->EOL("Action");
735    }
736  } else {
737    // DWARF Exception handling
738    assert(MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf);
739
740    // The call-site table is a list of all call sites that may throw an
741    // exception (including C++ 'throw' statements) in the procedure
742    // fragment. It immediately follows the LSDA header. Each entry indicates,
743    // for a given call, the first corresponding action record and corresponding
744    // landing pad.
745    //
746    // The table begins with the number of bytes, stored as an LEB128
747    // compressed, unsigned integer. The records immediately follow the record
748    // count. They are sorted in increasing call-site address. Each record
749    // indicates:
750    //
751    //   * The position of the call-site.
752    //   * The position of the landing pad.
753    //   * The first action record for that call site.
754    //
755    // A missing entry in the call-site table indicates that a call is not
756    // supposed to throw. Such calls include:
757    //
758    //   * Calls to destructors within cleanup code. C++ semantics forbids these
759    //     calls to throw.
760    //   * Calls to intrinsic routines in the standard library which are known
761    //     not to throw (sin, memcpy, et al).
762    //
763    // If the runtime does not find the call-site entry for a given call, it
764    // will call `terminate()'.
765
766    // Emit the landing pad call site table.
767    Asm->EmitInt8(dwarf::DW_EH_PE_udata4);
768    Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4);
769    Asm->EmitULEB128Bytes(SizeSites);
770    Asm->EOL("Call site table size");
771
772    for (SmallVectorImpl<CallSiteEntry>::const_iterator
773         I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
774      const CallSiteEntry &S = *I;
775      const char *BeginTag;
776      unsigned BeginNumber;
777
778      if (!S.BeginLabel) {
779        BeginTag = "eh_func_begin";
780        BeginNumber = SubprogramCount;
781      } else {
782        BeginTag = "label";
783        BeginNumber = S.BeginLabel;
784      }
785
786      // Offset of the call site relative to the previous call site, counted in
787      // number of 16-byte bundles. The first call site is counted relative to
788      // the start of the procedure fragment.
789      EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount,
790                        true, true);
791      Asm->EOL("Region start");
792
793      if (!S.EndLabel)
794        EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber,
795                       true);
796      else
797        EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true);
798
799      Asm->EOL("Region length");
800
801      // Offset of the landing pad, counted in 16-byte bundles relative to the
802      // @LPStart address.
803      if (!S.PadLabel)
804        Asm->EmitInt32(0);
805      else
806        EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount,
807                          true, true);
808
809      Asm->EOL("Landing pad");
810
811      // Offset of the first associated action record, relative to the start of
812      // the action table. This value is biased by 1 (1 indicates the start of
813      // the action table), and 0 indicates that there are no actions.
814      Asm->EmitULEB128Bytes(S.Action);
815      Asm->EOL("Action");
816    }
817  }
818
819  // Emit the Action Table.
820  for (SmallVectorImpl<ActionEntry>::const_iterator
821         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
822    const ActionEntry &Action = *I;
823
824    // Type Filter
825    //
826    //   Used by the runtime to match the type of the thrown exception to the
827    //   type of the catch clauses or the types in the exception specification.
828
829    Asm->EmitSLEB128Bytes(Action.ValueForTypeID);
830    Asm->EOL("TypeInfo index");
831
832    // Action Record
833    //
834    //   Self-relative signed displacement in bytes of the next action record,
835    //   or 0 if there is no next action record.
836
837    Asm->EmitSLEB128Bytes(Action.NextAction);
838    Asm->EOL("Next action");
839  }
840
841  // Emit the Catch Clauses. The code for the catch clauses following the same
842  // try is similar to a switch statement. The catch clause action record
843  // informs the runtime about the type of a catch clause and about the
844  // associated switch value.
845  //
846  //  Action Record Fields:
847  //
848  //   * Filter Value
849  //     Positive value, starting at 1. Index in the types table of the
850  //     __typeinfo for the catch-clause type. 1 is the first word preceding
851  //     TTBase, 2 is the second word, and so on. Used by the runtime to check
852  //     if the thrown exception type matches the catch-clause type. Back-end
853  //     generated switch statements check against this value.
854  //
855  //   * Next
856  //     Signed offset, in bytes from the start of this field, to the next
857  //     chained action record, or zero if none.
858  //
859  // The order of the action records determined by the next field is the order
860  // of the catch clauses as they appear in the source code, and must be kept in
861  // the same order. As a result, changing the order of the catch clause would
862  // change the semantics of the program.
863  for (std::vector<GlobalVariable *>::const_reverse_iterator
864         I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
865    const GlobalVariable *GV = *I;
866    PrintRelDirective();
867
868    if (GV) {
869      std::string GLN;
870      O << Asm->getGlobalLinkName(GV, GLN);
871    } else {
872      O << "0x0";
873    }
874
875    Asm->EOL("TypeInfo");
876  }
877
878  // Emit the Type Table.
879  for (std::vector<unsigned>::const_iterator
880         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
881    unsigned TypeID = *I;
882    Asm->EmitULEB128Bytes(TypeID);
883    Asm->EOL("Filter TypeInfo index");
884  }
885
886  Asm->EmitAlignment(2, 0, 0, false);
887}
888
889/// EndModule - Emit all exception information that should come after the
890/// content.
891void DwarfException::EndModule() {
892  if (MAI->getExceptionHandlingType() != ExceptionHandling::Dwarf)
893    return;
894
895  if (!shouldEmitMovesModule && !shouldEmitTableModule)
896    return;
897
898  if (TimePassesIsEnabled)
899    ExceptionTimer->startTimer();
900
901  const std::vector<Function *> Personalities = MMI->getPersonalities();
902
903  for (unsigned i = 0, e = Personalities.size(); i < e; ++i)
904    EmitCIE(Personalities[i], i);
905
906  for (std::vector<FunctionEHFrameInfo>::iterator
907         I = EHFrames.begin(), E = EHFrames.end(); I != E; ++I)
908    EmitFDE(*I);
909
910  if (TimePassesIsEnabled)
911    ExceptionTimer->stopTimer();
912}
913
914/// BeginFunction - Gather pre-function exception information.  Assumes being
915/// emitted immediately after the function entry point.
916void DwarfException::BeginFunction(MachineFunction *MF) {
917  if (TimePassesIsEnabled)
918    ExceptionTimer->startTimer();
919
920  this->MF = MF;
921  shouldEmitTable = shouldEmitMoves = false;
922
923  if (MMI && MAI->doesSupportExceptionHandling()) {
924    // Map all labels and get rid of any dead landing pads.
925    MMI->TidyLandingPads();
926
927    // If any landing pads survive, we need an EH table.
928    if (!MMI->getLandingPads().empty())
929      shouldEmitTable = true;
930
931    // See if we need frame move info.
932    if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory)
933      shouldEmitMoves = true;
934
935    if (shouldEmitMoves || shouldEmitTable)
936      // Assumes in correct section after the entry point.
937      EmitLabel("eh_func_begin", ++SubprogramCount);
938  }
939
940  shouldEmitTableModule |= shouldEmitTable;
941  shouldEmitMovesModule |= shouldEmitMoves;
942
943  if (TimePassesIsEnabled)
944    ExceptionTimer->stopTimer();
945}
946
947/// EndFunction - Gather and emit post-function exception information.
948///
949void DwarfException::EndFunction() {
950  if (!shouldEmitMoves && !shouldEmitTable) return;
951
952  if (TimePassesIsEnabled)
953    ExceptionTimer->startTimer();
954
955  EmitLabel("eh_func_end", SubprogramCount);
956  EmitExceptionTable();
957
958  // Save EH frame information
959  EHFrames.push_back(FunctionEHFrameInfo(getAsm()->getCurrentFunctionEHName(MF),
960                                         SubprogramCount,
961                                         MMI->getPersonalityIndex(),
962                                         MF->getFrameInfo()->hasCalls(),
963                                         !MMI->getLandingPads().empty(),
964                                         MMI->getFrameMoves(),
965                                         MF->getFunction()));
966
967  // Record if this personality index uses a landing pad.
968  UsesLSDA[MMI->getPersonalityIndex()] |= !MMI->getLandingPads().empty();
969
970  if (TimePassesIsEnabled)
971    ExceptionTimer->stopTimer();
972}
973